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Abstract. Gionfriddo and Lindner detailed the idea of the metamorphosis of
2-fold triple systems with no repeated triples into 2-fold 4-cycle systems of
all orders where each system exists (2003). Couch expanded on this idea for
n ≡ 5, 8, or 11 (mod 12), proving that when n ≡ 11 (mod 12), a maximum
packing of 2Kn with triples has a metamorphosis into a maximum pack-
ing of 2Kn with 4-cycles, with the leave of a double edge being preserved
throughout the metamorphosis, and for n ≡ 5 or 8 (mod 12), a maximum
packing of 2Kn with triples has a metamorphosis into a a 2-fold 4-cycle
system of order n, except for when n = 5 or n = 8, when no such metamor-
phosis is possible (2016). In this paper, we prove that all remaining orders,
i.e. n ≡ 2, 3, 6, 7, or 10 (mod 12), can be similarly addressed. For n ≡ 3,
6, 7, or 10 (mod 12), a 2-fold triple system (moreover, a hinge system) of
order n has a metamorphosis to a maximum packing of 2Kn with 4-cycles
with the leave a double edge, except for n = 3, n = 6, and n = 7, where no
such metamorphosis is possible. When n ≡ 2 (mod 12), a maximum pack-
ing of 2Kn with triples (and as before, with hinges) has a metamorphosis
into a maximum packing of 2Kn with 4-cycles, with the leave of a double
edge being preserved throughout the metamorphosis.

1 Introduction

A λ-fold k-cycle system of order n is a pair (X,C), where C is a collection
of edge-disjoint k-cycles that partitions the edge set of λKn with vertex set
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X (λKn denotes the graph on n vertices in which each pair of vertices is
joined by exactly λ edges). It is well-known that the spectrum for 2-fold
3-cycle (or triple) systems is the set of all n ≡ 0 or 1 (mod 3), and the
spectrum for 2-fold 4-cycle systems—i.e., the values of n for which such a
system exists—is the set of all n ≡ 0 or 1 (mod 4) (see [6]). A hinge is the
multigraph comprised of 2 edge-disjoint 3-cycles with exactly 2 vertices in
common (see Figure 1.1 below); the two edges joining the common vertices
are naturally called the double edge of the hinge. A maximum packing of
a graph G with a subgraph C is an ordered triple

(
V (G), T, L

)
, where T is

a collection of copies of C whose edges partition E(G) \ L. Note that if L
is empty, G is λKn, and C is a 3-cycle; this would correspond to a λ-fold
triple system. Thus, a maximum packing of a graph G with C is simply
a collection of edge-disjoint copies of C that cover as many edges of G as
possible. The uncovered edges L are called the leave of the packing.

h =
w

x

y

z

Figure 1.1: The hinge h = ⟨x, z, y, w⟩.

The following notation is used throughout, as in [4]. Figure 1.1 above is
a hinge, h, and is denoted by h = ⟨x, z, y, w⟩, ⟨x, z, w, y⟩, ⟨z, x, y, w⟩, or
⟨z, x, w, y⟩. A double edge between vertices x and y is denoted by ⟨x, y⟩.
Triples are denoted by any cyclic shift of (x, y, z), 4-cycles by any cyclic
shift of (x, y, z, w), and single edges by (x, y) or (y, x).

Let G be a graph and suppose H⋆ is a set of hinges. For a hinge

h = ⟨x, z, y, w⟩,
let

∆(h) = {(x, z, y), (x, z, w)}
and define

∆(H⋆) =
⋃
h∈H

⋆
∆(h).

Similarly, let

□(h) = {(x, y, z, w)}
and

D(h) = {⟨x, z⟩}
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and define

□(H⋆) =
⋃
h∈H

⋆
□(h)

and

D(H⋆) =
⋃
h∈H

⋆
D(h).

Suppose
(
V (G),∆(H⋆), L∆

)
is a maximum packing of G with triples (with

leave L∆) and
(
V (G), □(H⋆)∪D⋆, L□

)
is a maximum packing of G with 4-

cycles (with leave L□), where either the edges in D(H⋆) or D(H⋆)∪L∆ can
be partitioned into the set D⋆, each element of which induces a 4-cycle. Fur-
ther suppose L∆ ⊆ L□ or L□ ⊆ L∆. Then we call

(
V (G), H⋆, L∆, D⋆, L□

)
a metamorphosis of a maximum packing of G with hinges to a maximum
packing of G with 4-cycles. Note that any packing with hinges corresponds
to a packing with triples.

In [5], Gionfriddo and Lindner proved the following:

Theorem 1.1. 2Kn has a metamorphosis (X,H⋆, ∅, D⋆, ∅) from a 2-fold hinge
system to a 2-fold 4-cycle system for all n ≡ 0, 1, 4, or 9 (mod 12) except
n = 4.

