
On S-magic labeling of graph products

Maurice Almeida

Abstract. Let G = (V,E) be a graph and let S be a set of positive integers
with |S| = |V |. The graph G is said to be S-magic if there exists a bijection
l : V → S such that the weight of any vertex u, which is defined as the sum
of labels on vertices adjacent to u, is a constant k for all u ∈ V . The
constant k is called an S-magic constant. The set of all S-magic constants
of G for different labeling sets is denoted by M(G). In this paper, we study
S-magic labelings of various graph products like lexicographic products of
graphs with C4, direct products of graphs with C4, Cartesian products of
graphs with C4, corona products of graphs, and joins of graphs. We find
various classes of the above graph products that do not admit an S-magic
labeling. We also give S-magic labeling conditions for several classes of the
above graph products that do admit S-magic labelings, and we determine
M(G) for these classes of graphs.

1 Introduction

All graphs considered in this paper are simple finite graphs. Consider a
simple graph G = (V,E), where V (G) denotes the vertex set of the graph
G and E(G) denotes the edge set of the graph G. The order of the graph
G, is defined as |V (G)|, while the size of the graph G is defined by |E(G)|.
For graph theoretic notations we refer to Chartrand and Lesniak [11]. The
open neighborhood N(x) of a vertex x is the set of vertices adjacent to
x, and the degree d(x) of x is |N(x)|, the size of the open neighborhood
of x.

Let G = (V,E) be a graph of order n and let f be a bijection from V (G)
onto {1, 2, 3, . . . , n}. For such a bijection we define the weight of a vertex
v as w(v) =

∑
u∈N(v) f(u), i.e., the sum of labels of vertices adjacent to u.

The bijection is called a distance magic labeling if w(v) = k for all vertices
v ∈ V and for some constant k (see [13]).
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A large class of graphs cannot be magic labeled with respect to the labeling
set {1, 2, . . . , n}. For example, the graph K1,3 is not magic with respect
to the labeling set {1, 2, 3, 4}. However, if we extend the set of labels to
arbitrary sets such as {1, 2, 3, 6} or {1, 2, 4, 7}, the graph can be magic
labeled with magic constants 6 or 7, respectively. In fact a set S of positive
integers induces a magic labeling on K1,3 if and only if it is of the form
{a, b, c, a + b + c : a, b, c ∈ N} and {6, 7, 8, . . .} are all the magic constants
that can be obtained from K1,3. Motivated by this idea, Godinho et al. [1]
introduced the concept of S-magic labeling:

Definition 1.1. Let G = (V,E) be a graph and let S be a set of positive
integers with |S| = |V |. The graph G is said to be S-magic if there exists a
bijection l : V → S such that

∑
u∈N(v) l(u) = k, a constant, for all v ∈ V .

The set of all S-magic constants of G for different label sets is denoted
by M(G).

For any non-negative integer k, an illustration of S-magic labeling of cycle
C4 and path P3 is shown in Figure 1.1.

1 2

4 + k3 + k

1 3 + k 2 + k

Figure 1.1: S-magic labeling of the graphs C4 and P3.

Godinho et al. [1] proved the following useful result to identify graphs that
do not admit an S-magic labeling.

Theorem 1.2. [1] If u and v are two vertices in the graph G such that
|N(u)∆N(v)| = 2, where ∆ is the symmetric difference of sets, then G is
not S-magic.

Godinho et al. [1] also proved that the Petersen graph is not S-magic,
the cycle Cn is S-magic if and only if n = 4, the complete graph Kn for
n ≥ 2 is not S-magic, and they also stated the conditions under which a
complete r-partite graph Km1,m2,...,mr

admits an S-magic labeling. In this
paper, we shall study S-magic labelings of five particular graph operations:

Almeida

60



corona product of graphs, join of graphs, lexicographic product of graphs,
direct product of graphs, and Cartesian product of graphs. We list their
definitions below.

Definition 1.3. Let G and H be two graphs. The corona G ◦H is obtained
by taking one copy of G and |V (G)| copies of H and joining each vertex of
the i th copy of H to the i th vertex of G.

Definition 1.4. Let G and H be two graphs. The join G +H of G and H
has vertex set V (G) ∪ V (H), and its edge set includes edges in G and H
and all those edges which join a vertex in G with a vertex in H.

Definition 1.5. Let G and H be two graphs. The lexicographic product of
G and H is defined as a graph having vertex set V (G)×V (H) in which two
vertices (g, h) and (g′, h′) are adjacent if either g is adjacent to g′ in G or
g = g′ and h is adjacent to h′ in H. The lexicographic product of graphs
is also called the composition of graphs and is denoted by G[H].

Definition 1.6. Let G and H be two graphs. The direct product of G and H
is defined as a graph having vertex set V (G)× V (H) in which two vertices
(g, h) and (g′, h′) are adjacent if g is adjacent to g′ in G and h is adjacent to
h′ in H. The direct product of graphs is also known as Kronecker product
of graphs and is denoted by G×H.

Definition 1.7. Let G and H be two graphs. The Cartesian product G□H
of G and H is defined as a graph having vertex set V (G)× V (H) in which
two vertices (g, h) and (g′, h′) are adjacent if either g = g′ in G and h is
adjacent to h′ in H or g is adjacent to g′ in G and h = h′ in H.

In our investigation, we require the concept of the magic rectangle and
magic rectangle set. These concepts are discussed in detail in [9] and [10].
Here we state their definitions.

Definition 1.8. A magic rectangle Ra,b is an a× b array with entries

{1, 2, . . . , ab},

each appearing once such that the sum of entries in each row is equal to
b(ab+1)

2 and the sum of entries in each column is equal to a(ab+1)
2 .

Definition 1.9. A magic rectangle set, MRS (a, b; c) is a collection of c arrays
of size a × b whose entries are elements of {1, 2, . . . , abc}, each appearing
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once, with each row sum in every rectangle equal to the constant ρ =
b(abc+1)

2 and each column sum in every rectangle equal to the constant

σ = a(abc+1)
2 .

We now present some useful results on magic rectangles and magic rect-
angle sets, which we require for our work. The following theorem gives
the necessary and sufficient conditions for the existence of a magic rectan-
gle Ra,b.

Theorem 1.10. [10] For a, b > 1, there is a magic rectangle Ra,b if and only
if a ≡ b (mod 2) and (a, b) ̸= (2, 2).

The following theorems, state the conditions necessary for the existence of
magic rectangle sets MRS (a, b; c).

Theorem 1.11. [9] If a ≡ b ≡ 0 (mod 2) and b ≥ 4, then a magic rectangle
set MRS (a, b; c) exists for every c.

Theorem 1.12. [9] If a or b is odd and abc is even, then no magic rectangle
set MRS (a, b; c) exists.

Theorem 1.13. [9] Let a, b, c be positive odd integers such that 1 < a ≤ b,
then the magic rectangle set MRS (a, b; c) exists.

