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Some results on the signless Laplacian
permanental polynomial and star degree
of balanced trees

AQiB KHAN, PRATIMA PANIGRAHI, AND SWARUP KUMAR PANDA

Abstract. Let Q(G) be the signless Laplacian matrix of a simple connected
graph G with n vertices. Let per(M) denote the permanent of a matrix M
and let I, be the identity matrix of order n. The polynomial pcr(:c],,, —
Q(G)) is defined as the signless Laplacian permanental polynomial of G.
The multiplicity of root 1 of the polynomial per (x],, — Q(G)) is equal to the
star degree of G. In this paper, we consider a balanced tree T'(h, d) of height
h, in which all the non-pendant vertices have degree d(> 2) and all the
leaves have the same depth. We prove that, among all possible graphs with
the same degree sequence, T'(h,d) has the maximum star degree. Further,
we show that T'(2,d) is determined by its signless Laplacian permanental
polynomial. By applying the known fact that the Laplacian permanental
polynomial and signless Laplacian permanental polynomial are the same
for a bipartite graph G; one gets that T(2,d) is also determined by its
Laplacian permanental polynomial.

1 Introduction

We consider finite, simple, and undirected graphs throughout the paper.
The order and size of a graph G are n = |V(G)| and m = |E(G)|, where
V(G) and E(G) refer to the vertex set and edge set of G, respectively.
The diagonal matrix D(G) of order n x n, with the (i,7)'" entry as the
degree of vertex ¢ in G, is called the degree diagonal matrix of G. The
matrix of order n x n, in which the (i, j)*® entry is 1 if vertex 7 is adjacent
to vertex j in GG, and 0 otherwise, is known as the adjacency matrix of
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G, denoted by A(G). The signless Laplacian matrix of G is defined as
Q(G) = D(G) + A(G).

Let M be a matrix of order k x k with m;; as the (i, j)'" entry. The perma-
nent of M is defined by per(M) =" Hle Mo (i), Where the sum is taken
over all permutations o of the set {1,2,...,k}. Although the definition of
permanent seems similar to the determinant of a matrix, the computation
of permanent is much harder than computing the determinant. The reason
for this difficulty is the lack of an efficient algorithm for the computation
of permanent, unlike the known algorithms, e.g., Gaussian elimination, for
computing the determinant. Various extremal and enumeration problems
concern the permanent of a square matrix in the fields of graph theory and
combinatorics.

Let I,, be the identity matrix of order n. The signless Laplacian permanen-
tal polynomial of a graph G is defined as w(Q(G);x) = per(xln — Q(G)).
A graph G is said to be determined by its signless Laplacian permanen-
tal polynomial if for any graph H that has the same signless Laplacian
permanental polynomial as ¢(Q(G); x), G is isomorphic to H.

Recall that a vertex of degree one in a graph G is known as a pendant
vertex. An edge whose one end-vertex is pendant is said to be a pendant
edge. A pendant star in graph G is a maximal connected subgraph of G
induced by pendant edges. The vertex incident to all the pendant edges
is called the center of the pendant star. The degree of a pendant star is
defined to be the number of its pendant edges minus one. Finally, the star
degree of GG is defined as the sum of the degrees of all pendant stars in G.
We denote the star degree of G by SD(G). If there are no pendant stars in
G, then SD(G) = 0.

An illustration of the above definitions is given in Example 1.1.

Example 1.1. Consider the graph G shown in Figure 1.1. We observe that
G has two pendant stars. The centers of these pendant stars are vertices vy
and vy. The pendant star centered at v; is induced by five pendant edges,
so the degree of this pendant star is 5 — 1 = 4. Similarly, the pendant
star centered at v7 is induced by three pendant edges, so the degree of this
pendant star is 3 — 1 = 2. Thus, the star degree of G is SD(G) = 4+ 2 = 6.

Faria [1] was the first to study the roots of the signless Laplacian perma-
nental polynomial of a graph, where it was proved that the multiplicity of
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Figure 1.1: Graph G.

root 1 of ¢¥(Q(G);x) is equal to SD(G). Later, Liu [2] proved that the
multiplicity of root 0 of w(Q(G); x) is the same as the number of isolated
vertices in G. Recently, Wu et al. [3] studied the star degree of graphs in
more detail.