When n ≡ 2 (mod 3), there exists a maximum packing of 2Kn with triples
with only a double edge in the leave L∆ (see [6]); otherwise, there exists
a maximum packing with L∆ = ∅ (i.e., a 2-fold triple system of order n).
When n ≡ 0 or 1 (mod 4), the goal is to form a metamorphosis in which
these 2 edges are used in 4-cycles; otherwise, they form L□. Similarly,
when n ≡ 2 or 3 (mod 4), there exists a maximum packing of 2Kn with
4-cycles with only a double edge in the leave L□; otherwise, there exists a
maximum packing with L□ = ∅ (i.e., a 2-fold 4-cycle system of order n).
When n ≡ 11 (mod 12), a maximum packing of 2Kn with hinges has a
metamorphosis into a maximum packing of 2Kn with 4-cycles, with the
leave of a double edge being preserved throughout the metamorphosis, and
for n ≡ 5 or 8 (mod 12), a maximum packing of 2Kn with hinges has a
metamorphosis into a a 2-fold 4-cycle system of order n, except for when
n = 5 or 8, when no such metamorphosis is possible [4]. We aim to show
that all remaining orders, i.e. n ≡ 2, 3, 6, 7, or 10 (mod 12), can be simi-
larly addressed. These constructions conclude the trilogy and proof of the
overarching result:
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Theorem 1.2. 2Kn has a metamorphosis of a maximum packing with hinges
to a maximum packing with 4-cycles for all n ≥ 0 except n = 3, 4, 5, 6, 7,
or 8.

The following notions and theorems are used in the constructions through-
out this work. Let G \ H denote the graph

(
V (G), E(G) \ E′), where

V ′ ⊆ V (G) and (V ′, E′) is isomorphic to H. Call (V ′, E′) the hole and
say the hole is on V ′ and the size of the hole is |V ′|. Let Q be a set
of integers and let H(Q) be a partition of Q into pairwise disjoint sets,
also called holes. A quasigroup with holes H(Q) is a quasigroup (Q, ◦) in
which, for each h ∈ H, (h, ◦) is a subquasigroup of (Q, ◦). For the purposes
of this work, each (h, ◦) can be thought of as a set of “forbidden” products
in (Q, ◦).

It is nice that in the situation where L∆ ̸= ∅, either L∆ is “used up” in the
metamorphosis or “preserved” as L□. We are always able to decompose
2Kn,n,...,n into 4-cycles as long as n is even, due to a theorem of Dominique
Sotteau found below. Furthermore, the quasigroups we need always exist
(except possibly for small cases).

Theorem 1.3 (Sotteau [8]). Necessary and sufficient conditions for the com-
plete bipartite graph Km,n to be partitioned into (2k)-cycles are

(1) m and n are even,

(2) k ≤ m and k ≤ n, and

(3) 2k | mn.

Theorem 1.4 (Lindner and Rodger [7] and Dinitz [1]). There exists a com-
mutative quasigroup (Q, ◦) with holes of size 2 if |Q| ≡ 0 (mod 2) and
|Q| > 4.

2 Case: n ≡ 2 (mod 12)

For the case where n = 2, let L = ⟨1, 2⟩. Then ({1, 2}, ∅, L, ∅, L) is a meta-
morphosis of a maximum packing of G with hinges to a maximum packing
of G with 4-cycles. We begin with some necessary ingredients for a general
construction for n ≡ 2 (mod 12): a direct construction of a metamorpho-
sis of a maximum packing of 2K14 with hinges to a maximum packing of
2K14 with 4-cycles, a 2-fold maximum packing with hinges for a system of
order 5, and a lemma concerning a special decomposition of 2K4n.
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Lemma 2.1. There exists a metamorphosis of a maximum packing of 2K14

with hinges to a maximum packing of 2K14 with 4-cycles.

Proof. Let the vertex set V = {∞1,∞2} ∪ {0, 1, 2, . . . , 11}. A 2-fold maxi-
mum packing with triples on V can be paired in the natural way to produce
the following set of hinges:

H⋆ =



⟨0,∞1, 11, 1⟩, ⟨2,∞1, 1, 3⟩, ⟨4,∞1, 3, 5⟩, ⟨6,∞1, 5, 7⟩,
⟨8,∞1, 7, 9⟩, ⟨10,∞1, 9, 11⟩, ⟨0,∞2, 5, 7⟩, ⟨2,∞2, 7, 9⟩,
⟨4,∞2, 9, 11⟩, ⟨6,∞2, 11, 1⟩, ⟨8,∞2, 1, 3⟩, ⟨10,∞2, 3, 5⟩,
⟨0, 3, 11, 10⟩, ⟨1, 4, 0, 11⟩, ⟨2, 5, 1, 0⟩, ⟨3, 6, 2, 1⟩, ⟨4, 7, 3, 2⟩,
⟨5, 8, 4, 3⟩, ⟨6, 9, 5, 4⟩, ⟨7, 10, 6, 5⟩, ⟨8, 11, 7, 6⟩, ⟨9, 0, 8, 7⟩,

⟨10, 1, 9, 8⟩, ⟨11, 2, 10, 9⟩, ⟨0, 6, 2, 8⟩, ⟨1, 7, 3, 9⟩,
⟨2, 8, 4, 10⟩, ⟨3, 9, 5, 11⟩, ⟨4, 10, 6, 0⟩, ⟨5, 11, 7, 1⟩


The missing double edge in the system is the leave L∆ = L = ⟨∞1,∞2⟩.

Removing the double edge from each of the hinges yields □(H⋆), and we
can then rearrange the removed double edges, D(H⋆), into the following
set of 4-cycles:

D⋆ =


(0,∞1, 2,∞2), (2,∞1, 4,∞2), (4,∞1, 6,∞2),

(6,∞1, 8,∞2), (8,∞1, 10,∞2), (10,∞1, 0,∞2),

(0, 3, 6, 9), (1, 4, 7, 10), (2, 5, 8, 11), (0, 3, 9, 6), (1, 4, 10, 7),

(2, 5, 11, 8), (0, 6, 3, 9), (1, 7, 4, 10), (2, 8, 5, 11)


Now, we have a maximum packing of 2K14 with 4-cycles (V, □(H⋆)∪D⋆, L)
and (V,H⋆, L,D⋆, L) is a metamorphosis of a maximum packing of 2K14

with hinges to a maximum packing of 2K14 with 4-cycles.

Example 2.2 (2-fold maximum packing of hinges on a system of order 5).
Let

V = {∞1,∞2} ∪ {1, 2, 3},
H⋆ = {⟨1, 2,∞1,∞2⟩, ⟨1, 3,∞1,∞2⟩, ⟨2, 3,∞1,∞2⟩},
L∆ = L = ⟨∞1,∞2⟩.

Then (V,∆(H⋆), L) is a maximum packing with triples. While there is no
metamorphosis of this maximum packing with triples, this system, as is,
proves to be satisfactory for application in this section’s general construc-
tion.
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Lemma 2.3. 2K4n can be decomposed into two double 1-factors and 4n2−3n
total 4-cycles.

Proof. We prove this lemma by construction. Let

V (2K4n) = {1, 2, . . . , 4n}.

Our first double 1-factor has edges of the form ⟨i, i+ 2n⟩, for 1 ≤ i ≤ 2n.

1

2n+ 1

2

2n+ 2

· · ·

2n− 1

4n− 1

2n

4n

Our second double 1-factor has edges of the form ⟨2i − 1, 2(i + n)⟩ and
⟨2i, 2(i+ n)− 1⟩, for 1 ≤ i ≤ n.

1 2

2n+ 1 2n+ 2

· · ·

2n− 1 2n

4n− 1 4n

For n ≡ 0 (mod 2):

(1) Form two copies of 4-cycles
(
2i − 1, 2(j + n) − 1, 2i, 2(j + n)

)
, for

1 ≤ i ≤ n, 1 ≤ j ≤ n, and i ̸= j.

· · ·

· · ·

2i− 1 2i

2(j+n)−1 2(j+n)

· · ·

· · ·

2i− 1 2i

2(j+n)−1 2(j+n)

i < j i > j

(2) The remaining edges form 2K2n = 2K4k on {1, 2, . . . , 2n} and 2K4k

on {2n+ 1, 2n+ 2, . . . , 4n}, which can be decomposed into 4-cycles.

For n ≡ 1 (mod 2):

(1) Form two copies of 4-cycles
(
2i − 1, 2(j + n) − 1, 2i, 2(j + n)

)
, for

1 ≤ i ≤ n− 1, 1 ≤ j ≤ n, and i ̸= j, except when i = 1 and j = n.
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(2) Form the following 4-cycles: (1, 2, 4n, 4n−1), (1, 2, 4n−1, 4n), and
(1, 4n, 2, 4n− 1).

· · ·

· · ·

1 2

4n− 1 4n

(3) The remaining edges form 2K2n = 2K4k+2 on {1, 2, . . . , 2n} minus
⟨1, 2⟩ and 2K4k+2 on {2n+1, 2n+2, . . . , , 4n−1, 4n}minus ⟨4n−1, 4n⟩,
which can be decomposed into 4-cycles [6].