In this paper, we shall study the S-magic labeling of the lexicographic
product, direct product, and the Cartesian product of the complete graph
Kn, the complete r-partite graph K(n,r), and the windmill graph Ct

3 with
the cycle C4. We shall also present some results related to S-magic labelings
of the join and corona products of graphs.

2 Main results

2.1 Lexicographic products of graphs

Let V (G) = {x1, x2, . . . , xp}. Let Cn = v0v1v2 . . . vn−1v0 be the cycle on

n vertices. Let H = G[Cn]. Let x
j
i , where 1 ≤ i ≤ p and 0 ≤ j ≤ n− 1, be

the vertices of H that correspond with vertices xi in G.

Theorem 2.1. Let r ≥ 1 and n ≥ 4. If G is an r-regular graph on p vertices
and Cn, the cycle of length n, then G[Cn] admits S-magic labeling if and
only if n = 4.
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Proof. If n ̸= 4, then there exist vertices x2
i and x4

i in the i th copy of Cn,
such that N(x2

i )△N(x4
i ) = {x1

i , x
5
i }. Therefore by Theorem 1.2, G[Cn] has

no S-magic labeling.

Suppose n = 4. Then G[C4] is 4r + 2 regular. Label the vertices xj
i , where

1 ≤ i ≤ p and 0 ≤ j ≤ 3, of G[C4] in the following way: For k ∈ Z≥0, define
f : V (G[C4]) → {1, 2, 3, . . . , 2p− 1, 2p, 2p+1+ k, 2p+2+ k, . . . , 4p− 1+ k,
4p+ k} such that

f
(
xj
i

)
=


i for 1 ≤ i ≤ p and j = 0,

2p+ 1− i for 1 ≤ i ≤ p and j = 1,

4p+ 1− i+ k for 1 ≤ i ≤ p and j = 2,

2p+ i+ k for 1 ≤ i ≤ p and j = 3.

The sum of labels of vertices in the i th copy of C4 is 8p + 2 + 2k, which
is independent of i. Additionally, for 1 ≤ i ≤ p, we have f(x0

i ) + f(x2
i ) =

4p+ 1 + k = f(x1
i ) + f(x3

i ). Therefore for every x ∈ H,

w(x) = r(8p+ 2 + 2k) + (4p+ 1 + k) = (2r + 1)(4p+ 1 + k).

This gives an S-magic labeling.

Observation 2.2. If k = 0, the above labeling is a distance magic labeling
of G[C4] with magic constant (2r + 1)(4p+ 1).

Let V (Kn) = {x1, x2, . . . , xn}. Let C4 = v0v1v2v3v0 be the cycle on four

vertices. Let xj
i , with 0 ≤ j ≤ 3 and 1 ≤ i ≤ n, be the vertices of Kn[C4]

that correspond with vertices xi in Kn.

Theorem 2.3. For n ≥ 1, a bijection l is an S-magic labeling for the graph
Kn[C4] if and only if l(x0

i ) + l(x2
i ) = l(x1

i ) + l(x3
i ) = a for all 1 ≤ i ≤ n and

for some constant a. Also M(Kn[C4]) =
{
(2n− 1)(4n+ 1+ k) : k ∈ Z≥0

}
.

Proof. Suppose l is an S-magic labeling for the graph Kn[C4] with S-magic
constant µ. Then since

µ = w(x1
i ) =

∑
1≤p≤n,

p ̸=i

3∑
j=0

l(xj
p) +

(
l(x0

i ) + l(x2
i )
)
,

µ = w(x2
i ) =

∑
1≤p≤n,

p ̸=i

3∑
j=0

l(xj
p) +

(
l(x1

i ) + l(x3
i )
)
,
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we get l(x0
i ) + l(x2

i ) = l(x1
i ) + l(x3

i ) = ai, for all 1 ≤ i ≤ n and for some
constants ai. Now

µ = w(xj
i ) =

∑
1≤p≤n,

p ̸=i

2ap + ai, µ = w(xj
h) =

∑
1≤p≤n,

p ̸=i

2ap + ah

implies 2ah+ai = 2ai+ah; hence, we have ah = ai = a, for all 1 ≤ h, i ≤ n
and for some constant a.

Conversely, suppose l is a labeling of Kn[C4] with

l(x0
i ) + l(x2

i ) = l(x1
i ) + l(x3

i ) = a,

for all 1 ≤ i ≤ n and for some constant a. Then we have

w(xj
i ) = 2a(n− 1) + a = a(2n− 1),

for all 1 ≤ i ≤ n and 0 ≤ j ≤ 3. Hence Kn[C4] is S-magic.

To find M(Kn[C4]), label vertices of Kn[C4] in the following way: For
k ∈ Z≥0, define f : V (Kn[C4]) → {1, 2, . . . , 2n, 2n + 1 + k, 2n + 2 + k, . . . ,
4n− 1 + k, 4n+ k} such that

f(xj
i ) =


i for 1 ≤ i ≤ n and j = 0,

2n+ 1− i for 1 ≤ i ≤ n and j = 1,

4n+ 1− i+ k for 1 ≤ i ≤ n and j = 2,

2n+ i+ k for 1 ≤ i ≤ n and j = 3.

Under this labeling we get l(x0
i ) + l(x2

i ) = l(x1
i ) + l(x3

i ) = (4n + 1 + k),
and hence Kn[C4] is S-magic with S-magic constant (2n− 1)(4n+ 1 + k).
If k = 0, we get a distance magic labeling of Kn[C4], with magic constant
(2n − 1)(4n + 1), which is the smallest S-magic constant. Also, from the
first part of the proof, it follows that (2n − 1) should divide any S-magic
constant. Therefore

M(Kn[C4]) = {(2n− 1)(4n+ 1 + k) : k ∈ Z≥0}.

Let V (K(n,r)) = {x1k, x2k, . . . , xnk : 1 ≤ k ≤ r}. Let C4 = v0v1v2v3v0 be

the cycle on four vertices. For 0 ≤ j ≤ 3, let xj
1k, x

j
1k,. . .,x

j
nk denote vertices

of K(n,r)[C4] that correspond with x1k, x2k, . . . , xnk in K(n,r), respectively,
for 1 ≤ k ≤ r.
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Theorem 2.4. For n ≥ 2 and r ≥ 2, a bijection l is an S-magic labeling
of K(n,r)[C4] if and only if l(x0

i,h) + l(x2
i,h) = l(x1

i,h) + l(x3
i,h) = a, for all

1 ≤ i ≤ n and 1 ≤ h ≤ r and for some constant a. Also M(K(n,r)[C4]) ={
(2n(r − 1) + 1)(4rn+ 1 + k) : k ∈ Z≥0

}
.