The characterization of graphs by related polynomials is an interesting and
important problem in graph theory. This problem has been solved for vari-
ous polynomials, including the signless Laplacian permanental polynomial.
Here, we list some of the graphs that have been proven to be determined
by their signless Laplacian permanental polynomials so far:

(i) Complete, regular complete multipartite and star graphs [2].;
(ii) Path, cycle, and lollipop graphs [4];
(iii) n-vertex graphs with star degrees n — i, for i € {2,3,4,5} [3];
(iv) Some caterpillars, whose central paths have the same degree [5];
(v) Some unicyclic graphs, with two types of degrees [6].

In this paper, we compute the signless Laplacian permanental polynomial
and star degree of a balanced tree, denoted as T'(h,d). We show that
T'(h,d) has the maximum star degree among all possible graphs with the
same degree sequence as that of T'(h,d). Further, we prove that T'(2,d) is
determined by its (signless) Laplacian permanental polynomial.

2 Preliminaries

In this section, we define a balanced tree T'(h,d) and include some known
results that will be used in the sequel.

Definition 2.1. For integers h(> 1) and d(> 2), the balanced tree T'(h,d)
is a rooted tree of height h, where all the vertices of depth h — i, with
1 <4 < h, have degree d and the remaining vertices are leaves, i.e., all the
leaves are of depth h.

97



KHAN, PANIGRAHI, AND PANDA

An example of T'(h,d) for h = d = 3 is shown in Figure 2.1.

Figure 2.1: Balanced tree T'(3,3).

Lemma 2.2. [6] The constant term of ¢(Q(G);x) is zero if and only if G
has an isolated vertex.

Theorem 2.3. [1] The star degree of a graph G is equal to the multiplicity
of root 1 of per(zI — Q(G)).

Theorem 2.4. [3] Let G be a graph on n vertices. If SD(G) = n — i, where
i €{2,3,4,5}, then G is determined by its signless Laplacian permanental
spectrum.

Next, we present the general form of the signless Laplacian permanental
polynomial of a triangle-free graph having only two types of vertex degrees,
d(> 1) and 1, as discussed in [6].

Notation 2.5. [6] For any graph G, we denote the remaining of the poly-
nomial w(Q(G); x) immediately after fourth term by R(Q(G); x)

Theorem 2.6. [6] A graph G is a triangle-free, n-vertex graph with r vertices
of degree d and the remaining vertices being of degree 1 if and only if the
signless Laplacian permanental polynomial of G is
w(Q(G), x) =2" — (n+dr—r)z"!
+3[@n+dr—2r —d+1)dr + (n— r)?az"?
— &ln+dr— r)® —3rd(d —1)(n+dr —r)
+2r(d — 1)(d® — 2d — 2) — 4n]z" 3 + R(Q(G); z)

with non-zero constant term.
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2m—n

Corollary 2.7. [6] A graph G with n vertices and m edges, where =55
vertices are of degree d and the remaining are pendant vertices, is triangle
free if and only if the signless Laplacian permanental polynomial of G is

V(Q(G);z) = 2™ — 2ma”™ ' + 1[4m® — (2m — n)d]2" >
— 1[4m® — 4m — (2m — n)(3m — d + 2)d]2"
+ R(Q(G); z)

with non-zero constant term.

Since, in a tree with n vertices, the number of edges is m = n—1, the result
below follows from Corollary 2.7.

Corollary 2.8. Let T be a tree on n vertices. Then % vertices of T have
degree d while the remaining are pendant vertices if and only if the signless

Laplacian permanental polynomial of T is

V(Q(T);z) = 2™ —2(n— 1)z" ' + $[dn® — (d+ 8)n + 2(d + 2)]z" 2
— 3[4n® = 3(d + 4)n® + (d* + 7d + 8)n — 2d(d + 1)]z"
+ R(Q(T);:E)

with non-zero constant term.

Recall that the corona of two graphs G; and G, is formed with one copy
of G and |V(G1)| copies of G2 by adding edges between a vertex v of Gy
and each vertex in the corresponding copy of G, for all v € V(G1). Here
we mention the definition of the graph UC(r, d) as discussed in [6].

Definition 2.9. [6] Let r,d > 3 be integers. A unicyclic graph with two
types of vertex-degrees d and 1, where each vertex of the unique cycle C,
is adjacent to d — 2 pendant vertices, is denoted by UC(r,d). It may be
noted that UC(r,d) is the corona of C, and complement of K, o, i.e.,
UC(r,d) =2 C, o K ,.

