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On S-magic labeling of graph products

MAURICE ALMEIDA

Abstract. Let G = (V, E) be a graph and let S be a set of positive integers
with |S| = |V|. The graph G is said to be S-magic if there exists a bijection
l: V — S such that the weight of any vertex u, which is defined as the sum
of labels on vertices adjacent to w, is a constant k for all u € V. The
constant k is called an S-magic constant. The set of all S-magic constants
of G for different labeling sets is denoted by M (G). In this paper, we study
S-magic labelings of various graph products like lexicographic products of
graphs with Cy, direct products of graphs with Cy, Cartesian products of
graphs with Cy, corona products of graphs, and joins of graphs. We find
various classes of the above graph products that do not admit an S-magic
labeling. We also give S-magic labeling conditions for several classes of the
above graph products that do admit S-magic labelings, and we determine
M (G) for these classes of graphs.

1 Introduction

All graphs considered in this paper are simple finite graphs. Consider a
simple graph G = (V, E), where V(G) denotes the vertex set of the graph
G and E(G) denotes the edge set of the graph G. The order of the graph
G, is defined as |V(G)|, while the size of the graph G is defined by |E(G)|.
For graph theoretic notations we refer to Chartrand and Lesniak [11]. The
open neighborhood N(xz) of a vertex x is the set of vertices adjacent to
x, and the degree d(z) of x is |[N(z)|, the size of the open neighborhood
of .

Let G = (V, E) be a graph of order n and let f be a bijection from V(G)
onto {1,2,3,...,n}. For such a bijection we define the weight of a vertex
v as w(v) =}, ey f(u), e, the sum of labels of vertices adjacent to u.
The bijection is called a distance magic labeling if w(v) = k for all vertices
v € V and for some constant k (see [13]).
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A large class of graphs cannot be magic labeled with respect to the labeling
set {1,2,...,n}. For example, the graph K 3 is not magic with respect
to the labeling set {1,2,3,4}. However, if we extend the set of labels to
arbitrary sets such as {1,2,3,6} or {1,2,4,7}, the graph can be magic
labeled with magic constants 6 or 7, respectively. In fact a set .S of positive
integers induces a magic labeling on Kj 5 if and only if it is of the form
{a,b,c,a+b+c:a,b,c e N} and {6,7,8,...} are all the magic constants
that can be obtained from K; 3. Motivated by this idea, Godinho et al. [1]
introduced the concept of S-magic labeling:

Definition 1.1. Let G = (V, E) be a graph and let S be a set of positive
integers with |S| = |V|. The graph G is said to be S-magic if there exists a
bijection I: V' — S such that 3, ¢y, () =k, a constant, for all v € V.
The set of all S-magic constants of G for different label sets is denoted
by M(G).

For any non-negative integer k, an illustration of S-magic labeling of cycle
Cy4 and path Pj is shown in Figure 1.1.

1 2

3+k 4+k
Figure 1.1: S-magic labeling of the graphs Cy and Ps.

Godinho et al. [1] proved the following useful result to identify graphs that
do not admit an S-magic labeling.

Theorem 1.2. [1] If u and v are two vertices in the graph G such that
|N(u)AN(v)| = 2, where A is the symmetric difference of sets, then G is
not S-magic.

Godinho et al. [1] also proved that the Petersen graph is not S-magic,
the cycle C,, is S-magic if and only if n = 4, the complete graph K, for
n > 2 is not S-magic, and they also stated the conditions under which a
complete r-partite graph K, m,,...,m, admits an S-magic labeling. In this
paper, we shall study S-magic labelings of five particular graph operations:
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corona product of graphs, join of graphs, lexicographic product of graphs,
direct product of graphs, and Cartesian product of graphs. We list their
definitions below.

Definition 1.3. Let G and H be two graphs. The corona G o H is obtained
by taking one copy of G and |V (G)| copies of H and joining each vertex of
the i ™" copy of H to the it vertex of G.

Definition 1.4. Let G and H be two graphs. The join G+ H of G and H
has vertex set V(G) UV (H), and its edge set includes edges in G and H
and all those edges which join a vertex in G with a vertex in H.

Definition 1.5. Let G and H be two graphs. The lexicographic product of
G and H is defined as a graph having vertex set V(G) x V(H) in which two
vertices (g, h) and (¢’,h’) are adjacent if either g is adjacent to ¢’ in G or
g = ¢’ and h is adjacent to h’ in H. The lexicographic product of graphs
is also called the composition of graphs and is denoted by G[H].

Definition 1.6. Let G and H be two graphs. The direct product of G and H
is defined as a graph having vertex set V(G) x V(H) in which two vertices
(g9,h) and (¢’, h') are adjacent if g is adjacent to ¢’ in G and h is adjacent to
h' in H. The direct product of graphs is also known as Kronecker product
of graphs and is denoted by G x H.

Definition 1.7. Let G and H be two graphs. The Cartesian product GOH
of G and H is defined as a graph having vertex set V(G) x V(H) in which
two vertices (g, h) and (¢',h’) are adjacent if either g = ¢’ in G and h is
adjacent to h' in H or g is adjacent to ¢’ in G and h = I/ in H.

In our investigation, we require the concept of the magic rectangle and
magic rectangle set. These concepts are discussed in detail in [9] and [10].
Here we state their definitions.

Definition 1.8. A magic rectangle R, ; is an a x b array with entries

{1,2,...,ab},

each appearing once such that the sum of entries in each row is equal to

W and the sum of entries in each column is equal to %.

