

Book thickness of path and cycle powers

PAUL C. KAINEN AND ASA H. TENNEY

Abstract. Book embeddings with minimum page number are given for powers of path and cycle graphs. We find minimum book embeddings with *star forest* pages using at most two additional pages.

1 Introduction

In the k -th power of a graph, distinct vertices at distance at most k are adjacent. Powers of paths and cycles have been used both theoretically [5, 8, 14] and practically [17, 21]. Here we find improved bounds on their book thickness. A variant of book thickness, where pages are forests of vertex-disjoint stars, is also applied to these powers. For this *star acyclic book thickness*, tight bounds are given under divisibility conditions.

The book thickness of a graph G is the least number of subgraphs in an edge-partition of G such that all the subgraphs (the *pages*) are crossing-free minimized over all drawings that place the vertices on the boundary of a convex polygon [3, 15, 20]. The notion has proven useful for theory and applications, e.g., [1, 2, 4, 6, 7, 9, 13, 19, 23]. Adding constraints to the pages was already considered in [3]. For applications of book thickness (e.g., to vehicle traffic signal control [16]), star forest pages are natural.

To achieve some constraint on page type, the penalty is a multiplicative factor; e.g., with twice the page number, one can achieve acyclic pages [16]. However, for path and cycle powers in some cases, star-forest pages can be achieved with only a small constant *additive* increment in page number over ordinary book thickness.

Section 2 has definitions and gives the book thickness of path and cycle powers; Section 3 obtains analogous results for star acyclic book thickness; and Section 4 is a discussion.

Key words and phrases: book embeddings, page number, graph power, star acyclic book thickness

Mathematics Subject Classifications: 05C62, 05C15, 05C38, 05C12

Corresponding author: Paul Kainen <kainen@georgetown.edu>

2 Book thickness of P_n^k and C_n^k

Let P_n and C_n be the path and cycle, respectively, with n vertices. Notation follows that found in [12]. The k -th power G^k of a graph G is the supergraph spanned by G with u and w adjacent in G^k if and only if $1 \leq d_G(u, w) \leq k$, where $d_G(u, w)$ is G -distance from u to w [22]. Let $k \mid n$ mean n/k is an integer, $k \nmid n$ not.

A *book embedding* [15] of a graph $G = (V, E)$ consists of a *cyclic order* on the vertices, which are placed along a circle in that order, and an *edge-partition* of E into $r \geq 1$ pairwise-disjoint, non-empty subsets E_1, \dots, E_r such that, for each i with $1 \leq i \leq r$, the induced drawing of the subgraph $G(E_i)$, determined by edge-subset E_i and the vertex order, is crossing-free. These outerplane drawings of the subgraphs are called the *pages* of the book embedding. The term “page” is also used for the corresponding subgraphs. A graph is *outerplanar* if it has an outerplane drawing.

A *star* is a $K_{1,t}$ for $t \geq 0$, which has t edges incident to a central vertex. A *star forest* is a vertex-disjoint union of stars. A *star forest book embedding* is a book embedding where *each page is a star forest*. An *acyclic book embedding* [16] merely requires that the pages be forests. *Book thickness* (or *page* or *stack number*) [3, 6, 13, 15] of G , denoted $bt(G)$ or $bt(G, \omega)$ when fixed cyclic order ω is required, is the least number of pages in any book embedding of G . *Acyclic* (or *star acyclic*) *book thickness*, denoted *abt* (or *sabt*), includes the constraint on pages.

For ν the natural vertex-order for P_n^k , with $2 \leq k \leq n-1$, by arguing as in Theorem 3.6 below, $bt(P_n^k, \nu) \leq k$, but order ω reduces the page-bound by 1.

Theorem 2.1. *Let $k \geq 2$. Then for all n , we have $bt(P_n^k, \omega) \leq k-1$.*

Proof. For n odd, the cyclic vertex ordering ω is *odd-down, even-up*:

$$\omega: n, n-2, n-4, \dots, 5, 3, 1, 2, 4, \dots, n-5, n-3, n-1.$$

(For n even, ω denotes the similar *even-down, odd-up* order.) If $k=2$, order ω gives an outerplane embedding of P_n^2 so $bt(P_n^2) = 1$; see Figure 2.1(a).

