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Abstract. Let G be a multigraph without loops and H a graph possibly
with loops. We say that G is an H-colored multigraph whenever there
exists a function c : E(G) → V (H). A walk (respectively, path, trail) W =
(v0, e0, v1, e1, . . . , ek−1, vk) in G is an H-walk (respectively, H-path, H-
trail) if and only if

(
c(e0), c(e1), . . . , c(ek−2), c(ek−1)

)
is a walk in H. W is

a closed H-walk (respectively, closed H-trail) if and only if W is an H-walk
(respectively, H-trail) such that v0 = vk and c(ek−1)c(e0) ∈ E(H). Notice
that W is a properly colored trail whenever H is a complete graph without
loops, in particular when H is K2 we have that W is a properly 2-colored
trail. In 1995 Pevzner defined the order transformations, which allow us
to generate all properly colored Eulerian trails in a 2-colored multigraph,
starting with a fixed one. This result has been fundamental for the study
of DNA physical mapping. In this paper we give sufficient conditions on an
H-edge coloring of G to generate all Eulerian H-trails of G, starting with a
fixed one. As a consequence of the main result we obtain a polynomial-time
algorithm to do it.

1 Introduction

For general concepts, terminology, and notation not defined here, we refer
the reader to [2] and [3]. In this work we consider multigraphs, multigraphs
without parallel edges (called graphs) and graphs without loops (named
simple graphs). Let G be a multigraph. Then V (G) and E(G) denote
the vertex set and the edge set of G, respectively. The notation e ∽ uv
means that u and v are the end-points of the edge e. We say that e joins
u and v, the edge e is incident with u (respectively, with v), u and v are
adjacent, and e is a loop whenever u = v. A walk is a sequence W =
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(v0, e0, v1, e1, . . . , ek−1, vk) where ei ∽ vivi+1 for every i ∈ {0, . . . , k − 1},
and W is closed when v0 = vk. It is called a path whenever vi ̸= vj
for all i and j, with i ̸= j. A cycle is a closed walk (v0, e0, v1, e1, . . . ,
ek−1, vk, ek, v0), with k ≥ 2, such that vi ̸= vj for all i and j with i ̸= j.
A trail is a walk in which no edge is repeated. If W = (v0, e0, v1, e1, . . . ,
ek−1, vk) and W ′ = (vk, ek, vk+1, ek+1, . . . , et−1, vt) are two walks, then the
walk (vk, ek−1, . . . , e1, v1, e0, v0), obtained by reversing W , is denoted by
W−1; and the walk (v0, e0, v1, e1, . . . , ek−1, vk, ek, vk+1, ek+1, . . . , et−1, vt),
obtained by concatenating W and W ′ at vk, is denoted by either WW ′ or
W ∪ W ′. For vertices vi and vj in W with i < j, the subwalk (vi, ei, . . . ,
ej−1, vj) is denoted by (vi,W, vj).

A walk in an edge-colored multigraph G is properly colored (or alternating)
if no two consecutive edges have the same color, including the last and first
edges in a closed walk. Several problems have been modeled by edge-colored
multigraphs, and the study of the applications of properly colored walks
seems to have started in [8], according to [2]. Properly colored walks are
of interest in graph theory applications, such as in genetic and molecular
biology [5, 9, 10, 12, 13], design of printed circuit and wiring boards [14],
channel assignment in wireless networks [1,11], social sciences [4], and graph
models for conflict resolutions [15, 16]. They are also of interest in graph
theory itself as generalizations of walks in undirected and directed graphs.
There is an extensive literature on properly colored walks; for a detailed
survey on this topic see for example Chapter 16 of [2].

In [10], Pevzner shows how to generate all properly colored Eulerian trails in
an edge-colored multigraph, starting with any one, by means of the follow-
ing transformations: Let F = (x0, e0, x1, . . . , xm−1, em−1, xm) be a properly
colored trail in G and suppose that {i, j, k, n} is a subset of {0, . . . ,m},
with i < j < k < n, such that xk = xi and xn = xj . Break up F as
follows:

F1 = (x0, F, xi), F2 = (xi, F, xj), F3 = (xj , F, xk),

F4 = (xk, F, xn), F5 = (xn, F, xm).

