



# Generating all Eulerian trails avoiding forbidden transitions

HORTENSIA GALEANA-SÁNCHEZ, ROCÍO ROJAS-MONROY,  
ROCÍO SÁNCHEZ-LÓPEZ, AND JUANA IMELDA VILLARREAL-VALDÉS

**Abstract.** Let  $G$  be a multigraph without loops and  $H$  a graph possibly with loops. We say that  $G$  is an  $H$ -colored multigraph whenever there exists a function  $c: E(G) \rightarrow V(H)$ . A walk (respectively, path, trail)  $W = (v_0, e_0, v_1, e_1, \dots, e_{k-1}, v_k)$  in  $G$  is an  $H$ -walk (respectively,  $H$ -path,  $H$ -trail) if and only if  $(c(e_0), c(e_1), \dots, c(e_{k-2}), c(e_{k-1}))$  is a walk in  $H$ .  $W$  is a closed  $H$ -walk (respectively, closed  $H$ -trail) if and only if  $W$  is an  $H$ -walk (respectively,  $H$ -trail) such that  $v_0 = v_k$  and  $c(e_{k-1})c(e_0) \in E(H)$ . Notice that  $W$  is a properly colored trail whenever  $H$  is a complete graph without loops, in particular when  $H$  is  $K_2$  we have that  $W$  is a properly 2-colored trail. In 1995 Pevzner defined the order transformations, which allow us to generate all properly colored Eulerian trails in a 2-colored multigraph, starting with a fixed one. This result has been fundamental for the study of DNA physical mapping. In this paper we give sufficient conditions on an  $H$ -edge coloring of  $G$  to generate all Eulerian  $H$ -trails of  $G$ , starting with a fixed one. As a consequence of the main result we obtain a polynomial-time algorithm to do it.

## 1 Introduction

For general concepts, terminology, and notation not defined here, we refer the reader to [2] and [3]. In this work we consider multigraphs, multigraphs without parallel edges (called graphs) and graphs without loops (named simple graphs). Let  $G$  be a multigraph. Then  $V(G)$  and  $E(G)$  denote the vertex set and the edge set of  $G$ , respectively. The notation  $e \sim uv$  means that  $u$  and  $v$  are the end-points of the edge  $e$ . We say that  $e$  joins  $u$  and  $v$ , the edge  $e$  is *incident* with  $u$  (respectively, with  $v$ ),  $u$  and  $v$  are *adjacent*, and  $e$  is a *loop* whenever  $u = v$ . A *walk* is a sequence  $W =$

---

**Key words and phrases:** Eulerian  $H$ -trail, Order transformation,  $H$ -coloring

**Mathematics Subject Classifications:** 05C45, 05C15

**Corresponding author:** Juana Villareal-Valdés <matimelda@yahoo.com.mx>

$(v_0, e_0, v_1, e_1, \dots, e_{k-1}, v_k)$  where  $e_i \curvearrowright v_i v_{i+1}$  for every  $i \in \{0, \dots, k-1\}$ , and  $W$  is *closed* when  $v_0 = v_k$ . It is called a *path* whenever  $v_i \neq v_j$  for all  $i$  and  $j$ , with  $i \neq j$ . A *cycle* is a closed walk  $(v_0, e_0, v_1, e_1, \dots, e_{k-1}, v_k, e_k, v_0)$ , with  $k \geq 2$ , such that  $v_i \neq v_j$  for all  $i$  and  $j$  with  $i \neq j$ . A *trail* is a walk in which no edge is repeated. If  $W = (v_0, e_0, v_1, e_1, \dots, e_{k-1}, v_k)$  and  $W' = (v_k, e_k, v_{k+1}, e_{k+1}, \dots, e_{t-1}, v_t)$  are two walks, then the walk  $(v_k, e_{k-1}, \dots, e_1, v_1, e_0, v_0)$ , obtained by reversing  $W$ , is denoted by  $W^{-1}$ ; and the walk  $(v_0, e_0, v_1, e_1, \dots, e_{k-1}, v_k, e_k, v_{k+1}, e_{k+1}, \dots, e_{t-1}, v_t)$ , obtained by concatenating  $W$  and  $W'$  at  $v_k$ , is denoted by either  $WW'$  or  $W \cup W'$ . For vertices  $v_i$  and  $v_j$  in  $W$  with  $i < j$ , the subwalk  $(v_i, e_i, \dots, e_{j-1}, v_j)$  is denoted by  $(v_i, W, v_j)$ .

A walk in an edge-colored multigraph  $G$  is *properly colored* (or *alternating*) if no two consecutive edges have the same color, including the last and first edges in a closed walk. Several problems have been modeled by edge-colored multigraphs, and the study of the applications of properly colored walks seems to have started in [8], according to [2]. Properly colored walks are of interest in graph theory applications, such as in genetic and molecular biology [5, 9, 10, 12, 13], design of printed circuit and wiring boards [14], channel assignment in wireless networks [1, 11], social sciences [4], and graph models for conflict resolutions [15, 16]. They are also of interest in graph theory itself as generalizations of walks in undirected and directed graphs. There is an extensive literature on properly colored walks; for a detailed survey on this topic see for example Chapter 16 of [2].

In [10], Pevzner shows how to generate all properly colored Eulerian trails in an edge-colored multigraph, starting with any one, by means of the following transformations: Let  $F = (x_0, e_0, x_1, \dots, x_{m-1}, e_{m-1}, x_m)$  be a properly colored trail in  $G$  and suppose that  $\{i, j, k, n\}$  is a subset of  $\{0, \dots, m\}$ , with  $i < j < k < n$ , such that  $x_k = x_i$  and  $x_n = x_j$ . Break up  $F$  as follows:

$$\begin{aligned} F_1 &= (x_0, F, x_i), & F_2 &= (x_i, F, x_j), & F_3 &= (x_j, F, x_k), \\ F_4 &= (x_k, F, x_n), & F_5 &= (x_n, F, x_m). \end{aligned}$$

The transformation  $F = F_1 F_2 F_3 F_4 F_5 \longrightarrow F^* = F_1 F_4 F_3 F_2 F_5$  is called an *order exchange* whenever  $F^*$  is a properly colored trail. Whenever  $x_j = x_i$ , break up  $F$  as follows:

$$F_1 = (x_0, F, x_i), \quad F_2 = (x_i, F, x_j), \quad F_3 = (x_j, F, x_m).$$

The transformation  $F = F_1 F_2 F_3 \longrightarrow F^* = F_1 F_2^{-1} F_3$  is called an *order reflection* whenever  $F^*$  is an alternating trail.

