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Generating all Eulerian trails avoiding
forbidden transitions

HORTENSIA GALEANA-SANCHEZ, Rocio ROJAS-MONROY,
Rocfo SANCHEZ-LOPEZ, AND JUANA IMELDA VILLARREAL-VALDES

Abstract. Let G be a multigraph without loops and H a graph possibly
with loops. We say that G is an H-colored multigraph whenever there
exists a function ¢: E(G) — V(H). A walk (respectively, path, trail) W =
(vo, €0, v1,€1,-..,65—1,V;) in G is an H-walk (respectively, H-path, H-
trail) if and only if (c(eo), c(er), ..., clex—2),c(er—1)) is a walk in H. W is
a closed H-walk (respectively, closed H-trail) if and only if W is an H-walk
(respectively, H-trail) such that vg = vy and c(ex—1)c(eg) € E(H). Notice
that W is a properly colored trail whenever H is a complete graph without
loops, in particular when H is K5 we have that W is a properly 2-colored
trail. In 1995 Pevzner defined the order transformations, which allow us
to generate all properly colored Eulerian trails in a 2-colored multigraph,
starting with a fixed one. This result has been fundamental for the study
of DNA physical mapping. In this paper we give sufficient conditions on an
H-edge coloring of G to generate all Eulerian H-trails of G, starting with a
fixed one. As a consequence of the main result we obtain a polynomial-time
algorithm to do it.

1 Introduction

For general concepts, terminology, and notation not defined here, we refer
the reader to [2] and [3]. In this work we consider multigraphs, multigraphs
without parallel edges (called graphs) and graphs without loops (named
simple graphs). Let G be a multigraph. Then V(G) and E(G) denote
the vertex set and the edge set of G, respectively. The notation e v~ uv
means that u and v are the end-points of the edge e. We say that e joins
u and v, the edge e is incident with u (respectively, with v), u and v are
adjacent, and e is a loop whenever v = v. A walk is a sequence W =
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(vo, €0, v1,€1,...,€5—1,0;) Where e; v v;v;41 for every i € {0,...,k — 1},
and W is closed when vg = vi. It is called a path whenever v; # v;
for all ¢ and j, with ¢ # j. A cycle is a closed walk (vg,eg,v1,€1,. ..,
€k—1,Vk, €k, Vo), with k > 2, such that v; # v; for all ¢ and j with ¢ # j.
A trail is a walk in which no edge is repeated. If W = (vo, g, v1,e€1,. ..,

ep—1,0k) and W' = (vg, €g, Vk41, €+1, - - - €1—1, V¢ ) are two walks, then the

walk (vg,ex—1,...,€1,v1,€0,00), obtained by reversing W, is denoted by
—1.

w ) and the walk (’U(), €0,V1,€1y---,€k—1,Vk, €ks Vk+1,€k+1y- -+, €t717vt>7

obtained by concatenating W and W' at vy, is denoted by either WW' or
W UW’. For vertices v; and v; in W with ¢ < j, the subwalk (v;, e, ...,
ej_1,v;) is denoted by (v;, W, v;).

A walk in an edge-colored multigraph G is properly colored (or alternating)
if no two consecutive edges have the same color, including the last and first
edges in a closed walk. Several problems have been modeled by edge-colored
multigraphs, and the study of the applications of properly colored walks
seems to have started in [8], according to [2]. Properly colored walks are
of interest in graph theory applications, such as in genetic and molecular
biology [5,9, 10,12, 13], design of printed circuit and wiring boards [14],
channel assignment in wireless networks [1,11], social sciences [4], and graph
models for conflict resolutions [15,16]. They are also of interest in graph
theory itself as generalizations of walks in undirected and directed graphs.
There is an extensive literature on properly colored walks; for a detailed
survey on this topic see for example Chapter 16 of [2].

