
Flattened Catalan words

Jean-Luc Baril, Pamela E. Harris, and José L. Raḿırez

Abstract. In this work, we define flattened Catalan words as Catalan words
whose runs of weak ascents have leading terms that appear in weakly in-
creasing order. We provide generating functions, formulas, and asymptotic
expressions for the number of flattened Catalan words based on the num-
ber of runs of ascents (descents), runs of weak ascents (descents), ℓ-valleys,
valleys, symmetric valleys, ℓ-peaks, peaks, and symmetric peaks.

1 Introduction

A word w = w1w2 · · ·wn over the set of nonnegative integers is called a
Catalan word if w1 = 0 and 0 ≤ wi ≤ wi−1+1 for i = 2, . . . , n. Throughout
this paper, |w| denotes the length of w, and ϵ denotes the empty word ,
which is the unique word of length zero. For n ≥ 0, let Cn denote the set
of Catalan words of length n. We set C :=

⋃
n≥0 Cn and let C+ :=

⋃
n≥1 Cn

be the set of nonempty Catalan words. For example,

C4 =

{
0000, 0001, 0010, 0011, 0012, 0100, 0101,
0110, 0111, 0112, 0120, 0121, 0122, 0123

}
.

Note that |Cn| = Cn = 1
n+1

(
2n
n

)
is the nth Catalan number. The explo-

ration of Catalan words has begun with the comprehensive generation of
Gray codes tailored for growth-constricted words [12]. Baril et al. [2, 4, 5]
have delved into analyzing the distribution of descents and the last symbol
in Catalan words avoiding one or two classical patterns of length at most
three. Similar findings [1,7,17] emerge in studies of restricted Catalan words
avoiding consecutive patterns of length three or pairs of relations. Callan
et al. [10] initiate the enumeration of statistics, including area and perime-
ter, on the polyominoes associated with Catalan words. Furthermore, as-
sorted combinatorial statistics regarding polyominoes associated with both

Key words and phrases: Catalan word; generating function; combinatorial statistic;
Dyck path; flattened words
Mathematics Subject Classifications: 05A15, 05A19
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Catalan and Motzkin terminologies have been scrutinized [6, 13–15]. Next
Shattuck [18] initiated an examination into the frequency of distinct sub-
word occurrences, spanning no more than three characters, nestled within
Catalan words, like descents, ascents, and levels. In a recent paper [3], Baril
et al. provide generating functions, formulas, and asymptotic expressions
for the number of Catalan words based on the number of runs of ascents
(descents), runs of weak ascents (descents), ℓ-valleys, valleys, symmetric
valleys, ℓ-peaks, peaks, and symmetric peaks.

Given a permutation of [n] = {1, . . . , n} in one-line notation π = π1π2 · · ·
πn, the runs of π are the maximal contiguous increasing subwords of π. If
the sequence of leading terms of the runs of π appears in increasing order,
then π is called a flattened partition of length n. Nabawanda et al. give a
recursive formula for the number of flattened partitions of length n with
k runs [16, Theorem 1]. Callan gives the number of flattened partitions of
length n avoiding a single 3-letter pattern [9]. Elder et al. extended the
work of Nabawanda et al. to establish recursive formulas for the number
of flattened parking functions built from permutations of [n], with r ad-
ditional ones inserted that have k runs [11, Theorems 29, 30 and 35]. A
further generalization includes the work of Buck et al. [8] who establish that
flattened Stirling permutations are enumerated by the Dowling numbers,
which correspond to the OEIS entry [19, A007405].

In this work, we define flattened Catalan words, which are Catalan words
whose maximal contiguous nondecreasing subwords have leading terms in
weakly increasing order. For example, the Catalan word

0012301222345523343 ∈ C19

is a flattened Catalan word with four maximal contiguous nondecreasing
subwords 00123, 012223455, 2334, and 3, whose leading terms satisfy 0 ≤
0 ≤ 2 ≤ 3. Conversely, 012321 ∈ C6 is not a flattened Catalan word as it
has maximal contiguous nondecreasing subwords 0123, 2, and 1, and the
leading terms 0, 2, and 1 are not in weakly increasing order. We denote
the sets of nonempty flattened Catalan words and flattened Catalan words
of length n as Flat(C+) and Flat(Cn), respectively.

Let w = w1w2 · · ·wn ∈ Flat(Cn). As usual, we say that w has an ascent
(descent) at position ℓ if wℓ < wℓ+1 (wℓ > wℓ+1), where ℓ ∈ [n− 1]. Simi-
larly, we define weak ascent (resp., weak descent) at position ℓ if wℓ ≤ wℓ+1

(wℓ ≥ wℓ+1), where ℓ ∈ [n − 1]. A run (resp., weak run) of ascents (resp.,
weak ascents) in a word w is a maximal subword of consecutive ascents
(resp., weak ascents). The number of runs in w is denoted by runs(w), and
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the number of weak runs in w is denoted by wruns(w). The runs of descents
and weak descents are defined similarly, and the statistics will be denoted
runs(w) and wruns(w), respectively. An ℓ-valley in a flattened Catalan word
w is a subword of the form abℓ(b+1), where a > b and ℓ is a positive integer
and bℓ denotes ℓ consecutive copies of the letter b. If ℓ = 1, we say that it is
a short valley . The number of ℓ-valleys of w is denoted by ℓ-val(w) and the
number of all ℓ-valleys for ℓ ≥ 1 of w is denoted by val(w). A symmetric
valley is a valley of the form a(a − 1)ℓa with ℓ ≥ 1. The number of sym-
metric valleys of w is denoted by symv(w). Analogously, we define the peak
statistic. Namely, an ℓ-peak in w is a subword of the form a(a+1)ℓb, where
a ≥ b and ℓ is a positive integer. The number of ℓ-peaks of w is denoted by
ℓ-peak(w) and the sum of all ℓ-peaks for ℓ ≥ 1 of w is denoted by peak(w).
If ℓ = 1, we say that it is a short peak ; and if a = b, it is called a symmetric
peak . The number of symmetric peaks of w is denoted by symp(w).