2.1 Construction

We now begin the construction for the n ≡ 2 (mod 12) case. Note that n
of this form can be written as 12k+2 or equivalently 3(4k)+2. Now define
∞ = {∞1,∞2} and Q = {1, 2, 3, . . . , 4k}. Let V = ∞∪

(
Q×{1, 2, 3}

)
and

(Q, ◦) be an idempotent antisymmetric quasigroup of order 4k (see [3]).
This is to say for i, j ∈ Q, we have i ◦ i = i and i ◦ j ̸= j ◦ i for i ̸= j.

(1) For 1 ≤ i ≤ 4k, use Example 2.2 where {1, 2, 3} are renamed

{(i, 1), (i, 2), (i, 3)},

respectively, to place a copy on ∞∪{(i, 1), (i, 2), (i, 3)}. Place these
hinges in H⋆.

(2) Now for all x, y ∈ Q, with x < y, place the hinges

⟨(x, 1), (y, 1), (x ◦ y, 2), (y ◦ x, 2)⟩,
⟨(x, 2), (y, 2), (x ◦ y, 3), (y ◦ x, 3)⟩,
⟨(x, 3), (y, 3), (x ◦ y, 1), (y ◦ x, 1)⟩

in H⋆. Let L∆ = L = ⟨∞1,∞2⟩ and note that
(
V,∆(H⋆), L

)
is a

maximum packing of 2K12k+2 with triples.

(3) Note that the remaining double edges from the previous step, that
is, edges in D(H⋆), are precisely a 2K4k on each of levels 1, 2, and
3. Decompose this graph into the two 1-factors F1 and F2 and the
4k2 − 3n total 4-cycles as shown in Lemma 2.3. Place the resulting
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4-cycles in D⋆. Finally, for each {a, b} ∈ F1 ∪ F2, place the 4-cycles(
(a, 1), (b, 1), (b, 2), (a, 2)

)
,(

(a, 1), (b, 1), (b, 3), (a, 3)
)
,(

(a, 2), (b, 2), (b, 3), (a, 3)
)

in D⋆ (which also uses up the remaining double edges from the first
step).

Thus (V,H⋆, L,D⋆, L) is a metamorphosis of a maximum packing of 2K12k+2

with hinges to a maximum packing of 2K12k+2 with 4-cycles, as desired,
yielding the following result.

Theorem 2.4. There exists a metamorphosis of a maximum packing of
2K12k+2 with hinges to a maximum packing of 2K12k+2 with 4-cycles for
all k ≥ 0.

3 Case: n ≡ 3 (mod 12)

For the case where n = 3, we cannot produce even one hinge. Before we
introduce the construction that works for all n ≡ 3 (mod 12) at least 15, we
establish the following terminology, example, and associated lemma.

Let H = {h1, h2, h3, . . . , ht} be a collection of pairwise disjoint subsets of
the set V called holes. We define 2hi = ⟨x, y⟩ whenever hi = {x, y} and
2H = {2h1, 2h2, 2h3, . . . , 2ht}. Let 2Kn have vertex set V and let C be a
collection of 4-cycles that partitions 2Kn \ 2H based on V . We then call
(V,C) a 2-fold 4-cycle system with holes 2H.

Example 3.1 (2-fold 4-cycle system of order 5 with two holes of size 2). Let

V = {1, 2, 3, 4, 5},
2H = {⟨2, 3⟩, ⟨4, 5⟩},
C = {(1, 2, 4, 3), (1, 3, 5, 2), (1, 4, 3, 5), (1, 5, 2, 4)}.

Lemma 3.2. There exists a 2-fold 4-cycle system of order 4n+1 with 2n holes
of size 2 for all 4n+ 1 ≥ 5.

Proof. Let X = {1, 2, 3, . . . , n}, V = {∞} ∪
(
X × {1, 2, 3, 4}

)
and define a

collection C of 4-cycles as follows:
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(1) For each x ∈ X, define a copy of Example 3.1 on

{∞} ∪
(
{x} × {1, 2, 3, 4}

)
,

where 2H = {⟨(x, 1), (x, 2)⟩, ⟨(x, 3), (x, 4)⟩}, and place these 4-cycles
in C.

(2) For each x ̸= y, partition 2K4,4 with parts {x} × {1, 2, 3, 4} and
{y} × {1, 2, 3, 4} into 4-cycles and place these 4-cycles in C.

Then (V,C) is a 2-fold 4-cycle system of order 4n + 1 with 2n holes of
size 2.