In [10], Pevzner shows how to generate all properly colored Eulerian trails in
an edge-colored multigraph, starting with any one, by means of the follow-
ing transformations: Let F' = (zg, €9, T1,- -+, Tm—1,€m—1,Zm) be a properly
colored trail in G and suppose that {i,7,k,n} is a subset of {0,...,m},
with ¢ < j < k < n, such that z; = x; and =, = x;. Break up I as
follows:
F1:<xO7F7xi)7 F2:(xi7Faxj)7 FSZ(xj>F7xk)7
F4:(1'kaF;xn); FE):(xnvFaxm)~

The transformation F = FiFoF3F F5 — F* = F1F4F3FyF5 is called an
order exchange whenever F* is a properly colored trail. Whenever x; = x;,
break up F' as follows:

Fy = (w0, F,x3), Fy = (x4, Fxj), Fy = (x5, F, ).

The transformation F = FyFyF3 — F* = F1F2_1F3 is called an order
reflection whenever F'™* is an alternating trail.

The main result in [10] is the following.
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GENERATING ALL EULERIAN TRAILS AVOIDING FORBIDDEN TRANSITIONS

Theorem 1.1. Let G be a 2-edge-colored multigraph. Every pair of alter-
nating Fulerian trails X and Y in G can be transformed into each other by
means of a sequence of order transformations (exchanges and reflections).

Let G be a multigraph without loops and H a graph possibly with loops.
We say that G is an H-colored multigraph whenever there exists a function
c: E(G) — V(H). A walk (respectively, path, trail) W = (v, eg, v1, €1, - .,
ex—1,Vk) in G is an H-walk (respectively, H-path, H-trail) if and only if
(cleo), cler), ..., clex—2), c(ex—1)) is a walk in H. Also, W is a closed H-
walk (respectively, closed H-trail) if and only if W is an H-walk (respec-
tively, H-trail) such that vg = vy, and c(ex—1)c(eg) € E(H). The H-coloring
theory is closely related to the automata theory, since each vertex of H rep-
resents a state and each edge of H represents an allowed transition, which
implies that an H-walk in a multigraph G is a predetermined sequence of
possible transitions.

Regarding applications, consider package and messenger services, collecting,
and home delivery. Associate an H-colored multigraph G as follows: the
branch locations would be the vertices of GG, the vertices of H would be
the different kinds of products that would need transporting. For {a,b} C
V(G), we have e «~ ab is an edge of G if and only if it is necessary to
transport the product ¢(e) from a to b or from b to a. For {i,j} C V(H),
we have ij € A(H) if and only if the vehicle that leaves the warehouse
with product ¢ can then immediately carry the product j and the vehicle
that leaves the warehouse with product j can then immediately carry the
product ¢, considering hygiene, security, quality control, etc. For example,
if a vehicle transported pets from a to b, it must be cleaned and disinfected
before transporting food from b to ¢. An H-trail (z1,e1,22,...,€5-1,Tk)
in G means that the same vehicle can transport continuously (avoiding
any intervention of the vehicle) the product ¢(e;) from ; to x;41 for each
i €{1,2,...,k —1}. Thus, an Eulerian H-trail means that a vehicle has
transported each product to the desired branch location. In this way, it is
possible to minimize time and cost. If an Eulerian H-trail is not optimal
for a certain purpose, then we can obtain another route, by means of a
sequence of order transformations.

The concepts of H-coloring and H-walks were motivated by the work of
Linek and Sands in [7], where they studied paths with restrictions in the
color transitions.

Necessary and sufficient conditions for the existence Eulerian H-trails were

studied in [6] by considering the following auxiliary graph: Let H be a
graph possibly with loops, G an H-colored multigraph without loops, and
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u a vertex of G. Let G, be the simple graph such that V(G,) = {e €
E(Q) : e is incident with u} and two different vertices a and b are joined
by only one edge in G, if and only if ¢(a)c(b) € E(H). The main result in
that work was the following:

Theorem 1.2. Suppose that G is connected and Eulerian and G, is a com-
plete k,-partite graph for every u € V(G) and for some k, € N. Then
G has a closed Eulerian H-trail if and only if |CZ‘| < Zj#}Cﬂ for every
u € V(G), where {CY,...,C} } is the partition of V(G,) into independent
sets.

We say that a simple graph G is a 3-transitive graph if for every path
of length 3, say (ug,u1,us,usz), there is an edge e in G such that e =
uous.

In this work we show how to generate all Eulerian H-trails, from some
initial one, in an H-colored multigraph G, where G,, is a 3-transitive graph
for each vertex u of G. We also give an example that shows the condition
on the graphs G, in the main result is tight.