Our contributions include generating functions and combinatorial expres-
sions for the number of flattened Catalan words based on the number of
runs of ascents (descents), runs of weak ascents (descents), ℓ-valleys, val-
leys, symmetric valleys, ℓ-peaks, peaks, and symmetric peaks. We also
establish one-to-one correspondences between the following:

• flattened Catalan words of length n with k runs of ascents and k-part
order-consecutive partitions of n, which have been studied in [21], see
Theorem 3.5;

• flattened Catalan words of length n and compositions of all even nat-
ural numbers into n − 1 parts of at most two where the part 0 is
allowed, see Theorem 3.4;

• flattened Catalan words of length n with k runs of weak ascents and
binary words of length n− 1 where 2k− 2 symbols are replaced with
a dot •, see Theorem 3.11;

• flattened Catalan words of length n with k short valleys and Dyck
paths of semilength n with k occurrences of DDUU, where the height
sequence of occurrences DDU (from left to right) is nondecreasing, see
Remark 4.3;

• flattened Catalan words of length n and ordered trees with n edges
and with k + 1 nodes having only leaves as children and satisfying
two additional conditions, see Remark 4.6.

We aggregate our results and the notation used throughout in Table 1.1.
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Table 1.1: Summary of notation and results for statistics considered.

Statistics

runs of asc. runs of w. asc. runs of desc. runs of w. desc. ℓ-valleys short valleys

Statistic on w runs(w) wruns(w) runs(w) wruns(w) ℓ-val(w) 1-val(w)
Bivariate g. function R(x, y) W (x, y) R̄(x, y) W̄ (x, y) Vℓ(x, y) V1(x, y)
Distribution r(n, k) w(n, k) r̄(n, k) w̄(n, k) vℓ(n, k) v1(n, k)
Total occurrences over Flat(Cn) r(n) w(n) r̄(n) w̄(n) vℓ(n) v1(n)

valleys sym. valleys ℓ-peaks short peaks peaks sym. peaks

Statistic on w val(w) symv(w) ℓ-peak(w) 1-peak(w) peak(w) symp(w)
Bivariate g. function V (x, y) S(x, y) Pℓ(x, y) P1(x, y) P (x, y) T (x, y)
Distribution v(n, k) s(n, k) pℓ(n, k) p1(n, k) p(n, k) t(n, k)
Total occurrences over Flat(Cn) v(n) s(n) pℓ(n) p1(n) p(n) t(n)

Statistic Bivariate g. f. Total occurrences over Flat(Cn) OEIS

runs xy(1−x−xy)
1−2x+x2−2xy+x2y+x2y2

1
4

(
3n−1 + 1

)
(n+ 1)

wruns (1−2x)xy
1−4x+4x2−x2y

1
36

(
27− 9n+ (5 + n)3n

)
runs xy(1−2xy)

1−4xy−x2y+4x2y2
1
36

(
27n− 9 + (5n+ 1)3n

)
wruns yx(1−xy−x)

x2y2+x2y+x2−2 xy−2 x+1
n+1
4

(
1 + 3n−1

)
ℓ-val x(1−2x+xℓ+1−xℓ+1y)

(1−x)(1−3x+xℓ+1−xℓ+1y)
1
4

(
1− 3n−2−ℓ + 2 · 3n−2ℓ(n− 2− ℓ)

)
val x−3x2+x3(3−y)

(1−x)(1−4x+4x2−x2y)
1
36

(
3n(n− 4) + 9n

)
A212337

symv x(1−2x)(1−2x+2x2−x2y)
(1−x)(1−5x+8x2−5x3−x2y+2x3y)

1
144

(
3n(2n− 5)− 18n2 + 54n− 27

)
ℓ-peak x(1−2x)

(1−x)(1−3x+xℓ+1(1−y))
1
4

((
3n−ℓ−2(2n+ 1− 2ℓ)

)
− 1

)
peak x(1−2x)

1−4x+4x2−x2y
1
4

(
3n−2 − 1

)
(n− 1) A261064

symp x(1−x)(1−2x)
1−5x+8x2−5x3−x2y+2x3y

1
144

(
63 + 3n + 2(−45 + 3n)n+ 18n2)

)

2 Basic definitions

Throughout the article, we will use the following decomposition of Catalan
words, called first return decomposition of a Catalan word w, which is
w = 0(w′+1)w′′, where w′ and w′′ are Catalan words (w′ and w′′ could be
empty), and where (w′ + 1) is the word obtained from w′ by adding 1 at
all these symbols. Note that whenever w′ is the empty word, denoted by ϵ,
then (w′ + 1) remains the empty word.

For example, the first return decomposition of

w = 0122200122322334544 ∈ Flat(C19)

is given by setting w′ = 0111 and w′′ = 00122322334544. For this
word w, we have runs(w)= 11, wruns(w)= 4, runs(w)= 16, wruns(w)= 9,
1-val(w)= 0, 2-val(w)= 2, ℓ-val(w)= 0 (ℓ > 2), symv(w)= 1, 1-peak(w)= 2,
2-peak(w)= 0, 3-peak(w)= 1, ℓ-peak(w)= 0 (ℓ > 3), and symp(w)= 2.
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Drawing Catalan words as lattice diagrams on the plane proves to be a
convenient representation. These diagrams are constructed using unit up
steps (0, 1), down steps (0,−1), and horizontal steps (1, 0). Each symbol
wi of a Catalan word is represented by the horizontal segment between the
points (i − 1, wi) and (i, wi), and the vertical steps are inserted to obtain
a connected diagram. For example, in Figure 2.1, we illustrate the lattice
diagram associated to the Catalan word w.

Figure 2.1: Lattice diagram of the word w = 0122200122322334544.

Remark 2.1. Let C↑
n denote the set of weakly increasing Catalan words of

length n. Notice that
∣∣C↑

0

∣∣ = 1 and, for n ≥ 1,
∣∣C↑

n

∣∣ = 2n−1; then its
generating functions is 1 + x/(1− 2x) if we include the empty word. Note
that the set of nonempty weakly increasing Catalan words is precisely the
set of flattened Catalan words with a single weak run. Hence, the generating
function for the latter set is x/(1− 2x).

3 The distribution of runs

3.1 Runs of ascents

In order to count nonempty flattened Catalan words according to the length
and the number of runs of ascents, we introduce the following bivariate
generating function:

R(x, y) =
∑

w∈Flat(C+)

x|w|yruns(w) =
∑
n≥1

x|w|
∑

w∈Flat(Cn)

yruns(w)

where the coefficient of xnyk is the number of flattened Catalan words of
length n with k runs of ascents.

In Theorem 3.2, we give an expression for this generating function, but first
we provide an example.

Example 3.1. Consider the flattened Catalan word

w = 012230123122 ∈ Flat(C12).
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Then w has 5 runs of ascents: 012, 23, 0123, 12, and 2.