The following two lemmas discuss the graphs on the same degree sequence
as that of UC(r,d).

Lemma 2.10. [6] For r > 3, let G be a connected graph, non-isomorphic to
UC(r,d), and with the same degree sequence as that of UC(r,d). Then G
is also unicyclic with a cycle Cy, where l < r.
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Lemma 2.11. [6] Let G be a disconnected graph with the same degree
sequence as that of UC(r,d). Then G satisfies that, corresponding to every
non-tree component G; with n; vertices and n; + t; edges, there are t; tree
components in GG, where t; > 0.

The Laplacian permanental polynomial agrees with its signless Laplacian
permanental polynomial for a bipartite graph G, as stated in the following
result.

Theorem 2.12. [1] For a bipartite graph G, w(L(G); x) = z/J(Q(G); w)

3 Signless Laplacian permanental polynomial
of T'(h,d)

In this section, we discuss some basic properties of T'(h,d). Also, we com-
pute the signless Laplacian permanental polynomial of T'(h,d). The follow-
ing lemma is immediate from Definition 2.1.

Lemma 3.1. Each of the following is true in the graph T'(h,d):

(i) The number of vertices is 1+d+d(d—1)+- - -+d(d—1)""! = d(d%);*?

(ii) The number of pendant vertices is d(d — 1)"~1.
d(d—1)""1-2

(iii) The number of non-pendant vertices is 5

d{(d—1)"—1}

(iv) The number of edges is )

Theorem 3.2. The signless Laplacian permanental polynomial of T'(h,d) is
given by

R
2(d i 2)2 X |:4d(d - 1)2h - d(d + 6)(d - 1)h + 2(d2 —d+ 2):| xn—2 _

d(d? — 3d + 6)] 2" 4+ R(Q(T(h,d)); z)

where n = d(d;l#, and the constant term of 1/1(Q(T(h,d));:z:) is non-
Zero.
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Proof. The proof directly follows from Corollary 2.8 by substituting n =

d(d—1)"—2
dd-1)°-2 O

4 Star degree of T'(h, d) and determination of
T (2, d) by its signless Laplacian permanental
polynomial
In this section, we give a general expression for the star degree of T'(h,d).
Furthermore, we prove that T'(h,d) has the maximum star degree when
compared to all possible graphs on the same degree sequence as that of

T(h,d). Finally, by applying these results, we prove that T(2,d) is deter-
mined by its signless Laplacian permanental polynomial.

Theorem 4.1. The star degree of T'(h, d) is given by

SD(T'(h,d)) = d(d — 1)"%(d — 2).
Proof. By the definition of T'(h,d), it is clear that all the pendant stars
have vertices of depth A — 1 as their centers. Moreover, all of them are of

the same degree, d — 2. The number of vertices of T'(h,d) of depth h — 1 is
d(d — 1)"~2, which proves the result. O

Corollary 4.2. If SD(T(h,d)) = n — i where n is the number of vertices in
T(h,d), then i = =D 2C=D=2 44 5 6,

Proof. Since n = d(d;lﬁ, the proof directly follows from Theorem 4.1.

Now, the smallest exa;nple of T(h,d) is when d = 3 and h = 2. In that
case, ¢ = 7, which proves the second part. O

Remark 4.3. In Theorem 2.4, it is proved that all graphs with SD(G) =
n — i, where ¢ € {2,3,4,5}, are determined by their signless Laplacian
permanental spectrum. From Corollary 4.2, one can find that T'(h,d) does
not belong to these classes of graphs.

The next two lemmas provide the construction of all possible graphs that
have the same degree sequence as that of T'(h,d). While proving these
lemmas, we apply an obvious fact that two graphs with the same degree
sequence must have the same number of edges.
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Lemma 4.4. Any connected graph G with the same degree sequence as that
of T(h,d) and non-isomorphic with T'(h,d) can be obtained from T(h,d)
by making | > 0 number of non-pendant vertices pendant and | number of
pendant vertices non-pendant.