For $k \geq 3$ and $1 \leq j \leq k-1$, define the j -th page as the spanning subgraph constituted by the union of star graphs centered at all vertices v_i with $i \equiv j \pmod{k-1}$ where the edges of the star centered at v_i join v_i to $v_{i-1}, v_{i-2}, \dots, v_{i-k}$. (If $i \leq k$, the stars have fewer than k edges). Note that

v_{i-k+1} is the center of a new star that has no crossings with previous stars and that there are $k-1$ pages. See Figure 2.1(b). \square

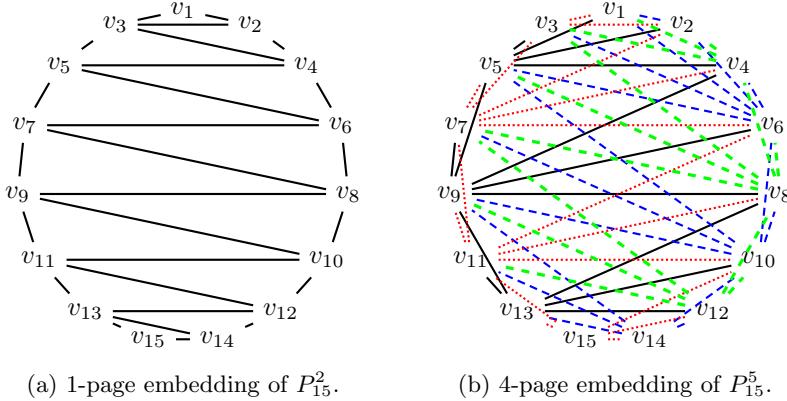


Figure 2.1: Book embeddings of powers of P_{15} .

For n large enough with respect to k , this upper bound is best possible. Before stating this more formally, we give the following result of Bernhart and Kainen [3] that is useful for our proofs.

Lemma 2.2 (Bernhart and Kainen [3]). *For $G = (V, E)$ and $|V| > 3$, we have $bt(G) \geq \left\lceil \frac{|E|-|V|}{|V|-3} \right\rceil$.*

Theorem 2.3. *Let $k \geq 2$ and $n \geq 4 + \binom{k-2}{2}$. Then $bt(P_n^k, \omega) = bt(P_n^k) = k-1$.*

Proof. The number of edges of P_n^k is $kn - \frac{k^2+k}{2}$, where the subtracted term counts the edges missing at the outermost vertices of P_n . By Lemma 2.2 with $|V| = n$ and $|E| = kn - \frac{k^2+k}{2}$, we have $bt(P_n^k)$ is at least

$$\left\lceil \frac{n(k-1) - 3(k-1) + 3(k-1) - \frac{k^2+k}{2}}{n-3} \right\rceil = k-1 + \left\lceil \frac{3(k-1) - \frac{k^2+k}{2}}{n-3} \right\rceil.$$

The last term on the right is 0 as the numerator $3(k-1) - \frac{k^2+k}{2} = -\binom{k-2}{2}$ is non-positive while, by hypothesis, the denominator strictly exceeds the absolute value of the numerator. \square

Theorem 2.4. Let $k \geq 2$ and $n \geq 3k$. Then $k \leq bt(C_n^k, \nu) \leq k + r$, where $r := n - k \lfloor \frac{n}{k} \rfloor$ is the remainder when n is divided by k .

Proof. The upper bound of $k + r$ is in [16] and needs no hypothesis on n . By Lemma 2.2, we have $bt(C_n^k, \nu) \geq \lceil \frac{nk-n}{n-3} \rceil = k + \lceil \frac{-n+3k}{n-3} \rceil = k$, where the last equality holds as the numerator $-n+3k$ of the ceiling function on the right is not positive and is smaller in absolute value than the denominator because $k > 1$. See Figure 2.2 for $r = 0$ and $r = 1$. \square

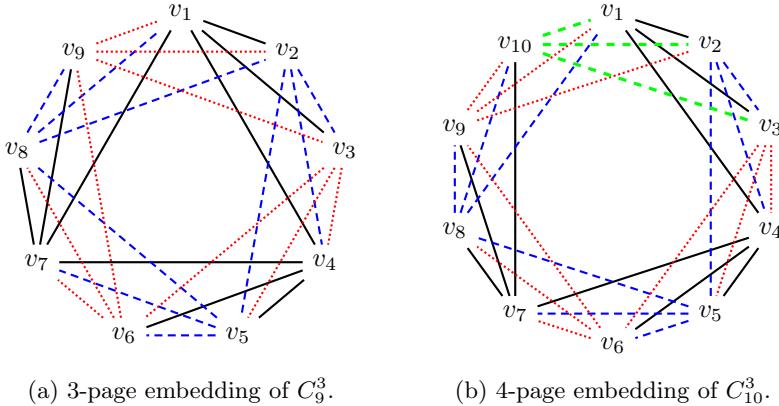


Figure 2.2: Book embeddings of C_n^3 , where we add a star to add a vertex. Note that if r is positive, then pages are acyclic.