Proof. Suppose K(n,r)[C4] has an S-magic labeling l with S-magic constant
µ. Then since

µ = w(x0
i,p) =

∑
1≤h≤r,
h̸=p

n∑
k=1

3∑
j=0

l(xj
k,h) +

(
l(x1

i,p) + l(x3
i,p)

)
,

µ = w(x1
i,p) =

∑
1≤h≤r,
h̸=p

n∑
k=1

3∑
j=0

l(xj
k,h) +

(
l(x0

i,p) + l(x2
i,p)

)
,

we have l(x1
i,p) + l(x3

i,p) = l(x0
i,p) + l(x2

i,p) = ai,p, for all 1 ≤ i ≤ n and
1 ≤ p ≤ r. Also,

w(x0
i,p) =

∑
1≤h≤r,
h ̸=p

n∑
k=1

2ak,h + ai,p = w(x0
j,p) =

∑
1≤h≤r,
h̸=p

n∑
k=1

2ak,h + aj,p

implies ai,p = aj,p = ap, for all 1 ≤ i, j ≤ n. Now as

w(x0
i,p) =

∑
1≤h≤r,
h̸=p

2nah + ap = w(x0
i,m) =

∑
1≤h≤r,
h̸=m

2nah + am,

we have 2nam + ap = 2nap + am; hence, am = ap = a, for all 1 ≤ m, p ≤ n.

Conversely, suppose l is a labeling with l(x0
i,k)+ l(x2

i,k) = l(x1
i,k)+ l(x3

i,k) =
a, for all 1 ≤ i ≤ n and 1 ≤ k ≤ r and for some constant a. Then for any
vertex xj

i,p in K(n,r)[C4] we have

w(xj
i,p) =

∑
1≤h≤r,
h̸=p

n∑
k=1

3∑
m=0

l(xm
k,h) +

(
l(xj−1

i,p ) + l(xj+1
i,p )

)
= (2n(r − 1) + 1)a,

where j − 1 and j + 1 are taken modulo 4. Hence K(n,r)[C4] is S-magic
with S-magic constant (2n(r − 1) + 1)a.

To find M(K(n,r)[C4]), label vertices of K(n,r)[C4] in the following way: For
k ∈ Z≥0, define f : V (K(n,r)[C4]) → {1, 2, 3, . . . , 2rn − 1, 2rn, 2rn + 1 + k,
2rn+ 2 + k, . . . , 4rn− 1 + k, 4rn+ k} such that
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f(xh
i,j) =


i+ (j − 1)n for 1 ≤ i ≤ n, 1 ≤ j ≤ r, h = 0,

2rn+ 1− i− (j − 1)n for 1 ≤ i ≤ n, 1 ≤ j ≤ r, h = 1,

4rn+ 1− i− (j − 1)n+ k for 1 ≤ i ≤ n, 1 ≤ j ≤ r, h = 2,

2rn+ i+ (j − 1)n+ k for 1 ≤ i ≤ n, 1 ≤ j ≤ r, h = 3.

Under this labeling we get l(x0
i,h)+ l(x2

i,h) = l(x1
i,h)+ l(x3

i,h) = (4rn+1+k)
for all 1 ≤ i ≤ n and 1 ≤ h ≤ r, and hence K(n,r)[C4] is S-magic with
S-magic constant (2n(r − 1) + 1)(4rn+ 1 + k). If k = 0, we get a distance
magic labeling of K(n,r)[C4] with magic constant (2n(r − 1) + 1)(4rn+ 1),
which is the smallest S-magic constant. Also, from the first part of the
proof, it follows that (2n(r − 1) + 1) should divide any S-magic constant.
Therefore

M(K(n,r)[C4]) =
{
(2n(r − 1) + 1)(4rn+ 1 + k) : k ∈ Z≥0

}
We denote by Ct

3, the graph obtained by taking t copies of the cycle C3

and joining them by selecting one vertex from every cycle and identifying
the selected vertices. Let V (Ct

3) = {x, yi, zi : 0 ≤ i ≤ t − 1} where x is
the central vertex. Let C4 = v0v1v2v3v0 be the cycle on four vertices. For
0 ≤ i ≤ t − 1 and 0 ≤ j ≤ 3, let yji and zji be the vertices of Ct

3[C4] that
correspond with vertices yi and zi in Ct

3 and let xj , for 0 ≤ j ≤ 3, be the
vertices of Ct

3[C4] that correspond with vertex x in Ct
3.

Theorem 2.5. For t > 1, a bijection l is an S-magic labeling of Ct
3[C4] if

and only if the following conditions hold:

(1) l(x0) + l(x2) = l(x1) + l(x3) = b, for some constant b.

(2) l(y0i ) + l(y2i ) = l(y1i ) + l(y3i ) = l(z0i ) + l(z2i ) = l(z1i ) + l(z3i ) = a, for
some constant a.

(3) b = (4t− 3)a.

Also M(Ct
3[C4]) =

{
(8t− 3)(8t+ 1 + k) : k ∈ Z≥0

}
.

Proof. Suppose Ct
3[C4] has an S-magic labeling l with S-magic constant µ.

Then

µ = w(x1) =

t−1∑
i=0

3∑
j=0

(
l(yji ) + l(zji )

)
+ l(x0) + l(x2),

µ = w(x2) =

t−1∑
i=0

3∑
j=0

(
l(yji ) + l(zji )

)
+ l(x1) + l(x3)
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implies l(x0) + l(x2) = l(x1) + l(x3) = b, for some constant b.

Now for 0 ≤ k ≤ t− 1, since

µ = w(y1k) =

3∑
j=0

(
l(xj) + l(zjk)

)
+ l(y0k) + l(y2k),

µ = w(y2k) =

3∑
j=0

(
l(xj) + l(zjk)

)
+ l(y1k) + l(y3k),

we get l(y0k) + l(y2k) = l(y1k) + l(y3k) = aky , for some constant aky . Similarly,

we get l(z0k) + l(z2k) = l(z1k) + l(z3k) = akz , for some constant akz .

Since aiy+2aiz+2b = w(yji ) = aiz+2aiy+2b = w(zji ), we obtain aiy = aiz = ai.

Now for any 0 ≤ i, l ≤ t− 1 and 0 ≤ j, h ≤ 3, we have 3ai + 2b = w(zji ) =
w(zhl ) = 3al +2b; hence, ai = al = a. Also since 3a+2b = b+4ta, we have
b = (4t− 3)a.

Conversely, suppose l is a labeling such that conditions (1), (2), and (3)
hold. Then for 0 ≤ j ≤ 3 and 0 ≤ i ≤ t − 1, we have w(xj) = 4ta + b =
4ta+(4t−3)a = (8t−3)a and w(yji ) = w(zji ) = 2b+3a = 2(4t−3)a+3a =
(8t− 3)a. Therefore Ct

3[C4] is S-magic with S-magic constant (8t− 3)a for
some constant a.