The transformation F = F1F2F3F4F5 −→ F ∗ = F1F4F3F2F5 is called an
order exchange whenever F ∗ is a properly colored trail. Whenever xj = xi,
break up F as follows:

F1 = (x0, F, xi), F2 = (xi, F, xj), F3 = (xj , F, xm).

The transformation F = F1F2F3 −→ F ∗ = F1F
−1
2 F3 is called an order

reflection whenever F ∗ is an alternating trail.

The main result in [10] is the following.
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Theorem 1.1. Let G be a 2-edge-colored multigraph. Every pair of alter-
nating Eulerian trails X and Y in G can be transformed into each other by
means of a sequence of order transformations (exchanges and reflections).

Let G be a multigraph without loops and H a graph possibly with loops.
We say that G is an H-colored multigraph whenever there exists a function
c : E(G) → V (H). A walk (respectively, path, trail) W = (v0, e0, v1, e1, . . . ,
ek−1, vk) in G is an H-walk (respectively, H-path, H-trail) if and only if(
c(e0), c(e1), . . . , c(ek−2), c(ek−1)

)
is a walk in H. Also, W is a closed H-

walk (respectively, closed H-trail) if and only if W is an H-walk (respec-
tively, H-trail) such that v0 = vk and c(ek−1)c(e0) ∈ E(H). TheH-coloring
theory is closely related to the automata theory, since each vertex of H rep-
resents a state and each edge of H represents an allowed transition, which
implies that an H-walk in a multigraph G is a predetermined sequence of
possible transitions.

Regarding applications, consider package and messenger services, collecting,
and home delivery. Associate an H-colored multigraph G as follows: the
branch locations would be the vertices of G, the vertices of H would be
the different kinds of products that would need transporting. For {a, b} ⊆
V (G), we have e ∽ ab is an edge of G if and only if it is necessary to
transport the product c(e) from a to b or from b to a. For {i, j} ⊆ V (H),
we have ij ∈ A(H) if and only if the vehicle that leaves the warehouse
with product i can then immediately carry the product j and the vehicle
that leaves the warehouse with product j can then immediately carry the
product i, considering hygiene, security, quality control, etc. For example,
if a vehicle transported pets from a to b, it must be cleaned and disinfected
before transporting food from b to c. An H-trail (x1, e1, x2, . . . , ek−1, xk)
in G means that the same vehicle can transport continuously (avoiding
any intervention of the vehicle) the product c(ei) from xi to xi+1 for each
i ∈ {1, 2, . . . , k − 1}. Thus, an Eulerian H-trail means that a vehicle has
transported each product to the desired branch location. In this way, it is
possible to minimize time and cost. If an Eulerian H-trail is not optimal
for a certain purpose, then we can obtain another route, by means of a
sequence of order transformations.

The concepts of H-coloring and H-walks were motivated by the work of
Linek and Sands in [7], where they studied paths with restrictions in the
color transitions.

Necessary and sufficient conditions for the existence Eulerian H-trails were
studied in [6] by considering the following auxiliary graph: Let H be a
graph possibly with loops, G an H-colored multigraph without loops, and
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u a vertex of G. Let Gu be the simple graph such that V (Gu) = {e ∈
E(G) : e is incident with u} and two different vertices a and b are joined
by only one edge in Gu if and only if c(a)c(b) ∈ E(H). The main result in
that work was the following:

Theorem 1.2. Suppose that G is connected and Eulerian and Gu is a com-
plete ku-partite graph for every u ∈ V (G) and for some ku ∈ N. Then
G has a closed Eulerian H-trail if and only if

∣∣Cu
i

∣∣ ≤ ∑
j ̸=i

∣∣Cu
j

∣∣ for every
u ∈ V (G), where {Cu

1 , . . . , C
u
ku
} is the partition of V (Gu) into independent

sets.