Proof. Since G is connected and has the same number of edges with T'(h, d),
we get that G is also a tree. If all the leaves in G are at level h, then G
will be isomorphic with T'(h,d). So, some leaves in G have level strictly
less than h, and some have level strictly greater than h. Also, G may have
some leaves at the level h. Then to meet the degree sequence of G, we can
construct it in the only way mentioned in the hypothesis. O

Lemma 4.5. Any disconnected graph G with the same degree sequence as
that of T(h,d) has the following properties:

(i) At least one component of G is a tree with two types of vertex-degrees,
d and 1. In this component, the number of non-pendant vertices is
t(> 2) less than that in T'(h,d).

(ii) The other components form a graph on the same degree sequence as
that of UC(t,d).

Proof. Let T'(h,d) have n vertices. Then, the number of edges in T'(h, d) is
n — 1. If G is a disconnected graph on the same degree sequence as that of
T(h,d), with components Gy, . . ., G, then not all G;’s can be trees (in that
case, G would have an n — k number of edges, which is a contradiction).
Similarly, not all G;’s can be non-trees (otherwise the number of edges
in G will be greater than or equal to n, which leads to a contradiction).
Therefore, at least one component is a tree, and at least one component is
a non-tree.

Without loss of generality, suppose G is a tree component. Clearly, G; has
two types of vertex-degrees: d and 1. If there is only one more component,
(2, then the number of edges in G2 must be the same as the number of
vertices in it (in order to maintain the total number of edges in G). That
is, G2 is a unicyclic graph on two types of degrees, d and 1. Since at least
three non-pendant vertices are needed to form a cycle, we must remove
t(> 2) such vertices from T'(h,d) to form the component G; and use them
in Gy. In other words, G4 is either UC(t,d) or a connected graph on the
same degree sequence as that of UC(t,d).

Moreover, if we fix G; as a tree component with ¢ less number of non-
pendant vertices than that of T'(h, d) and if there are k—1 more components
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in G, then Gy U --- U G must have the same degree sequence as that of
UC(t,d). O

Now, we present our main results as Theorem 4.6 and Theorem 4.9, which
prove that T'(h,d) has the maximum star degree among all possible graphs
with the same degree sequence as that of T'(h,d).

Theorem 4.6. For a connected graph G, non-isomorphic with T'(h,d), on
the same degree sequence as that of T'(h,d), we have SD(G) < SD(T'(h,d)).

Proof. Let G be a connected graph with the same degree sequence as that
of T'(h,d), and G 2 T'(h,d). From the definition of T'(h,d), it is clear that
there are two types of vertices: non-pendant vertices of degree d and pen-
dant vertices. Let us denote the non-pendant vertices and pendant vertices

of T'(h,d) by u; and v; respectively, where ¢ € {1, 2,..., %}L;_Q} and

j e {1, 2,...,d(d—- 1)}“1} (by Lemma 3.1). Thus, G will also contain the
same two types of vertices, and there will be at least one pendant vertex on
level less than h (respectively, one non-pendant vertex on level h or more
than h). These non-pendant and pendant vertices of G are denoted as v}
and u; respectively. Suppose there are I(> 0) such pendant vertices u; (re-
spectively non-pendant vertices v}) of G, for ¢ € {1,2,...,1}, that are on
different levels as compared to the vertices of T'(h,d). For convenience, the
position of u; (respectively v;) in T'(h,d) is considered to be the same as
that of u} (respectively v}) in G, for each i € {1,2,...,1}. The difference
in the star degrees of T'(h,d) and G directly depends upon the degrees of
pendant stars with centers as parents of the vertices, which differ in their
types. Note that v; does not belong to a subtree with root wu; for all 4.

To clarify the above notations, an example with values h = d =1 = 3 is
given in Figure 4.1.

Now, according to the choice of u;’s, there are the following three cases:

Case 1: All u;’s have the same parent. Let P(u) be the parent of all u;’s.

Sub-case 1a: All v;’s have the same parent, and I = d — 1. If all v;’s
have the same parent, say P(v), then the degree of the pendant star
with center P(v) is d — 2, and the degree of pendant star with center
P(u) is 0. Now, if P(v") is the parent of all v; and P(u') is the parent
of all w}, then the degree of pendant star with center P(v’) is 0, and
the degree of pendant star with center P(u') is d — 2. Thus, we have

SD(T(h,d)) —SD(G) = (d—2) +0—0— (d—2) =0,
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v 2 v3
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Figure 4.1: (a) Balanced tree T'(3,3) with [ = 3 and (b) a graph G with
the same degree sequence as that of T'(3,3).

which implies that SD(G) = SD(T'(h, d)).