To determine M(Ct
3[C4]), for k ∈ Z≥0, define a labeling f for V (Ct

3[C4]) to
the set{

1, 2, . . . , 4t− 1, 4t, 4t+ 1 + k, 4t+ 2 + k, . . . , 8t− 1 + k, 8t+ k,⌊
(4t−3)(8t+1+k)

2

⌋
− 2,

⌊
(4t−3)(8t+1+k)

2

⌋
− 1,⌈

(4t−3)(8t+1+k)
2

⌉
+ 1,

⌈
(4t−3)(8t+1+k)

2

⌉
+ 2

}
such that

f(yj
i ) =


i+ 1 for j = 0,

2t+ i+ 1 for j = 1,

8t− i+ k for j = 2,

6t− i+ k for j = 3,

f(zji ) =

{
f(yj

i ) + t for j = 0, 1,

f(yj
i )− t for j = 2, 3,

f(xj) =



⌊
(4t−3)(8t+1+k)

2

⌋
− 2 for j = 0,⌊

(4t−3)(8t+1+k)
2

⌋
− 1 for j = 1,⌈

(4t−3)(8t+1+k)
2

⌉
+ 2 for j = 2,⌈

(4t−3)(8t+1+k)
2

⌉
+ 1 for j = 3.
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Under this labeling f(x0)+f(x2) = f(x1)+f(x3) = (4t−3)(8t+1+k) and
f(y0i )+f(y2i ) = f(y1i )+f(y3i ) = f(z0i )+f(z2i ) = f(z1i )+f(z3i ) = (8t+1+k)
and hence Ct

3[C4] is S-magic with S-magic constant (8t − 3)(8t + 1 + k).
If k = 0 we get the smallest S-magic constant. Also, from the first part of
the proof, it follows that (8t− 3) divides any S-magic constant. Therefore

M(Ct
3[C4]) =

{
(8t− 3)(8t+ 1 + k) : k ∈ Z≥0

}
.

2.2 Direct products of graphs

M. Anholcer et al. [8] proved that, for any r-regular graph G on n-vertices,
G× C4 is distance magic.

Let V (Kn) = {x1, x2, . . . , xn}. Let C4 = v0v1v2v3v0 be the cycle on four

vertices. Let xj
i , with 0 ≤ j ≤ 3 and 1 ≤ i ≤ n, be the vertices of Kn × C4

that correspond with vertices xi in Kn.

Theorem 2.6. For n ≥ 1, a bijection l is an S-magic labeling of Kn × C4 if
and only if l(x0

i ) + l(x2
i ) = l(x1

i ) + l(x3
i ) = a, for all 1 ≤ i ≤ n and for some

constant a. Also M(Kn × C4) =
{
(n− 1)(4n+ 1 + k) : k ∈ Z≥0

}
.

Proof. Suppose Kn × C4 has an S-magic labeling l with S-magic constant
µ. Since

w(x0
i ) =

∑
1≤h≤n,

h̸=i

(
l(x1

h) + l(x3
h)
)
= w(x0

p) =
∑

1≤h≤n,
h ̸=p

(
l(x1

h) + l(x3
h)
)
,

we have l(x1
p) + l(x3

p) = l(x1
i ) + l(x3

i ) = a, for all 1 ≤ p, i ≤ n and for some
constant a. Analogously, we have, l(x0

p) + l(x2
p) = l(x0

i ) + l(x2
i ) = b, for all

1 ≤ p, i ≤ n and for some constant b. Now since µ = w(x0
i ) = a(n− 1) and

µ = w(x1
i ) = b(n− 1), we have a = b.

Conversely, suppose l is a labeling such that l(x0
i )+l(x2

i ) = l(x1
i )+l(x3

i ) = a,

for all 1 ≤ i ≤ n and for some constant a. Then for any vertex xj
i inKn×C4,

we have

w(xj
i ) =

∑
1≤h≤n,

h̸=i

(
l(xj−1

h ) + l(xj+1
h )

)
= (n− 1)a,

where j − 1 and j + 1 are taken modulo 4. Therefore Kn × C4 is S-magic
with S-magic constant (n− 1)a, for some constant a.
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To find M(Kn × C4), label vertices of Kn × C4 in the following way: For
k ∈ Z≥0, define f : V (Kn×C4) → {1, 2, 3, . . . , 2n−1, 2n, 2n+1+k, 2n+2+k,
. . . , 4n− 1 + k, 4n+ k} such that

f(xj
i ) =


i for 1 ≤ i ≤ n and j = 0,

2n+ 1− i for 1 ≤ i ≤ n and j = 1,

4n+ 1− i+ k for 1 ≤ i ≤ n and j = 2,

2n+ i+ k for 1 ≤ i ≤ n and j = 3.

Under this labeling we get l(x0
i ) + l(x2

i ) = l(x1
i ) + l(x3

i ) = (4n + 1 + k)
and hence Kn ×C4 is S-magic with S-magic constant (n− 1)(4n+ 1+ k).
If k = 0, we get a distance magic labeling of Kn[C4] with magic constant
(n − 1)(4n + 1), which is the smallest S-magic constant. Also, from the
first part of the proof, it follows that (n − 1) should divide any S-magic
constant. Therefore

M(Kn × C4) =
{
(n− 1)(4n+ 1 + k) : k ∈ Z≥0

}
Let V (K(n,r)) = {x1k, x2k, . . . , xnk : 1 ≤ k ≤ r}. Let C4 = v0v1v2v3v0 be

the cycle on four vertices. For 0 ≤ j ≤ 3, let xj
1k, x

j
1k,. . .,x

j
nk denote vertices

of K(n,r)×C4 that correspond with x1k, x2k, . . . , xnk in K(n,r), respectively,
for 1 ≤ k ≤ r.

Theorem 2.7. For n ≥ 2 and r ≥ 2, a bijection l is an S-magic labeling of
K(n,r)×C4 if and only if

∑n
k=1

(
l(x1

k,p)+l(x3
k,p)

)
=

∑n
k=1

(
l(x0

k,p)+l(x2
k,p)

)
=

a, for all 1 ≤ p ≤ n and for some constant a.

Proof. Suppose the graph K(n,r) × C4 admits an S-magic labeling l with
S-magic constant µ. Since

µ = w(x1
i,p) =

∑
1≤h≤r,
h̸=p

n∑
k=1

(
l(x0

k,h) + l(x2
k,h)

)
,

µ = w(x1
i,s) =

∑
1≤h≤r,
h̸=s

n∑
k=1

(
l(x0

k,h) + l(x2
k,h)

)
,

we have

n∑
k=1

(
l(x0

k,p) + l(x2
k,p)

)
=

n∑
k=1

(
l(x0

k,s) + l(x2
k,s)

)
= a,
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for all 1 ≤ p, s ≤ r and for some constant a. Analogously we have

n∑
k=1

(
l(x1

k,p) + l(x3
k,p)

)
=

n∑
k=1

(
l(x1

k,s) + l(x3
k,s)

)
= b,

for all 1 ≤ p, s ≤ r and for some constant b. Also now, since µ = w(x1
i,p) =

(r − 1)a and µ = w(x2
i,p) = (r − 1)b, we get a = b.

