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Abstract. An edge labeling of a connected graph G = (V,E) is said to be
local antimagic if it is a bijection f : E → {1, . . . , |E|} such that for any
pair of adjacent vertices x and y, f+(x) ̸= f+(y), where the induced vertex
label f+(x) =

∑
f(e), with e ranging over all the edges incident to x. The

local antimagic chromatic number of G, denoted by χla(G), is the minimum
number of distinct induced vertex labels over all local antimagic labelings of
G. In this paper, we first introduce an algorithmic approach to construct a
family of infinitely many even size non-regular tripartite graphs with t ≥ 1
component(s) in which every component is of odd order p ≥ 9 and of size
q = n(p+ 1) for n ≥ 2. We show that every graph in this family has local
antimagic chromatic number 3. We then allow the m-th component to have
order pm ≥ 9 and size nm(pm + 1) for nm ≥ 2, 1 ≤ m ≤ t. We prove that
every such graph with all components having same order and size also has
local antimagic chromatic number 3. Lastly, we construct another family of
infinitely many graphs such that different components may have different
order and size all of which having local antimagic chromatic number 3.
Consequently, many other families of (possibly disconnected) graphs with
local antimagic chromatic number 3 are also constructed.

1 Introduction

Let G = (V,E) be a connected graph of order p and size q. A bijection
f : E → {1, 2, · · · , q} is called a local antimagic labeling if f+(u) ̸= f+(v)
whenever uv ∈ E, where f+(u) =

∑
e∈E(u) f(e) and E(u) is the set of
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edges incident to u. The mapping f+, which is also denoted by f+
G , is

called a vertex labeling of G induced by f , and the labels assigned to vertices
are called induced colors under f . The color number of a local antimagic
labeling f is the number of distinct induced colors under f , denoted by
c(f). Moreover, f is called a local antimagic c(f)-coloring and G is local
antimagic c(f)-colorable. The local antimagic chromatic number χla(G)
is defined to be the minimum number of colors taken over all colorings
of G induced by local antimatic labelings of G (see [1, 3]). Affirmative
solutions on some problems raised in [1] can be found in [6]. Let G + H
and mG denote the disjoint union of graphs G and H, and m copies of G,
respectively. In [9], the author proved that every connected graph of order
at least 3 has a local antimagic labeling. Thus, local antimagic chromatic
number is well defined for all graphs without a K2 component. For integers
a < b, let [a, b] = {a, a + 1, . . . , b}. For an edge e of G, let G − e be the
graph with edge e deleted. Very little is known about the local antimagic
chromatic number of disconnected graphs (see [2, 4, 8] for some results on
2-regular graphs and forests).

Figure 1.1: Four tripartite graphs with local antimagic chromatic number 3.

Consider the four non-isomorphic graphs in Figure 1.1. They are tripar-
tite with exactly two degree 6 vertices and all others of degree 4. The
associated edge-labeling shows that they have local antimagic chromatic
number 3.
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For n ≥ 2, we can now define a family of non-regular disconnected graphs
with t ≥ 1 component(s) in which every component is a bi-regular graph
of odd order p ≥ 9 and size q = n(p + 1), having exactly n degree 2n + 2
vertices and p−n degree 2n vertices, denoted Lt(p, n). Thus, the graphs in
Figure 1.1 are in L1(9, 2). The m-th component of each graph in Lt(p, n),
denoted Lt(p, n|m, a1m, a2m, . . . , anm), has vertex set

V = {um,i : 1 ≤ m ≤ t, 1 ≤ i ≤ p}

and edge set

Em = Eϕ
m ∪ Fm (1 ≤ ϕ ≤ n)

such that

E1
m = {um,ium,i+1 : 1 ≤ m ≤ t, 1 ≤ i ≤ p− 1},

Eϕ
m =

{
um,jϕi

um,jϕi+1
: 1 ≤ i ≤ p− 1, |jϕi+1 − jϕi | is odd ≥ 3,

1 = jϕ1 ̸= jϕ2 ̸= · · · ̸= jϕp−1 ̸= jϕp = p
}
,

where jϕi and jϕi+1 are of distinct parity and Eϕ
m ∩ Eϕ′

m = ∅ for 2 ≤ ϕ ̸=
ϕ′ ≤ n, and such that

Fϕ
m =

{
um,1um,2aϕ

m+1, um,pum,2aϕ
m+1

}
for 1 ≤ a1m ̸= · · · ̸= anm ≤ p−3

2 . Thus, the p−1 edges in Eϕ
m, 2 ≤ ϕ ≤ n, also

induce a path of order p with pending vertices um,1 and um,p alternating in
odd and even subscripts. Note that each graph in Lt(p, n) has size tn(p+1).
Thus, one can check that if p = 9, then n = 2 so that |L1(9, 2)| = 4 up to
isomorphism with either a11 = 1 and a21 = 3 or a11 = 1 and a21 = 2 as in
Figure 1.1.