Theorem 3.2. The generating function for nonempty flattened Catalan
words with respect to the length and the number of runs of ascents is

R(x, y) =
xy(1− x− xy)

1− 2x+ x2 − 2xy + x2y + x2y2
.

Proof. Let w be a nonempty flattened Catalan word and let w = 0(w′+1)w′′

be the first return decomposition, with w′, w′′ ∈ Flat(C). There are four
different types of this word. Figure 3.1 illustrates this case.

0 0w
′′0(w′ + 1) 0 · 11 . . . 22 . . . 33 · · ·w

′′

Figure 3.1: Decomposition of a nonempty flattened Catalan word in Flat(C).

If w′ = w′′ = ϵ, then w = 0. Then its generating function is xy.

If w′′ = ϵ and w′ ̸= ϵ, then w = 0(w′ + 1). Then the generating function is
xR(x, y).

If w′ = ϵ and w′′ ̸= ϵ, then w = 0w′′. Then the generating function is
xyR(x, y) because we have an extra run.

If w′ ̸= ϵ and w′′ ̸= ϵ, then w = 0(w′+1)w′′. Note w′ is a weakly increasing
word because w ∈ Flat(C+). Then the bivariate generating function for
such words w′ is∑

n≥1

n∑
k=1

(
n− 1

k − 1

)
xnyk =

∑
n≥0

y(1 + y)n−1xn =
xy

1− x(1 + y)
.

Therefore, the generating function for this case is given by

x2y

1− x− xy
R(x, y).

Therefore, we have the functional equation

R(x, y) = xy + x(1 + y)R(x, y) +
x2y

1− x− xy
R(x, y).

Solving this equation, we obtain the desired result.
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Corollary 3.3. The generating function for nonempty flattened Catalan
words is given by

R(x, 1) =
∑
n≥1

f(n)xn =
x(1− 2x)

(1− 3x)(1− x)
.

Therefore,

f(n) =
1

2

(
3n−1 + 1

)
.

The first few values of the sequence f(n) (n ≥ 1) correspond to the OEIS
entry [19, A007051]:

1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, . . . .

This sequence also counts the compositions of all even natural numbers
(from 0 to 2(n− 1)) into n− 1 parts of at most two (the part 0 is allowed).

Theorem 3.4. Flattened Catalan words of length n and compositions of all
even natural numbers (from 0 to 2(n− 1)) into n− 1 parts of at most two
(the part 0 is allowed) are in bijection.

Proof. A bijection ψ between flattened Catalan words of length n and this
combinatorial class is given by ψ(0) = ϵ; ψ

(
0(w + 1)

)
= 2ψ(w); ψ(0w) =

0ψ(w); and ψ(0(w + 1)w′) = 1ψ(w)1ψ(w′).

Let r(n, k) denote the number of flattened Catalan words of length n with
exactly k runs of ascents, that is r(n, k) = [xnyk]R(x, y), which denotes the
coefficient of xnyk in R(x, y). The first few rows of this array are

R := [r(n, k)]n,k≥1 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 3 1 0 0 0 0 0

1 6 6 1 0 0 0 0
1 10 19 10 1 0 0 0
1 15 45 45 15 1 0 0
1 21 90 141 90 21 1 0
1 28 161 357 357 161 28 1


.

For example, r(4, 3) = 6, the entry boxed in R above, and the corre-
sponding flattened Catalan words (and lattice diagrams) are shown in Fig-
ure 3.2.
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0010 0100 0101 0110 0120 0121

Figure 3.2: Flattened Catalan words of length 4 with 2 runs of ascents.
The red marked vertex denotes the start of the second run of ascents.

The array R corresponds to the OEIS entry [19, A056241]. Notice that this
sequence has a different combinatorial interpretation. It counts the number
of k-part order-consecutive partitions of n. An order-consecutive partition
of {1, 2, . . . , n} with k parts is a k-uplet (S1, S2, . . . , Sk) of subsets such that

Si ∩ Sj = ∅ if i ̸= j,
⋃k

i=1 Si = {1, 2, . . . , n}, where every subset Si are in
increasing order relatively to their maximum elements, and satisfying the
property: for j = 1, . . . , k,

⋃j
i=1 Si is an interval (cf. [21]).

Theorem 3.5. Flattened Catalan words of length n with exactly k runs of
ascents are in bijection with k-part order-consecutive partitions of n.

Proof. We define recursively a map ψ from the set of words in Flat(Cn) and
the set OCPn of order-consecutive partitions of {1, 2, . . . , n}. We consider
the four cases of Figure 3.1.

- If w belongs to the case (i), then w = 0 and we set ψ(w) = {1};

- If w belongs to the case (ii), then w = 0(w′+1) and ψ(w) is obtained
from ψ(w′) by inserting n in the last part; for instance, if f(w′) =
{2, 3}{1, 4}, then f(w) = {2, 3}{1, 4, 5};

- If w belongs to the case (iii), then w = 0w′ and ψ(w) is obtained from
ψ(w′) by adding the part {n} on the right; for instance, if f(w′) =
{2, 3}{1, 4}, then f(w) = {2, 3}{1, 4}{5};

- If w belongs to the case (iv), then w = w′w′′ where w′ consists of one
weak run starting with 01. Using the previous cases, ψ(w′) = S1 . . . Sk

where Sk = {a1, . . . aℓ, |w′|−1, |w′|} ends with a part containing both
|w′| − 1 and |w′|. So, we set ψ(w) = S1 . . . Sk−1(ψ(w

′′) + |w′| −
1){a1, . . . , aℓ, |w′| − 1, |w′| + |w′′|}. For instance, if w = 0112 0120,
then w′ = 0112, w′′ = 0120, f(w′) = {1, 2}{3, 4}, and f(w′′) =
{3}{1, 2, 4}; and hence, f(w) = {1, 2}{6}{4, 5, 7}{3, 8}.

Theorem 3.5 and [21, Theorem 6] imply the following combinatorial expres-
sion.
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Corollary 3.6. If n, k ≥ 1, then

r(n, k) =

k−1∑
j=0

(
n− 1

2k − j − 2

)(
2k − j − 2

j

)
.

Let r(n) be the total number of runs of ascents over all flattened Catalan
words of length n.

Corollary 3.7. We have∑
n≥0

r(n)xn =
x− 5x2 + 8x3 − 3x4

(1− 3x)2(1− x)2
.

Moreover, for n ≥ 1, we have

r(n) =
1

4
(3n−1 + 1)(n+ 1).

The first few values of the sequence r(n) (n ≥ 1) are

1, 3, 10, 35, 123, 427, 1460, 4923, 16405, 54131, . . . .