We say that a simple graph G is a 3-transitive graph if for every path
of length 3, say (u0, u1, u2, u3), there is an edge e in G such that e =
u0u3.

In this work we show how to generate all Eulerian H-trails, from some
initial one, in an H-colored multigraph G, where Gu is a 3-transitive graph
for each vertex u of G. We also give an example that shows the condition
on the graphs Gu in the main result is tight.

2 Main results

In what follows H is a graph possibly with loops, and G is an H-colored
multigraph without loops, with H-coloring c : E(G) → V (H).

Let u be a vertex of G and let Eu denote the set {e ∈ E(G) : e ∽ ux for
some x in V (G)}.

Lemma 2.1. Let X = (x0, α0, x1, α1, . . . , αq−1, xq) and Y = (y0, β0, y1, β1,
. . . , βq−1, yq) be Eulerian H-trails in G. Also, choose z in V (G) such that
Gz is a 3-transitive graph. If {a, b, d, e} is a subset of Ez such that

1. {a, b} = {αi, αi+1} for some i,

2. {b, d} = {βj , βj+1} for some j,

3. {d, e} = {αk, αk+1} for some k,

then ae ∈ E(Gz).

Proof. Since X is an Eulerian H-trail (respectively, Y is an Eulerian H-
trail), then {ab, de} ⊆ E(Gz) (respectively, bd ∈ E(Gz)). So (a, b, d, e) is a
path of length 3 contained in Gz. Finally, the 3-transitivity of Gz implies
that ae is an edge of Gz.
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Let F = (x0, e0, x1, . . . , xm−1, em−1, xm) be an H-trail in G and suppose
that {i, j, k, n} is a subset of {0, . . . ,m}, with i < j < k < n, such that
xk = xi and xn = xj . Break up F as follows:

F1 = (x0, F, xi), F2 = (xi, F, xj), F3 = (xj , F, xk),

F4 = (xk, F, xn), F5 = (xn, F, xm).

The transformation F = F1F2F3F4F5 −→ F ∗ = F1F4F3F2F5 is called an
order exchange whenever F ∗ becomes an H-trail (see Figure 2.1).

Figure 2.1: The tranformation order exchange.

Whenever xj = xi, break up F as follows:

F1 = (x0, F, xi), F2 = (xi, F, xj), F3 = (xj , F, xm).

The transformation F = F1F2F3 −→ F ∗ = F1F
−1
2 F3 is called an order

reflection whenever F ∗ is an H-trail, where either F1 or F3 can be trivial
(see Figure 2.2).

From now on, we use the term order transformation to refer to the order
exchange transformations or the order reflection transformations.
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Figure 2.2: The tranformation order reflection.

Let X = (x0, e0, x1, . . . , xk−1, ek−1, xk) be an H-trail in G. We denote by
ΛX the set of all the H-trails obtained from X by the application of order
transformations.

Remark 2.2. Let X be an H-trail in G.

(i) If X is closed (respectively, open), then every element of ΛX is a
closed H-trail (respectively, open).

(ii) If Xi ∈ ΛX , then E(Xi) = E(X). In particular if X is an Eulerian
H-trail, then Xi is an Eulerian H-trail.

Let X = (x0, e0, x1, . . . , xk−1, ek−1, xk) be an H-trail. The subtrail (x0, X,
xj) is denoted by PX,j . If X and Y are H-trails of G that begin at x0, we
define the index of X and Y as the maximum element of the set {j : PX,j =
PY,j}, denoted by ind(X,Y ).

Let c be an H-coloring of G such that for each vertex x of G, we have that
Gx is a 3-transitive graph. Let X and Y be two Eulerian H-trails of G
beginning in x0. With the next algorithm we obtain a sequence of Eulerian
H-trails, X1, X2, . . . , XK such that X1 = X and XK = Y and for each j
in {2, . . . ,K} the H-trail Xj is obtained from the H-trail Xj−1 by means
of order transformations.