Sub-case 1b: All v;’s have the same parent, and I # d — 1. If all v;’s
have the same parent, say P(v), then the degree of pendant star with
center P(v) is d — 2, and the degree of pendant star with center P(u)
is 0. Now, if P(v') is the parent of all v, and P(u') is the parent of all
u}, then the degree of pendant star with center P(v') is d —2 — [, and
the degree of pendant star with center P(u') is [ — 1. Thus, we have

SD(T(h,d)) —SD(G) = (d—2) +0—(d—2—1) — (I - 1) =1,

which implies that SD(G) = SD(T'(h,d)) — 1.

Sub-case 1c: All v;’s have distinct parents. Now, if all v;’s have distinct
parents, say P(v;) for all ¢ € {1,2,...,1} respectively, then the degree
of pendant star with center P(v;) =d — 2 for all ¢ € {1,2,...,1}, and
the degree of pendant star with center P(u) is 0. Now, if P(v}) denotes
the parent of v} for all ¢ € {1,2,...,1} respectively, then the degree of
pendant star with center P(v;) =d—3 for all ¢ € {1,2,...,{}, and the
degree of pendant star with center P(u') is I — 1. Thus, we have

SD(T'(h,d)) —SD(G) = I(d —2) +0—1(d—3) — (I —1) = 1,

which implies that SD(G) = SD(T'(h,d)) — 1.

Sub-case 1d: Some of the v;’s have the same parent, and some have dis-
tinct parents. Consider a partition of the set V' = {v1,vs,..., v} with
p parts, where 1 < p < [. Suppose the i*® part of this partition con-
tains ¢; elements of V', which have the same parent, for: € {1,2,...,p}.
Here, 1 <t; <l—1and }.?_, t; = 1. Now, if P(v;,) denotes the parent
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of all v;, belonging to the i*® part, for all i € {1,2,...,p} respectively,
then the degree of pendant star with center P(vy,) = d — 2 for all
i€{1,2,...,p}, and the degree of pendant star with center P(u) is 0.
Now, if P(v},) denotes the parent of all v}, belonging to the i*® part,
for all 4 € {1,2,...,p} respectively, then the degree of pendant star
with center P(v;,) = d —2 —t; for i € {1,2,...,p} respectively, and
the degree of pendant star with center P(u') is { — 1. Thus, we have

SD(T(h, d)) — SD(G) = p(d — 2) + 0 — Zp:(d— 2 1) —(I—1)=1,

i=1

which implies that SD(G) = SD(T'(h,d)) — 1.
Therefore, when all u;’s have the same parent, SD(G) < SD(T'(h, d)).

Case 2: All u;’s have distinct parents. Let P(u;) be the parent of u; for
all i € {1,2,...,1} respectively.
Sub-case 2a: All v;’s have the same parent. If all v;’s have the same
parent, say P(v), then the degree of pendant star with center P(v) is
d — 2, and the degree of pendant star with center P(u;) = 0 for all
i€ {1,2,...,l}. Now, if P(v’) is the parent of all v; and P(u}) be
the parent of ) for all ¢ € {1,2,...,1} respectively, then the degree of
pendant star with center P(v’) is d — 2 — [, and the degree of pendant
star with center P(u;) =0 for all € {1,2,...,1}. Thus, we have

SD(T(h,d)) —SD(G) = (d —2) + I x0—(d—2—1) —Ix 0 =1,

which implies that SD(G) = SD(T'(h,d)) — L.

Sub-case 2b: All v;’s have distinct parents. Now, if all v;’s have distinct
parents, say P(v;) for all ¢ € {1,2,...,1} respectively, then the degree
of pendant star with center P(v;) =d —2 for all ¢ € {1,2,...,1}, and
the degree of pendant star with center P(u;) = 0foralli € {1,2,...,1}.
Now, if P(v}) denotes the parent of v} for all i € {1,2,...,1} respec-
tively, then the degree of pendant star with center P(v)) = d—3 for all
i €{1,2,...,1}, and the degree of pendant star with center P(u}) =0
for all ¢ € {1,2,...,1}. Thus, we have

SD(T(h,d)) —SD(G) = I(d—2) +1x 0 —I(d—3) =1 x 0 =1,

which implies that SD(G) = SD(T'(h,d)) — L.