Definition 1.9. A magic rectangle set, MRS (a, b; ¢) is a collection of ¢ arrays
of size a x b whose entries are elements of {1,2,...,abc}, each appearing
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once, with each row sum in every rectangle equal to the constant p =

w and each column sum in every rectangle equal to the constant

a(abe+1)
-

g =
We now present some useful results on magic rectangles and magic rect-
angle sets, which we require for our work. The following theorem gives
the necessary and sufficient conditions for the existence of a magic rectan-
gle Ra,lr

Theorem 1.10. [10] For a,b > 1, there is a magic rectangle R, ;, if and only
ifa=b (mod 2) and (a,b) # (2,2).

The following theorems, state the conditions necessary for the existence of
magic rectangle sets MRS (a,b;c).

Theorem 1.11. [9] Ifa=b=0 (mod 2) and b > 4, then a magic rectangle
set MRS (a,b; c) exists for every c.

Theorem 1.12. [9] If a or b is odd and abc is even, then no magic rectangle
set MRS (a,b;c) exists.

Theorem 1.13. [9] Let a,b, ¢ be positive odd integers such that 1 < a < b,
then the magic rectangle set MRS (a, b; c) exists.

In this paper, we shall study the S-magic labeling of the lexicographic
product, direct product, and the Cartesian product of the complete graph
Ky, the complete r-partite graph K, ,y, and the windmill graph CY with
the cycle Cy. We shall also present some results related to S-magic labelings
of the join and corona products of graphs.

2 Main results

2.1 Lexicographic products of graphs

Let V(G) = {z1,22,...,2p}. Let C,, = vov1v2...0,_109 be the cycle on
n vertices. Let H = G[C,,]. Let 2/, where 1 <i<pand 0 <j <n-—1, be
the vertices of H that correspond with vertices z; in G.

Theorem 2.1. Let r > 1 and n > 4. If G is an r-regular graph on p vertices
and C,,, the cycle of length n, then G[C},] admits S-magic labeling if and
only if n = 4.

62



ON S-MAGIC LABELING OF GRAPH PRODUCTS

Proof. If n # 4, then there exist vertices 22 and x} in the i ‘! copy of C,,
such that N(z?)AN(z}) = {z},2%}. Therefore by Theorem 1.2, G[C,,] has
no S-magic labeling.

Suppose n = 4. Then G[Cy] is 4r + 2 regular. Label the vertices zg, where
1 <i<pand 0 <j <3, of G[C4] in the following way: For k € Z>¢, define
f:V(G[C4)) — {1,2,3,...,2p—1,2p,2p+ 1+ k,2p+2+k,...,dp— 1+ k,
4p + k} such that

i for 1 <i<pandj=0,

N 2 t1—i for1<i<pandj=1,
f(w) = dp+1—i+k forl<i<pandj=2,
2p+i+k for1<i<pandj=3.

The sum of labels of vertices in the i*" copy of Cy is 8p + 2 + 2k, which
is independent of i. Additionally, for 1 < i < p, we have f(20) + f(z2) =
dp+1+k = f(z}) + f(x?). Therefore for every x € H,

w(z) =r8p+2+2k)+ @Ap+1+k)=(2r+1)(4p+1+k).
This gives an S-magic labeling. O

Observation 2.2. If k¥ = 0, the above labeling is a distance magic labeling
of G|C4] with magic constant (2r 4+ 1)(4p + 1).

Let V(K,) = {x1,22,...,2,}. Let Cy = vgv1v9v3vg be the cycle on four
vertices. Let 27, with 0 < j < 3 and 1 < i < n, be the vertices of K,,[C4]
that correspond with vertices x; in K,,.

Theorem 2.3. For n > 1, a bijection [ is an S-magic labeling for the graph
K, [Cy4] if and only if [(2?) +1(22) = I(x}) +(23) = a for all 1 <i < n and
for some constant a. Also M(K,[C4]) = {(2n—1)(4n+1+k): k € Z>o}.

Proof. Suppose [ is an S-magic labeling for the graph K,,[Cy4] with S-magic
constant p. Then since

3
p=w(zi)= Y Y Uzp)+ (Uaf) + (D)),
1<p<n, j=0
pFi

3
p=w@l)= > Y Uz + (=) +1(z})),
1<p<n, j=0
pFi

63



ALMEIDA

we get [(20) + 1(22) = I(z}) + 1(23) = a;, for all 1 < i < n and for some
constants a;. Now

,u:w(xg) = E 2a, + a;, u:w(xi) = E 2a, +ay,
1<p<n, 1<p<n,
pFi pFi

implies 2ay + a; = 2a; + ap; hence, we have ap, = a; = a, forall 1 < h,i <n
and for some constant a.

Conversely, suppose [ is a labeling of K,,[C4] with
1a?) +1(27) = U(z}) + 1(aF) = a,
for all 1 <7 <n and for some constant a. Then we have

w(z?) =2a(n —1) +a = a(2n — 1),

K3

forall 1 <i<mnand 0<j<3. Hence K,[C4] is S-magic.

To find M(K,[C4]), label vertices of K,,[C4] in the following way: For
k € Z>q, define f: V(K,[C4]) = {1,2,....2n,2n+ 1+ Ek,2n +2+ k, ...,
4dn — 1+ k,4n + k} such that

7 for 1 <i<mnandj=0,

i )2n+1—i for 1 <i<mnandj=1,
TE) = a1 —i4k for1<i<nandj—2,
2n+1+k for 1 <i<mnandj=3.