The main result in [10] is the following.

**Theorem 1.1.** *Let  $G$  be a 2-edge-colored multigraph. Every pair of alternating Eulerian trails  $X$  and  $Y$  in  $G$  can be transformed into each other by means of a sequence of order transformations (exchanges and reflections).*

Let  $G$  be a multigraph without loops and  $H$  a graph possibly with loops. We say that  $G$  is an  *$H$ -colored multigraph* whenever there exists a function  $c: E(G) \rightarrow V(H)$ . A walk (respectively, path, trail)  $W = (v_0, e_0, v_1, e_1, \dots, e_{k-1}, v_k)$  in  $G$  is an  *$H$ -walk* (respectively,  *$H$ -path*,  *$H$ -trail*) if and only if  $(c(e_0), c(e_1), \dots, c(e_{k-2}), c(e_{k-1}))$  is a walk in  $H$ . Also,  $W$  is a *closed  $H$ -walk* (respectively, *closed  $H$ -trail*) if and only if  $W$  is an  $H$ -walk (respectively,  $H$ -trail) such that  $v_0 = v_k$  and  $c(e_{k-1})c(e_0) \in E(H)$ . The  $H$ -coloring theory is closely related to the automata theory, since each vertex of  $H$  represents a state and each edge of  $H$  represents an allowed transition, which implies that an  $H$ -walk in a multigraph  $G$  is a predetermined sequence of possible transitions.

Regarding applications, consider package and messenger services, collecting, and home delivery. Associate an  $H$ -colored multigraph  $G$  as follows: the branch locations would be the vertices of  $G$ , the vertices of  $H$  would be the different kinds of products that would need transporting. For  $\{a, b\} \subseteq V(G)$ , we have  $e \sim ab$  is an edge of  $G$  if and only if it is necessary to transport the product  $c(e)$  from  $a$  to  $b$  or from  $b$  to  $a$ . For  $\{i, j\} \subseteq V(H)$ , we have  $ij \in A(H)$  if and only if the vehicle that leaves the warehouse with product  $i$  can then immediately carry the product  $j$  and the vehicle that leaves the warehouse with product  $j$  can then immediately carry the product  $i$ , considering hygiene, security, quality control, etc. For example, if a vehicle transported pets from  $a$  to  $b$ , it must be cleaned and disinfected before transporting food from  $b$  to  $c$ . An  $H$ -trail  $(x_1, e_1, x_2, \dots, e_{k-1}, x_k)$  in  $G$  means that the same vehicle can transport continuously (avoiding any intervention of the vehicle) the product  $c(e_i)$  from  $x_i$  to  $x_{i+1}$  for each  $i \in \{1, 2, \dots, k-1\}$ . Thus, an Eulerian  $H$ -trail means that a vehicle has transported each product to the desired branch location. In this way, it is possible to minimize time and cost. If an Eulerian  $H$ -trail is not optimal for a certain purpose, then we can obtain another route, by means of a sequence of order transformations.

The concepts of  $H$ -coloring and  $H$ -walks were motivated by the work of Linek and Sands in [7], where they studied paths with restrictions in the color transitions.

Necessary and sufficient conditions for the existence Eulerian  $H$ -trails were studied in [6] by considering the following auxiliary graph: Let  $H$  be a graph possibly with loops,  $G$  an  $H$ -colored multigraph without loops, and

$u$  a vertex of  $G$ . Let  $G_u$  be the simple graph such that  $V(G_u) = \{e \in E(G) : e \text{ is incident with } u\}$  and two different vertices  $a$  and  $b$  are joined by only one edge in  $G_u$  if and only if  $c(a)c(b) \in E(H)$ . The main result in that work was the following:

**Theorem 1.2.** *Suppose that  $G$  is connected and Eulerian and  $G_u$  is a complete  $k_u$ -partite graph for every  $u \in V(G)$  and for some  $k_u \in \mathbb{N}$ . Then  $G$  has a closed Eulerian  $H$ -trail if and only if  $|C_i^u| \leq \sum_{j \neq i} |C_j^u|$  for every  $u \in V(G)$ , where  $\{C_1^u, \dots, C_{k_u}^u\}$  is the partition of  $V(G_u)$  into independent sets.*

We say that a simple graph  $G$  is a 3-transitive graph if for every path of length 3, say  $(u_0, u_1, u_2, u_3)$ , there is an edge  $e$  in  $G$  such that  $e = u_0u_3$ .

In this work we show how to generate all Eulerian  $H$ -trails, from some initial one, in an  $H$ -colored multigraph  $G$ , where  $G_u$  is a 3-transitive graph for each vertex  $u$  of  $G$ . We also give an example that shows the condition on the graphs  $G_u$  in the main result is tight.

## 2 Main results

In what follows  $H$  is a graph possibly with loops, and  $G$  is an  $H$ -colored multigraph without loops, with  $H$ -coloring  $c: E(G) \rightarrow V(H)$ .

Let  $u$  be a vertex of  $G$  and let  $E_u$  denote the set  $\{e \in E(G) : e \curvearrowright ux \text{ for some } x \in V(G)\}$ .

**Lemma 2.1.** *Let  $X = (x_0, \alpha_0, x_1, \alpha_1, \dots, \alpha_{q-1}, x_q)$  and  $Y = (y_0, \beta_0, y_1, \beta_1, \dots, \beta_{q-1}, y_q)$  be Eulerian  $H$ -trails in  $G$ . Also, choose  $z$  in  $V(G)$  such that  $G_z$  is a 3-transitive graph. If  $\{a, b, d, e\}$  is a subset of  $E_z$  such that*

1.  $\{a, b\} = \{\alpha_i, \alpha_{i+1}\}$  for some  $i$ ,
2.  $\{b, d\} = \{\beta_j, \beta_{j+1}\}$  for some  $j$ ,
3.  $\{d, e\} = \{\alpha_k, \alpha_{k+1}\}$  for some  $k$ ,

then  $ae \in E(G_z)$ .