Sub-case 2c: Some of the v;’s have the same parent, and some have dis-
tinct parents. Consider a partition of the set V' = {vy,va,..., v} with
p parts, where 1 < p < I. Suppose the i'" part of this partition con-
tains ¢; elements of V' which have the same parent, for i € {1,2,...,p}.
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Here, 1 <t; <l—1and Zle t; = 1. Now, if P(v;,) denotes the parent
of all v, belonging to the i*! part, for all i € {1,2,...,p} respectively,
then the degree of pendant star with center P(v;,) = d — 2 for all
i €{1,2,...,p}, and the degree of pendant star with center P(u;) =0
for all i € {1,2,...,1}. Now, if P(v;,) denotes the parent of all v},
belonging to the i" part, for all i € {1,2,..., p} respectively, then the
degree of pendant star with center P(v;,) = d—2—t; fori € {1,2,...,p}
respectively, and the degree of pendant star with center P(u}) = 0 for
all i € {1,2,...,1}. Thus, we have

SD(T(h,d)) — SD(G) = p(d — 2) +1x 0 — Z —2—t;)—1Ix0=1,

which implies that SD(G) = SD(T'(h,d)) — L.

Therefore, when all u;’s have distinct parents, SD(G) = SD (T(h7 d)) -1,
where [ describes the number of pendant vertices of GG that are on levels
1,2,...,h—1.

Case 3: Some of the u;’s have the same parent, and some have distinct
parents. Consider a partition of the set U = {uj,us,...,u;} with ¢
parts, where 1 < ¢ < I. Suppose the i*" part of this partition contains s;
elements of U, which have the same parent, for ¢ € {1,2,...,q}. Here,
1<s;<1l-—1and ZZ 18i = 1. Let P(us,) denote the parent of all uy
belonging to the i'" part, for all i € {1,2,...,q} respectively.

Sub-case 3a: All v;’s have the same parent. If all v;’s have the same
parent, say P(v), then the degree of pendant star with center P(v) is
d — 2, and the degree of pendant star with center P(us,) = 0 for all
i€ {1,2,...,q}. Now, if P(v) is the parent of all v; and P(uj,) denotes
the parent of all u), belonging to the i*® part, for all i € {1,2,...,q}
respectively, then the degree of pendant star with center P(v’) is d —
2 — 1, and the degree of pendant star with center P(u} ) = s; — 1 for
all i € {1,2,...,q} respectively. Thus, we have

SD(T'(h,d)) —SD(G) = (d—2)+gx0—(d—2—1) Eq:

i=1

which implies that SD(G) = SD(T'(h,d)) —

Sub-case 3b: All v;’s have distinct parents. Now, if all v;’s have distinct
parents, say P(v;) for all ¢ € {1,2,...,1} respectively, then the degree
of pendant star with center P(v;) = d—2foralli € {1,2,...,1}, and the
degree of pendant star with center P(us,) = 0 for all ¢ € {1,2,...,¢}.
Now, if P(v}) is the parent of v} for ¢ € {1,2,...,1} respectively and
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P(u},) denotes the parent of all u), belonging to the i*® part, for all
i € {1,2,...,q} respectively, then the degree of pendant star with
center P(vj) =d—3forall i € {1,2,...,1}, and the degree of pendant
star with center P(uj,) = s; — 1 for all i € {1,2,...,q} respectively.
Thus, we have

SD(T(h,d)) —SD(G) = I x (d—2)+qx 0—1x (d73)7i(si71) =q,

i=1

which implies that SD(G) = SD(T'(h,d)) — q.

Sub-case 3c: Some of the v;’s have the same parent, and some have dis-

tinct parents. Consider a partition of the set V = {vy,v9,...,v;} withp
parts, where 1 < p < I. Suppose the i*® part of this partition contains
t; elements of V, which have the same parent, for i € {1,2,...,p}.
Here, 1 < t; < l—1and Y% ¢, = . Now, if P(v;,) denotes the
parent of all v, belonging to the i*! part, for all i € {1,2,...,p} re-
spectively, then the degree of pendant star with center P(v,) = d — 2
for all i € {1,2,...,p}, and the degree of pendant star with center
P(us,) =0 for all i € {1,2,...,q}. Now, if P(v;,) denotes the parent
of all v}, belonging to the i*" part, for all i € {1,2,...,p} respectively,
then the degree of pendant star with center P(v; ) = d — 2 —t; for
i €{1,2,...,p} respectively, and the degree of pendant star with cen-
ter P(uj,) = s; — 1 for all i € {1,2,...,q} respectively. Thus, we
have

SD(T'(h,d))—SD(G) = p><(d72)+qxO—Xp:(d—2—ti)qu:(sifl) —q,

i=1 =1

which implies that SD(G) = SD(T'(h,d)) — q.