3.1 Construction

Let 12k + 3 ≥ 15 and note then that k ≥ 1. Let Q = {1, 2, 3, . . . , 4k + 1}.
Then let (Q, ◦1) be an antisymmetric idempotent quasigroup of order 4k+1
and (Q, ◦2) be a commutative idempotent quasigroup of order 4k + 1 (see
[7]). Finally, let α be the permutation (1 2 3 . . . 4k 4k + 1) and V =
Q× {1, 2, 3} and proceed as follows:

(1) For each x ̸= y ∈ Q,

⟨(x, 1), (y, 1), (x ◦1 y, 2), (y ◦1 x, 2)⟩ ∈ H⋆.

Note that ⟨(x, 1), (x, 2)⟩ is not covered for x ∈ Q.

(2) For each x ̸= y ∈ Q,〈
(x, 2), (y, 2), (x ◦2 y, 3),

(
(x ◦2 y)α, 3

)〉
∈ H⋆.

Note that
(
(x, 2), (x, 3)

)
and

(
(x, 2), (xα, 3)

)
are not covered for all

x ∈ Q.

(3) For each x ̸= y ∈ Q,〈
(x, 3), (y, 3), (x ◦2 y, 1),

(
(x ◦2 y)α−1, 1

)〉
∈ H⋆.

Note that
(
(x, 3), (x, 1)

)
and

(
(x, 3), (xα−1, 1)

)
are not covered for

all x ∈ Q.

(4) For each x ∈ Q,

⟨(x, 1), (x, 2), (x, 3), (xα, 3)⟩ ∈ H.

Then (V,∆(H⋆), ∅) is a 2-fold triple system of order 12k + 3. We now
perform a metamorphosis into a maximum packing with 4-cycles as fol-
lows:
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(5) Use Lemma 3.2 to construct a 2-fold 4-cycle system of order 4k + 1
on Q × {i} with holes ⟨(2j, i), (2j + 1, i)⟩ for 1 ≤ i ≤ 2, 1 ≤ j ≤ 2k.
Place two copies of the 4-cycles

(
(2j, 1), (2j+1, 1), (2j+1, 2), (2j, 2)

)
for 1 ≤ j ≤ 2k into D⋆. This uses the double edges from (1), (2), and
(4), except for L□ = L = ⟨(1, 1), (1, 2)⟩.

(6) Since Q is of order 4k + 1, we know also that we can rearrange our
remaining double edges from (3) into 4-cycles. Place these 4-cycles
into D⋆.

Thus (V,H⋆, ∅, D⋆, L) is a metamorphosis of a hinge system of order 12k+3
to a maximum packing of 2K12k+3 with 4-cycles, as desired, yielding the
following result.

Theorem 3.3. There exists a metamorphosis of a hinge system of order
12k + 3 to a maximum packing of 2K12k+3 with 4-cycles for all k ≥ 1.

4 Case: n ≡ 6 (mod 12)

It is first shown that there exists no metamorphosis of order 6, and then
we proceed to the iterative construction for a metamorphosis for n ≡
6 (mod 12) whenever n ≥ 18.

Lemma 4.1. There does not exist a metamorphosis of a hinge system of
order 6 to a maximum packing of 2K6 with 4-cycles.

Proof. Let (V,H⋆) be a hinge system of order 6 and let D(H⋆) be the
5 double edges in the hinges. It is important to note that, considered as
a 2-fold triple system

(
V,∆(H⋆)

)
, each triple contains exactly one edge

from the double edges in D(H⋆). Now suppose that D(H⋆) contains a
4-cycle (1, 2, 3, 4). Since each of (1, 2), (2, 3), (3, 4), and (4, 1) is half of a
double edge in D(H⋆), we have that D(H⋆) contains the 4-cycle of double
edges (⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 4⟩, ⟨4, 1⟩). Since each of the ten triples in ∆(H⋆)
contain exactly one edge from D(H⋆), the two triples in ∆(H⋆) containing
the edge (1, 2) must look like (1, 2, 5) and (1, 2, 6). Similarly, ∆(H⋆) must
contain triples that look like (3, 4, 5), (3, 4, 6), (2, 3, 5), (2, 3, 6), (1, 4, 5),
and (1, 4, 6). This forces the remaining edges in 2K6 to look like ⟨1, 4⟩,
⟨2, 3⟩, and ⟨5, 6⟩. These edges cannot be paired into two triples, much less
a hinge. It follows that D(H⋆) cannot contain even one 4-cycle.
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4.1 Construction

Let 12k + 6 ≥ 18 and note then that k ≥ 1. Let Q = {1, 2, 3, . . . , 4k + 2}.
Then let (Q, ◦1) be an antisymmetric idempotent quasigroup of order 4k+2
and (Q, ◦2) be an antisymmetric quasigroup of order 4k+2 with holes H =
{hi : 1 ≤ i ≤ 2k+1} of size 2 defined in the usual manner found in [7] (these
can be formed by simply taking the direct product of an antisymmetric
quasigroup of order 2k + 1 with the quasigroup of order 2 and renaming
the symbols appropriately). Finally, let V = Q × {1, 2, 3} and proceed as
follows:

(1) For each x ̸= y ∈ Q,

⟨(x, 1), (y, 1), (x ◦1 y, 2), (y ◦1 x, 2)⟩ ∈ H⋆.