Algorithm 2.3. Given an H-colored multigraph G and an Eulerian H-trail
Y , this algorithm generates all Eulerian H-trails of G. Suppose that Y =
(y0, β0, y1, . . . , yq−1, βq−1, yq), where q is the size of G.
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Step 1. Define X∗ = X and K = 0. Go to Step 2.

Step 2. Let K = K + 1. Define XK = X∗ and ℓ = ind(X∗, Y ). Suppose
that X∗ = (x0, α0, x1, . . . , xq−1, αq−1, xq).

If ℓ < q, go to Step 3, otherwise go to Step 9.

Step 3. Find p in {ℓ+ 1, . . . , q} such that αp = βℓ.

If xp = yℓ+1 and xp+1 = yℓ, go to Step 4, otherwise go to Step 5.

Step 4. Consider the following H-subtrails of X∗:

T1 = (x0, X
∗, xℓ),

T2 = (xℓ, αℓ, xℓ+1, . . . , xp = yℓ+1, βℓ = αp, xp+1 = yℓ), and

T3 = (yℓ = xp+1, X
∗, xq).

Define X∗ = T1T
−1
2 T3 and go to Step 2.

Step 5. Consider the following H-subtrails of X∗:

P1 = (x0, X
∗, xℓ),

P2 = (xℓ, X
∗, xp = yℓ), and

P3 = (yℓ = xp, αp = βℓ, yℓ+1 = xp+1, . . . , xq).

Notice that X∗ = P1P2P3.

Let h ≥ ℓ+1 be the minimum number satisfying the following conditions:
yh ∈ V (P2) and βh ∈ E(P2). We have that yh ∈ V (P2) ∩ V (P3). Let i,
with ℓ < i ≤ p, be such that yh = xi and βh ∈ {αi−1, αi}. Let j, with
p < j ≤ q, be such that yh = xj and βh−1 ∈ {αj−1, αj}.

Now, consider the following H-trails:

T1 = (x0, X
∗, xℓ),

T2 = (xℓ, X
∗, xi),

T3 = (xi, X
∗, xp),

T4 = (xp = yℓ, αp = βℓ, xp+1 = yℓ+1, αp+1, . . . , αj−1, xj), and

T5 = (xj , X
∗, xq).
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Note that X∗ = T1T2T3T4T5, and T3 or T5 (or both) could be trivial.

If either βh = αi−1 and βh−1 = αj−1 or βh = αi and βh−1 = αj , then go
to Step 6.

If either βh = αi−1 and βh−1 = αj or βh = αi and βh−1 = αj−1, then go
to Step 8.

Step 6. Let K = K + 1. Define XK = T1T2(T3T4)
−1T5 and go to Step 7.

Step 7. Define X∗ = T1(T2T
−1
4 )−1T−1

3 T5 and go to Step 2.

Step 8. Define X∗ = T1T4T3T2T5, and go to Step 2.

Step 9. Output: X1, X2, . . . , XK .

Lemma 2.4. By applying Algorithm 2.3 we obtain the following assertions:

(a) The trail X∗ obtained in Step 4 is an Eulerian H-trail, an order
transformation of the H-trail T1T2T3, satisfying that ind(X∗, Y ) >
ind(T1T2T3, Y ).

(b) The indices h, i, and j defined in Step 5 do exist.

(c) The trail XK obtained in Step 6 is an Eulerian H-trail, an order
transformation of the H-trail T1T2T3T4T5, satisfying ind(XK , Y ) =
ind(T1T2T3T4T5, Y ).

(d) The trail X∗ obtained in Step 7 is an Eulerian H-trail, an order trans-
formation of the H-trail XK , satisfying ind(X∗, Y ) > ind(XK , Y ).