Therefore, when some of the u;’s have the same parent and some have

distinct parents, we have SD(G) = SD(T(h,d)) — ¢, where ¢ describes

the number of distinct parents of the pendant vertices of G which are on
level 1,2,...,h — 1.

From the above three cases, we conclude that SD(G) < SD(T(h,d)) holds
true for any connected graph G having the same degree sequence as that
of T'(h,d). O

Note that SD(G) < SD(T(h,d)) holds true in all the cases except for Sub-
case la of Case 1. So, Theorem 4.6 leads to the following consequence:

Corollary 4.7. For a connected graph G on the same degree sequence as
that of T'(2,d), we have SD(G) < SD(T(2,d)).
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Proof. For h = 2, in Sub-case la from the proof of Theorem 4.6, G is
also a tree of height 2. That is, G = T'(2,d), which makes the hypothesis
of Theorem 4.6 false. Thus, Sub-case la from the proof of Theorem 4.6
becomes invalid for A = 2. In the other cases, SD(G) < SD(T'(2,d)) follows
from the proof of Theorem 4.6. O

Corollary 4.7 shows that the smallest example where SD(G) = SD(T'(h,d))
occurs for h = 3. An example of this case is given below:

Example 4.8. One of the smallest examples of a pair of non-isomorphic
graphs depicting Sub-case la from the proof of Theorem 4.6 is shown in
Figure 4.2. Here, h=d =3 and [ = d — 1 = 2. We compute the difference

v V2

Figure 4.2: (a) Balanced tree T'(3,3) with [ = 2 and (b) a graph G belonging
to Sub-case la in our proof for Theorem 4.6 for 7'(3, 3).

in star degrees of T'(3,3) and G by following the same method as in the
proof of Theorem 4.6 (Sub-case 1a). The degree of pendant star with center
P(v) is 1, and the degree of pendant star with center P(u) is 0. Also, the
degree of pendant star with center P(v’) is 0, and the degree of pendant
star with center P(u’) is 1. Thus, we have

SD(T'(3,3)) —SD(G) =1+0-0-1=0,

which implies that SD(G) = SD(T'(3,3)). Since the height of G is four,
G2£1T(3,3).

Theorem 4.9. For a disconnected graph G on the same degree sequence as
that of T(h,d), we have SD(G) < SD(T'(h,d)).
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Proof. Let G be a disconnected graph with the same degree sequence as
that of T'(h,d). Suppose the components of G are Gi,...,G. Without
loss of generality, suppose (1 is a tree component with (> 2) less number
of non-pendant vertices than that of T'(h,d). Now, based on the nature of
components Go, . .., Gy as discussed in Lemma 4.5, there are the following
two cases:

Case 1: Gag,...,Gg all are unicyclic with two types of degrees, d and 1.
That is, there are no other tree components in G (by Lemma 2.11).

Again, similar to the proof of Theorem 4.6, the difference in star degrees
depends on the change in degrees of pendant stars with centers as the
parents of vertices u; and v; for i € {1,2,...,1}. Now, we compare
the star degrees of T'(h,d) and G depending upon the following three
subcases:

Sub-case 1a: All u;’s have the same parent. Following similar notations
as used in the proof of Theorem 4.6 (Case 1), we have

SD(T'(h,d)) —SD(G) = I(d —2) +0—1(d—3) — (1 —1) = 1,

which implies that SD(G) = SD(T'(h,d)) — 1.
Sub-case 1b: All u;’s have distinct parents. Following similar notations
as used in the proof of Theorem 4.6 (Case 2), we have

SD(T(h,d)) — SD(G) = 1(d —2) + 0 —I(d — 3) — 0 =1,

which implies that SD(G) = SD(T'(h,d)) — L.
Sub-case 1c: Some of the u;’s have the same parent, and some have

distinct parents. Following similar notations as used in the proof of
Theorem 4.6 (Case 3), we have

q
SD(T(h,d)) —SD(G) = (d—2)+gx0—(d—2—1)= Y (s;—1) =g,
i=1
which implies that SD(G) = SD(T'(h,d)) — q.
Thus, for a graph G with components G, ..., Gy, where GG is a tree and
G, (for j € {2,...,k}) is a unicyclic graph with [; non-pendant vertices
of degree d and remaining vertices of G; are pendant, such that 3 <1; <1
for all j and 2?22 l; =1, we have SD(G) < SD(T'(h,d)). It can be easily
observed that SD(G;) = SD(UC(l;,d)) for every j € {2,...,k}. In other
words,

k
SD(G1) + Y _SD(UC(l;,d)) < SD(T(h,d)).