2 Main results

In what follows H is a graph possibly with loops, and G is an H-colored
multigraph without loops, with H-coloring ¢: E(G) — V(H).

Let u be a vertex of G and let E,, denote the set {e € E(G) : e v~ ux for
some z in V(G)}.

Lemma 2.1. Let X = (2o, a0, 21, 1,...,0q-1,%4) and Y = (yo, Bo,y1, B1,
..+ Bq=1,Y4) be Eulerian H-trails in G. Also, choose z in V(G) such that
G, is a 3-transitive graph. If {a,b,d, e} is a subset of E, such that

1. {a,b} = {a;, ;41} for some i,

2. {b,d} ={B;,Bj41} for some j,

3. {d,e} = {ag, a1} for some k,
then ae € E(G.,).

Proof. Since X is an Eulerian H-trail (respectively, Y is an Eulerian H-
trail), then {ab,de} C E(G,) (respectively, bd € E(G.)). So (a,b,d,e) is a
path of length 3 contained in G,. Finally, the 3-transitivity of G, implies
that ae is an edge of G . O
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Let F = (x0,€0,21,---,Tm—1,€m—1,Tm) be an H-trail in G and suppose
that {7, j, k,n} is a subset of {0,...,m}, with ¢ < j < k < n, such that
z) = x; and x, = x;. Break up F as follows:
Py = (o, F,23), Py = (z;, F,zj), Fy = (zj, F,xy),
F4:(I'k,F,1'n), F5:($n7F,$m).

The transformation F' = FyFoF3F Fy — F* = F1F,F3F5F5 is called an
order exchange whenever F'* becomes an H-trail (see Figure 2.1).

F3

F = F\FyF3F,Fs

'

F* = NFyF3Fy Fy

Figure 2.1: The tranformation order exchange.

Whenever x; = x;, break up F' as follows:
Flz({E(],F,{Ei), ng(xi,F71'j), F3:($j,F,$m).

The transformation F' = Fi1FyF3 — F* = F1F2_1F3 is called an order
reflection whenever F* is an H-trail, where either F or F3 can be trivial
(see Figure 2.2).

From now on, we use the term order transformation to refer to the order
exchange transformations or the order reflection transformations.

47



GALEANA-SANCHEZ ET AL.

F = FE)F;

Fl F3
Ti =Ty

F*=FF;'F;

Zo Tom,

Figure 2.2: The tranformation order reflection.

Let X = (z9,€0,1,.-.,%k—1,€k—1,2x) be an H-trail in G. We denote by
Ax the set of all the H-trails obtained from X by the application of order
transformations.

Remark 2.2. Let X be an H-trail in G.

(i) If X is closed (respectively, open), then every element of Ax is a
closed H-trail (respectively, open).

(i) If X; € Ax, then E(X;) = E(X). In particular if X is an Eulerian
H-trail, then X; is an Eulerian H-trail.

Let X = (xo,€0,21,...,Tk—1,€k—1,%k) be an H-trail. The subtrail (zg, X,
x;) is denoted by Px ;. If X and Y are H-trails of G that begin at zy, we
define the index of X and Y as the maximum element of the set {j : Px ; =
Py ;}, denoted by ind(X,Y).

Let ¢ be an H-coloring of G such that for each vertex x of G, we have that
G, is a 3-transitive graph. Let X and Y be two Eulerian H-trails of G
beginning in xg. With the next algorithm we obtain a sequence of Eulerian
H-trails, X7, Xo,..., Xk such that X; = X and X =Y and for each j
in {2,..., K} the H-trail X; is obtained from the H-trail X;_; by means
of order transformations.

Algorithm 2.3. Given an H-colored multigraph G and an Fulerian H-trail
Y, this algorithm generates all Eulerian H-trails of G. Suppose that Y =

(Y0, Bos Y1, - -+ s Yg—1, Bg—1, Yq), Where ¢ is the size of G.
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GENERATING ALL EULERIAN TRAILS AVOIDING FORBIDDEN TRANSITIONS
Step 1. Define X* = X and K = 0. Go to Step 2.