Under this labeling we get (z9) + I(22) = I(z}) + 1(z3) = (4n + 1 + k),
and hence K,[Cy] is S-magic with S-magic constant (2n — 1)(4n + 1 + k).
If kK =0, we get a distance magic labeling of K,,[C4], with magic constant
(2n — 1)(4n + 1), which is the smallest S-magic constant. Also, from the
first part of the proof, it follows that (2n — 1) should divide any S-magic
constant. Therefore

M(K,[C4)) = {(2n—1)(4n+1+k) : k € Zso}. O

Let V(K(nry) = {@1k, Ton, s T 0 1 <k <1} Let Cy = vovivav3vp be
the cycle on four vertices. For 0 < j < 3, let a:Jl o le o - .,xflk denote vertices
of K, [C4] that correspond with 215, To, . .., Tnk in Ky, respectively,
for 1<k <r.
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Theorem 2.4. For n > 2 and r > 2, a bijection l is an S- magic labeling
of Ky, [C4] if and only jfl(xgh) + l(x?)h) =l(z},) +(z P 3.) = a, for all
1<i<mnandl<h<r and for some constant a. Also M(K(n,r) [C4]) =
{@n(r—1)+1)drn+1+k): k€ Zso}.

Proof. Suppose K, ,[C4] has an S-magic labeling [ with S-magic constant
. Then since

we have I(xj,) + I(x},) = U(a),) + 1(27,) = aip, for all 1 <7 < n and
1 <p<r. Also,

Z ZQakh—i—aw—w jp Z Z2akh+ajp

1<h<r, k=1 1<h<r, k=1
‘h#p ‘h#p

implies a;,, = aj, = ap, for all 1 < 4,5 <n. Now as

w(x g 2nap + ap = w( z m) g 2nay, + apm,
1<h<r, 1<h<r,
‘h#p h#m

we have 2na,, + ap, = 2na, + an,; hence, a, = ap = a, for all 1 <m,p < n.

Conversely, suppose [ is a labeling with I(z7 ) +1(27,) = l(x] ) + (2} ) =
a, forall 1 <¢<nand 1<k <7 and for some constant a. Then for any
vertex z; , in K, )[C4] we have

n 3
= >0 N S i) + () + U@lh) = @n(r— 1) + 1)a,

1<h<r, k=1 m=0
h#p

where j — 1 and j + 1 are taken modulo 4. Hence K, ,)[C4] is S-magic
with S-magic constant (2n(r — 1) 4+ 1)a.

To find M (K (,,r)[C4]), label vertices of K, y[C4] in the following way: For
k € Z>q, define f: V(K [C4]) — {1,2,3,...,2rn — 1,2rn,2rn + 1 + k,
2rn+2+k,...,4rn — 1+ k,4rn + k} such that
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i+(G—1n for 1<i<n,1<j<r h=0,

hy_ )2m+1l—i—(j—1)n for1<i<n,1<j<r h=1,
@) =Y arm 41— i~ (G- ntk fori<i<mi<j<rh=2,
2rn+i+(j—1n+k for1<i<n,1<j<r h=3.

Under this labeling we get {(z? h)—i—l(x ) =z L) HUa3,) = (drm+1+k)
foralll <i<nandl1l <h<r, and hence K(mﬂ [04] is S-magic with
S-magic constant (2n(r — 1) + 1)(4rn +1+k). If k=0, we get a distance
magic labeling of K, ,[C4] with magic constant (2n(r —1) +1)(4rn + 1),
which is the smallest S-magic constant. Also, from the first part of the
proof, it follows that (2n(r — 1) + 1) should divide any S-magic constant.
Therefore

M(K@pn[Ca]) ={@n(r—1)+1)4rn+1+k) : k € Zso} O

We denote by C%, the graph obtained by taking ¢ copies of the cycle Cs
and joining them by selecting one vertex from every cycle and identifying
the selected vertices. Let V(C%) = {z,y;,2; : 0 < i <t — 1} where z is
the central vertex. Let C4 = vovivav3vg be the cycle on four vertices. For
0<i<t—1land0<j <3, lety/ and z] be the vertices of C4[C4] that
correspond with vertices y; and z; in C% and let 27, for 0 < j < 3, be the
vertices of C4[Cy] that correspond with vertex x in C%.

Theorem 2.5. For t > 1, a bijection [ is an S-magic labeling of C4[C4] if
and only if the following conditions hold:

(1) 1(z°) + 1(2?) = I(z") + (23) = b, for some constant b.
(2) WD) +Uy?) = Uy)) +Uy?) = U) + UF) = U(=]) +1(2}) = a, for

some constant a.
(3) b= (4t — 3)a.
Also M(CL[Cq]) = {(8t = 3)(8t + 1+ k) : k € Z>o}.

Proof. Suppose C%[Cy] has an S-magic labeling [ with S-magic constant u.
Then

-
I

H
Moa

1
Wyl) +1(2])) +1(2°) + 1(2?),

~ -
Il
= o
S,
Il
=)

() + 1)) +1(z") +1(2®)

=
I
g

S
I

s
Il

<
<
Il

o
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implies I(z%) + [(2?) = I(2') + I(23) = b, for some constant b.

Now for 0 < k <t — 1, since

p=wlyp) =Y (1) + =) +Uyk) + UL,

k

we get L(yR) + 1(y2) = l(yp) + 1(y}) = ak, for some constant a¥. Similarly,
+1(23) = a¥, for some constant a”.

Since af,+2a%+2b = w(y N =dl +2a+2b = w(z] 7, Weobtamay*a =a'.

Nowforany()gz,lSt—landOSJ,hSB, we have 3a’ + 2b = w( f)—
w(zl") = 3a' + 2b; hence, a' = a' = a. Also since 3a+ 2b = b+ 4ta, we have
b= (4t — 3)a.