Jj=2
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It is direct that 2522 SD(UC(l;,d)) = SD(UC(l,d)). Thus, we have

SD(G1) + SD(UC(l,d)) < SD(T'(h,d)). (1)

Case 2: G3,...,Gy all have two types of degrees, d and 1, and contain
more than one cycle. That is, there are more than one tree components
in G (by Lemma 2.11). In this particular case, we compare the star
degree of Gy U--- U Gy, with SD(UC(1,d)).

Sub-case 2a: None of the tree components is a Ko. If none of the tree
components G;, for ¢ > 1, is isomorphic to the graph K5, then all
the pendant vertices in G5 U - - - U G}, contribute to its star degree. In
other words, the reduction in star degree due to non-tree components is
balanced by the increase in star degree due to tree components. Thus,
SD(G2 U+ UGy) =SD(UC(l,d)). From (1), we have

SD(G1) +SD(G2 U --- U Gy) < SD(T'(h, d)),

which implies that SD(G) < SD(T'(h, d)).

Sub-case 2b: At least one of the tree components is a K. If at least one
of the tree components G;, for ¢ > 1, is isomorphic to the graph K,
then at least two pendant vertices in Go U - - - U GGj, will not contribute
to its star degree. In this case, SD(G2 U --- U Gy) < SD(UC(L,d)),
which implies that

SD(G1) +SD(G2 U --- U Gy) < SD(G1) + SD(UC(L, d)).
Applying (1) we obtain, SD(G) < SD(T'(h, d)).

From the above cases, we conclude that SD(G) < SD(T'(h,d)) holds true
for any disconnected graph G having the same degree sequence as that of
T(h,d). O

Theorem 4.10. T'(2,d) is determined by its signless Laplacian permanental
polynomial.

Proof. Let G be a graph having the same signless Laplacian permanental
polynomial as that of T'(2,d). Then, the constant term of 1 (Q(G); x) is the
same as that of 1/)(@ (T(27 d));x), which is non-zero by Lemma 2.2. Thus,
the constant term of ¢(Q(G); x) is not equal to zero.

Now, by Theorems 2.6 and 3.2, we conclude that G is triangle free and
has the same degree sequence as that of T'(2,d). Since w(Q(G);x) =
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w(Q (T(Q, d));x), by Theorem 2.3, SD(G) = SD(T(2, d)) By Theorem 4.9,
G can not be disconnected. Finally, by Corollary 4.7, G must be isomorphic
to T(2,d). O

Since T'(2,d) is a tree, it is also bipartite. Thus, by Theorem 2.12; the
following result is direct.

Corollary 4.11. T'(2,d) is determined by its Laplacian permanental polyno-
mial.

5 Conclusion

In this article, we applied the star degrees of possible graphs on the same
degree sequence to prove that T'(2, d) is determined by its signless Laplacian
permanental polynomial. It is observed by Example 4.8 that two non-
isomorphic graphs can have the same star degree. Therefore, the star degree
does not help distinguish these graphs through their signless Laplacian
permanental polynomial. We need to find some other factor to distinguish
graphs based on their signless Laplacian permanental polynomial. This
leads to the following open problems:

Open Problem 5.1. Is the graph T'(h, d) determined by its signless Laplacian
permanental polynomial for A > 27

Consider a graph T'(n1,...,np,d) where n; denotes the number of vertices
of degree d with depth i, for each ¢ € {1,2,...,h}, and the remaining
vertices are pendants.

Open Problem 5.2. Is the graph T'(nq,...,ny,d) determined by its signless
Laplacian permanental polynomial?

If there is no restriction on the vertex degrees in a tree, then the same
problem can be extended to the following:

Open Problem 5.3. Are all trees determined by their (signless) Laplacian
permanental polynomials?
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