3.2 Runs of weak ascents

In order to count nonempty flattened Catalan words according to the length
and the number of runs of weak ascents, we introduce the following bivariate
generating function:

W (x, y) =
∑

w∈Flat(C+)

x|w|ywruns(w) =
∑
n≥1

x|w|
∑

w∈Flat(Cn)

ywruns(w)

where the coefficient of xnyk is the number of flattened Catalan words of
length n with k runs of weak ascents.

Example 3.8. Consider the flattened Catalan word w = 012230123122 ∈
Flat(C12). Then w has 3 runs of weak ascents: 01223, 0123, 122.

In Theorem 3.9, we give an expression for this generating function.

Theorem 3.9. The generating function for the number of nonempty flat-
tened Catalan words with respect to the length and the number of runs of
weak ascents is

W (x, y) =
(1− 2x)xy

1− 4x+ 4x2 − x2y
.
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Proof. Let w be a nonempty flattened Catalan word and let w = 0(w′+1)w′′

be the first return decomposition, with w′, w′′ ∈ Flat(C). There are four
different types of this word. If w′ = w′′ = ϵ, then w = 0. Then its
generating function is xy. If w′′ = ϵ and w′ ̸= ϵ, then w = 0(w′ + 1).
Then the generating function is xW (x, y). Similarly, if w′ = ϵ and w′′ ̸= ϵ,
then w = 0w′′. Then the generating function is xW (x, y). If w′ ̸= ϵ and
w′′ ̸= ϵ, then w = 0(w′+1)w′′. Note w′ is a weakly increasing word because
w ∈ Flat(C+). Then the generating function is given by

x
∑
k≥1

2kxkyW (x, y) =
x2y

1− 2x
W (x, y).

Therefore, we have the functional equation

W (x, y) = xy + 2xW (x, y) +
x2y

1− 2x
W (x, y).

Solving this equation, we obtain the desired result.

Let w(n, k) denote the number of flattened Catalan words of length n with
exactly k runs of weak ascents, that is w(n, k) = [xnyk]W (x, y), which
denotes the coefficient of xnyk inW (x, y). The first few values of this array
are

W := [w(n, k)]n,k≥1 =



1 0 0 0 0
2 0 0 0 0
4 1 0 0 0

8 6 0 0 0
16 24 1 0 0
32 80 10 0 0
64 240 60 1 0
128 672 280 14 0
256 1792 1120 112 1


.

For example, w(4, 2) = 6, the entry boxed in W above, and the corre-
sponding flattened Catalan words (and lattice diagrams) are shown in Fig-
ure 3.3.

0010 0100 0101 0110 0120 0121

Figure 3.3: Flattened Catalan words of length 4 with 2 runs of weak ascents.
The red marked vertex denotes the start of the second run of weak ascents.
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Corollary 3.10. For n, k ≥ 1, we have

w(n, k) = 2n−2k+1

(
n− 1

2k − 2

)
.

Proof. From Theorem 3.9, we obtain the recurrence relation

w(n, k)−4w(n−1, k)+4w(n−2, k)−4w(n−2, k−1) = 0, n ≥ 3, k ≥ 1,

with the initial values w(2, 1) = 2, w(1, 1) = 1, and w(n, k) for n < k. It
is not difficult to verify that 2n−2k+1

(
n−1
2k−2

)
satisfies the same recurrence

relation and the same initial values. Therefore, the sequences are the same.

We give an alternate proof of Corollary 3.10 through a bijective proof. We
state the result formally for ease of reference.

Theorem 3.11. Flattened Catalan words of length n with k runs of weak
ascents and binary words of length n−1 where 2k−2 symbols are replaced
with a dot • are in bijection.

Proof. We now give bijection between flattened Catalan words of length n
with k runs of weak ascents and binary words of length n− 1 where 2k− 2
symbols are replaced with a dot • (Corollary 3.10 and a simple combina-
torial argument prove that the two classes of objects have the same cardi-
nality). Let u = u1u2 · · ·un−1 be such a binary word with 2k − 2 dots (•),
and let us suppose that the dots (•) are on the positions {i1, i2, . . . , i2k−2}.
Then, we define the flattened Catalan words with k runs of weak ascents
as follows:

Let v = v0v1 · · · vn−1 be the word of length n constructed from u by fixing
v0 := 0; vi2a+1

:= 1 and vi2a := 0 for a = 0, 1, . . . , k − 1; and vi := ui for
all other positions i. We fix i0 = 0 and i2k−1 = n. Now, v consists of
the juxtaposition of k nonempty factors of the form ra = vi2a · · · vi2a+2−1,
for a = 0, 1, . . . , k − 1, all of them starting with 0. We associate to each
factor s = 0s2 · · · sp the nondecreasing Catalan word c(s) = 0c2 · · · c|s|,
where ci = ci−1 if si = 0 and ci = ci−1 + 1, otherwise (for instance, if
s = 011010110 then c(s) = 012233455).

The bijection f is defined as follows:

f(u) = c(r0)
(
a0+c(r1)

)(
a0+a1+c(r2)

)
· · ·

(
a0+a1+ · · ·+ak−2+c(rk−1)

)
,
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where aj is the number of 1’s in the factor vi2(j+1)
· · · vi2(j+1)+1−1.

For instance if n = 29, k = 4, and u = 10100•1010•0110•01•0110•0•00,
we have

v = 01010011010 00110101 0011010 000

and
f(u) = 01122234455 22344556 4456677 666.

Let w(n) be the total number of runs of weak ascents over all flattened
Catalan words of length n.

Corollary 3.12. For n ≥ 1, we have∑
n≥1

w(n)xn =
x(1− 2x)3

(1− 4x+ 3x2)2
.

Moreover, for n ≥ 1, we have

w(n) =
1

36

(
27− 9n+ (5 + n)3n

)
.

The first few values of the sequence w(n) (n ≥ 1) are

1, 2, 6, 20, 67, 222, 728, 2368, 7653, 24602, . . .

3.3 Runs of descents

In order to count nonempty flattened Catalan words according to the length
and the number of runs of descents, we introduce the following bivariate
generating function:

R̄(x, y) =
∑

w∈Flat(C+)

x|w|yruns(w) =
∑
n≥1

x|w|
∑

w∈Flat(Cn)

yruns(w)

where the coefficient of xnyk is the number of flattened Catalan words of
length n with k runs of descents.