Note that ⟨(x, 1), (x, 2)⟩ is not covered for x ∈ Q.

(2) For each x and y belonging to the same hi ∈ H,

⟨(x, 2), (y, 2), (x, 3), (y, 3)⟩ ∈ H⋆,

and for each x and y belonging to different holes of H,

⟨(x, 2), (y, 2), (x ◦2 y, 3), (y ◦2 x, 3)⟩ ∈ H⋆.

Note that the edges in
(
(x, 2), (y, 3), (y, 2), (x, 3)

)
are not covered for

any {x, y} ∈ H.

(3) We now repeat (2) for edges between Q×{3} and Q×{1}. For each
x and y belonging to the same hi ∈ H,

⟨(x, 3), (y, 3), (x, 1), (y, 1)⟩ ∈ H⋆,

and for each x and y belonging to different holes of H,

⟨(x, 3), (y, 3), (x ◦2 y, 1), (y ◦2 x, 1)⟩ ∈ H⋆.

Note that the edges in
(
(x, 1), (y, 3), (y, 1), (x, 3)

)
are not covered for

any {x, y} ∈ H.

(4) For each x and y belonging to the same hi ∈ H, we have both

⟨(x, 1), (x, 2), (x, 3), (y, 3)⟩ ∈ H⋆,

⟨(y, 1), (y, 2), (x, 3), (y, 3)⟩ ∈ H⋆.

This covers the edges remaining from the previous steps.

Then (V,∆(H⋆), ∅) is a 2-fold triple system of order 12k + 6. We now
perform a metamorphosis into a maximum packing with 4-cycles as fol-
lows:
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(5) For each x and y belonging to the same hi ∈ H, place two copies of
the 4-cycle

(
(x, 1), (y, 1), (y, 2), (x, 2)

)
into D⋆.

(6) After accounting for the 4-cycles in step (5) above, 2 copies of the
complete (2n+ 1)-partite graph with all partite sets having size 2 on
Q×{1} and Q×{2} remain. For each pair of partite sets {x, y} and
{z, w} in these 2K2,2,...,2, place 2 copies of (x,w, y, z) into D⋆.

(7) Since Q is of order 4k + 2, we can rearrange our remaining double
edges from the hinges created in (3) into 4-cycles with leave L□ =
L = ⟨(1, 3), (2, 3)⟩ (see [1]). Place these 4-cycles into D⋆.

Thus (V,H⋆, ∅, D⋆, L) is a metamorphosis of a hinge system of order 12k+6
to a maximum packing of 2K12k+6 with 4-cycles, as desired, yielding the
following result.

Theorem 4.2. There exists a metamorphosis of a hinge system of order
12k + 6 to a maximum packing of 2K12k+6 with 4-cycles for all k ≥ 1.

5 Case: n ≡ 7 (mod 12)

It is first shown that there exists no metamorphosis of order 7, and then
we proceed to the iterative construction for a metamorphosis for n ≡
7 (mod 12) whenever n ≥ 19.

Lemma 5.1. There does not exist a metamorphosis of a hinge system of
order 7 to a maximum packing of 2K7 with 4-cycles.

Proof. Any 2-fold triple system of order 7 with no repeated triples consists
of a pair of disjoint Steiner triple systems [2]. So let (V, T1) and (V, T2) be
a pair of disjoint triple systems of order 7 and (V,H⋆) any hinge system
constructed from T1 and T2. Let D be the collection of 7 double edges from
the hinges. Now suppose D contains a 4-cycle (1, 2, 3, 4). Then D must
also contain the 4-cycle of double edges (⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 4⟩, ⟨4, 1⟩). Since
the Steiner triple systems of order 7 is a projective plane and since there
is only one such plane (up to isomorphism), both T1 and T2 must contain
the Pasch configuration (see [9]) as shown in Figure 5.1.

Let {x, a, y} ∈ T1 and {z, b, w} ∈ T2. Since (V, T1) and (V, T2) have order 7,
we must have {x, a, y} = {z, b, w} = {5, 6, 7}, which is a contradiction, since
T1 and T2 are disjoint.
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Figure 5.1: Iterations of the Pasch configuration.