*Proof.* Since  $X$  is an Eulerian  $H$ -trail (respectively,  $Y$  is an Eulerian  $H$ -trail), then  $\{ab, de\} \subseteq E(G_z)$  (respectively,  $bd \in E(G_z)$ ). So  $(a, b, d, e)$  is a path of length 3 contained in  $G_z$ . Finally, the 3-transitivity of  $G_z$  implies that  $ae$  is an edge of  $G_z$ .  $\square$

Let  $F = (x_0, e_0, x_1, \dots, x_{m-1}, e_{m-1}, x_m)$  be an  $H$ -trail in  $G$  and suppose that  $\{i, j, k, n\}$  is a subset of  $\{0, \dots, m\}$ , with  $i < j < k < n$ , such that  $x_k = x_i$  and  $x_n = x_j$ . Break up  $F$  as follows:

$$\begin{aligned} F_1 &= (x_0, F, x_i), & F_2 &= (x_i, F, x_j), & F_3 &= (x_j, F, x_k), \\ F_4 &= (x_k, F, x_n), & F_5 &= (x_n, F, x_m). \end{aligned}$$

The transformation  $F = F_1 F_2 F_3 F_4 F_5 \rightarrow F^* = F_1 F_4 F_3 F_2 F_5$  is called an order exchange whenever  $F^*$  becomes an  $H$ -trail (see Figure 2.1).

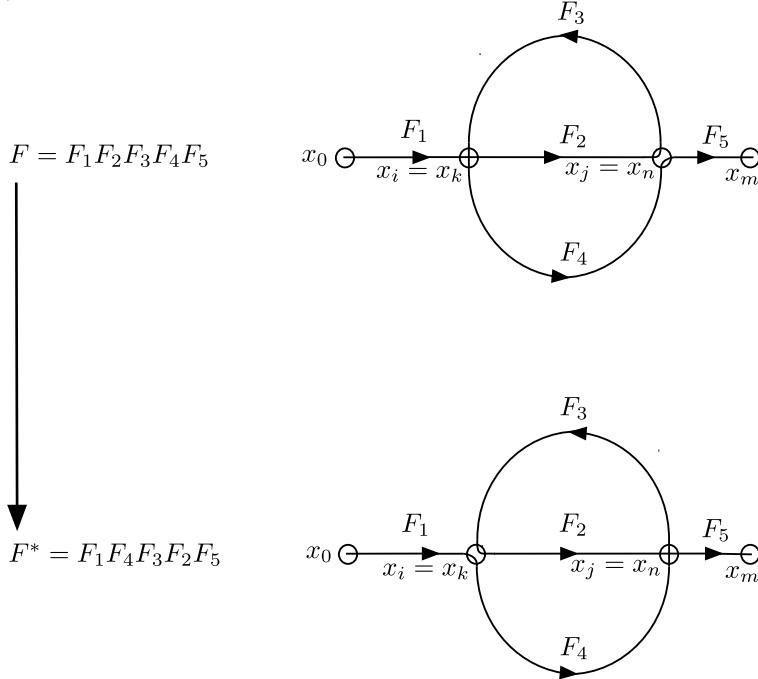


Figure 2.1: The transformation order exchange.

Whenever  $x_j = x_i$ , break up  $F$  as follows:

$$F_1 = (x_0, F, x_i), \quad F_2 = (x_i, F, x_j), \quad F_3 = (x_j, F, x_m).$$

The transformation  $F = F_1 F_2 F_3 \rightarrow F^* = F_1 F_2^{-1} F_3$  is called an order reflection whenever  $F^*$  is an  $H$ -trail, where either  $F_1$  or  $F_3$  can be trivial (see Figure 2.2).

From now on, we use the term order transformation to refer to the order exchange transformations or the order reflection transformations.

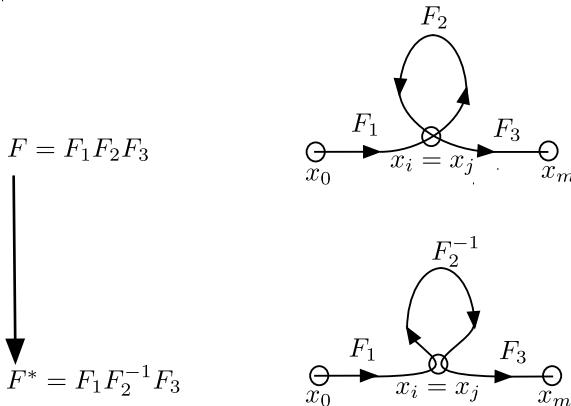


Figure 2.2: The transformation order reflection.

Let  $X = (x_0, e_0, x_1, \dots, x_{k-1}, e_{k-1}, x_k)$  be an  $H$ -trail in  $G$ . We denote by  $\Lambda_X$  the set of all the  $H$ -trails obtained from  $X$  by the application of order transformations.

**Remark 2.2.** Let  $X$  be an  $H$ -trail in  $G$ .

- (i) If  $X$  is closed (respectively, open), then every element of  $\Lambda_X$  is a closed  $H$ -trail (respectively, open).
- (ii) If  $X_i \in \Lambda_X$ , then  $E(X_i) = E(X)$ . In particular if  $X$  is an Eulerian  $H$ -trail, then  $X_i$  is an Eulerian  $H$ -trail.

Let  $X = (x_0, e_0, x_1, \dots, x_{k-1}, e_{k-1}, x_k)$  be an  $H$ -trail. The subtrail  $(x_0, X, x_j)$  is denoted by  $P_{X,j}$ . If  $X$  and  $Y$  are  $H$ -trails of  $G$  that begin at  $x_0$ , we define the index of  $X$  and  $Y$  as the maximum element of the set  $\{j : P_{X,j} = P_{Y,j}\}$ , denoted by  $\text{ind}(X, Y)$ .

Let  $c$  be an  $H$ -coloring of  $G$  such that for each vertex  $x$  of  $G$ , we have that  $G_x$  is a 3-transitive graph. Let  $X$  and  $Y$  be two Eulerian  $H$ -trails of  $G$  beginning in  $x_0$ . With the next algorithm we obtain a sequence of Eulerian  $H$ -trails,  $X_1, X_2, \dots, X_K$  such that  $X_1 = X$  and  $X_K = Y$  and for each  $j$  in  $\{2, \dots, K\}$  the  $H$ -trail  $X_j$  is obtained from the  $H$ -trail  $X_{j-1}$  by means of order transformations.

**Algorithm 2.3.** Given an  $H$ -colored multigraph  $G$  and an Eulerian  $H$ -trail  $Y$ , this algorithm generates all Eulerian  $H$ -trails of  $G$ . Suppose that  $Y = (y_0, \beta_0, y_1, \dots, y_{q-1}, \beta_{q-1}, y_q)$ , where  $q$  is the size of  $G$ .

Step 1. Define  $X^* = X$  and  $K = 0$ . Go to Step 2.