Example 3.13. Consider the flattened Catalan word w = 012230123122 ∈
Flat(C12). Then w has 10 runs of descents: 0, 1, 2, 2, 30, 1, 2, 31, 2, and 2.

It is worth noticing that in any flattened Catalan word w of length n,
we have runs(w) = n + 1 − wruns(w). Therefore, we can directly deduce
Theorem 3.14 and Corollary 3.15.
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Theorem 3.14. The generating function for the number of nonempty flat-
tened Catalan words with respect to the length and the number of runs of
descents is

R̄(x, y) = yW

(
xy,

1

y

)
=

xy(1− 2xy)

1− 4xy − x2y + 4x2y2
.

Let r̄(n, k) denote the number of flattened Catalan words of length n with
exactly k runs of descents, that is r̄(n, k) = [xnyk]R̄(x, y), which denotes the
coefficient of xnyk in R̄(x, y). The first few values of this array are

R̄ := [r̄(n, k)]n,k≥1 =



1 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 1 4 0 0 0 0 0 0

0 0 6 8 0 0 0 0 0
0 0 1 24 16 0 0 0 0
0 0 0 10 80 32 0 0 0
0 0 0 1 60 240 64 0 0
0 0 0 0 14 280 672 128 0


.

For example, r̄(4, 3) = 6, the entry boxed in R̄ above, and the corre-
sponding flattened Catalan words (and lattice diagrams) are shown in Fig-
ure 3.4.

0100 01010010 01210110 0120

Figure 3.4: Flattened Catalan words of length 4 with 3 runs of descents.
The red marked vertices denote the end of a run of descents.

Corollary 3.15. For n, k ≥ 1, we have

r̄(n, k) = 22k−n−1

(
n− 1

2(n− k)

)
.

A combinatorial interpretation of this last formula can be obtained from
the bijection f (see Section 3.2) between flattened Catalan words of length
n with n+1−k runs of weak ascents (or equivalently with k descents) and
binary words of length n− 1 with (2n− 2k) dots •.

Let r̄(n) be the total number of runs of descents over all flattened Catalan
words of length n.
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Corollary 3.16. We have∑
n≥0

r̄(n)xn =
x(1− 4x+ 4x2 + 2x3)

(1− 4x+ 3x2)2
.

Moreover, for n ≥ 1, we have

r̄(n) =
1

36

(
27n− 9 + (5n+ 1)3n

)
.

The first few values of the sequence r̄(n) (n ≥ 1) are

1, 4, 14, 50, 179, 632, 2192, 7478, 25157, 83660, . . . .

3.4 Runs of weak descents

In a flattened Catalan word of length n, the number of runs of ascents
plus the number of runs of weak descents equals n+1. Hence, the number
w̄(n, k) of flattened Catalan words of length n with k runs of weak descents
equals the number r(n, k) of flattened Catalan words of length n with k
runs of ascents. Moreover, we can defined a simple involution ϕ on Flat(Cn)
such that ϕ(w) = w′ with wruns

(
ϕ(w)

)
= runs(w), as follows: ϕ(ϵ) = ϵ,

ϕ
(
0(w + 1)

)
= 0ϕ(w), ϕ(0w) = 0

(
1 + ϕ(w)

)
, and ϕ

(
0(1 + w)w′) = 0

(
1 +

ϕ(w)
)
ϕ(w′) whenever w,w′ ̸= ϵ. Then, we the results can be restated as

those in Section 3.1.

Theorem 3.17. The generating function for the number of nonempty flat-
tened Catalan words with respect to the length and the number of runs of
weak descents is

W̄ (x, y) = R(x, y) =
yx(1− xy − x)

x2y2 + x2y + x2 − 2xy − 2x+ 1
.

Therefore,

w̄(n, k) = r(n, k) =

k−1∑
j=0

(
n− 1

2k − j − 2

)(
2k − j − 2

j

)
.

Corollary 3.18. We have∑
n≥0

w̄(n)xn =
∑
n≥0

r(n)xn =
x(1− 3x3 + 8x2 − 5x)

(3x2 − 4x+ 1)2
.

Moreover, for n ≥ 1, we have

w̄(n) = r(n) =
n+ 1

4
(1 + 3n−1).
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4 The distribution of valleys

4.1 ℓ-Valleys

In order to count nonempty flattened Catalan words according to the length
and the number of ℓ-valleys, we introduce the following bivariate generating
function:

Vℓ(x, y) =
∑

w∈Flat(C+)

x|w|yℓ-val(w) =
∑
n≥1

x|w|
∑

w∈Flat(Cn)

yℓ-val(w)

where ℓ-val(w) denotes the number of occurrences of subwords of the form
abℓ(b+1), and a > b, in w. The coefficient of xnyk in Vℓ(x, y) is the number
of flattened Catalan words of length n with k distinct ℓ-valleys.

In Theorem 4.1, we give an expression for this generating function.

Theorem 4.1. The generating function for nonempty flattened Catalan words
with respect to the length and the number of ℓ-valleys is

Vℓ(x, y) =
x(1− 2x+ xℓ+1 − xℓ+1y)

(1− x)(1− 3x+ xℓ+1 − xℓ+1y)
.

Proof. Let w be a nonempty flattened Catalan word, and let w = 0(w′ +
1)w′′ be the first return decomposition, with w′, w′′ ∈ Flat(C). If w′ =
w′′ = ϵ, then w = 0, and its generating function is x. If w′ ̸= ϵ and w′′ = ϵ,
then w = 0(w′ + 1), and its generating function is xVℓ(x, y). Similarly, if
w′ = ϵ and w′′ ̸= ϵ, then w = 0w′′, and its generating function is xVℓ(x, y).
Finally, if w′ ̸= ϵ and w′′ ̸= ϵ, then w = 0(w′ + 1)w′′. Because w is
a flattened Catalan word, w′ must be a weakly increasing word, and we
distinguish two cases. If w′′ is of the form 0ℓ−1w′′′, where w′′′ starts with
01, then w = 0(w′ + 1)0ℓ−1w′′′, and the generating function is(

xℓ+1y

1− 2x

)(
Vℓ(x, y)−

(
x+ xVℓ(x, y)

))
.

Notice that Tℓ(x, y) := Vℓ(x, y) −
(
x + xVℓ(x, y)

)
is obtained using the

complement of the generating function for the word 0 and the words starting
with 00.