(e) The trail X∗ obtained in Step 8 is an Eulerian H-trail, an order trans-
formation of the H-trail XK , satisfying ind(X∗, Y ) > ind(XK , Y ).

(f) The time complexity of the Algorithm 2.3 is O(q2), and the storage
data is of order O(q).

Proof. Recall Y = (y0, β0, y1, β1, y2, . . . , βq−1, yq) is an Eulerian H-trail.

(a) The input data at this step is the EulerianH-trailW = T1T2T3, where
T1 = (x0, α0, x1, . . . , αℓ−1, xℓ), T2 = (xℓ, αℓ, xℓ+1, . . . , xp = yℓ+1,
βℓ = αp, xp+1 = yℓ), T3 = (yℓ = xp+1, αp+1, xp+2, . . . , xq), and
ind(T1T2T3, Y ) = ℓ. Then αi = βi for 0 ≤ i ≤ ℓ − 1 and xj = yj
for 0 ≤ j ≤ ℓ.

Galeana-Sánchez et al.

50



First, we check to see that T1T2T3 −→ X∗ = T1T
−1
2 T3 is an order

reflection, and then X∗ is an H-trail.

(i) Since Y is an H-trail, then c(βℓ−1)c(βℓ) ∈ A(H), and given that
βℓ−1 = αℓ−1, we conclude that

T1T
−1
2 = (x0,W, xℓ) ∪ (xℓ = xp+1 = yℓ, βℓ = αp, yℓ+1)

∪ (yℓ+1 = xp,W, xℓ)

is an H-trail.

(ii) Since xℓ = xp+1, we have that αℓ, αℓ−1, αp, αp+1 are incident
with xℓ. Given that αℓ−1 = βℓ−1, αp = βℓ, and T1T2T3 and Y
are H-trails, then Lemma 2.1 implies that αℓαp+1 ∈ E(Gxℓ

), so
c(αℓ)c(αp+1) ∈ A(H). Hence

T−1
2 T3 = (xp+1 = yℓ, βℓ = αp, yℓ+1)

∪ (yℓ+1 = xp,W, xℓ) ∪ (xℓ = yℓ = xp+1,W, xq)

is an H-trail.

Therefore, T1T2T3 −→ X∗ is an order reflection, and Remark 2.2
implies that X∗ is an Eulerian H-trail. So, since X∗ has in com-
mon with Y at least the H-trail (x0,W, xℓ)∪ (xℓ = yℓ, βℓ, yℓ+1), then
ind(X∗, Y ) ≥ ℓ+ 1.

(b) Note that P1 = (x0, α0, x1, . . . , xℓ), P2 = (xℓ, αℓ, xℓ+1, . . . , yℓ = xp),
P3 = (yℓ = xp, αp = βℓ, yℓ+1 = xp+1, . . . , xq), and h, with h ≥ ℓ+1, is
the minimum number satisfying the following conditions: yh ∈ V (P2)
and βh ∈ E(P2). The existence of the index h follows from the fact
that αℓ ∈ E(Y ) ∩ E(P2), with αℓ ∼ ytyt+1, for some t ≥ ℓ+ 1.

Claim 1. βh−1 /∈ E(P2).

If h− 1 ≥ ℓ+ 1 and βh−1 ∈ E(P2), then yh−1 ∈ V (P2), contradicting
the choice of h. If h − 1 = ℓ, then βh−1 = βℓ, since βℓ /∈ E(P2), and
consequently βh−1 /∈ E(P2). Thus, in any case βh−1 /∈ E(P2).

Claim 2. βh−1 /∈ E(P1).

This follows directly from the fact, that h > ℓ.

Since X∗ = P1P2P3 is an Eulerian H-trail, this follows from Claims
1 and 2 that βh−1 ∈ E(P3). So, yh ∈ V (P2) ∩ V (P3) implying that
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yh = xi for some i such that ℓ < i ≤ p, and yh = xj for some j
satisfying p < j ≤ q.