Conversely, suppose l is a labeling such that

n∑
k=1

(
l(x1

k,p) + l(x3
k,p)

)
=

n∑
k=1

(
l(x0

k,p) + l(x2
k,p)

)
= a,

for any 1 ≤ p ≤ r and for some constant a. Then, for any vertex xj
i,p in

K(n,r) × C4, we have

w(xj
i,p) =

∑
1≤h≤r,h ̸=p

n∑
k=1

(
l(xj−1

k,h ) + l(xj+1
k,h )

)
= (r − 1)a,

where, j − 1 and j + 1 are taken modulo 4. Hence K(n,r) × C4 is S-magic
with S-magic constant (r − 1)a, for some constant a.

Unfortunately, we are not able to find M(K(n,r) ×C4). Therefore, we pose
the following problem.

Problem 2.8. For n ≥ 2 and r ≥ 2, determine M(K(n,r) × C4).

Let V (Ct
3) = {x, yi, zi : 0 ≤ i ≤ t − 1} where x is the central vertex. Let

C4 = v0v1v2v3v0 be the cycle on four vertices. For 0 ≤ i ≤ t − 1 and
0 ≤ j ≤ 3, let yji ,z

j
i be the vertices of Ct

3×C4 that correspond with vertices
yi and zi in Ct

3 and xj for 0 ≤ j ≤ 3 be the vertices of Ct
3 × C4 that

correspond with vertex x in Ct
3

Theorem 2.9. For t > 1, a bijection l is an S-magic labeling of Ct
3 × C4 if

and only if the following conditions hold:

1. l(x0) + l(x2) = l(x1) + l(x3) = s, for some constant s.

2. l(y0i ) + l(y2i ) = l(y1i ) + l(y3i ) = l(z0i ) + l(z2i ) = l(z1i ) + l(z3i ) = a, for
some constant a.

3. s = (2t− 1)a.

Also M((Ct
3 × C4) =

{
(2t)(8t+ 1 + k) : k ∈ Z≥0

}
.
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Proof. Suppose Ct
3 × C4 has an S-magic labeling l.

Let l(x0)+l(x2) = s1, l(x
1)+l(x3) = s2, l(y

0
i )+l(y2i ) = a1i , l(y

1
i )+l(y3i ) = a2i ,

l(z0i ) + l(z2i ) = b1i ,l(z
1
i ) + l(z3i ) = b2i for 0 ≤ i ≤ t− 1.

Since a1i + s1 = w(z1i ) = w(y1i ) = b1i + s1 and a2i + s2 = w(z2i ) = w(y2i ) =
b2i + s2, we have a1i = b1i and a2i = b2i . Also, for i ̸= j, as w(z1i ) = w(z1j ),

we have a1i = a1j . Similarly, for i ̸= j, as w(y1i ) = w(y1j ), we have b1i = b1j .

Therefore, we can assume a1i = b1i = a1 for all 0 ≤ i ≤ t − 1 and for some
constant a1. Similarly, we can show a2i = b2i = a2 for all 0 ≤ i ≤ t− 1 and
for some constant a2. Furthermore w(x0) = 2ta2 = w(x1) = 2ta1, we have
a1 = a2 = a and hence s1 = s2 = s.

Therefore we have l(x0) + l(x2) = l(x1) + l(x3) = s and l(y0i ) + l(y2i ) =
l(y1i ) + l(y3i ) = l(z0i ) + l(z2i ) = l(z1i ) + l(z3i ) = a.

Also as, w(xj) = 2ta = w(zji ) = a+ s, we have s = (2t− 1)a.

Conversely, suppose l is a labeling such that conditions (1),(2), and (3)
hold.

Then for 0 ≤ j ≤ 3 and 0 ≤ i ≤ t − 1 we have w(xj) = 2ta and w(yji ) =

w(zji ) = a + s = a + (2t − 1)a = 2ta. Therefore Ct
3 × C4 is S-magic with

S-magic constant 2ta for some constant a.

To determine M(Ct
3 × C4) define a labeling f for V (Ct

3 × C4) to the set{
1, 2, . . . , 4t− 1, 4t, 4t+ 1 + k, 4t+ 2 + k, . . . , 8t− 1 + k, 8t+ k,⌊

(2t−1)(8t+1+k)
2

⌋
− 2,

⌊
(2t−1)(8t+1+k)

2

⌋
− 1,⌈

(2t−1)(8t+1+k)
2

⌉
+ 1,

⌈
(2t−1)(8t+1+k)

2

⌉
+ 2

}
such that

f(yj
i ) =


i+ 1 for j = 0,

2t+ 1 + i for j = 1,

8t− i+ k for j = 2,

6t− i+ k for j = 3,

f(zji ) =

{
f(yj

i ) + t for j = 0, 1,

f(yj
i )− t for j = 2, 3,

f(xj) =



⌊
(2t−1)(8t+1+k)

2

⌋
− 2 for j = 0,⌊

(2t−1)(8t+1+k)
2

⌋
− 1 for j = 1,⌈

(2t−1)(8t+1+k)
2

⌉
+ 2 for j = 2,⌈

(2t−1)(8t+1+k)
2

⌉
+ 1 for j = 3.
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Under this labeling f(x0)+f(x2) = f(x1)+f(x3) = (2t−1)(8t+1+k) and
f(y0i )+f(y2i ) = f(y1i )+f(y3i ) = f(z0i )+f(z2i ) = f(z1i )+f(z3i ) = (8t+1+k),
and hence Ct

3[C4] is S-magic with S-magic constant (2t)(8t+1+k). If k = 0,
we get the smallest S-magic constant. Also, from the first part of the proof,
it follows that 2t divides any S-magic constant. Therefore

M(Ct
3 × C4) =

{
(2t)(8t+ 1 + k) : k ∈ Z≥0

}
.

2.3 Cartesian products of graphs

Let V (Kn) = {x1, x2, . . . , xn}. Let C4 = v0v1v2v3v0 be the cycle on four

vertices. Let xj
i , with 0 ≤ j ≤ 3 and 1 ≤ i ≤ n, be the vertices of Kn□C4

that correspond with vertices xi in Kn.

Theorem 2.10. For n ≥ 1, the graph Kn□C4 is not S-magic.

Proof. Suppose Kn□C4 is S-magic with labeling l and S-magic constant
µ. Let l(x0

i )+ l(x2
i ) = ai02 and l(x1

i )+ l(x3
i ) = ai13, for any 1 ≤ i ≤ n. Since

µ = w(x0
i ) =

∑
1≤k≤n,

k ̸=i

l(x0
k) + ai13,

we have
0 = w(x0

i )− w(x0
h) = l(x0

h)− l(x0
i ) + ai13 − ah13.

Analogously, we have

0 = w(x2
i )− w(x2

h) = l(x2
h)− l(x2

i ) + ai13 − ah13.