5.1 Construction

Let 12k + 7 ≥ 19 and note then that k ≥ 1. Let Q = {1, 2, 3, . . . , 4k + 2}.
Then let (Q, ◦) be an antisymmetric idempotent quasigroup of order 4k+2.
Finally, let V = {∞} ∪

(
Q× {1, 2, 3}

)
and proceed as follows:

(1) For each x ∈ Q, we have both

⟨∞, (x, 1), (x, 2), (x, 3)⟩ ∈ H⋆,

⟨(x, 2), (x, 3), (x, 1), ∞)⟩ ∈ H⋆.

(2) For each x ̸= y ∈ Q,

⟨(x, 1), (y, 1), (x ◦ y, 2), (y ◦ x, 2)⟩ ∈ H⋆,

⟨(x, 2), (y, 2), (x ◦ y, 3), (y ◦ x, 3)⟩ ∈ H⋆,

⟨(x, 3), (y, 3), (x ◦ y, 1), (y ◦ x, 1)⟩ ∈ H⋆.

Then (V,∆(H⋆), ∅) is a 2-fold triple system of order 12k + 7. We now
perform a metamorphosis into a maximum packing with 4-cycles as fol-
lows:

(3) For 1 ≤ j ≤ 2k+1, place two copies of the 4-cycle
(
(2j−1, 2), (2j, 2),

(2j, 3), (2j − 1, 3)
)
into D⋆.

(4) After accounting for the 4-cycles in step (3) above, 2 copies of the
complete (2n+ 1)-partite graph with all partite sets having size 2 on
Q×{2} and Q×{3} remain. For each pair of partite sets {x, y} and
{z, w} in these 2K2,2,...,2, place 2 copies of (x,w, y, z) into D⋆.

(5) The remaining double edges are of the form either ⟨∞, (x, 1)⟩ or
⟨(x, 1), (y, 1)⟩ where x ̸= y ∈ Q. We can consider these double edges
as 2K4k+3, which can be rearranged into 4-cycles and placed in D⋆,
with leave L□ = L = ⟨∞, (x, 1)⟩ (see [1]).

Metamorphoses of maximum packings of 2Kn

125



Thus (V,H⋆, ∅, D⋆, L) is a metamorphosis of a hinge system of order 12k+7
to a maximum packing of 2K12k+7 with 4-cycles, as desired, yielding the
following result.

Theorem 5.2. There exists a metamorphosis of a hinge system of order
12k + 7 to a maximum packing of 2K12k+7 with 4-cycles for all k ≥ 1.

6 Case: n ≡ 10 (mod 12)

We begin with some necessary ingredients: some 2-fold 4-cycle systems with
holes, a related lemma, and a direct construction of a metamorphosis for
n = 10.

Example 6.1 (2-fold 4-cycle system of order 7 with three holes of size 2).
Let

V = {∞} ∪ {1, 2, 3, 4, 5, 6},
2H = {⟨1, 2⟩, ⟨3, 4⟩, ⟨5, 6⟩},
C = {(∞, 1, 4, 2), (∞, 2, 3, 1), (∞, 3, 6, 4), (∞, 4, 5, 3),

(∞, 5, 4, 6), (∞, 6, 3, 5), (1, 3, 2, 4), (1, 5, 2, 6), (1, 5, 2, 6)}.

Example 6.2 (2-fold 4-cycle system of order 7 with one hole of size 3 and
two holes of size 2). Let

V = {∞} ∪ {1, 2, 3, 4, 5, 6},
2H = {⟨∞, 1, 2⟩, ⟨3, 4⟩, ⟨5, 6⟩},
C = {(∞, 3, 6, 4), (∞, 4, 5, 3), (∞, 5, 3, 6), (∞, 6, 4, 5),

(1, 3, 2, 4), (1, 3, 2, 4), (1, 5, 2, 6), (1, 5, 2, 6)}.

where ⟨∞, 1, 2⟩ (in 2H) represents two copies of the 3-cycle (∞, 1, 2).

Lemma 6.3. There exists a 2-fold 4-cycle system of order 4n + 3 with 2n
holes of size 2 for all 4n+ 3 ≥ 7.

Proof. Let X = {1, 2, 3, . . . , n} and V = {∞1,∞2,∞3} ∪
(
X × {1, 2, 3, 4}

)
and define a collection C of 4-cycles as follows:

(1) Define a copy of Example 6.1 on {∞1,∞2,∞3} ∪
(
{1} × {1, 2, 3, 4}

)
and place these 4-cycles in C.
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(2) For each i ≥ 2, define a copy of Example 6.2 on {∞1,∞2,∞3} ∪(
{i} × {1, 2, 3, 4}

)
, with the proviso that the hole of size 3 is on

{∞1,∞2,∞3} and that the holes of size 2 are on ⟨(i, 1), (i, 2)⟩ and
⟨(i, 3), (i, 4)⟩, and place these 4-cycles in C.