Step 2. Let  $K = K + 1$ . Define  $X_K = X^*$  and  $\ell = \text{ind}(X^*, Y)$ . Suppose that  $X^* = (x_0, \alpha_0, x_1, \dots, x_{q-1}, \alpha_{q-1}, x_q)$ .

If  $\ell < q$ , go to Step 3, otherwise go to Step 9.

Step 3. Find  $p$  in  $\{\ell + 1, \dots, q\}$  such that  $\alpha_p = \beta_\ell$ .

If  $x_p = y_{\ell+1}$  and  $x_{p+1} = y_\ell$ , go to Step 4, otherwise go to Step 5.

Step 4. Consider the following  $H$ -subtrails of  $X^*$ :

$$\begin{aligned} T_1 &= (x_0, X^*, x_\ell), \\ T_2 &= (x_\ell, \alpha_\ell, x_{\ell+1}, \dots, x_p = y_{\ell+1}, \beta_\ell = \alpha_p, x_{p+1} = y_\ell), \text{ and} \\ T_3 &= (y_\ell = x_{p+1}, X^*, x_q). \end{aligned}$$

Define  $X^* = T_1 T_2^{-1} T_3$  and go to Step 2.

Step 5. Consider the following  $H$ -subtrails of  $X^*$ :

$$\begin{aligned} P_1 &= (x_0, X^*, x_\ell), \\ P_2 &= (x_\ell, X^*, x_p = y_\ell), \text{ and} \\ P_3 &= (y_\ell = x_p, \alpha_p = \beta_\ell, y_{\ell+1} = x_{p+1}, \dots, x_q). \end{aligned}$$

Notice that  $X^* = P_1 P_2 P_3$ .

Let  $h \geq \ell + 1$  be the minimum number satisfying the following conditions:  $y_h \in V(P_2)$  and  $\beta_h \in E(P_2)$ . We have that  $y_h \in V(P_2) \cap V(P_3)$ . Let  $i$ , with  $\ell < i \leq p$ , be such that  $y_h = x_i$  and  $\beta_h \in \{\alpha_{i-1}, \alpha_i\}$ . Let  $j$ , with  $p < j \leq q$ , be such that  $y_h = x_j$  and  $\beta_{h-1} \in \{\alpha_{j-1}, \alpha_j\}$ .

Now, consider the following  $H$ -trails:

$$\begin{aligned} T_1 &= (x_0, X^*, x_\ell), \\ T_2 &= (x_\ell, X^*, x_i), \\ T_3 &= (x_i, X^*, x_p), \\ T_4 &= (x_p = y_\ell, \alpha_p = \beta_\ell, x_{p+1} = y_{\ell+1}, \alpha_{p+1}, \dots, \alpha_{j-1}, x_j), \text{ and} \\ T_5 &= (x_j, X^*, x_q). \end{aligned}$$

Note that  $X^* = T_1T_2T_3T_4T_5$ , and  $T_3$  or  $T_5$  (or both) could be trivial.

If either  $\beta_h = \alpha_{i-1}$  and  $\beta_{h-1} = \alpha_{j-1}$  or  $\beta_h = \alpha_i$  and  $\beta_{h-1} = \alpha_j$ , then go to Step 6.

If either  $\beta_h = \alpha_{i-1}$  and  $\beta_{h-1} = \alpha_j$  or  $\beta_h = \alpha_i$  and  $\beta_{h-1} = \alpha_{j-1}$ , then go to Step 8.

Step 6. Let  $K = K + 1$ . Define  $X_K = T_1T_2(T_3T_4)^{-1}T_5$  and go to Step 7.

Step 7. Define  $X^* = T_1(T_2T_4^{-1})^{-1}T_3^{-1}T_5$  and go to Step 2.

Step 8. Define  $X^* = T_1T_4T_3T_2T_5$ , and go to Step 2.

Step 9. Output:  $X_1, X_2, \dots, X_K$ .

**Lemma 2.4.** By applying Algorithm 2.3 we obtain the following assertions:

- (a) The trail  $X^*$  obtained in Step 4 is an Eulerian  $H$ -trail, an order transformation of the  $H$ -trail  $T_1T_2T_3$ , satisfying that  $\text{ind}(X^*, Y) > \text{ind}(T_1T_2T_3, Y)$ .
- (b) The indices  $h$ ,  $i$ , and  $j$  defined in Step 5 do exist.
- (c) The trail  $X_K$  obtained in Step 6 is an Eulerian  $H$ -trail, an order transformation of the  $H$ -trail  $T_1T_2T_3T_4T_5$ , satisfying  $\text{ind}(X_K, Y) = \text{ind}(T_1T_2T_3T_4T_5, Y)$ .
- (d) The trail  $X^*$  obtained in Step 7 is an Eulerian  $H$ -trail, an order transformation of the  $H$ -trail  $X_K$ , satisfying  $\text{ind}(X^*, Y) > \text{ind}(X_K, Y)$ .
- (e) The trail  $X^*$  obtained in Step 8 is an Eulerian  $H$ -trail, an order transformation of the  $H$ -trail  $X_K$ , satisfying  $\text{ind}(X^*, Y) > \text{ind}(X_K, Y)$ .
- (f) The time complexity of the Algorithm 2.3 is  $O(q^2)$ , and the storage data is of order  $O(q)$ .

*Proof.* Recall  $Y = (y_0, \beta_0, y_1, \beta_1, y_2, \dots, \beta_{q-1}, y_q)$  is an Eulerian  $H$ -trail.

- (a) The input data at this step is the Eulerian  $H$ -trail  $W = T_1T_2T_3$ , where  $T_1 = (x_0, \alpha_0, x_1, \dots, \alpha_{\ell-1}, x_\ell)$ ,  $T_2 = (x_\ell, \alpha_\ell, x_{\ell+1}, \dots, x_p = y_{\ell+1}, \beta_\ell = \alpha_p, x_{p+1} = y_\ell)$ ,  $T_3 = (y_\ell = x_{p+1}, \alpha_{p+1}, x_{p+2}, \dots, x_q)$ , and  $\text{ind}(T_1T_2T_3, Y) = \ell$ . Then  $\alpha_i = \beta_i$  for  $0 \leq i \leq \ell - 1$  and  $x_j = y_j$  for  $0 \leq j \leq \ell$ .

First, we check to see that  $T_1T_2T_3 \longrightarrow X^* = T_1T_2^{-1}T_3$  is an order reflection, and then  $X^*$  is an  $H$ -trail.