Step 2. Let K = K 4+ 1. Define X = X* and ¢ = ind(X*,Y). Suppose
that X* = (zg, 00, X1, - - -y Tg—1, Cg—1, Tq)-

If ¢ < q, go to Step 3, otherwise go to Step 9.

Step 3. Find p in {{ +1,...,q} such that o, = f3;.

If x, = yey1 and xp1 = ye, go to Step 4, otherwise go to Step 5.

Step 4. Consider the following H-subtrails of X*:

Tl = (SU(),X*,SCE),
Ty = (Tg, 0, Tpg1,- -, Tp = Yog1, Be = Op, Tpp1 = Ye), and

T3 = (y[ = l'p_i,_l,X*,Iq)-
Define X* = T1T{1T3 and go to Step 2.

Step 5. Consider the following H-subtrails of X*:

Py = (2o, X", 0),

Py = (z¢, X*,p = ye), and

Py = (Yo = Tp, 0p = B, Yo41 = Tps1, .-+, Tg)-
Notice that X* = Py P, Ps.
Let h > {+1 be the minimum number satisfying the following conditions:
yn € V(P,) and B, € E(P,). We have that y, € V(Py) NV (P3). Let i,

with ¢ < i < p, be such that y, = x; and B, € {«;—1,®;}. Let j, with
p < j < gq, be such that y, = x; and Br—1 € {aj_1,05}.

Now, consider the following H -trails:

Tp = Ye, Qp = 6@75(;174»1 = Yr+1,%p+1,- - 'aajflamj)a and
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Note that X* = T1ToT5T4T5, and T or T (or both) could be trivial.

If either B), = aj—1 and Br—1 = aj—1 or B, = «; and fr—1 = o, then go
to Step 6.

If either B), = aj—1 and Br—1 = «a; or B, = o; and B,—1 = a1, then go
to Step 8.

Step 6. Let K = K + 1. Define X = T\ To(T3Ty)~'T5 and go to Step 7.

Step 7. Define X* = Ty (ToTy ')~ 'T; ' T5 and go to Step 2.

Step 8. Define X* = T1T,T5T>Ts, and go to Step 2.

Step 9. Output: Xy, Xs,..., Xk.

Lemma 2.4. By applying Algorithm 2.3 we obtain the following assertions:

(a)

The trail X* obtained in Step 4 is an FEulerian H-trail, an order
transformation of the H-trail Th'T»T3, satisfying that ind(X*,Y) >
ind(T1T2T37 Y) .

The indices h, i, and j defined in Step 5 do exist.

The trail Xx obtained in Step 6 is an Eulerian H-trail, an order
transformation of the H-trail ThToT3TyT5, satisfying ind(Xg,Y) =
ind(T1 T2T3T4T5, Y)

The trail X* obtained in Step 7 is an Eulerian H-trail, an order trans-
formation of the H-trail Xk, satisfying ind(X*,Y) > ind(Xg,Y).
The trail X* obtained in Step 8 is an Eulerian H-trail, an order trans-
formation of the H-trail Xy, satisfying ind(X*,Y) > ind(Xg,Y).

The time complexity of the Algorithm 2.3 is O(q?), and the storage
data is of order O(q).

Proof. Recall Y = (yo, Bo, Y1, 51,Y2, - - - Bg—1,Yq) is an Eulerian H-trail.

(a)

The input data at this step is the Eulerian H-trail W = T17T5T5, where
Ty = (zo,q0,%1,---,00-1,2%¢), To = (Tg, 00, Tes1,- -, Tp = Yot1,
Be = ap,xpi1 = ve), T3 = (y¢ = xl)+1vap+1axp+27"'7xq)v and
il’ld(TngTg,Y) = {. Then o = /Bz for 0 S ) S ¢ —1 and Tj = Yj
for0<j </
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First, we check to see that T1T5T3 — X* = T1T271T3 is an order
reflection, and then X* is an H-trail.

(i) Since Y is an H-trail, then ¢(8¢—1)c(8¢) € A(H), and given that
Be_1 = ay_1, we conclude that

TiTyt = (20, W, ) U (20 = Tpy1 = yr, Br = p, Y1)
U (yes1 = zp, W, z0)

is an H-trail.