Notice that βh−1 ∈ {αj−1, αj}.

(c) The input data at this step is H-trail W = T1T2T3T4T5, where T1 =
(x0, α0, x1, α1, . . . , αℓ−1, xℓ), T2 = (xℓ, αℓ, xℓ+1, . . . , αi−1, xi = yh),
T3 = (xi, αi, xi+1, . . . , αp−1, xp), T4 = (xp = yℓ, αp = βℓ, xp+1 =
yℓ+1, αp+1, . . . , αj−1, xj = yh), T5 = (xj , αj , xj+1, αj+1, . . . , xq), with
either βh = αi−1 and βh−1 = αj−1 or βh = αi and βh−1 = αj ;
satisfying ind(W,Y ) = ℓ.

First, we check to see that
{
c(αi−1)c(αj−1), c(αi)c(αj)

}
⊆ E(H).

Notice that αi−1, αi, αj−1, αj are edges incident with yh and recall
that T2T3 and T4T5 are H-trails.

Since Y is an H-trail when βh = αi−1 and βh−1 = αj−1, we have
that c(βh−1)c(βh) ∈ E(H), that is, c(αi−1)c(αj−1) ∈ E(H). There-
fore, Lemma 2.1 implies αiαj ∈ E(Gyh

), and hence c(αi)c(αj) ∈
E(H). Analogously, when βh = αi and βh−1 = αj , we obtain that{
c(αi−1)c(αj−1), c(αi)c(αj)

}
⊆ E(H).

Now, we check to see that T1T2T3T4T5 −→ XK = T1T2(T3T4)
−1T5 is

an order reflection.

Notice that XK = T1T2T
−1
4 T−1

3 T5.

(i) T2T
−1
4 = (xℓ,W, xi) ∪ (xi = yh = xj ,W, xp+1) ∪ (xp+1, αp = βℓ,

xp = xℓ) is an H-trail.

This follows from the fact that c(αi−1)c(αj−1) ∈ E(H).

(ii) T−1
4 T−1

3 is an H-trail.

We have that T1T2T3T4T5 is an H-trail. Hence also T3T4 and
T−1
4 T−1

3 are H-trails.

(iii) T−1
3 T5 = (xp,W, xi) ∪ (xi = xj ,W, xq) is an H-trail.

This follows from the fact that c(αi)c(αj) ∈ E(H).

Thus, T1T2T3T4T5 −→ XK is an order reflection, and Remark 2.2
implies that XK is an Eulerian H-trail. Now, XK has in common
with Y the H-trail T1 = (x0, α0, x1, . . . , αℓ−1, xℓ), as αℓ ̸= βℓ, and so
ind(XK , Y ) = ℓ.
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(d) The input data at this step is Eulerian H-trail XK = T1T2T
−1
4 T−1

3 T5,
where T1, . . . , T5 were described above, with ind(XK , Y ) = ℓ.

Recall that T1T2T3T4T5 is anH-trail and either βh = αi−1 and βh−1 =
αj−1 or βh = αi and βh−1 = αj .

First, we check to see that XK −→ X∗ = T1(T2T
−1
4 )−1T−1

3 T5 is an
order reflection. Notice that X∗ = T1T4T

−1
2 T−1

3 T5.

(i) T1T4 = (x0, X
∗, xℓ) ∪ (xℓ = yℓ = xp, αp = βℓ, xp+1) ∪ (xp+1, X

∗,
xj) is an H-trail.

This follows from the fact that αℓ−1 = βℓ−1, αp = βℓ, and Y is
an H-trail.

(ii) T4T
−1
2 is an H-trail.

Since XK is an H-trail, we get that T2T
−1
4 is an H-trail, which

implies that T4T
−1
2 is an H-trail.

(iii) T−1
2 T−1

3 = (yh = xi, αi−1, . . . , xℓ+1, αℓ, xℓ = xp, αp−1, . . . , xi+1,
αi, xi = yh) is an H-trail.