(i) Since  $Y$  is an  $H$ -trail, then  $c(\beta_{\ell-1})c(\beta_\ell) \in A(H)$ , and given that  $\beta_{\ell-1} = \alpha_{\ell-1}$ , we conclude that

$$\begin{aligned} T_1T_2^{-1} = & (x_0, W, x_\ell) \cup (x_\ell = x_{p+1} = y_\ell, \beta_\ell = \alpha_p, y_{\ell+1}) \\ & \cup (y_{\ell+1} = x_p, W, x_\ell) \end{aligned}$$

is an  $H$ -trail.

(ii) Since  $x_\ell = x_{p+1}$ , we have that  $\alpha_\ell, \alpha_{\ell-1}, \alpha_p, \alpha_{p+1}$  are incident with  $x_\ell$ . Given that  $\alpha_{\ell-1} = \beta_{\ell-1}$ ,  $\alpha_p = \beta_\ell$ , and  $T_1T_2T_3$  and  $Y$  are  $H$ -trails, then Lemma 2.1 implies that  $\alpha_\ell\alpha_{p+1} \in E(G_{x_\ell})$ , so  $c(\alpha_\ell)c(\alpha_{p+1}) \in A(H)$ . Hence

$$\begin{aligned} T_2^{-1}T_3 = & (x_{p+1} = y_\ell, \beta_\ell = \alpha_p, y_{\ell+1}) \\ & \cup (y_{\ell+1} = x_p, W, x_\ell) \cup (x_\ell = y_\ell = x_{p+1}, W, x_q) \end{aligned}$$

is an  $H$ -trail.

Therefore,  $T_1T_2T_3 \longrightarrow X^*$  is an order reflection, and Remark 2.2 implies that  $X^*$  is an Eulerian  $H$ -trail. So, since  $X^*$  has in common with  $Y$  at least the  $H$ -trail  $(x_0, W, x_\ell) \cup (x_\ell = y_\ell, \beta_\ell, y_{\ell+1})$ , then  $\text{ind}(X^*, Y) \geq \ell + 1$ .

(b) Note that  $P_1 = (x_0, \alpha_0, x_1, \dots, x_\ell)$ ,  $P_2 = (x_\ell, \alpha_\ell, x_{\ell+1}, \dots, y_\ell = x_p)$ ,  $P_3 = (y_\ell = x_p, \alpha_p = \beta_\ell, y_{\ell+1} = x_{p+1}, \dots, x_q)$ , and  $h$ , with  $h \geq \ell + 1$ , is the minimum number satisfying the following conditions:  $y_h \in V(P_2)$  and  $\beta_h \in E(P_2)$ . The existence of the index  $h$  follows from the fact that  $\alpha_\ell \in E(Y) \cap E(P_2)$ , with  $\alpha_\ell \sim y_t y_{t+1}$ , for some  $t \geq \ell + 1$ .

**Claim 1.**  $\beta_{h-1} \notin E(P_2)$ .

If  $h - 1 \geq \ell + 1$  and  $\beta_{h-1} \in E(P_2)$ , then  $y_{h-1} \in V(P_2)$ , contradicting the choice of  $h$ . If  $h - 1 = \ell$ , then  $\beta_{h-1} = \beta_\ell$ , since  $\beta_\ell \notin E(P_2)$ , and consequently  $\beta_{h-1} \notin E(P_2)$ . Thus, in any case  $\beta_{h-1} \notin E(P_2)$ .

**Claim 2.**  $\beta_{h-1} \notin E(P_1)$ .

This follows directly from the fact, that  $h > \ell$ .

Since  $X^* = P_1P_2P_3$  is an Eulerian  $H$ -trail, this follows from Claims 1 and 2 that  $\beta_{h-1} \in E(P_3)$ . So,  $y_h \in V(P_2) \cap V(P_3)$  implying that

$y_h = x_i$  for some  $i$  such that  $\ell < i \leq p$ , and  $y_h = x_j$  for some  $j$  satisfying  $p < j \leq q$ .

Notice that  $\beta_{h-1} \in \{\alpha_{j-1}, \alpha_j\}$ .

(c) The input data at this step is  $H$ -trail  $W = T_1 T_2 T_3 T_4 T_5$ , where  $T_1 = (x_0, \alpha_0, x_1, \alpha_1, \dots, \alpha_{\ell-1}, x_\ell)$ ,  $T_2 = (x_\ell, \alpha_\ell, x_{\ell+1}, \dots, \alpha_{i-1}, x_i = y_h)$ ,  $T_3 = (x_i, \alpha_i, x_{i+1}, \dots, \alpha_{p-1}, x_p)$ ,  $T_4 = (x_p = y_\ell, \alpha_p = \beta_\ell, x_{p+1} = y_{\ell+1}, \alpha_{p+1}, \dots, \alpha_{j-1}, x_j = y_h)$ ,  $T_5 = (x_j, \alpha_j, x_{j+1}, \alpha_{j+1}, \dots, x_q)$ , with either  $\beta_h = \alpha_{i-1}$  and  $\beta_{h-1} = \alpha_{j-1}$  or  $\beta_h = \alpha_i$  and  $\beta_{h-1} = \alpha_j$ ; satisfying  $\text{ind}(W, Y) = \ell$ .

First, we check to see that  $\{c(\alpha_{i-1})c(\alpha_{j-1}), c(\alpha_i)c(\alpha_j)\} \subseteq E(H)$ .

Notice that  $\alpha_{i-1}, \alpha_i, \alpha_{j-1}, \alpha_j$  are edges incident with  $y_h$  and recall that  $T_2 T_3$  and  $T_4 T_5$  are  $H$ -trails.

Since  $Y$  is an  $H$ -trail when  $\beta_h = \alpha_{i-1}$  and  $\beta_{h-1} = \alpha_{j-1}$ , we have that  $c(\beta_{h-1})c(\beta_h) \in E(H)$ , that is,  $c(\alpha_{i-1})c(\alpha_{j-1}) \in E(H)$ . Therefore, Lemma 2.1 implies  $\alpha_i \alpha_j \in E(G_{y_h})$ , and hence  $c(\alpha_i)c(\alpha_j) \in E(H)$ . Analogously, when  $\beta_h = \alpha_i$  and  $\beta_{h-1} = \alpha_j$ , we obtain that  $\{c(\alpha_{i-1})c(\alpha_{j-1}), c(\alpha_i)c(\alpha_j)\} \subseteq E(H)$ .

Now, we check to see that  $T_1 T_2 T_3 T_4 T_5 \longrightarrow X_K = T_1 T_2 (T_3 T_4)^{-1} T_5$  is an order reflection.

Notice that  $X_K = T_1 T_2 T_4^{-1} T_3^{-1} T_5$ .