(ii) Since x; = xpy1, we have that ayp,ay_1, @, apt1 are incident
with z,. Given that ay_1 = Be—1, ap = B¢, and 717575 and Y
are H-trails, then Lemma 2.1 implies that cyapi1 € E(Gy,), so
clag)c(api1) € A(H). Hence

Ty 'T5 = (vp+1 = Yo, Be = Qp, Yet1)
U (Yegr1 = xp, W, x0) U (20 = yo = Tpt1, W, z4)

is an H-trail.

Therefore, T175T5 — X* is an order reflection, and Remark 2.2
implies that X* is an Eulerian H-trail. So, since X* has in com-
mon with Y at least the H-trail (zo, W, z¢) U (x¢ = ys, Be, Ye+1), then
ind(X*,Y) > ¢+ 1.

Note that P1 = (JJQ, g, L1, - ,JJ@), P2 = (l‘g, QpyLp41y---5Yt = Z‘p),
Py = (yr = xp,p = Be, Yo+1 = Tpt1, .-, %), and h, with h > £+1, is
the minimum number satisfying the following conditions: y;, € V (Ps)
and S, € E(P;). The existence of the index h follows from the fact
that oy € E(Y) N E(P2), with oy ~ y1y¢41, for some ¢ > £+ 1.

Claim 1. Bh—l ¢ E(PQ)

Ifh—1>¢+1and S,-1 € E(Pz), then y,_1 € V(P,), contradicting
the choice of h. If h — 1 = ¢, then B,_1 = Sy, since By ¢ E(P,), and
consequently By_1 ¢ E(P,). Thus, in any case Sr—1 ¢ E(P2).

Claim 2. 5}1,1 ¢ E(Pl)

This follows directly from the fact, that h > /.

Since X* = P; P, P3 is an Eulerian H-trail, this follows from Claims
1 and 2 that 8,_1 € E(P3). So, yn € V(P2) NV (Ps) implying that
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yn = x; for some 4 such that ¢ < i < p, and y; = =z; for some j
satisfying p < j < q.

Notice that 8r—1 € {oj_1,;}.

The input data at this step is H-trail W = Ty 15137415, where T} =
(T, 0, T1, 1,y p_1,T¢), To = (Tp, oy Tp1, -5 i1, Ti = Yn),
T3 = (24,04, Tig1, .-, 0p—1,Tp), Tu = (zp = Yr,0p = B, Tpp1 =
Y41, Qpp1y- -0, QG—1,T5 = yh), T5 = (LCj,O[j,.’[jJrl, Qjy1y. .- ,xq), with
either f;, = a;—1 and Bh—1 = aj_1 or By = o; and Br_1 = ay;
satisfying ind(W,Y") = £.

First, we check to see that {c(ai—1)c(aj—1),c(os)c(a;)} € E(H).

Notice that o;_1, a4, 051,05 are edges incident with ¥, and recall
that 1573 and TyT5 are H-trails.

Since Y is an H-trail when §, = a;—1 and Bh—1 = «;_1, we have
that ¢(Br—1)c(Br) € E(H), that is, c(o;—1)c(a;j—1) € E(H). There-
fore, Lemma 2.1 implies aya; € E(Gy,), and hence c(a;)c(ey) €
E(H). Analogously, when 8, = a; and 8,_1 = «;, we obtain that
{clai—t)e(aj—1), c(ai)c(ay) } © B(H).

Now, we check to see that TYToT3TyTs — X = ThTo(T3Ty) T is
an order reflection.

Notice that X = ThToT, ' Ty 'Ts.
(i) TTy " = (2, W, 2:) U (23 = yn = 25, W, 2p11) U (i1, 0p = B,
xp = x¢) is an H-trail.
This follows from the fact that c(a;—1)c(ej—1) € E(H).
(ii) T, 'Ty ! is an H-trail.
We have that T1T5T3T4T5 is an H-trail. Hence also 737, and
T, 'Ty " are H-trails.
(iii) T35 'Ts = (2p, W, ;) U (z; = x5, W, z,) is an H-trail.
This follows from the fact that c(o;)c(o;) € E(H).