Recall that αℓ−1, αℓ, αp−1, αp are edges incident with yℓ. Since
βℓ−1 = αℓ−1, βℓ = αp, and XK and Y are H-trails, then
Lemma 2.1 implies that αℓαp−1 ∈ E(Gyℓ

). Therefore, we have
that c(αℓ)c(αp−1) ∈ E(H) and T−1

2 T−1
3 is an H-trail.

(iv) T−1
3 T5 is an H-trail.

Notice that T−1
3 T5 is a subtrail of XK , and hence it is an H-trail.

We conclude that XK −→ X∗ = T1(T2T
−1
4 )−1T−1

3 T5 is an order
reflection.

Remark 2.2 implies that X∗ is an Eulerian H-trail. Now, X∗ has
in common with Y at least the H-trail (x0, α0, x1, . . . , αℓ−1, xℓ =
yℓ = xp, αp = βℓ, xp+1), with ind(X∗, Y ) ≥ ℓ + 1 and ind(X∗, Y ) >
ind(XK , Y ).

(e) The input data at this step are the H-trails XK = T1T2T3T4T5, where
T1 = (x0, α0, x1, α1, . . . , αℓ−1, xℓ), T2 = (xℓ, αℓ, xℓ+1, . . . , αi−1, xi =
yh), T3 = (xi, αi, xi+1, . . . , αp−1, xp), T4 = (xp = yℓ, αp = βℓ, xp+1 =
yℓ+1, αp+1, . . . , αj−1, xj = yh), T5 = (xj , αj , xj+1, αj+1, . . . , xq), and
ind(XK , Y ) = ℓ.

Recall that either βh = αi and βh−1 = αj−1 or βh = αi−1 and
βh−1 = αj . We consider two cases.
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Case 1. βh = αi and βh−1 = αj−1.

In this case we prove that XK −→ X∗ = T1T4T3T2T5 is an order
reflection.

(i) T1T4 = (x0, X
∗, xℓ) ∪ (xℓ = yℓ = xp, αp = βℓ, xp+1, αp+1, . . . ,

αj−1, yh = xj) is an H-trail.

Since βℓ−1 = αℓ−1, βℓ = αp, and Y is an H-trail, then T1T4 is
an H-trail.

(ii) T4T3 = (xℓ = yℓ = xp, αp = βℓ, xp+1, αp+1, . . . , αj−1, xj =
yh = xi, αi, . . . , xp−1, αp−1, xp = xℓ) is an H-trail.

Since βh−1 = αj−1, βh = αi, and Y is an H-trail, then T4T3 is
an H-trail.

(iii) T3T2 = (xj = yh = xi, αi, . . . , xp−1, αp−1, xp = xℓ, αℓ, xℓ+1, . . . ,
αi−1, xi = yh) is an H-trail.

Recall that αℓ−1, αℓ, αp−1, αp are edges incident with yℓ. Since
βℓ−1 = αℓ−1, βℓ = αp, and XK and Y are H-trails, it fol-
lows from Lemma 2.1 that αp−1αℓ ∈ E(Gyℓ

), which implies that
c(αp−1)c(αℓ) ∈ E(H).

(iv) T2T5 = (xℓ, αℓ, xℓ+1, . . . , αi−1, xi = yh = xj , αj , xj+1, αj+1, . . . ,
xq) is an H-trail.

Recall that αi, αi−1, αj , αj−1 are edges incident with yh. Since
βh−1 = αj−1, βh = αi, and XK and Y are H-trails, then
Lemma 2.1 implies that αi−1αj ∈ E(Gyh

). Therefore, we have
that c(αi−1)c(αj) ∈ E(H).

Therefore, XK −→ X∗ = T1T4T3T2T5 is an order reflection. Re-
mark 2.2 implies that X∗ is an Eulerian H-trail, having in common
with Y at least the H-trail (x0, α0, x1, . . . , αℓ−1, xℓ = yℓ = xp, αp =
βℓ, xp+1), with ind(X∗, Y ) ≥ ℓ+ 1 and ind(X∗, Y ) > ind(XK , Y ).