(i)  $T_2 T_4^{-1} = (x_\ell, W, x_i) \cup (x_i = y_h = x_j, W, x_{p+1}) \cup (x_{p+1}, \alpha_p = \beta_\ell, x_p = x_\ell)$  is an  $H$ -trail.

This follows from the fact that  $c(\alpha_{i-1})c(\alpha_{j-1}) \in E(H)$ .

(ii)  $T_4^{-1} T_3^{-1}$  is an  $H$ -trail.

We have that  $T_1 T_2 T_3 T_4 T_5$  is an  $H$ -trail. Hence also  $T_3 T_4$  and  $T_4^{-1} T_3^{-1}$  are  $H$ -trails.

(iii)  $T_3^{-1} T_5 = (x_p, W, x_i) \cup (x_i = x_j, W, x_q)$  is an  $H$ -trail.

This follows from the fact that  $c(\alpha_i)c(\alpha_j) \in E(H)$ .

Thus,  $T_1 T_2 T_3 T_4 T_5 \longrightarrow X_K$  is an order reflection, and Remark 2.2 implies that  $X_K$  is an Eulerian  $H$ -trail. Now,  $X_K$  has in common with  $Y$  the  $H$ -trail  $T_1 = (x_0, \alpha_0, x_1, \dots, \alpha_{\ell-1}, x_\ell)$ , as  $\alpha_\ell \neq \beta_\ell$ , and so  $\text{ind}(X_K, Y) = \ell$ .

(d) The input data at this step is Eulerian  $H$ -trail  $X_K = T_1 T_2 T_4^{-1} T_3^{-1} T_5$ , where  $T_1, \dots, T_5$  were described above, with  $\text{ind}(X_K, Y) = \ell$ .

Recall that  $T_1 T_2 T_3 T_4 T_5$  is an  $H$ -trail and either  $\beta_h = \alpha_{i-1}$  and  $\beta_{h-1} = \alpha_{j-1}$  or  $\beta_h = \alpha_i$  and  $\beta_{h-1} = \alpha_j$ .

First, we check to see that  $X_K \longrightarrow X^* = T_1 (T_2 T_4^{-1})^{-1} T_3^{-1} T_5$  is an order reflection. Notice that  $X^* = T_1 T_4 T_2^{-1} T_3^{-1} T_5$ .

(i)  $T_1 T_4 = (x_0, X^*, x_\ell) \cup (x_\ell = y_\ell = x_p, \alpha_p = \beta_\ell, x_{p+1}) \cup (x_{p+1}, X^*, x_j)$  is an  $H$ -trail.

This follows from the fact that  $\alpha_{\ell-1} = \beta_{\ell-1}$ ,  $\alpha_p = \beta_\ell$ , and  $Y$  is an  $H$ -trail.

(ii)  $T_4 T_2^{-1}$  is an  $H$ -trail.

Since  $X_K$  is an  $H$ -trail, we get that  $T_2 T_4^{-1}$  is an  $H$ -trail, which implies that  $T_4 T_2^{-1}$  is an  $H$ -trail.

(iii)  $T_2^{-1} T_3^{-1} = (y_h = x_i, \alpha_{i-1}, \dots, x_{\ell+1}, \alpha_\ell, x_\ell = x_p, \alpha_{p-1}, \dots, x_{i+1}, \alpha_i, x_i = y_h)$  is an  $H$ -trail.

Recall that  $\alpha_{\ell-1}, \alpha_\ell, \alpha_{p-1}, \alpha_p$  are edges incident with  $y_\ell$ . Since  $\beta_{\ell-1} = \alpha_{\ell-1}$ ,  $\beta_\ell = \alpha_p$ , and  $X_K$  and  $Y$  are  $H$ -trails, then Lemma 2.1 implies that  $\alpha_\ell \alpha_{p-1} \in E(G_{y_\ell})$ . Therefore, we have that  $c(\alpha_\ell)c(\alpha_{p-1}) \in E(H)$  and  $T_2^{-1} T_3^{-1}$  is an  $H$ -trail.

(iv)  $T_3^{-1} T_5$  is an  $H$ -trail.

Notice that  $T_3^{-1} T_5$  is a subtrail of  $X_K$ , and hence it is an  $H$ -trail.

We conclude that  $X_K \longrightarrow X^* = T_1 (T_2 T_4^{-1})^{-1} T_3^{-1} T_5$  is an order reflection.

Remark 2.2 implies that  $X^*$  is an Eulerian  $H$ -trail. Now,  $X^*$  has in common with  $Y$  at least the  $H$ -trail  $(x_0, \alpha_0, x_1, \dots, \alpha_{\ell-1}, x_\ell = y_\ell = x_p, \alpha_p = \beta_\ell, x_{p+1})$ , with  $\text{ind}(X^*, Y) \geq \ell + 1$  and  $\text{ind}(X^*, Y) > \text{ind}(X_K, Y)$ .

(e) The input data at this step are the  $H$ -trails  $X_K = T_1 T_2 T_3 T_4 T_5$ , where  $T_1 = (x_0, \alpha_0, x_1, \alpha_1, \dots, \alpha_{\ell-1}, x_\ell)$ ,  $T_2 = (x_\ell, \alpha_\ell, x_{\ell+1}, \dots, \alpha_{i-1}, x_i = y_h)$ ,  $T_3 = (x_i, \alpha_i, x_{i+1}, \dots, \alpha_{p-1}, x_p)$ ,  $T_4 = (x_p = y_\ell, \alpha_p = \beta_\ell, x_{p+1} = y_{\ell+1}, \alpha_{p+1}, \dots, \alpha_{j-1}, x_j = y_h)$ ,  $T_5 = (x_j, \alpha_j, x_{j+1}, \alpha_{j+1}, \dots, x_q)$ , and  $\text{ind}(X_K, Y) = \ell$ .

Recall that either  $\beta_h = \alpha_i$  and  $\beta_{h-1} = \alpha_{j-1}$  or  $\beta_h = \alpha_{i-1}$  and  $\beta_{h-1} = \alpha_j$ . We consider two cases.

**Case 1.**  $\beta_h = \alpha_i$  and  $\beta_{h-1} = \alpha_{j-1}$ .

In this case we prove that  $X_K \rightarrow X^* = T_1 T_4 T_3 T_2 T_5$  is an order reflection.

(i)  $T_1 T_4 = (x_0, X^*, x_\ell) \cup (x_\ell = y_\ell = x_p, \alpha_p = \beta_\ell, x_{p+1}, \alpha_{p+1}, \dots, \alpha_{j-1}, y_h = x_j)$  is an  $H$ -trail.