Therefore we get
l(x0

h)− l(x2
h) = l(x0

i )− l(x2
i ),

for any 1 ≤ i, h ≤ n; hence, l(x0
i ) = k + l(x2

i ) for some constant k and for
any 1 ≤ i ≤ n. On the other hand, we have

µ = w(x2
i ) =

∑
1≤p≤n,

p ̸=i

l(x2
p) + ai13,

µ = w(x0
i ) =

∑
1≤p≤n,

p ̸=i

l(x0
p) + ai13 =

∑
1≤p≤n,

p ̸=i

(k + l(x2
p)) + ai13,

which implies k = 0; hence, l(x0
i ) = l(x2

i ), a contradiction.
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Note that K(2,2)
∼= C4, and we shall now prove that C4□C4 is not S- magic.

Let C4 = v0v1v2v3v0 be the cycle on four vertices and let

V (C4□C4) = {vi,j : 0 ≤ i ≤ 3 and 0 ≤ j ≤ 3}.

Lemma 2.11. The Cartesian product C4□C4 is not S-magic.

Proof. Suppose C4□C4 is S-magic with S-magic labeling l and S-magic
constant µ. Then w(v0,1) = l(v0,0)+ l(v1,1)+ l(v3,1)+ l(v0,2) and w(v3,2) =
l(v2,2) + l(v3,1) + l(v3,3) + l(v0,2), which implies that

l(v0,0) + l(v1,1) = l(v2,2) + l(v3,3). (1)

Similarly, since w(v2,1) = l(v2,2) + l(v2,0) + l(v1,1) + l(v3,1) and w(v3,0) =
l(v0,0) + l(v2,0) + l(v3,1) + l(v3,3), we have

l(v1,1) + l(v2,2) = l(v0,0) + l(v3,3). (2)

Subtracting (2) from (1) we get

l(v0,0)− l(v2,2) = l(v2,2)− l(v0,0)

2l(v0,0) = 2l(v2,2)

l(v0,0) = l(v2,2).

This is a contradiction; hence, C4□C4 is not S-magic.

Let V (K(2,r)) = {v1k, v2k : 1 ≤ k ≤ r}. Let C4 = v0v1v2v3v0 be the cycle

on four vertices. For 0 ≤ j ≤ 3, let vj1,k and vj2,k denote vertices of H that
correspond with vertices v1,k and v2,k in K(2,r), respectively.

Lemma 2.12. For r ≥ 3, the graph K(2,r)□C4 is not S-magic.

Proof. Suppose K(2,r)□C4 is S-magic with S-magic labeling l and S-magic
constant µ. Since

µ = w(v11,j) =
∑

1≤p≤r,
p ̸=j

(
l(v11,p) + l(v12,p)

)
+ l(v01,j) + l(v21,j),

µ = w(v12,j) =
∑

1≤p≤r,
p ̸=j

(
l(v11,p) + l(v12,p)

)
+ l(v02,j) + l(v22,j),
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we have
l(v01,j) + l(v21,j) = l(v02,j) + l(v22,j). (3)

Also, as w(v01,j) = w(v21,j), we get, for 1 ≤ j ≤ r,∑
1≤p≤r,
p ̸=j

(
l(v01,p) + l(v02,p)

)
=

∑
1≤p≤r,
p ̸=j

(
l(v21,p) + l(v22,p)

)
. (4)

Hence,

(r − 1)

r∑
j=1

(
l(v01,j) + l(v02,j)

)
= (r − 1)

r∑
j=1

(
l(v21,j) + l(v22,j)

)
implying

r∑
j=1

(
l(v01,j) + l(v02,j)

)
=

r∑
j=1

(
l(v21,j) + l(v22,j)

)
. (5)

Subtracting equation (4) from equation (5), we get, l(v01,j) + l(v02,j) =

l(v21,j) + l(v22,j), which together with equality (3) implies that l(v21,j) =

l(v02,j), contradicting the fact that l is a bijection.

Theorem 2.13. For r ≥ 2, the graph K(2,r)□C4 is not S-magic.

Proof. The proof follows from Lemmas 2.11 and 2.12.

Let V (K(n,r)) = {x1k, x2k, . . . , xnk : 1 ≤ k ≤ r}. Let C4 = v0v1v2v3v0 be

the cycle on four vertices. For 0 ≤ j ≤ 3, let xj
1k, x

j
2k,. . .,x

j
nk denote ver-

tices of K(n,r)□C4 that correspond with vertices x1k, x2k, . . . , xnk in K(n,r),
respectively, for 1 ≤ k ≤ r.

Theorem 2.14. For r ≥ 2 and n ≥ 3, a bijection l is an S-magic labeling
of K(n,r)□C4 if and only if l(x1

i,j) + l(x3
i,j) = l(x0

i,j) + l(x2
i,j) = a, for any

1 ≤ i ≤ n and 1 ≤ j ≤ r and for some constant a. Also for n even,

M(K(n,r)□C4) =
{

(n(r−1)+2)(4nr+1+k)
2 : k ∈ Z≥0

}
.

Proof. Suppose K(n,r)□C4 is S-magic with labeling l and S-magic constant

µ. Since w(x0
i,j) = w(x0

k,j), we have

∑
1≤p≤r,
p̸=j

n∑
h=1

l(x0
h,p) +

(
l(x1

i,j) + l(x3
i,j)

)
=

∑
1≤p≤r,
p ̸=j

n∑
h=1

l(x0
h,p) +

(
l(x1

k,j) + l(x3
k,j)

)
;
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hence, l(x1
i,j) + l(x3

i,j) = l(x1
k,j) + l(x3

k,j), for any 1 ≤ i ≤ n and 1 ≤ j ≤ r.

Similarly, l(x0
i,j)+l(x2

i,j) = l(x0
k,j)+l(x2

k,j), for any 1 ≤ i ≤ n and 1 ≤ j ≤ r.

So let l(x1
i,j) + l(x3

i,j) = aj1,3 and l(x0
i,j) + l(x2

i,j) = aj0,2, for any 1 ≤ i ≤ n
and 1 ≤ j ≤ r. Then

µ = w(x0
i,j) =

∑
1≤p≤r,
p ̸=j

n∑
h=1

l(x0
h,p) + aj1,3.

For 1 ≤ j, h ≤ r and 1 ≤ i ≤ n, we have

2µ = w(x0
i,h) + w(x2

i,h) = n
∑

1≤p≤r,
p ̸=h

ap0,2 + 2ah1,3, (6)

2µ = w(x0
i,j) + w(x2

i,j) = n
∑

1≤p≤r,
p ̸=j

ap0,2 + 2aj1,3. (7)

Subtracting (6) from (7) we get n(aj0,2 − ah0,2) = 2(aj1,3 − ah1,3), for any 1 ≤
j, h ≤ r. Analogously, 2(aj0,2 − ah0,2) = n(aj1,3 − ah1,3), for any 1 ≤ j, h ≤ r.