The second case is the negation, so w′′ does not start with 0ℓ1. Notice
that ℓ is fixed because we are interested in the ℓ-valleys, so the generating
function is

x2

1− 2x

(
Vℓ(x, y)− xℓ−1Tℓ(x, y)

)
.
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Therefore, we have the functional equation

Vℓ(x, y) = x+ 2xVℓ(x, y) +

(
xℓ+1y

1− 2x

)
Tℓ(x, y)

+
x2

1− 2x

(
Vℓ(x, y)− xℓ−1Tℓ(x, y)

)
.

Solving this equation, we obtain the desired result.

Let vℓ(n, k) denote the number of flattened Catalan words of length n with
exactly k distinct ℓ-valleys, that is vℓ(n, k) = [xnyk]Vℓ(x, y), which denotes
the coefficient of xnyk in Vℓ(x, y). For example, the first few values of this
array for ℓ = 2 are

V2 := [v2(n, k)]n≥4,k≥0 =



14 0 0 0
40 1 0 0

115 7 0 0
331 34 0 0
953 140 1 0
2744 527 10 0
7901 1877 64 0


.

For example, v2(6, 1) = 7, the entry boxed in V2 above, and the corre-
sponding flattened Catalan words of length 6 with one 2-valley (and lattice
diagrams) are shown in Figure 4.1.

010010 010011001001 010012

011001 012001 012112

Figure 4.1: Flattened Catalan words of length 6 with one 2-valley. The red
edges indicate the location of the 2-valley.

The first column of the array V2 corresponds to OEIS entry [19, A052963].

Let vℓ(n) be the sum of all ℓ-valleys in the set of flattened Catalan words
of length n.
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Corollary 4.2. The generating function of the sequence vℓ(n) is∑
n≥1

vℓ(n)x
n =

xℓ+3

(1− x)(1− 3x)2
.

Moreover, for n ≥ 1, we have

vℓ(n) =
1

4

(
1− 3n−2−ℓ + 2 · 3n−2ℓ(n− 2− ℓ)

)
.

Taking ℓ = 1 inTheorem 4.1, we obtain the generating function for nonempty
flattened Catalan words with respect to the length and the number of short
valleys:

V1(x, y) =
∑

w∈Flat(C+)

x|w|y1-val(w) =
x− 2x2 + x3(1− y)

(1− x)
(
1− 3x+ x2(1− y)

) .
Let v1(n, k) denote the number of flattened Catalan words of length n with
exactly k short valleys, that is v1(n, k) = [xnyk]V1(x, y), which denotes the
coefficient of xnyk in V1(x, y). The first few values of this array are

V1 = [v1(n, k)]n≥1,k≥0 =



1 0 0 0
2 0 0 0
5 0 0 0
13 1 0 0

34 7 0 0
89 32 1 0
233 122 10 0
610 422 61 1
1597 1376 295 13


.

For example, v1(5, 1) = 7, the entry boxed in V1 above, and the correspond-
ing flattened Catalan words of length 5 with exactly one short valley (and
lattice diagrams) are shown in Figure 4.2.

01010 01011 01101 00101

01012 01201 01212

Figure 4.2: Flattened Catalan words of length 5 with one short valley. The
red edges indicates the location of the short valley.
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Remark 4.3. In [3], we proved that Catalan words of length n with k short
valleys are in one-to-one correspondence with Dyck paths of semilength n
with k occurrences of DDUU. Taking the restriction on flattened Catalan
words of this bijection, we obtain a one-to-one correspondence between
flattened Catalan words of length n with k short valleys and Dyck paths
of semilength n with k occurrences of DDUU, where the height sequence of
occurrences DDU (from left to right) is nondecreasing.

We can also obtain the generating function for the number of flattened
Catalan words of length n with respect to the number of valleys (we consider
all ℓ-valleys for ℓ ≥ 1).

Theorem 4.4. The generating function for nonempty flattened Catalan words
with respect to the length and the number of valleys is

V (x, y) =
x− 3x2 + x3(3− y)

(1− x)(1− 4x+ 4x2 − x2y)
.

Let v(n, k) denote the number of flattened Catalan words of length n with
exactly k valleys, that is v(n, k) = [xnyk]V (x, y), which denotes the coeffi-
cient of xnyk in V (x, y). The first few values of this array are

V = [v(n, k)]n≥1,k≥0 =



1 0 0 0
2 0 0 0
5 0 0 0
13 1 0 0
33 8 0 0
81 40 1 0

193 160 12 0
449 560 84 1
1025 1792 448 16


.

For example, v(7, 2) = 12, the entry boxed in V above, and the correspond-
ing flattened Catalan words of length 7 with exactly two valleys are

0010101, 0100101, 0101001, 0101010, 0101011, 0101012,

0101101, 0101201, 0101212, 0110101, 0120101, 0121212.

Corollary 4.5. For n ≥ 0 we have

v(n, k) =

{
(n− 1)2n−2 + 1, if k = 0,

2n−2k−2
(
n−1
2k+1

)
, if k ≥ 1.
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Note that v(n, 0) corresponds to OEIS entry [19, A005183].

Remark 4.6. In [3], we proved that Catalan words of length n with k valleys
are in one-to-one correspondence with ordered trees with n edges and having
exactly k + 1 non-leaf nodes all of those children are leaves. Taking the
restriction on flattened Catalan words of this bijection, we obtain a one-
to-one correspondence between flattened Catalan words of length n and
ordered trees with n edges and with k + 1 nodes having only leaves as
children and satisfying the following:

• if T1, T2, . . . , Tr are the subtrees of the root, then Ti, i ∈ [1, r − 1], is
nondecreasing (i.e., for any node, its subtrees, except the rightmost,
consist of one node only),

• the rightmost subtree of the root again satisfies all these properties.

Let v(n) be the sum of all valleys in the set of flattened Catalan words of
length n.

Corollary 4.7. The generating function of the sequence v(n) is∑
n≥0

v(n)xn =
x4

(1− x)2(1− 3x)2
.

Moreover, for n ≥ 4, we have

v(n) =
1

36

(
3n(n− 4) + 9n

)
.

For n ≥ 4, the first few values of the sequence v(n) are

1, 8, 42, 184, 731, 2736, 9844, 34448, 118101, 398584, . . . .

This sequence corresponds to OEIS entry [19, A212337].

4.2 Symmetric valleys

A symmetric valley is a valley of the form a(a − 1)ℓa with ℓ ≥ 1. Let
symv(w) denote the number of symmetric valleys in the word w. In order
to count flattened Catalan words according to the length and the number of
symmetric valleys, we introduce the following bivariate generating function
generating function:

S(x, y) =
∑

w∈Flat(C+)

x|w|ysymv(w) =
∑
n≥1

x|w|
∑

w∈Flat(Cn)

ysymv(w)
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where the coefficient of xnyk in S(x, y) is the number of nonempty flattened
Catalan words of length n with k symmetric ℓ-valleys.