Thus, T1T5T3T4T5 — X is an order reflection, and Remark 2.2
implies that Xg is an Eulerian H-trail. Now, X has in common
with Y the H-trail 71 = (zo, ag, X1, ..., 00—1,2¢), as ay # Pe, and so
ind(Xg,Y) ="
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(d)

The input data at this step is Eulerian H-trail X = T1T2T471T37 1y,
where 17, ...,T5 were described above, with ind(Xg,Y) = £.

Recall that Th1 ToT3T4T5 is an H-trail and either 8, = o;_1 and 8,1 =
oj_1 or B, =a; and fB_1 = a;.

First, we check to see that Xx — X* = Tl(T2T4_1)_1T3_1T5 is an
order reflection. Notice that X* = T1T,T, 1T3_1T5.
(1) T1T4 = (IO; X*7IZ) U (gje =Y = Tp, p = ﬂ[vgjp-‘rl) U ('I;D-‘th*v
x;) is an H-trail.
This follows from the fact that cy—1 = Be—1, ap = B¢, and Y is
an H-trail.
(i) TyTy ' is an H-trail.
Since Xy is an H-trail, we get that T2T471 is an H-trail, which
implies that T, ' is an H-trail.
(111) T2_1T3_1 = (Z/h =Ty A1y oo oy TY41, Y, Tp = Tp, Op—15- -+ 53 Li41,
i, T; = yp) is an H-trail.
Recall that o1, 0, ap—1, 0y are edges incident with y,. Since
Be—1 = ay_1, Bt = ap, and Xk and Y are H-trails, then
Lemma 2.1 implies that aya,—1 € E(G,,). Therefore, we have
that c(ay)c(ap_1) € E(H) and Ty 'Ty ' is an H-trail.
(iv) Ty 'Ts is an H-trail.
Notice that T?fng, is a subtrail of X g, and hence it is an H-trail.

We conclude that Xxg — X* = Tl(TgT[l)_lT?fng, is an order
reflection.

Remark 2.2 implies that X* is an Eulerian H-trail. Now, X* has
in common with Y at least the H-trail (xg, o, 1,...,Q—1,2¢ =
Yo = Tp,p = P, Tpt1), with ind(X*,Y) > £+ 1 and ind(X*,Y) >
ind(Xg,Y).

The input data at this step are the H-trails X g = T1T5153T4T5, where

Ty = (w0, 00,21, Q1,...,00_1,2¢), To = (Tg, 0, Tpy1,. .., 01,25 =
yn), Tz = (i, iy Tig1, .. p_1,2p), Ty = (Tp = Yo, 0p = Py, Tpi1 =
Yo4+1,0p41,---,05-1,T5 = yh)7 T5 = (xj,aj,xj+1,aj+1,...,xq), and
ind(Xg,Y) = £.

Recall that either 8, = «a; and Bp—1 = aj_1 or B, = a;—1 and
Bh—1 = ;. We consider two cases.
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Case 1. [y = ; and fBp—1 = 1.

In this case we prove that Xx — X* = T1T,T3T5T5 is an order
reflection.

(1) T1T4 = ($07X*,$[) U (xf =Y = Tp,0p = Bf?xp+17ap+17"'7
aj_1, Yn = x;) is an H-trail.

Since Be—1 = ay—1, B¢ = op, and Y is an H-trail, then 777} is

an H-trail.

(i) TuT3 = (e = Yo = xp, Op = Br, Tps1, Api1y -0y A1, Tj =
Yh = Ti, Qiy ooy Tp_1, Qp_1,Tp = Tg) is an H-trail.
Since fBy—1 = aj_1, B = o, and Y is an H-trail, then T,T3 is
an H-trail.

(ill) T3To = (2j = Yn = T4, Qi oo o, Tp1, Qp—1, Lp = g, O, Toq1, - - -,

Qj_1,T; =yp) is an H-trail.
Recall that ag—1, 0, ap—1, 04 are edges incident with y,. Since
Be—1 = ap_1, Br = ap, and Xg and Y are H-trails, it fol-
lows from Lemma 2.1 that o100 € E(G,), which implies that
clap_1)c(oy) € E(H).

(iv) ToT5 = (Te, oy Tog1y - V1, i = Y = Tjy QG Tjg, Qipl, - - -
xq) is an H-trail.