Case 2. βh = αi−1 and βh−1 = αj .

Proceeding in a completely similar way as in Case 1, we get that
X∗ = T1T4T3T2T5 is an H-trail.

(f) Consider the execution of Algorithm 2.3:

(I) Step 1 is executed at most once.
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(II) Step 2 is executed at most once for each edge in the graph; hence,
it runs at most q times. After each execution of Step 2, one of
the following sequences of steps is executed:

• Step 9;
• Steps 3 and 4;
• Steps 3, 5, 6, and 7;
• Step 3, 5, and 8.

(III) Step 9 is executed at most once.

In Step 2, in order to find the index, ind(X∗, Y ), each edge αi of X
∗

is compared with the corresponding edge βi of Y . Therefore, the time
complexity of Step 2 is O(q).

In Step 3, the edge βℓ is compared with each edge of X∗, becoming at
most q comparisons. Therefore, the time complexity of Step 3 is O(q).

In Step 5, finding the subindex h involves at most q comparisons,
since it is a particular case of the problem of looking for common
elements between two sets, whose time complexity is O(q).

The execution of Steps 4, 6, 7, 8, and 9 is of constant complexity,
i.e., O(1).

Thus, considering the nested structure and the fact that Step 2 is
called q times, the overall time complexity for Algorithm 2.3 is O(q2),
and the storage data is of order O(q).

Notice that Algorithm 2.3 works as follows: Given an H-colored graph
G that contains at least two Eulerian H-trails, namely X and Y both of
them starting in a fixed vertex x0, the algorithm constructs a succession
of Eulerian H-trails X = X1, X2, . . . , XK = Y where, for each i ∈ {1, . . . ,
K − 1}, the trail Xi+1 is obtained of Xi by means of order transformations
and ind(Xi+1, Y ) > ind(Xi, Y ).

Theorem 2.5. Suppose that c is an H-coloring of G such that for each
vertex x of G, we have that Gx is a 3-transitive graph. Let X and Y be two
Eulerian H-trails in G beginning in the same vertex. Then the sequence
X1, X2, . . . , XK obtained by applying Algorithm 2.3 satisfies the following:

1. For each j ∈ {2, . . . ,K}, we have that Xj is an Eulerian H-trail
obtained from Xj−1 through order transformations.

2. XK = Y and thus Y ∈ ΛX .
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Remark 2.6. In Theorem 2.5 we cannot remove the condition “for each
vertex x of G, we have that Gx is a 3-transitive graph,” as it is shown in
the following example.

Consider the multigraph G in Figure 2.3. Note that Gx1 is not a 3-transitive
graph.

G

T1

T2

T3

x1
x0

x2

x3

x4

x5 H

1
2 3

45

6 Gx1

1
2 3

45

Figure 2.3: H-colored multigraph G.

Let X = (x0, x1, x2, x3, x1, x4, x5, x1) and Y = (x0, x1, x3, x2, x1, x5, x4, x1)
be two Eulerian H-trails in G, where T1 = (x0, x1), T2 = (x1, x2, x3, x1),
and T3 = (x1, x4, x5, x1). Notice that Y = T1T

−1
2 T−1

3 . We intend that
Y /∈ ΛX . From the definition of order reflection, we have that the following
transformations are the only possible order reflections:

1) X −→ T1T
−1
2 T3 is not an order reflection, since T−1

2 T3 is not an
H-trail.

2) X −→ T1(T2T3)
−1 = T1T

−1
3 T−1

2 is not an order reflection, since
T1T

−1
3 is not an H-trail.

3) X −→ T1T2T
−1
3 is not an order reflection, since T2T

−1
3 is not an

H-trail.

On the other hand, from the definition of order exchange we have that it is
not possible to implement an order exchange.
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