Since  $\beta_{\ell-1} = \alpha_{\ell-1}$ ,  $\beta_\ell = \alpha_p$ , and  $Y$  is an  $H$ -trail, then  $T_1 T_4$  is an  $H$ -trail.

(ii)  $T_4 T_3 = (x_\ell = y_\ell = x_p, \alpha_p = \beta_\ell, x_{p+1}, \alpha_{p+1}, \dots, \alpha_{j-1}, x_j = y_h = x_i, \alpha_i, \dots, x_{p-1}, \alpha_{p-1}, x_p = x_\ell)$  is an  $H$ -trail.

Since  $\beta_{h-1} = \alpha_{j-1}$ ,  $\beta_h = \alpha_i$ , and  $Y$  is an  $H$ -trail, then  $T_4 T_3$  is an  $H$ -trail.

(iii)  $T_3 T_2 = (x_j = y_h = x_i, \alpha_i, \dots, x_{p-1}, \alpha_{p-1}, x_p = x_\ell, \alpha_\ell, x_{\ell+1}, \dots, \alpha_{i-1}, x_i = y_h)$  is an  $H$ -trail.

Recall that  $\alpha_{\ell-1}, \alpha_\ell, \alpha_{p-1}, \alpha_p$  are edges incident with  $y_\ell$ . Since  $\beta_{\ell-1} = \alpha_{\ell-1}$ ,  $\beta_\ell = \alpha_p$ , and  $X_K$  and  $Y$  are  $H$ -trails, it follows from Lemma 2.1 that  $\alpha_{p-1} \alpha_\ell \in E(G_{y_\ell})$ , which implies that  $c(\alpha_{p-1})c(\alpha_\ell) \in E(H)$ .

(iv)  $T_2 T_5 = (x_\ell, \alpha_\ell, x_{\ell+1}, \dots, \alpha_{i-1}, x_i = y_h = x_j, \alpha_j, x_{j+1}, \alpha_{j+1}, \dots, x_q)$  is an  $H$ -trail.

Recall that  $\alpha_i, \alpha_{i-1}, \alpha_j, \alpha_{j-1}$  are edges incident with  $y_h$ . Since  $\beta_{h-1} = \alpha_{j-1}$ ,  $\beta_h = \alpha_i$ , and  $X_K$  and  $Y$  are  $H$ -trails, then Lemma 2.1 implies that  $\alpha_{i-1} \alpha_j \in E(G_{y_h})$ . Therefore, we have that  $c(\alpha_{i-1})c(\alpha_j) \in E(H)$ .

Therefore,  $X_K \rightarrow X^* = T_1 T_4 T_3 T_2 T_5$  is an order reflection. Remark 2.2 implies that  $X^*$  is an Eulerian  $H$ -trail, having in common with  $Y$  at least the  $H$ -trail  $(x_0, \alpha_0, x_1, \dots, \alpha_{\ell-1}, x_\ell = y_\ell = x_p, \alpha_p = \beta_\ell, x_{p+1})$ , with  $\text{ind}(X^*, Y) \geq \ell + 1$  and  $\text{ind}(X^*, Y) > \text{ind}(X_K, Y)$ .

**Case 2.**  $\beta_h = \alpha_{i-1}$  and  $\beta_{h-1} = \alpha_j$ .

Proceeding in a completely similar way as in Case 1, we get that  $X^* = T_1 T_4 T_3 T_2 T_5$  is an  $H$ -trail.

(f) Consider the execution of Algorithm 2.3:

(I) Step 1 is executed at most once.

(II) Step 2 is executed at most once for each edge in the graph; hence, it runs at most  $q$  times. After each execution of Step 2, one of the following sequences of steps is executed:

- Step 9;
- Steps 3 and 4;
- Steps 3, 5, 6, and 7;
- Step 3, 5, and 8.

(III) Step 9 is executed at most once.

In Step 2, in order to find the index,  $\text{ind}(X^*, Y)$ , each edge  $\alpha_i$  of  $X^*$  is compared with the corresponding edge  $\beta_i$  of  $Y$ . Therefore, the time complexity of Step 2 is  $O(q)$ .

In Step 3, the edge  $\beta_\ell$  is compared with each edge of  $X^*$ , becoming at most  $q$  comparisons. Therefore, the time complexity of Step 3 is  $O(q)$ .

In Step 5, finding the subindex  $h$  involves at most  $q$  comparisons, since it is a particular case of the problem of looking for common elements between two sets, whose time complexity is  $O(q)$ .

The execution of Steps 4, 6, 7, 8, and 9 is of constant complexity, i.e.,  $O(1)$ .

Thus, considering the nested structure and the fact that Step 2 is called  $q$  times, the overall time complexity for Algorithm 2.3 is  $O(q^2)$ , and the storage data is of order  $O(q)$ .  $\square$

Notice that Algorithm 2.3 works as follows: Given an  $H$ -colored graph  $G$  that contains at least two Eulerian  $H$ -trails, namely  $X$  and  $Y$  both of them starting in a fixed vertex  $x_0$ , the algorithm constructs a succession of Eulerian  $H$ -trails  $X = X_1, X_2, \dots, X_K = Y$  where, for each  $i \in \{1, \dots, K-1\}$ , the trail  $X_{i+1}$  is obtained of  $X_i$  by means of order transformations and  $\text{ind}(X_{i+1}, Y) > \text{ind}(X_i, Y)$ .

**Theorem 2.5.** Suppose that  $c$  is an  $H$ -coloring of  $G$  such that for each vertex  $x$  of  $G$ , we have that  $G_x$  is a 3-transitive graph. Let  $X$  and  $Y$  be two Eulerian  $H$ -trails in  $G$  beginning in the same vertex. Then the sequence  $X_1, X_2, \dots, X_K$  obtained by applying Algorithm 2.3 satisfies the following:

1. For each  $j \in \{2, \dots, K\}$ , we have that  $X_j$  is an Eulerian  $H$ -trail obtained from  $X_{j-1}$  through order transformations.
2.  $X_K = Y$  and thus  $Y \in \Lambda_X$ .

**Remark 2.6.** In Theorem 2.5 we cannot remove the condition “for each vertex  $x$  of  $G$ , we have that  $G_x$  is a 3-transitive graph,” as it is shown in the following example.

Consider the multigraph  $G$  in Figure 2.3. Note that  $G_{x_1}$  is not a 3-transitive graph.