Conversely, suppose [ is a labeling such that conditions (1), (2), and (3)
hold. Then for 0 < j <3 and 0 < i <t — 1, we have w(z?) = 4ta + b =
dta+ (4t —3)a = (8t —3)a and w(y!) = w(z!) = 2b+3a = 2(4t — 3)a+3a =
(8¢ — 3)a. Therefore CL[Cy] is S-magic with S- magic constant (8¢ — 3)a for
some constant a.

To determine M (C%[C4]), for k € Z>(, define a labeling f for V(C%[C4]) to
the set

{172,...,415—1,4t,4t+1+k,4t+2+k,...,8t—1+k,8t+k,

{(4t—3)(8t+1+k)J 9 {(4t—3)(8t+1+k)J 1
2 | T e 2

b

"(4t—3)(§t+1+k)-‘ +1, "(4t—3)(§t+1+k)-| n 2}

such that
i+1 for j =0, {(u 3)(8t+1+k)J 2 forj=0
) = 2A+i+1 forj=1, ;
v 8 —i+k forj=2, , Vn 38t +k) J for j =1,
. - xj —

6t—i+k forj=3, [f(z’) [(4t 3)(8t+1+/€)—‘ 12 forj=2,
F(7) = f(yf:) +t forj=0,1, [(u 3)(8t+1+k)—‘ for j = 3.

' flyl)—t forj =23,
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Under this labeling f(2°) + f(2?) = f(z!) + f(2?) = (4t —3)(8t+1+k) and
FU)+ @) = fFu) +FW7) = f(2))+f(2]) = F(z) + £(2F) = (8t +1+k)
and hence C%[Cy] is S-magic with S-magic constant (8t — 3)(8t + 1 + k).
If K =0 we get the smallest S-magic constant. Also, from the first part of
the proof, it follows that (8¢ — 3) divides any S-magic constant. Therefore

M(CS[Ca]) = {(Bt —3)(8t +1+k) : k € Zxo}. O

2.2 Direct products of graphs

M. Anholcer et al. [8] proved that, for any r-regular graph G on n-vertices,
G x Cy is distance magic.

Let V(K,) = {x1,22,...,2,}. Let Cy = vgv1v9v309 be the cycle on four
vertices. Let sc§7 with 0 < 7 <3 and 1 < i < n, be the vertices of K, x Cy
that correspond with vertices x; in K,.

Theorem 2.6. For n > 1, a bijection [ is an S-magic labeling of K,, x Cy if
and only if 1(29) +1(z?) = l(z}) + 1(z3) = a, for all 1 < i < n and for some
constant a. Also M(K, x Cq) ={(n—1)(4n+1+k):k € Z>o}.

Proof. Suppose K, x Cy has an S-magic labeling [ with S-magic constant
. Since

w(ad) = > (Uap) +1x7)) = w(ah) = > (Wah) +1a})),
1§h};gin, 1ghf;§pn,

we have (z)) + 1(z)) = l(x]) + I(z}) = a, for all 1 < p,i < n and for some
constant a. Analogously, we have, I(x)) + I(z7) = I(2)) 4 (27) = b, for all
1 < p,i < n and for some constant b. Now since u = w(z?) = a(n — 1) and
p=w(z!)=0b(n—1), we have a = b.
Conversely, suppose [ is a labeling such that {(z9)+1(2?) = I(z})+1(2?) = a,
for all 1 <4 < n and for some constant a. Then for any vertex :Ef in K,,xCy,
we have
w(al) = - () +1@™) = (n=a,
1<h<n,
h#i
where 7 — 1 and j + 1 are taken modulo 4. Therefore K,, x Cy is S-magic
with S-magic constant (n — 1)a, for some constant a.
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To find M (K, x Cy), label vertices of K,, x Cy4 in the following way: For
k € Z>o, define f: V(K, xCy4) — {1,2,3,...,2n—1,2n, 2n+1+k, 2n+2+k,
.ooydn — 1+ k,4n + k} such that

7 for1 <i<mnandj=0,

i )2n+1—i for1<i<nandj=1,
faz) = dn+1—i+k forl<i<nandj=2,
2n+i+k for 1 <i<mnandj=3.

Under this labeling we get {(2?) + I(z?) = I(a}) +1(23) = 4n + 1 + k)
and hence K,, x Cy is S-magic with S-magic constant (n —1)(4n + 1+ k).
If K = 0, we get a distance magic labeling of K,,[C4] with magic constant
(n — 1)(4n + 1), which is the smallest S-magic constant. Also, from the
first part of the proof, it follows that (n — 1) should divide any S-magic
constant. Therefore

M(K, x Cs) = {(n—1)(dn+1+k) : k € Zo} O

Let V(Kn,r) = {Z1k, Tok, -, ok 0 1 <k <1} Let Cy = vou1v2v3v9 be
the cycle on four vertices. For 0 < j < 3, let @], 27, ,...,x], denote vertices

of Ky, ) % Cy that correspond with 1y, Zog, . . ., Tnk in K(,, ), respectively,
for 1<k <r.

Theorem 2.7. For n > 2 and r > 2, a bijection [ is an S-magic labeling of

Ky xCy ifand only it Y3y (I(ay, ) +H(} ) = Yop_y (12 ) +1(23 ) =
a, for all 1 < p < n and for some constant a.