Corollary 2.5. If $k \mid n$ with $k \geq 2$ and $\frac{n}{k} \geq 3$, then $bt(C_n^k) = bt(C_n^k, \nu) = k$.

3 Star arboricity book thickness

Recall that the arboricity $\Gamma(G)$ of a graph is the least number of forests of which it is the union [12, p. 90], and if G is outerplanar, then $\Gamma(G) \leq 2$. Further, every forest is the union of two star forests. Hence, each page of a book embedding can be replaced by 4 star acyclic pages. But this can be reduced to 3 using the next result, due to Hakimi, Mitchem and Schmeichel.

Theorem 3.1 (Hakimi et al. [11]). *Every outerplanar graph G is the union of 3 star forests.*

Corollary 3.2. *For every graph G , we have $bt(G) \leq sabt(G) \leq 3bt(G)$.*

Corollaries 2.5 and 3.2 and Theorem 2.4 imply the following.

Corollary 3.3. *If $k \mid n$ with $k \geq 2$ and $n \geq 3k$, then $k \leq sabt(C_n^k) \leq 3k$.*

This will be improved below. First, by [12, p. 90], we have a useful tool.

Lemma 3.4. *If $G = (V, E)$, then $sabt(G) \geq abt(G) \geq \Gamma(G) \geq \left\lceil \frac{|E|}{|V|-1} \right\rceil$.*

With this lemma, one can increase the lower bound in Corollary 3.3.

Theorem 3.5. *If $n \geq 3$ and $1 \leq k \leq \frac{n}{2}$, then $sabt(C_n^k) \geq k + 1$.*

Proof. By Lemma 3.4, $sabt(C_n^k) \geq \left\lceil \frac{nk}{n-1} \right\rceil = k + \left\lceil \frac{k}{n-1} \right\rceil = k + 1$, where the last equality holds since $0 < k < n - 1$. \square

Note that $C_n^k = K_n$ for $k \geq \lfloor n/2 \rfloor$ and $sabt(K_n) \leq n - 1$.

Theorem 3.6. *If $k \geq 1$, $s \geq 2$, and $n = s(k + 1)$, then $sabt(C_n^k) = sabt(C_n^k, \nu) = k + 1$.*

Proof. Let v_1, \dots, v_n be the vertices of C_n and equally spaced in natural order around the circle. The *forward* k -star at v_i is $\{v_i v_{i+1}, \dots, v_i v_{i+k}\}$ (with addition performed modulo n). The union of the s forward k -stars at $v_1, v_{k+2}, v_{2k+3}, \dots, v_{n-k}$ is the first of $k + 1$ edge-disjoint star forest pages for C_n^k , obtained by rotations of $2\pi/n$ radians. This gives $(k + 1)sk = nk = |E(C_n^k)|$ edges. \square

We can now decrease the upper bound in Corollary 3.3 from $3k$ to $2k + 1$ without the divisibility constraint.

Theorem 3.7. *Suppose $k \geq 2$ and $n \geq 2k$.*

- (i) *Let $r' := n - (k + 1) \lfloor \frac{n}{k+1} \rfloor$. Then $sabt(C_n^k, \nu) \leq k + 1 + r'$.*
- (ii) *Let $k \mid n$ and suppose $\frac{n}{k}$ is even. Then $sabt(C_n^k, \nu) \leq 2k$.*

Proof. For (i) with $r' = 0$, this is Theorem 3.6. If $r' > 0$, take the forward k -stars at each of the extra r' vertices as single-component star forests. For (ii) the forward k -stars at $v_1, v_{2k+1}, v_{4k+1}, \dots$ is a star forest, and the forward k -stars at $v_{k+1}, v_{3k+1}, v_{5k+1}, \dots$ is another edge-disjoint star forest. There are k rotations by $2\pi/n$ radians, so $2k$ star forest pages. See Figures 3.1 and 3.2. \square

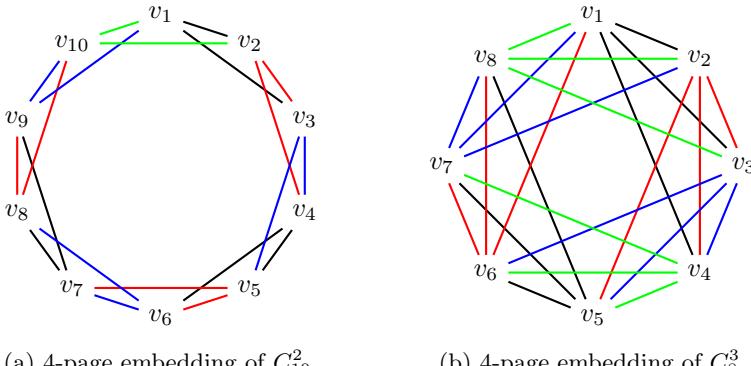


Figure 3.1: Star forest book embeddings for case (i) of Theorem 3.7.