In Theorem 4.8, we give an expression for this generating function.

Theorem 4.8. The generating function of the nonempty flattened Catalan
words with respect to the length and the number of symmetric valleys is

S(x, y) =
x(1− 2x)(1− 2x+ 2x2 − x2y)

(1− x)(1− 5x+ 8x2 − 5x3 − x2y + 2x3y)
.

Proof. Let w be a nonempty flattened Catalan word, and let w = 0(w′ +
1)w′′ be the first return decomposition, with w′, w′′ ∈ C. If w′ = w′′ = ϵ,
then w = 0, and its generating function is x. If w′ ̸= ϵ and w′′ = ϵ, then
w = 0(w′ + 1), and its generating function is xS(x, y). Similarly, if w′ = ϵ
and w′′ ̸= ϵ, then w = 0w′′, and its generating function is xS(x, y). Finally,
if w′ ̸= ϵ and w′′ ̸= ϵ, then w = 0(w′ + 1)w′′, we consider three cases.

1. If w′ = 0k and w′′ has a nonzero entry, then its generating function
is (

x2

1− x

)
y

(
S(x, y)− x

1− x

)
.

2. If w′ is a weakly increasing flattened Catalan word different from 0k,
and w′′ has a nonzero entry, then its generating function is

x

(
x

1− 2x
− x

1− x

)(
S(x, y)− x

1− x

)
.

3. If w′ is a weakly increasing flattened Catalan word and w′′ = 0k, then
its generating function is

x3

(1− x)(1− 2x)
.

Therefore, we have the functional equation

S(x, y) = x+ 2xS(x, y) +

(
x2

1− x

)
y

(
S(x, y)− x

1− x

)
+ x

(
x

1− 2x
− x

1− x

)(
S(x, y)− x

1− x

)
+

x3

(1− x)(1− 2x)
.

Solving the obtained functional equation yields the desired result.
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Let s(n, k) denote the number of flattened Catalan words of length n with
exactly k symmetric valleys, that is s(n, k) = [xnyk]S(x, y), which denotes
the coefficient of xnyk in S(x, y). The first few values of this array are

S = [s(n, k)]n≥1,k≥0 =



1 0 0 0 0
2 0 0 0 0
5 0 0 0 0
13 1 0 0 0

34 7 0 0 0
90 31 1 0 0
242 113 10 0 0
659 375 59 1 0


.

For example, s(5, 1) = 7, the entry boxed in S above, and the corresponding
flattened Catalan words of length 5 with 1 symmetric valley are given in
Figure 4.3.

01010 01011

01012

00101 01001

01101 01212

Figure 4.3: Flattened Catalan words of length 5 with one symmetric valley.
In red we mark the location of the symmetric valley.

Let s(n) be the sum of all symmetric valleys in the set of flattened Catalan
words of length n.

Corollary 4.9. The generating function of the sequence s(n) is∑
n≥0

s(n)xn =
x4(1 + 2x)

(1− 3x)2(1− x)3
.

Moreover, for n ≥ 4, we have

s(n) =
1

144

(
3n(2n− 5)− 18n2 + 54n− 27

)
.

The first few values of the sequence s(n) (n ≥ 4) are

1, 7, 33, 133, 496, 1770, 6142, 20902, 70107, 232489, . . . .
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5 The distribution of peaks

5.1 Peaks

In order to count flattened Catalan words according to the length and the
number of ℓ-peaks, we introduce the following bivariate generating func-
tion:

Pℓ(x, y) =
∑

w∈Flat(C+)

x|w|yℓ-peak(w) =
∑
n≥1

x|w|
∑

w∈Flat(Cn)

yℓ-peak(w)

where ℓ-peak(w) denotes the number of occurrences of subwords of the form
a(a+1)ℓb, and a ≥ b, in w. The coefficient of xnyk in Pℓ(x, y) is the number
of flattened Catalan words of length n with k distinct ℓ-peaks.

In Theorem 5.1, we give an expression for this generating function.

Theorem 5.1. The generating function for nonempty flattened Catalan words
with respect to the length and the number of ℓ-peaks is

Pℓ(x, y) =
x(1− 2x)

(1− x)
(
1− 3x+ xℓ+1(1− y)

) .
Proof. Let w be a nonempty flattened Catalan word, and let w = 0(w′ +
1)w′′ be the first return decomposition, with w′, w′′ ∈ C. If w′ = w′′ = ϵ,
then w = 0, and its generating function is x. If w′ ̸= ϵ and w′′ = ϵ, then
w = 0(w′ + 1), and its generating function is xPℓ(x, y). Similarly, if w′ = ϵ
and w′′ ̸= ϵ, then w = 0w′′, and its generating function is xPℓ(x, y). Finally,
if w′ ̸= ϵ and w′′ ̸= ϵ, then w = 0(w′ + 1)w′′, and its generating function is

x

(
x

1− 2x
− xℓ − xℓ+1

1− 2x

)
Pℓ(x, y) + xy

(
xℓ +

xℓ+1

1− 2x

)
Pℓ(x, y).

Therefore, we have the functional equation

Pℓ(x, y) = x+ 2xPℓ(x, y) + x

(
x

1− 2x
− xℓ − xℓ+1

1− 2x

)
Pℓ(x, y)

+ xy

(
xℓ +

xℓ+1

1− 2x

)
Pℓ(x, y).

Solving the obtained functional equation yields the desired results.
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Let pℓ(n) be the sum of all ℓ-peaks in the set of flattened Catalan words of
length n.

Corollary 5.2. The generating function of the sequence pℓ(n) is∑
n≥1

pℓ(n)x
n =

xℓ+2(1− 2x)

(1− 3x)2(1− x)
.

Moreover, for n ≥ 1 we have

pℓ(n) =
1

4

(
3n−ℓ−2(2n+ 1− 2ℓ)− 1

)
.

Taking ℓ = 1 in Theorem 5.1, establishes that the generating function for
flattened Catalan words with respect to the length and the number of short
peaks is

P1(x, y) =
x(1− 2x)

(1− x)
(
1− 3x+ x2(1− y)

) .
Let p1(n, k) denote the number of flattened Catalan words of length n with
exactly k short peaks, that is p1(n, k) = [xnyk]P1(x, y), which denotes the
coefficient of xnyk in P1(x, y). The first few values of this array are

P1 = [p1(n, k)]n≥1,k≥0 =



1 0 0 0 0
2 0 0 0 0
4 1 0 0 0
9 5 0 0 0
22 18 1 0 0

56 58 8 0 0
145 178 41 1 0
378 532 173 11 0
988 1563 656 73 1


.