Proof. Suppose the graph K, ,) x C4 admits an S-magic labeling | with
S-magic constant u. Since

p=wel)= 3 S (@) + 1R ,),

we have
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for all 1 < p,s < r and for some constant a. Analogously we have

Z(l(xllw) Z (Th,s) +1(xi ) = b,

k=1 k=1

for all 1 < p,s <r and for some constant b. Also now, since y = w(xl{p) =

(r—1)a and p = w(x?,) = (r — 1)b, we get a = b.

Conversely, suppose [ is a labeling such that

n n

Do (Uahy) + Ut ) = > (UaR,) +Uat,) = a,

k=1 k=1
for any 1 < p < r and for some constant a. Then, for any vertex xzm in
K(y,ry x Cy, we have

wl)= > D (=) +ih)) = (= 1a,
1<h<rh#p k=1

where, j —1 and j + 1 are taken modulo 4. Hence K, ,y x C4 is S-magic
with S-magic constant (r — 1)a, for some constant a. O

Unfortunately, we are not able to find M (K, ,y x Cy). Therefore, we pose
the following problem.

Problem 2.8. For n > 2 and r > 2, determine M (K, .y x Cy).

Let V(C%) = {x,9i,2; : 0 < i < t— 1} where z is the central vertex. Let
Cy4 = wvivav3vg be the cycle on four vertices. For 0 < ¢ < ¢t — 1 and
0 <j <3, let y!,z] be the vertices of C§ x Cy that correspond with vertices
y; and z; in C§ and 27 for 0 < j < 3 be the vertices of C% x Cy that
correspond with vertex z in C

Theorem 2.9. For t > 1, a bijection | is an S-magic labeling of C% x Cy if
and only if the following conditions hold:

L 1(2°) + 1(2?) = l(z!) + 1(2®) = s, for some constant s.
2. Uy)) + 1(y7) = Uyi) + 1) = 1(=)) +1(z7) = 1(z]) +1(]) = a, for

some constant a.
3. s=(2t—1)a.
Also M((C§x Ca) ={(2)(8t +1+k) 1 k € Z>o}.
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Proof. Suppose C% x Cy has an S-magic labeling [.

Let [(x%)+1(2z?) = s, W(z")+H(2%) = s2, W(y))+H(y]) = af, Uy})+(y}) = a3,
1(29) +1(22) = bLI(z}) +1(23) = b2 for 0 < i <t — 1.

Since a} + s1 = w(z}) = w(yzl) = bz1 + s1 and a? + s2 = w(2?) = w(y?) =

b2 + 59, we have al = b} and a? = b?. Also, for i # j, as w(z}) = w(zjl»),
we have al = a . Similarly, for i 7é j, as w(y}) = w(yjl-), we have b} = b;.
Therefore, we can assume a} = b} = a1 for all 0 <7 <t —1 and for some

constant a;. Similarly, we can show a? =b? =ay forall0 <i<t—1and
for some constant as. Furthermore w( 0) = 2tay = w(z') = 2ta;, we have
a1 = as = a and hence s; = s9 = s.

Therefore we have [(2°) + I(z?) = I(z}) + I(23) = s and I(3?) + I(y?) =
Wys) + 1)) = U2) +1(27) = U(z)) +1(z)) = a.
Also as, w(z?) = 2ta = w(z)) = a + s, we have s = (2t — 1)a.

)

Conversely, suppose [ is a labeling such that conditions (1),(2), and (3)
hold.

Then for 0 < j<3and 0 <i<t—1wehave w(z’) = 2ta and w(yf) =
w(z!) =a+s=a+ (2t — 1)a = 2ta. Therefore C% x Cy is S-magic with

1
S-magic constant 2ta for some constant a.

To determine M (C% x C) define a labeling f for V(C% x Cy) to the set

{172,...,415—1,4t,4t+1+k,4t+2—|—k,...,8t—1+k,8t—|—k,

{(2t—1)(8t+1+k)J 9 {(2t—1)(8t+1+k)J 1
2 | AT 2

b

[(ztfl)(gwuk)" 41, "(Qtfl)(zt+1+k)_| 4 2}

such that
i+1 for j =0, L(2t 1)(8t+1+k)J for j =0
fy = J2EIHE forg =1, :
vi 8t—i+k forj=2, V% 1) 8t+1+k J for j =1,
. o iy
6t—itk forj=3  f@@) [(m 1) (8t+1+k)-‘ for j =2
F(27) = f(yg) +t for j=0,1, [(m 1)(8t+1+k)—‘ for j = 3.
‘ f(yz])_t fOI'j:273,
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Under this labeling f(2°) + f(2?) = f(z!) + f(2?) = (2t —1)(8t +1+k) and
FUD+FW7) = fyi)+F @) = F(2D)+F(2D) = f(=)+ [ (7)) = (8t+1+k),
and hence C%[Cy] is S-magic with S-magic constant (2¢)(8t+1+k). If k = 0,
we get the smallest S-magic constant. Also, from the first part of the proof,
it follows that 2¢ divides any S-magic constant. Therefore

M(CEx Cy) ={(2t)(8t+1+k): k€ Zxo}. O

2.3 Cartesian products of graphs

Let V(K,) = {x1,22,...,2,}. Let Cy = vov1v2v3v9 be the cycle on four
vertices. Let xg, with 0 < j <3 and 1 < i < n, be the vertices of K,,[1C,
that correspond with vertices x; in K.

Theorem 2.10. For n > 1, the graph K,,[0C} is not S-magic.

Proof. Suppose K,[1C} is S-magic with labeling [ and S-magic constant
w. Let 1(z9) +1(2?) = aby and I(z}) + 1(23) = al, for any 1 < i < n. Since

p=w@d) = " Ua}) +als,
1<k<n,
ki

we have _
0 =w(z)) —w(a)) = l(xf) — l(z]) + alz — alls.