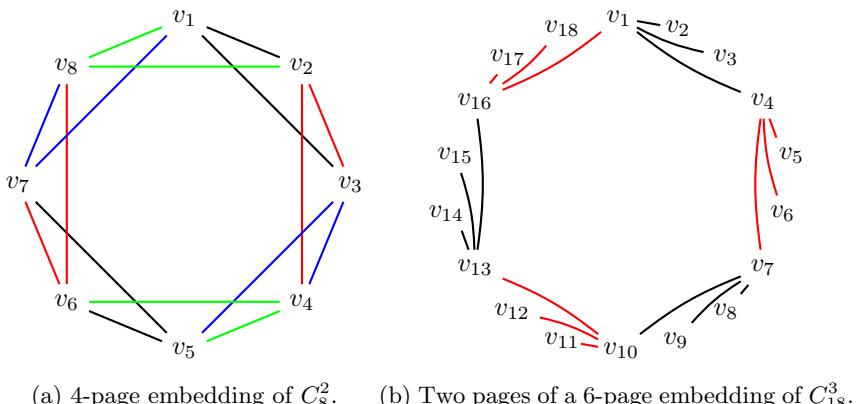


Figure 3.2: Star forest book embedding for case (ii) of Theorem 3.7.

The bound in case (i) of Theorem 3.7 can be improved in some cases. For instance, $sabt(C_{11}^3) \leq 6$. For $n \leq m$, we have $P_n^k \subseteq P_m^k \subset C_m^k$, and this gives a bound for paths.

Theorem 3.8. *If $k \geq 2$ and $n \geq 2 + \binom{k}{2}$, then $k \leq \text{sabt}(P_n^k) \leq k + 1$.*

Proof. Choose integer $s \geq 2$ large enough that $m := s(k + 1)$ satisfies $m \geq n$. Then $\text{sabt}(P_n^k) \leq \text{sabt}(P_m^k) \leq \text{sabt}(C_m^k) \leq k + 1$, using Theorem 3.6 for the last inequality.

For the lower bound, by Lemma 3.4 and the proof of Theorem 2.3, we have

$$\text{sabt}(P_n^k) \geq \left\lceil \frac{kn - \frac{k(k+1)}{2}}{n-1} \right\rceil = k + \left\lceil \frac{-\binom{k}{2}}{n-1} \right\rceil = k. \quad \square$$

4 Discussion

By Corollary 2.5 and Theorem 3.6, for all $k \geq 2$,

$$\text{if } k(k+1) \text{ divides } n, \text{ then } \text{sabt}(C_n^k) = 1 + \text{bt}(C_n^k). \quad (1)$$

By Theorems 2.3 and 3.8, for all $k \geq 3$,

$$\text{if } n \geq 2 + \binom{k}{2}, \text{ then } 1 + \text{bt}(P_n^k) \leq \text{sabt}(P_n^k) \leq 2 + \text{bt}(P_n^k). \quad (2)$$

The condition $k \geq 3$ implies $2 + \binom{k}{2} \geq 4 + \binom{k-2}{2}$ so both theorems apply.

Are there additional graph families, aside from path and cycle powers, such that a small increment in the number of pages in a minimum book embedding can permit a book embedding where each page is a star forest?

Advantages of star forest pages include that component diameter is 2 and, if the edges are oriented so that stars are out-stars, then latency is 1. We believe this could be useful for “graphlet” neural networks (eg., [10, 18]).

Acknowledgments

We thank the referee for careful reviewing, constructive suggestions, and for pointing out the possibility of improving our statement of Theorem 3.7.

References

- [1] J. Md. Alam, M. A. Bekos, V. Dujmović, M. Gronemann, M. Kaufmann, and S. Pupyrev, On dispersable book embeddings, *Theoret. Comput. Sci.* **861** (2021), 1–22, <https://doi.org/10.1016/j.tcs.2021.01.035>.