Recall that o, 1, a5, aj—1 are edges incident with y;. Since
Bh—1 = aj_1, Bn = «a, and Xk and Y are H-trails, then
Lemma 2.1 implies that o;_1a; € E(Gy,). Therefore, we have
that ¢(ai—1)c(a;) € E(H).

Therefore, X — X* = T1T4T3T5T5 is an order reflection. Re-
mark 2.2 implies that X* is an Eulerian H-trail, having in common
with Y at least the H-trail (xo, 2, T1,...,00-1,T¢ = Yo = Tp, p =
Be, Tpt1), with ind(X*,Y) > £+ 1 and ind(X*,Y) > ind(Xg,Y).

Case 2. ﬂh = ;-1 and ﬁh—l = Q.

Proceeding in a completely similar way as in Case 1, we get that
X* =T T,T5T5Ty is an H-trail.

(f) Consider the execution of Algorithm 2.3:

(I) Step 1 is executed at most once.
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(IT) Step 2 is executed at most once for each edge in the graph; hence,
it runs at most ¢ times. After each execution of Step 2, one of
the following sequences of steps is executed:

e Step 9;

Steps 3 and 4;

Steps 3, 5, 6, and 7;

Step 3, 5, and 8.

(III) Step 9 is executed at most once.

In Step 2, in order to find the index, ind(X™*,Y), each edge «; of X*
is compared with the corresponding edge 3; of Y. Therefore, the time
complexity of Step 2 is O(q).

In Step 3, the edge By is compared with each edge of X™*, becoming at
most ¢ comparisons. Therefore, the time complexity of Step 3 is O(q).

In Step 5, finding the subindex h involves at most ¢ comparisons,
since it is a particular case of the problem of looking for common
elements between two sets, whose time complexity is O(q).

The execution of Steps 4, 6, 7, 8, and 9 is of constant complexity,

ie, O(1).

Thus, considering the nested structure and the fact that Step 2 is
called ¢ times, the overall time complexity for Algorithm 2.3 is O(q¢?),
and the storage data is of order O(g). O

Notice that Algorithm 2.3 works as follows: Given an H-colored graph
G that contains at least two Eulerian H-trails, namely X and Y both of
them starting in a fixed vertex xg, the algorithm constructs a succession
of Eulerian H-trails X = X1, Xo,...,Xg =Y where, for each i € {1,...,
K — 1}, the trail X, is obtained of X; by means of order transformations
and ind(X;4+1,Y) > ind(X,,Y).

Theorem 2.5. Suppose that ¢ is an H-coloring of G such that for each
vertex x of G, we have that G, is a 3-transitive graph. Let X and Y be two
Eulerian H-trails in G beginning in the same vertex. Then the sequence
X1, Xs, ..., Xk obtained by applying Algorithm 2.3 satisfies the following:

1. For each j € {2,...,K}, we have that X, is an Eulerian H-trail
obtained from X;_; through order transformations.

2. Xk =Y and thusY € Ax.
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Remark 2.6. In Theorem 2.5 we cannot remove the condition “for each
vertex x of G, we have that G, is a 3-transitive graph,” as it is shown in
the following example.

Consider the multigraph G in Figure 2.3. Note that G, is not a 3-transitive
graph.

G Is5 H
6 G,
T4
Ty
" o 5\//4
T2 5 4 2 1 3
e 2 " 3

Figure 2.3: H-colored multigraph G.

Let X = (xo,x1, X2, T3, T1, 24, T5,21) and Y = (xg, 1, T3, T2, X1, T5, Tq, T1)
be two Eulerian H-trails in G, where T1 = (zg, 1), To = (21,22, x3, 1),
and T3 = (z1,24,25,21). Notice that ¥ = T1T271T371. We intend that
Y ¢ Ax. From the definition of order reflection, we have that the following
transformations are the only possible order reflections:

1) X — Ty 1T3 is not an order reflection, since 75 75 is not an
H-trail.

2) X — Ty(TeT3)™' = TyTy 'Ty ' is not an order reflection, since
T,T;* is not an H-trail.

3) X — TngT?f1 is not an order reflection, since 1575 1 is not an
H-trail.

On the other hand, from the definition of order exchange we have that it is
not possible to implement an order exchange.
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