Analogously, we have

Therefore we get
Uah) = Uzp) = Uaf) — U(z3),

for any 1 < i,h < n; hence, [(z9) = k + I(2?) for some constant k and for
any 1 < i < n. On the other hand, we have

p=w(zi) = Z l(x?)) +als,

1<p<n,

pF#i
p=w(d) = > 1ad) +aly = > (k+1(z2) +als,
1<p<n, 1<p<n,
p#i p#i

2

which implies k& = 0; hence, [(2?) = (22), a contradiction. O
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Note that K (3 9) = C4, and we shall now prove that C4[1Cy is not S- magic.
Let Cy = vgvivavgvg be the cycle on four vertices and let

V(C4DC4) = {’Ui%j :0 S ) S 3 and 0 S] S 3}

Lemma 2.11. The Cartesian product C40C} is not S-magic.

Proof. Suppose C400C, is S-magic with S-magic labeling [ and S-magic
constant p. Then w(vg 1) = l(voo) +1(v1,1) +1(vs1) +1(vo,2) and w(vs2) =
l(UQQ) + Z(U3,1) + l(’0373) + l(’l}072), which implies that

l(’UO,o) + l(’Ulyl) = l(’l)gyz) + l(Ug’g). (1)

Similarly, since w(ve 1) = l(va2) + l(va,0) + 1(v11) + 1(vs1) and w(vs) =
1(v0,0) + l(v2,0) + l(vs,1) + l(vs,3), we have

l(v1,1) + U(v2,2) = l(vo,0) + U(v3,3). (2)

Subtracting (2) from (1) we get

l(’l)()’o) — l(vg’g) = Z(Ug’g) — l(’l)o’0>
2[(’0070) = 21(’0212)
l(’UO,o) = 1(0272).

This is a contradiction; hence, C4[1Cy is not S-magic. O

Let V(K(2,r)) = {vik,v2r : 1 <k < r}. Let Cy = vov1vav3vg be the cycle
on four vertices. For 0 < j < 3, let v{ . and v% . denote vertices of H that
correspond with vertices vy, and va in K2 ., respectively.

Lemma 2.12. For r > 3, the graph K, , [1Cy is not S-magic.

Proof. Suppose K3 ,)Cy is S-magic with S-magic labeling [ and S-magic
constant u. Since

n= w(”%,j) = Z (Z(U},p) + l(”%,p)) + l(”?,j) + Z(U%,j)»
1<p<r,
P#J

p=ws;)= Y ((vi,)+1(v3,)) +109,;) +1(v5),
1<p<r,
P#]
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we have
l(v(l)j) + l(”ij) = l(Ug,j) + l(”%,j)~ (3)
Also, as w(v ;) = w(vi ;), we get, for 1 < j <,

Do () +Uw,)) = D (Uef,) +1(v3,)). (4)

1<p<r, 1<p<r,
pF#J P#J
Hence,
(r=1) Y (R ) + 108 ) = (r = 1) D (U7 ) +1(v3))
7j=1 j=1
implying

08)) = (U} 5) +13)). (5)

j=1 j=1
Subtracting equation (4) from equation (5), we get, l(v(l)’j) + l(’ug,j) =
I(vi;) + l(v3 ), which together with equality (3) implies that I(v? ;) =
1(vg ;), contradicting the fact that [ is a bijection. O

Theorem 2.13. For r > 2, the graph K, ,y0JCy is not S-magic.
Proof. The proof follows from Lemmas 2.11 and 2.12. O

Let V(K ) = {@1k, Tok, -y T 0 1 <k <1} Let Cy = vovivav3v0 be
the cycle on four vertices. For 0 < j < 3, let x{,w xék7. . .,xik denote ver-
tices of K, ,JCy that correspond with vertices w1k, Tk, - - -, Tnk in Ky,
respectively, for 1 < k < r.

Theorem 2.14. For r > 2 and n > 3, a bijection | is an S-magic labeling
of K, OCy if and only if Iz} ;) + 1z} ;) = I(«) ;) + 1(2} ;) = a, for any
1 <i<nandl < j <r and for some constant a. Also for n even,
M(K(n,r)DCz;) _ {(n(r—1)+2)2(4n7’+1+k) ke Zzo}-

Proof. Suppose K, , 1JCy is S-magic with labeling [ and S-magic constant
p. Since w(a? ;) = w(xy ;), we have

2%}
Z Zl(:pg,p)—’— xzy +l $7,J Z Zl whp ,])+l(xz,J))7
1<p<r, h=1 1<p<r, h=1
P#Jj P#j
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hence, I(z} ) (?):( )—|—l(xzj) forany 1 <i<nand 1<j<r.
Similarly, ( )+ ( 2 ) (J;k])—kl(xkj) forany1 <i<nandl<j<r.
VL o

So let I(z ;) + 1z} g and I(z) ;) + (a7 ;) = a0,2> forany 1 <i<n
and 1 < j <r. Then

p=wd) =Y D Uah,) +al s

1<p<r, h=1
p#j
For 1 <j,h<rand 1 <17 <n, we have
2p = w(x(i),h) + w(xzz,h) =n Z ag o + 2C5}11,3» (6)
1<p<r,
p#h
2,u—w( )+w( —nZa02+2a13 (7)
1<p<r,
p#£]