For example, p1(6, 2) = 8, the entry boxed in S above, and the correspond-
ing flattened Catalan words of length 6 with 2 short peaks are

001010, 010100, 010101, 010010, 010120, 010121, 012010, 012121.

For n ≥ 1 we have p1(n, 0) = F2(n−1) + 1, where Fm is the mth Fibonacci
number with initial values F1 = F2 = 1. For n ≥ 1, the sequence p1(n, 0)
corresponds to the OEIS entry [19, A055588].

Using a similar proof as for Theorem 5.1, we generalize the result in order to
obtain the following generating function for the number of flattened Catalan
words of length n with respect to the number of peaks (we consider all ℓ-
peaks for ℓ ≥ 1).
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Theorem 5.3. The generating function for flattened Catalan words with
respect to the length and the number of peaks is

P (x, y) =
x(1− 2x)

1− 4x+ 4x2 − x2y
.

Let p(n, k) denote the number of flattened Catalan words of length n with
exactly k peaks, that is p(n, k) = [xnyk]P (x, y), which denotes the coeffi-
cient of xnyk in P (x, y). The first few values of this array are

P = [p(n, k)]n≥1,k≥0 =



1 0 0 0 0
2 0 0 0 0
4 1 0 0 0

8 6 0 0 0
16 24 1 0 0
32 80 10 0 0
64 240 60 1 0
128 672 280 14 0
256 1792 1120 112 1


.

For example, p(4, 1) = 6, the entry boxed in P above, and the corresponding
flattened Catalan words of length 4 with 1 peaks are

0010, 0100, 0110, 0101, 0120, 0121.

Let p(n) be the sum of all peaks in the set of flattened Catalan words of
length n.

Corollary 5.4. The generating function of the sequence p(n) is∑
n≥0

p(n)xn =
(1− 2x)x3

(1− 4x+ 3x2)2
.

Moreover, for n ≥ 3, we have

p(n) =
1

4
(3n−2 − 1)(n− 1).

The first few values of the sequence p(n) (n ≥ 3) are

1, 6, 26, 100, 363, 1274, 4372, 14760, 14760, 49205, . . . .

This sequence corresponds to the OEIS entry [19, A261064]. Our combina-
torial interpretation is new.
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5.2 Symmetric peaks

A symmetric peak is a peak of the form a(a+1)ℓa with ℓ ≥ 1. Let symp(w)
denote the number of the symmetric peaks of the word w. In order to count
flattened Catalan words according to the length and the number of symmet-
ric peaks, we introduce the following bivariate generating function:

T (x, y) =
∑

w∈Flat(C+)

x|w|ysymp(w) =
∑
n≥1

x|w|
∑

w∈Flat(Cn)

ysymp(w)

where the coefficient of xnyk in T (x, y) is the number of flattened Catalan
words of length n with k symmetric peaks.

In Theorem 5.5, we give an expression for this generating function.

Theorem 5.5. The generating function of the nonempty flattened Catalan
words with respect to the length and the number of symmetric peaks is

T (x, y) =
x(1− x)(1− 2x)

1− 5x+ 8x2 − 5x3 − x2y + 2x3y
.

Proof. Let w be a nonempty flattened Catalan word, and let w = 0(w′ +
1)w′′ be the first return decomposition, with w′, w′′ ∈ Flat(C). If w′ =
w′′ = ϵ, then w = 0, and its generating function is x. If w′ ̸= ϵ and w′′ = ϵ,
then w = 0(w′ + 1), and its generating function is xT (x, y). Similarly, if
w′ = ϵ and w′′ ̸= ϵ, then w = 0w′′, and its generating function is xT (x, y).
Finally, if w′ ̸= ϵ and w′′ ̸= ϵ, then w = 0(w′+1)w′′, and we have two cases
to consider.

1. If w′ is all 0’s, its generating function is

x2y

1− x
T (x, y).

2. Otherwise, the generating function is

x

(
x

1− 2x
− x

1− x

)
T (x, y).

Therefore, we have the functional equation is

T (x, y) = x+ 2xT (x, y) +
x2y

1− x
T (x, y) + x

(
x

1− 2x
− x

1− x

)
T (x, y).

Solving this equation yields the desired result.
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Let t(n, k) denote the number of flattened Catalan words of length n with
exactly k symmetric peaks, that is t(n, k) = [xnyk]T (x, y), which denotes
the coefficient of xnyk in T (x, y). The first few values of this array are

T = [t(n, k)]n≥1,k≥0 =



1 0 0 0 0
2 0 0 0 0
4 1 0 0 0

9 5 0 0 0
23 17 1 0 0
63 51 8 0 0
176 149 39 1 0
491 439 153 11 0


.

For example, t(4, 1) = 5, the entry boxed in T above, and the corresponding
flattened Catalan words of length 4 with 1 symmetric peak (and lattice
diagrams) are shown in Figure 5.1.

0100 0101 0010 01210110

Figure 5.1: Flattened Catalan words of length 4 with 1 symmetric peak.
In red we mark the location of the symmetric peak.

The first and second column of the array T coincides with OEIS entries
[19, A369328, A290900].

Let t(n) be the sum of all symmetric peaks in the set of flattened Catalan
words of length n.

Corollary 5.6. The generating function of the sequence t(n) is∑
n≥0

t(n)xn =
(1− 2x)2x3

(1− 3x)2(1− x)3
.

Moreover, for n ≥ 3, we have

t(n) =
1

144

(
63 + 3n + 2(−45 + 3n)n+ 18n2

)
.

For n ≥ 3, the first few values of the sequence t(n) are

1, 5, 19, 67, 230, 778, 2602, 8618, 28303, 92275, . . . .
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ported by the Universidad Nacional de Colombia. The authors thank Kim-
berly J. Harry and Matt McClinton for their helpful discussions during the
completion of this manuscript.

References

[1] J.-L. Baril, D. Colmenares, J. L. Ramı́rez, D. Silva, L. M. Simbaqueba,
and D. Toquica, Consecutive pattern-avoidance in Catalan words ac-
cording to the last symbol, RAIRO Theor. Inform. Appl. 58 (2024),
Paper No. 1. https://doi.org/10.1051/ita/2024001
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