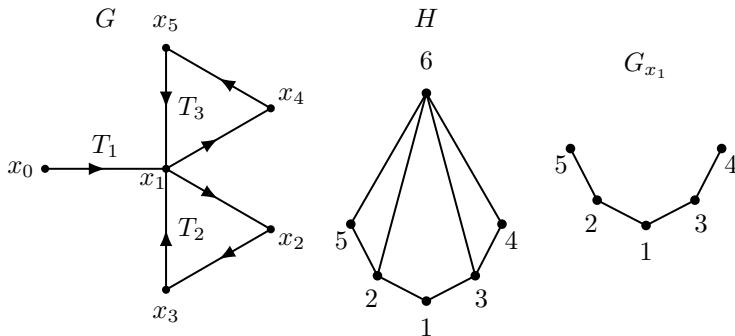


Figure 2.3:  $H$ -colored multigraph  $G$ .

Let  $X = (x_0, x_1, x_2, x_3, x_1, x_4, x_5, x_1)$  and  $Y = (x_0, x_1, x_3, x_2, x_1, x_5, x_4, x_1)$  be two Eulerian  $H$ -trails in  $G$ , where  $T_1 = (x_0, x_1)$ ,  $T_2 = (x_1, x_2, x_3, x_1)$ , and  $T_3 = (x_1, x_4, x_5, x_1)$ . Notice that  $Y = T_1 T_2^{-1} T_3^{-1}$ . We intend that  $Y \notin \Lambda_X$ . From the definition of order reflection, we have that the following transformations are the only possible order reflections:

- 1)  $X \rightarrow T_1 T_2^{-1} T_3$  is not an order reflection, since  $T_2^{-1} T_3$  is not an  $H$ -trail.
- 2)  $X \rightarrow T_1 (T_2 T_3)^{-1} = T_1 T_3^{-1} T_2^{-1}$  is not an order reflection, since  $T_1 T_3^{-1}$  is not an  $H$ -trail.
- 3)  $X \rightarrow T_1 T_2 T_3^{-1}$  is not an order reflection, since  $T_2 T_3^{-1}$  is not an  $H$ -trail.

On the other hand, from the definition of order exchange we have that it is not possible to implement an order exchange.

## Acknowledgments

Funding: Research was supported by UNAM-DGAPA-PAPIIT IN104717, CONACyT CB-2013\219840, and CONACyT scholarship for postgraduate

studies 289847. The authors wish to thank an anonymous referee for many comments that improved the rewriting of this paper.

## References

- [1] S. K. Ahuja, *Algorithms for Routing and Channel Assignment in Wireless Infrastructure Networks*, Ph.D. thesis, University of Arizona, 2010.
- [2] J. Bang-Jensen and G. Gutin, *Digraphs: Theory, Algorithms and Applications*, second edn., Springer-Verlag, London, 2009.
- [3] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, first edn., North-Holland, 1976.
- [4] W. Chow, Y. Manoussakis, O. Megalakaki, M. Spyros, and Z. Tuza, Paths through fixed vertices in edge-colored graphs, *Math. Inform. Sci. Hum.* **127** (1994), 49–58.
- [5] D. Dorninger, On permutations of chromosomes, In: *Contributions to general algebra 5: Proceedings of the Salzburg Conference, May 29–June 1, 1986*, Hölder-Pichler-Tempsky, Vienna, (1987) 95–103.
- [6] H. Galeana-Sánchez, R. Rojas-Monroy, R. Sánchez-López, and J. I. Villarreal-Valdés, Some conditions for existence of Euler  $H$ -trails, *Graphs and Comb.* **35** (2019), 1197–1208.
- [7] V. Linek and B. Sands, A note on paths in edge-colored tournaments, *Ars Combin.* **44** (1996), 225–228.
- [8] J. Petersen, Die Theorie der regulären Graphen, *Acta Math.* **15** (1891), 193–220.
- [9] P. A. Pevzner, *Computational Molecular Biology: An Algorithmic Approach*, MIT Press, Cambridge (2000).
- [10] P. A. Pevzner, DNA physical mapping and alternating Eulerian cycles in colored graphs, *Algorithmica* **13** (1995), 77–105.
- [11] S. Sankararaman, A. Efrat, and S. Ramasubramanian, On channel-discontinuity-constraint routing in wireless networks, *Ad Hoc Networks* **134** (2014), 153–169.
- [12] M. Szachniuk, M. C. De Cola, and G. Felici, The orderly colored longest path problem – a survey of applications and new algorithms, *RAIRO-Oper. Res.* **48** (2014), 25–51.
- [13] M. Szachniuk, M. Popenda, R. W. Adamiak, and J. Blazewicz, An assignment walk through 3D NMR spectrum, in: *Proc. 2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology*, (2009), 215–219.

- [14] I. L. Tseng, H. W. Chen, and C. I. Lee, Obstacle-aware longest path routing with parallel MILP solvers, in: *Proc WCECS-ICCS* volume 2 (2010), 827–831.
- [15] H. Xu, D. Kilgour, K. Hipel, and G. Kemkes, Using matrices to link conflict evolution and resolution in a graph model, *European J. Oper. Res.* **207**(1) (2010), 318–329.
- [16] H. Xu, K. Li, K. Hipel, and D. Kilgour, A matrix approach to status quo analysis in the graph model for conflict resolution, *Appl. Math. Comput.* **212**(2) (2009), 470–480.

HORTENSIA GALEANA-SÁNCHEZ

INSTITUTO DE MATEMÁTICAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, ÁREA DE LA INVESTIGACIÓN CIENTÍFICA, CIRCUITO EXTERIOR, CIUDAD UNIVERSITARIA, COYOACÁN 04510, CIUDAD DE MÉXICO, MÉXICO

hgaleana@matem.unam.mx

ROCÍO ROJAS-MONROY

FACULTAD DE CIENCIAS, UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO, INSTITUTO LITERARIO NO. 100, CENTRO 50000, TOLUCA, EDO. DE MÉXICO, MÉXICO

mrrm@uaemex.mx

ROCÍO SÁNCHEZ-LÓPEZ

FACULTAD DE CIENCIAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, CIUDAD UNIVERSITARIA, C.P. 04510, CIUDAD DE MÉXICO, MÉXICO

usagitsukinomx@yahoo.com.mx

JUANA IMELDA VILLARREAL-VALDÉS

FACULTAD DE CIENCIAS, UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO, INSTITUTO LITERARIO NO. 100, CENTRO 50000, TOLUCA, EDO. DE MÉXICO, MÉXICO

matimelda@yahoo.com.mx