Therefore, for any 1 ≤ j, h ≤ r, we have (n − 2)(aj0,2 − ah0,2) = −(n −
2)(aj1,3 − ah1,3). Since n ̸= 2, we have aj0,2 + aj1,3 = a, for any 1 ≤ j ≤ r and

for some constant a. If aj0,2 = a
2 − cj for any 1 ≤ j ≤ r and some constants

cj , then aj1,3 = a
2 + cj . Then we get

∑n
i=1

(
l(x0

i,j)+ l(x2
i,j)

)
= n

(
a
2 − cj

)
and∑n

i=1

(
l(x1

i,j) + l(x3
i,j)

)
= n

(
a
2 + cj

)
, for any 1 ≤ j ≤ r.

Now for any 1 ≤ j ≤ r and 1 ≤ i ≤ n, we have

2µ = w(x0
i,j) + w(x2

i,j) = n
∑

1≤p≤r,
p ̸=j

(
a
2 + cp

)
+ 2

(
a
2 − cj

)
, (8)

2µ = w(x0
i,h) + w(x2

i,h) = n
∑

1≤p≤r,
p ̸=h

(
a
2 + cp

)
+ 2

(
a
2 − ch

)
. (9)

Subtracting (8) from (9), we obtain (n + 2)ch = (n + 2)cj , for any 1 ≤
j, h ≤ r. Hence cj = c for any 1 ≤ j ≤ r. So now if aj0,2 = a

2 − c for

any 1 ≤ j ≤ r and some constants c, then aj1,3 = a
2 + c. Then we get∑n

i=1

(
l(x0

i,j) + l(x2
i,j)

)
= n

(
a
2 − c

)
and

∑n
i=1

(
l(x1

i,j) + l(x3
i,j)

)
= n

(
a
2 + c

)
,

for any 1 ≤ j ≤ r.

Now for any 1 ≤ j ≤ r and 1 ≤ i ≤ n, we have

2µ = w(x0
i,j) + w(x2

i,j) = n(r − 1)
(
a
2 + c

)
+ 2

(
a
2 − c

)
, (10)

2µ = w(x1
i,j) + w(x3

i,j) = n(r − 1)
(
a
2 − c

)
+ 2

(
a
2 + c

)
. (11)
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Subtracting (10) from (11), we get (2−n(r−1))c = 0, and since n ≥ 3 and
r ≥ 2, we get c = 0. Hence aj0,2 = a

2 and aj1,3 = a
2 , that is, l(x

1
i,j)+ l(x3

i,j) =

l(x0
i,j) + l(x2

i,j) for any 1 ≤ i ≤ n and 1 ≤ j ≤ r.

Conversely, suppose l(x1
i,j)+ l(x3

i,j) = l(x0
i,j)+ l(x2

i,j) = a, for any 1 ≤ i ≤ n
and 1 ≤ j ≤ r and for some constant a. Then since

w(xm
i,j) =

∑
1≤p≤r,
p ̸=j

n∑
h=1

l(xm
h,p) + a

for any 0 ≤ m ≤ 3 and 1 ≤ i ≤ n and 1 ≤ j ≤ r, it is easy to check that∑n
i=1 l(x

m
i,j) =

na
2 , for any 0 ≤ m ≤ 3 and 1 ≤ j ≤ r. Now for any vertex

xm
i,j in K(n, r)□C4 we have

w(xm
i,j) =

∑
1≤p≤r,
p ̸=j

n∑
h=1

l(xm
h,p) +

(
l(xm−1

i,j ) + l(xm+1
i,j )

)
= na(r−1)

2 + a = (n(r−1)+2)
2 a,

where both m− 1 and m+ 1 are taken modulo 4. Therefore K(n,r)□C4 is

S-magic with S-magic constant (n(r−1)+2)a
2 for some constant a.

If n is even, then there exists a magic rectangle set MRS (2, n; 2r) by The-
orem 1.11. Denote by al1,j and al2,j the entries in the first and second row,

respectively, of the j th column of the l th rectangle, where 1 ≤ j ≤ n and
1 ≤ l ≤ 2r. Such a rectangle has constant column sum equal to (4nr + 1).
For k ∈ Z≥0 and 1 ≤ i ≤ n and 1 ≤ j ≤ r, label the vertices

l(x0
i,j) =

{
aj1,i + k if j odd,

aj1,i if j even,
l(x2

i,j) =

{
aj2,i if j odd,

aj2,i + k if j even,

l(x1
i,j) =

{
aj+r
1,i + k if j odd,

aj+r
1,i if j even,

l(x3
i,j) =

{
aj+r
2,i if j odd,

aj+r
2,i + k if j even.

Under this labeling l(x1
i,j) + l(x3

i,j) = l(x0
i,j) + l(x2

i,j) = (4nr + 1 + k).
Hence the labeling is an S-magic labeling for K(n,r)□C4 with S-magic con-

stant (n(r−1)+2)(4nr+1+k)
2 . If k = 0, we get a distance magic labeling for

K(n,r)□C4, which is the smallest S-magic labeling. Also, from the first part

of the proof, it follows that (n(r−1)+2)
2 should divide any S-magic constant

of K(n,r)□C4. Hence, for n even, M(K(n,r)□C4) =
{ (n(r−1)+2)(4nr+1+k)

2 :

k ∈ Z≥0

}
.
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For n odd, by Theorem 1.12, such a magic rectangle set does not exist,
and finding M(K(n,r)□C4) is not easy. Hence, we state the following prob-
lem.

Problem 2.15. For r ≥ 2 and n ≥ 3 odd, determine M(K(n,r)□C4).

Let V (Ct
3) = {x, yi, zi : 0 ≤ i ≤ t − 1} where x is the central vertex.

Let C4 = v0v1v2v3v0 be the cycle on four vertices. For 0 ≤ i ≤ t − 1
and 0 ≤ j ≤ 3, let yji and zji be the vertices of Ct

3□C4 that correspond,

respectively, with vertices yi and zi in Ct
3 and let xj , for 0 ≤ j ≤ 3, be the

vertices of Ct
3□C4 that correspond with vertex x in Ct

3.

Theorem 2.16. For t > 1, the graph Ct
3□C4 is not S-magic.

Proof. Suppose Ct
3□C4 is S-magic with S-magic labeling l and S-magic

constant µ. Then, we have

µ = w(x1) = l(x0) + l(x2) +
∑t

i=1

[
l(y1i ) + l(z1i )

]
,

µ = w(x3) = l(x0) + l(x2) +
∑t

i=1

[
l(y3i ) + l(z3i )

]
.

Hence we have,

t∑
i=1

[
l(y1i ) + l(z1i )

]
=

t∑
i=1

[
l(y3i ) + l(z3i )

]
. (12)

Now since w(y1i ) = l(y0i ) + l(y2i ) + l(x1) + l(z1i ) = w(y3i ) = l(y0i ) + l(y2i ) +
l(x3) + l(z3i ), we have, for 1 ≤ i ≤ t,

l(x1) + l(z1i ) = l(x3) + l(z3i ). (13)

Also since w(z1i ) = l(z0i ) + l(z2i ) + l(x1) + l(y1i ) = w(z3i ) = l(z0i ) + l(z2i ) +
l(x3) + l(y3i ), we have, for 1 ≤ i ≤ t,

l(x1) + l(y1i ) = l(x3) + l(y3i ). (14)

Adding all t terms of (13) and (14), we get

2t× l(x1) +

t∑
i=1

[
l(z1i ) + l(y1i )

]
= 2t× l(x3) +

t∑
i=1

[
l(z3i ) + l(y3i )

]
.