(3) For each x ̸= y, partition 2K4,4 with parts {x} × {1, 2, 3, 4} and
{y} × {1, 2, 3, 4} into 4-cycles and place these 4-cycles in C.

Then (V,C) is a 2-fold 4-cycle system of order 4n+ 3 with 2n+ 1 holes of
size 2.

Lemma 6.4. There exists a metamorphosis of a hinge system of order 10 to
a maximum packing of 2K10 with 4-cycles.

Proof. Let the vertex set V = {0, 1, . . . , 9}. Then, let

H⋆ =


⟨0, 2, 1, 3⟩, ⟨0, 4, 5, 6⟩, ⟨0, 8, 7, 9⟩, ⟨2, 4, 1, 7⟩, ⟨2, 8, 3, 6⟩,
⟨4, 8, 6, 7⟩, ⟨1, 5, 7, 8⟩, ⟨3, 5, 7, 8⟩, ⟨3, 9, 4, 6⟩, ⟨1, 9, 6, 8⟩,
⟨5, 6, 0, 2⟩, ⟨6, 7, 1, 3⟩, ⟨7, 9, 0, 2⟩, ⟨5, 9, 2, 4⟩, ⟨1, 3, 0, 4⟩


and with L□ = L = ⟨1, 3⟩ we let

{(0, 2, 8, 4), (0, 8, 2, 4), (0, 8, 4, 2), (1, 5, 3, 9),
(1, 5, 3, 9), (5, 6, 7, 9), (5, 6, 7, 9)} ⊆ D⋆.

Thus (V,H⋆, ∅, D⋆, L) is a metamorphosis of a hinge system of order 10 to
a maximum packing of 2K10 with 4-cycles.

6.1 Construction

We now proceed directly to the iterative construction for a metamorphosis
for n ≡ 10 (mod 12) whenever n ≥ 22. Let 12k+10 ≥ 22 and note then that
k ≥ 1. Let Q = {1, 2, 3, . . . , 4k + 3}. Then let (Q, ◦) be an antisymmetric
idempotent quasigroup of order 4k+3. Finally, let V = {∞}∪

(
Q×{1, 2, 3}

)
and proceed as follows:

(1) For each x ∈ Q, we have both

⟨∞, (x, 1), (x, 2), (x, 3)⟩ ∈ H⋆,

⟨(x, 2), (x, 3), (x, 1), ∞)⟩ ∈ H⋆.
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(2) For each x ̸= y ∈ Q,

⟨(x, 1), (y, 1), (x ◦ y, 2), (y ◦ x, 2)⟩ ∈ H⋆,

⟨(x, 2), (y, 2), (x ◦ y, 3), (y ◦ x, 3)⟩ ∈ H⋆,

⟨(x, 3), (y, 3), (x ◦ y, 1), (y ◦ x, 1)⟩ ∈ H⋆.

Then (V,∆(H⋆), ∅) is a 2-fold triple system of order 12k + 10. We now
perform a metamorphosis into a maximum packing with 4-cycles as fol-
lows:

(3) For 1 ≤ j ≤ 2k+1, place two copies of the 4-cycle
(
(2j, 2), (2j+1, 2),

(2j + 1, 3), (2j, 3
)
) into D⋆. Note that we have used all “vertical”

double edges between Q × {2} and Q × {3} except for L□ = L =
⟨(1, 2), (1, 3)⟩.

(4) For i ∈ {2, 3}, the remaining double edges on Q× {i} form

2K4n+3 \
{〈

(2, i), (3, i)
〉
,
〈
(4, i), (5, i)

〉
, . . . ,

〈
(4n+ 2, i), (4n+ 3, i)

〉}
.

Using Lemma 6.3, we can guarantee a rearrangement of these edges
into 4-cycles and place these 4-cycles into D⋆.

(5) The remaining double edges are of the form either ⟨∞, (x, 1)⟩ or
⟨(x, 1), (y, 1)⟩ where x ̸= y ∈ Q. We can consider these double edges
as 2K4k+4, which can be rearranged into 4-cycles and placed in D⋆.

Thus (V,H⋆, ∅, D⋆, L) is a metamorphosis of a hinge system of order 12k+10
to a maximum packing of 2K12k+10 with 4-cycles, as desired, yielding the
following result.

Theorem 6.5. There exists a metamorphosis of a hinge system of order
12k + 10 to a maximum packing of 2K12k+10 with 4-cycles for all k ≥ 0.
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