Subtracting (6) from (7) we get n(aé e 2(0,{73 —al3), for any 1 <
J,h < r. Analogously, 2(a672 —af,) = n(a1 g —aly), forany 1 < j,h <r.
Therefore, for any 1 < j,h < r, we have (n — 2)(a02 — a{)LQ) = —(n—
2)(@13—0,13) Smcen;«éQ we have a02+a13—a for any 1 < j < r and
for some constant a. If ao’2 = 5 — ¢ for any 1 < j < r and some constants
¢/, then ajl"g =2 +¢/. Then we get > i, (l(x?yj) +1(23)) = n(%—¢/) and

Yo () +1(a2,) =n(§ +¢7), forany 1 < j <.
Now for any 1 < j <rand 1 <17 <mn, we have
2u=w(ad;) +wl;) =nd (§+c)+2(4-¢), (8)

1<p<r,
p#j

2 = w(xy,) + w(xf ) _”Z (&+cP) +2(% - ). (9)
1<p<r,
pF#h

Subtracting (8) from (9), we obtain (n + 2)c" = (n + 2)c/, for any 1 <

j,h < 7. Hence ¢/ = cfor any 1 < j < r. So now if @, = & — ¢ for
]7 y .7 0,2 2

any 1 < j < r and some constants ¢, then a{73 = 5 +c. Then we get
2ina (1) +1(a2;)) = n(5 — ) and 0L, (Il ;) +1(27;)) = n(§ + o),
forany 1 <j <.
Now for any 1 < j <r and 1 <7 <n, we have
24 = w () )+w( ;) =n(r=1)(%+¢) +2(
2/1710(33 )+w( ) =n(r—1)(%—c) +2(

—¢), (10)
+c). (11)

N N
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Subtracting (10) from (11), we get (2 —n(r —1))c = 0, and since n > 3 and
r>2, we get ¢ = 0. Hence af , = § and af 5 = §, that is, I(z] ;) +1(z} ;) =

l(x?yj) + l(x?j) forany 1<i<mand1<j<r.

Conversely, suppose I(x] ;) +1(z} ;) = 1(2) ;) +1(27 ;) = a, forany 1 <i <n
and 1 < j < r and for some constant a. Then since

w(zyy) = Z Zl(x’,?’p)—ka

1<p<r, h=1

P#j
forany0 < m<3and 1 <i<nand1<j<r, itis easy to check that
Z?Zl l(:r;”j) =%, forany 0 <m < 3 and 1 < j <r. Now for any vertex

x% in K(n,r)0C, we have

w(zy) = Z Zl(xﬂfp) + (l(lej_l) + l(:czlj"’l))
13;;31, h=1
p#]

_ na(g—l) +a= (n(r—21)+2) a,

where both m — 1 and m + 1 are taken modulo 4. Therefore K, ,)0JCj is

S-magic with S-magic constant W for some constant a.

If n is even, then there exists a magic rectangle set MRS(2,n;2r) by The-
orem 1.11. Denote by a} ; and a} ; the entries in the first and second row,
respectively, of the j* column of the [*" rectangle, where 1 < j < n and
1 <1< 2r. Such a rectangle has constant column sum equal to (4nr + 1).
For k€ Z>pand 1 <¢<nand1<j<r,label the vertices

1(20.) = {ai+k if j odd, 2y _ {a; if § odd,

J e j e -
a; if j even, ay,;+k if j even,

l(le,j

@t 4k if j odd, 5 alt’ if j odd,
a; if j even, ap; +k if j even.

Under this labeling I(z} ;) + I(2?;) = I(a);) + 1(27;) = (4nr + 1 + k).
Hence the labeling is an S-magic labeling for K, ,y(0Cy with S-magic con-

stant ("(T'_1)+2)2(4"7'+1+k). If k = 0, we get a distance magic labeling for

K (,,,)0Cy, which is the smallest S-magic labeling. Also, from the first part

of the proof, it follows that M should divide any S-magic constant

of K, 0OC4. Hence, for n even, M(K, ~OCy) = {("(T_1)+2)2(4"T+1+k) :
k€ Zso . 0
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For n odd, by Theorem 1.12, such a magic rectangle set does not exist,
and finding M (K, ,yOCj) is not easy. Hence, we state the following prob-
lem.

Problem 2.15. For 7 > 2 and n > 3 odd, determine M (K, ,yOOCy).

Let V(CL) = {z,yi,2; : 0 < i <t — 1} where z is the central vertex.
Let C4 = wovivavsvg be the cycle on four vertices. For 0 < i <t —1
and 0 < j < 3, let y/ and 2] be the vertices of C{0Cy that correspond,

respectively, with vertices y; and 2; in C% and let 27, for 0 < j < 3, be the
vertices of C40C, that correspond with vertex z in C¥.

Theorem 2.16. For t > 1, the graph C4JCy is not S-magic.

Proof. Suppose CiJC, is S-magic with S-magic labeling [ and S-magic
constant p. Then, we have

I
M =
Hence we have,

t t

ol +1=D] =) + 1) (12)

i=1 i=1

Now since w(y;) = I(y)) + 1(y7) + U(z") +1(z}) = w(yy) = Uy) +1(y7) +
I(z3) +1(23), we have, for 1 < i < t,

W) +1(2)) = 1(2®) +1(2D). (13)

Also since w(z}) = 1(20) + 1(2) + U(z") + U(y}) = w(=8) = 1(=0) + U(=2) +
I(z®) + 1(y3), we have, for 1 <i <t,

Iah) + Uy:) = 1) +Uy7). (14)
Adding all ¢ terms of (13) and (14), we get

t t

2t x 1) + Y [1h) + 1yh)] =2t < 1(2®) + D [i2) + 1))

i=1 i=1

Using (12), we get 2t x l(z') = 2t x I(23), and this leads to I(z') = I(23),
which is a contradiction. O
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2.4 Joins and corona products of graphs

Theorem 2.17. Let G be a graph having two vertices uw and v such that
|IN(u) N N(v)| =d(u) —1=d(v) — 1. Then for any graph H, we have that
G + H is not S-magic.