Using (12), we get 2t × l(x1) = 2t × l(x3), and this leads to l(x1) = l(x3),
which is a contradiction.
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2.4 Joins and corona products of graphs

Theorem 2.17. Let G be a graph having two vertices u and v such that
|N(u) ∩N(v)| = d(u)− 1 = d(v)− 1. Then for any graph H, we have that
G+H is not S-magic.

Proof. Since |N(u) ∩N(v)| = d(u)− 1 = d(v)− 1, there exist vertices x, y
in G such that x ∈ N(u) but x /∈ N(v) and y ∈ N(v) but y /∈ N(u).
Now in G + H, the vertices u and v will have the same neighbors in G,
but in addition, all vertices of H will be adjacent to u and v. Therefore
|N(u)△N(v)| = 2, and by Theorem 1.2, G+H is not S-magic.

Observation 2.18. Based on the above theorem, we make the following ob-
servations:

1. For any graph G and n ̸= 4, the join G+ Cn is not S-magic.

2. For any graph G and n ̸= 1, 3, the join G+ Pn is not S-magic.

3. For any graph G and n ̸= 1, the join G+Kn is not S-magic.

4. For any graph G and t ≥ 1, the join G+ Ct
3 is not S-magic.

For any two graphs G and H, we denote by NG(x) the vertices adjacent to
x in G in the join of G+H.

Theorem 2.19. Let G be a graph with V (G) = {x1, x2, . . . , xn}. Let C4 =
v0v1v2v3v0 be the cycle on four vertices. A bijection l is an S-magic labeling
of G+ C4 if and only if the following conditions hold:

(1)
∑

x∈V (G) l(x) −
∑

y∈NG(p) l(y) = a, for all p ∈ V (G) and for some
constant a.

(2) l(v0) + l(v2) = l(v1) + l(v3) = b, for some constant b.

(3) a = b.

Proof. For any xi, xj ∈ V (G), with 1 ≤ i, j ≤ n, since

w(xi) =
∑

y∈NG(xi)

l(y) +

3∑
k=0

l(vk) = w(xj) =
∑

y∈NG(xj)

l(y) +

3∑
k=0

l(vk),

we have, for any 1 ≤ i, j ≤ n and for some constant k,∑
y∈NG(xi)

l(y) =
∑

y∈NG(xj)

l(y) = k.
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Therefore we get, for 1 ≤ i ≤ n,∑
x∈V (G)

l(x) −
∑

y∈NG(xi)

l(y) =
∑

x∈V (G)

l(x)− k = a,

for some constant a. Also since

w(v0) =
∑

x∈V (G)

l(x) + l(v1) + l(v3), w(v1) =
∑

x∈V (G)

l(x) + l(v0) + l(v2),

we have l(v1) + l(v3) = l(v0) + l(v2) = b, for some constant b. Now since
w(xi) = w(v0), we have, for 1 ≤ i ≤ n,∑

x∈V (G)

l(x) −
∑

y∈NG(xi)

l(y) = l(v0) + l(v2) = b.

Hence, ∑
x∈V (G)

l(x)− k = a = b.

Conversely, suppose conditions (1), (2), and (3) hold. Then we have, for
any 1 ≤ i ≤ n,

w(xi) =
∑

y∈NG(xi)

l(y) +

3∑
k=0

l(vk) =
∑

x∈V (G)

l(x)− a+ 2a =
∑

x∈V (G)

l(x) + a,

w(vm) =
∑

x∈V (G)

l(x) + l(vm−1) + l(vm+1) =
∑

x∈V (G)

l(x) + a,

where m− 1 and m+1 are taken modulo 4. Hence G+C4 is S-magic with
S-magic constant

∑
x∈V (G) l(x) + a, for some constant a.

Corollary 2.20. For n ≥ 2 and r ≥ 2, a bijection l is an S-magic labeling of
the join K(n,r) + C4 if and only the following conditions hold:

(1) The sum of labels in every partite part equals the same constant a.

(2) l(v1) + l(v3) = l(v0) + l(v2) = b, for some constant b.

(3) a = b.

Theorem 2.21. Let G be any graph. Let H be a graph having two vertices
u and v such that |N(u)∩N(v)| = d(u)− 1 = d(v)− 1. Then G ◦H is not
S-magic.
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Proof. Let V (G) = {v1, v2, . . . , vn} and V (H) = {u1, u2, . . . , um}. Let
H1, H2, . . . ,Hn be n copies of H such that vi is adjacent to each vertex
of Hi, for 1 ≤ i ≤ n. Let ui

j , for 1 ≤ j ≤ m, denote vertices in Hi,
for 1 ≤ i ≤ n. Since |N(u) ∩ N(v)| = d(u) − 1 = d(v) − 1, there exist
vertices x, y in H such that x ∈ N(u) but x /∈ N(v) and y ∈ N(v) but

y /∈ N(u). Consider the i th copy of H, i.e., Hi. Let ui
j1, u

i
j2, u

i
j3, u

i
j4 be

the vertices in Hi corresponding to vertices u, v, x, y in H, respectively.
Then ui

j3 ∈ N(ui
j1) but u

i
j3 /∈ N(ui

j2) and ui
j4 ∈ N(ui

j2) but u
i
j4 /∈ N(ui

j1),

while the remaining neighbors of ui
j1 and ui

j2 are the same. Therefore

|N(ui
j1)△N(ui

j2)| = 2, and by Theorem 1.2, G ◦H is not S-magic.

Observation 2.22. Based on the above theorem, we make the following ob-
servations:

1. For any graph G and n ̸= 4, the corona product G◦Cn is not S-magic.

2. For any graph G and n ̸= 1, 3, the corona product G ◦ Pn is not
S-magic.

3. For any graph G and n ̸= 1, the corona product G◦Kn is not S-magic.

4. For any graph G and t ≥ 1, the corona product G◦Ct
3 is not S-magic.

Theorem 2.23. Let Om denote the empty graph on m vertices. Then, for
any graph G of order at least 2, the corona product G◦Om is not S-magic.

Proof. Let H = Om. Let V (G) = {v1, v2, . . . , vn} and V (H) = {u1, u2, . . . ,
um}. Let H1, H2, . . . ,Hn be n copies of H such that vi is adjacent to each
vertex of Hi, for 1 ≤ i ≤ n. Let ui

j , for 1 ≤ j ≤ m, denote vertices in Hi,

for 1 ≤ i ≤ n. Then N(ui
j) = {vi} and N(up

j ) = {vp}. Therefore, for i ̸= p,

|N(ui
j)△N(up

j )| = 2, and by Theorem 1.2, G ◦Om is not S-magic.
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