- [2] J. D. B. M. Álbrego, S. Fernández-Merchant, E. Lagoda, and Y. Sapozhnikov, Further improvements on the book crossing number of kn , in, in *Proc. 17th spanish meeting on comp. geom.*, Alicante, Spain, (2017), 127–132.
- [3] F. Bernhart and P. C. Kainen, The book thickness of a graph, *J. Combin. Theory Ser. B* **27**(3) (1979), 320–331, [https://doi.org/10.1016/0095-8956\(79\)90021-2](https://doi.org/10.1016/0095-8956(79)90021-2).
- [4] T. Bilski, Embedding graphs in books: a survey, *IEE Proceedings-E* **139**(2) (1992), <https://doi.org/10.1049/ip-e.1992.0021>.
- [5] P. Z. Chinn, J. Chvátalová, A. K. Dewdney, and N. E. Gibbs, The bandwidth problem for graphs and matrices—a survey, *J. Graph Theory* **6**(3) (1982), 223–254, <https://doi.org/10.1002/jgt.3190060302>.
- [6] V. Dujmović, D. Eppstein, R. Hickingbotham, P. Morin, and D. R. Wood, Stack-number is not bounded by queue-number, *Combinatorica* **42**(2) (2022), 151–164, <https://doi.org/10.1007/s00493-021-4585-7>.
- [7] H. Enomoto, T. Nakamigawa, and K. Ota, On the pagenumber of complete bipartite graphs, *J. Combin. Theory Ser. B* **71**(1) (1997), 111–120, <https://doi.org/10.1006/jctb.1997.1773>.
- [8] M. C. Golumbic and P. L. Hammer, Stability in circular arc graphs, *Journal of Algorithms* **9**(3) (1988), 314–320, <https://www.sciencedirect.com/science/article/pii/0196677488900235>.
- [9] X. Guan, C. Wu, W. Yang, and J. Meng, A survey on book-embedding of planar graphs, *Frontiers of Mathematics in China* **17**(2) (2022), 255, <https://doi.org/10.1007/s11464-022-1010-5>.
- [10] H. Guo, K. Newaz, S. Emrich, T. Milenkovic, and J. Li, Weighted graphlets and deep neural networks for protein structure classification, (2019), <https://arxiv.org/abs/1910.02594>.
- [11] S. L. Hakimi, J. Mitchem, and E. Schmeichel, Star arboricity of graphs, *Discrete Math.* **149**(1–3) (1996), 93–98, [https://doi.org/10.1016/0012-365X\(94\)00313-8](https://doi.org/10.1016/0012-365X(94)00313-8).
- [12] F. Harary, *Graph theory*, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London, 1969.
- [13] L. Heath, Embedding planar graphs in seven pages, in *25th annual symposium on foundations of computer science, 1984.*, (1984), 74–83.
- [14] E. K. Hng, Minimum degrees for powers of paths and cycles, *SIAM J. Discrete Math.* **36**(4) (2022), 2667–2736, <https://doi.org/10.1137/20M1359183>.

- [15] P. C. Kainen, Some recent results in topological graph theory, in *Graphs and combinatorics (Proc. Capital Conf., George Washington Univ., Washington, D.C., 1973)*, Springer, Berlin-New York, (1974), 76–108.
- [16] ———, The book thickness of a graph. II, in *Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989)*, (1990), 127–132.
- [17] J. R. Lee, Graph bandwidth, in *Encyclopedia of algorithms*, M.-Y. Kao (ed.), Springer New York, (2016), 866–869, https://doi.org/10.1007/978-1-4939-2864-4_169.
- [18] X. Liu, Y.-Z. J. Chen, J. Lui, and K. Avrachenkov, Graphlet count estimation via convolutional neural networks, *Complex Networks* (2018), <https://inria.hal.science/hal-01936850v1/document>.
- [19] L. Merker and T. Ueckerdt, Local and union page numbers, in *Graph drawing and network visualization*, Springer, Cham, (2019), 447–459, https://doi.org/10.1007/978-3-030-35802-0_34.
- [20] L. T. Ollmann, On the book thicknesses of various graphs, in *Proc. 4th southeastern conference on combinatorics, graph theory and computing*, (1973), 459.
- [21] J. Ren, J.-K. Hao, E. Rodriguez-Tello, L. Li, and K. He, A new iterated local search algorithm for the cyclic bandwidth problem, *Knowledge-Based Systems* **203** (2020), 106136, <https://www.sciencedirect.com/science/article/pii/S0950705120303907>.
- [22] I. C. Ross and F. Harary, The square of a tree, *Bell System Tech. J.* **39** (1960), 641–647, <https://doi.org/10.1002/j.1538-7305.1960.tb03936.x>.
- [23] K. Sperfeld, On the page number of complete odd-partite graphs, *Discrete Math.* **313**(17) (2013), 1689–1696, <https://doi.org/10.1016/j.disc.2013.04.028>.

PAUL C. KAINEN AND ASA H. TENNEY
 GEORGETOWN UNIVERSITY, WASHINGTON, DC, USA
 kainen@georgetown.edu, aht36@georgetown.edu