Proof. Since |N(u) N N(v)| = d(u) — 1 = d(v) — 1, there exist vertices z,y
in G such that z € N(u) but + ¢ N(v) and y € N(v) but y ¢ N(u).
Now in G 4+ H, the vertices v and v will have the same neighbors in G,

but in addition, all vertices of H will be adjacent to w and v. Therefore
|IN(u)AN(v)| = 2, and by Theorem 1.2, G + H is not S-magic. O

Observation 2.18. Based on the above theorem, we make the following ob-
servations:

1. For any graph G and n # 4, the join G + C), is not S-magic.
2. For any graph G and n # 1, 3, the join G + P, is not S-magic.
3. For any graph G and n # 1, the join G + K, is not S-magic.
4. For any graph G and t > 1, the join G + C¥ is not S-magic.

For any two graphs G and H, we denote by Ng(z) the vertices adjacent to
2 in G in the join of G + H.

Theorem 2.19. Let G be a graph with V(G) = {x1,22,...,z,}. Let Cy =
voV1V203vg be the cycle on four vertices. A bijection [ is an S-magic labeling
of G + Cy if and only if the following conditions hold:

(1) Xevie) (@) = X engm U(y) = a, for all p € V(G) and for some

constant a.
(2) l(vo) +U(v2) = l(v1) + I(vs) = b, for some constant b.
(3) a=0.

Proof. For any x;,z; € V(G), with 1 <1¢,j <n, since

3 3

wzi)= Y Uy) + Y ) =wlx;) = > Uy) + Y lve),

YENG(zi) k=0 yENG(zj) k=0

we have, for any 1 < ¢,j < n and for some constant k,

Siy) = D ly) =k

yENG (z4) yENG(z;)
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Therefore we get, for 1 <1i <mn,
i) = Doy = > =
z€V(G) YyENG(x;) zeV(G)

for some constant a. Also since

Zl )+ l(vr) +1(vs), w Zl )+ L(vo) + 1(va),

zeV(QG) zeV(QG)

we have [(v1) 4+ l(v3) = l(vg) + I(v2) = b, for some constant b. Now since
w(x;) = w(vg), we have, for 1 < i < n,

> x) = > Uy) =1vo) +1(vg) =b.

zeV(G) YENG (x4)

Hence,

> i) =b.

zeV(G)

Conversely, suppose conditions (1), (2), and (3) hold. Then we have, for
any 1 <7< n,

Zl(y)+z Zl —a+2a—Zl

yENG(z;) k=0 zeV(G) z€V(G)
= > @) + Uvm-1) Hl(mar) = Y U(2)
zeV(Q) zeV(Q)

where m — 1 and m + 1 are taken modulo 4. Hence G + Cy is S-magic with
S-magic constant }, .y l(z) + a, for some constant a. O

Corollary 2.20. For n > 2 and r > 2, a bijection [ is an S-magic labeling of
the join K, ) + Cjy if and only the following conditions hold:

(1) The sum of labels in every partite part equals the same constant a.
(2) U(v1) +U(v3) = U(wvg) + l(ve) = b, for some constant b.
(3) a=0b.

Theorem 2.21. Let G be any graph. Let H be a graph having two vertices

uw and v such that |[N(u) N N(v)| = d(u) — 1 =d(v) — 1. Then G o H is not
S-magic.
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Proof. Let V(G) = {v1,v2,...,v,} and V(H) = {ui,ua,...,umn}. Let
H,,Hs,...,H, be n copies of H such that v; is adjacent to each vertex
of H;, for 1 < ¢ < n. Let u;'-, for 1 < 5 < m, denote vertices in H;,
for 1 < i < m. Since |N(u) N N(v)| = d(u) — 1 = d(v) — 1, there exist
vertices x,y in H such that x € N(u) but x ¢ N(v) and y € N(v) but
y ¢ N(u). Consider the i*" copy of H, i.e., H;. Let uly, uly, uls, ui, be
the vertices in H; corresponding to vertices u, v, =, y in H, respectively.
Then uly € N(ufy) but uls ¢ N(uly) and ul, € N(uly) but uly ¢ N(uly),
while the remaining neighbors of uj; and uj, are the same. Therefore
|N(u%) AN (u}y)] = 2, and by Theorem 1.2, G' o H is not S-magic. O

Observation 2.22. Based on the above theorem, we make the following ob-
servations:
1. For any graph G and n # 4, the corona product GoC), is not S-magic.

2. For any graph G and n # 1,3, the corona product G o P, is not
S-magic.

3. For any graph G and n # 1, the corona product Go K, is not S-magic.
4. For any graph G and t > 1, the corona product G o C¥ is not S-magic.

Theorem 2.23. Let O, denote the empty graph on m vertices. Then, for
any graph G of order at least 2, the corona product G o O,, is not S-magic.

Proof. Let H = O,,. Let V(G) = {v1,va,...,v,} and V(H) = {uq,ug, ...,
Um }. Let Hy, Ha, ..., H, ben copies of H such that v; is adjacent to each
vertex of H;, for 1 <i < n. Let ué-, for 1 < j7 < m, denote vertices in H;,
for 1 <i < n. Then N(u%) = {vi} and N(uf) = {v,}. Therefore, for i # p,
|N(u) AN (uf)| = 2, and by Theorem 1.2, G 0 Oy, is not S-magic. O
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