Example 1.1. A graph in L1(13, 2) is shown in Figure 1.2. The edges in
E1,2 induce an order 13 path

u1,1 u1,4 u1,7 u1,2 u1,5 u12 u1,9 u1,6 u1,11 u1,8 u1,3 u1,10 u1,13

and F 1
1 = {u1,1 u1,5, u1,13 u1,5} and F 2

1 = {u1,1 u1,9, u1,13 u1,9}.

Observe that each graph G in Lt(p, n) is tripartite so that χla(G) ≥ 3. In
this paper, we prove that every such graph has local antimagic chromatic
number 3. Consequently, we also define many infinite families of (possibly
disconnected) related graphs and prove that all of them are tripartite graphs
with local antimagic chromatic number 3.
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Figure 1.2: A graph in L1(13, 2) with local antimagic chromatic number 3.

2 Main results

We first give an algorithmic approach to construct the m-th component of
each graph in Lt(p, n) using n = 2 paths, say Pm,ϕ of order p + 2 with

vertex set V ∪ {xϕ
m,1, x

ϕ
m,2} for 1 ≤ ϕ ≤ n. The edge set of Pm,1 is

{x1
m,1 um,1, x

1
m,2 um,p} ∪ {um,i um,i+1 : 1 ≤ i ≤ p− 1}.

For 2 ≤ ϕ ≤ n, the edge set of Pm,ϕ is

{xϕ
m,1 um,1, x

ϕ
m,2 um,p}

∪
{
um,jϕi

um,jϕi+1
: 1 ≤ i ≤ p− 1, |jϕi+1 − jϕi | is odd and ≥ 3,

1 = jϕ1 ̸= jϕ2 ̸= · · · ̸= jϕp−1 ̸= jϕp = p
}

respectively such that every edge appears once in Pm,ϕ (2 ≤ ϕ ≤ n). By

merging vertices xϕ
m,1, x

ϕ
m,2 to um,2aϕ

m+1 for 1 ≤ a1m ̸= · · · ̸= anm ≤ p−3
2 , we

now get the component as required. Note that the maximum value of n is
a function of p.

Theorem 2.1. For t ≥ 1, n ≥ 2, and odd p ≥ 9, every graph in Lt(p, n) has
local antimagic chromatic number 3.

Proof. Recall that χla(G) ≥ 3 for each G ∈ Lt(p, n). Take n = 2. Con-
sider the m-th component Lt(p, n|m, 1, p−3

2 ). Let the consecutive edges of
Pm,ϕ, 1 ≤ ϕ ≤ n, be em,(ϕ−1)(p+1)+i, 1 ≤ i ≤ p + 1. Define a bijection

f : E
(
Lt

(
p, n|1, p−3

2

))
→

[
1, tn(p + 1)

]
such that for 1 ≤ i ≤ n(p + 1)/2,

1 ≤ m ≤ t,

f(em,2i) = (m− 1)n(p+ 1)/2 + i,

f(em,2i−1) = (2t−m+ 1)n(p+ 1)/2 + 1− i.
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Observe that

f+(xm,1) + f+(xm,2) = (2t−m+ 1)np+1
2 + (m− 1)np+1

2 + p+1
2

= (2tn+ 1)(p+ 1)/2,

f+(ym,1) + f+(ym,2) = (2t−m+ 1)np+1
2 − p+1

2 + (m− 1)np+1
2 + p+ 1

= (2tn+ 1)(p+ 1)/2,

and in Pm,ϕ, 1 ≤ ϕ ≤ n,

f+(um,2i−1) = (m− 1)np+1
2 + i+ (2t−m+ 1)np+1

2 + 1− i

= tn(p+ 1) + 1 for 1 ≤ i ≤ (p+ 1)/2,

f+(um,2i) = (m− 1)np+1
2 + i+ (2t−m+ 1)np+1

2 + 1− (i+ 1)

= tn(p+ 1) for 1 ≤ i ≤ (p− 1)/2.

Combining the above, we can now conclude that in Lt

(
p, n|m, 1, p−3

2

)
f+(um,2i−1) = tn2(p+ 1) + n for i ̸= 2, (p− 1)/2,

f+(um,2i) = tn2(p+ 1),

f+(um,3) = f+(um,p−2)

= (2tn+ 1)(p+ 1)/2 + tn2(p+ 1) + n

= (2tn2 + 2tn+ 1)(p+ 1)/2 + n.

Thus, Lt

(
p, n|m, 1, p−3

2

)
admits a local antimagic 3-coloring. Furthermore,

since Lt

(
p, n|m, 1, p−3

2

)
is tripartite, χla

(
Lt

(
p, n|m, 1, p−3

2

))
= 3.

In general, for n ≥ 3, each component of every graph in Lt(p, n) can be
obtained by defining a suitable Pm,ϕ (3 ≤ ϕ ≤ n). Labeling the edges
according to the function defined above, we immediately get a required
local antimagic 3-coloring for every graph in Lt(p, n). This completes the
proof.

Example 2.2. For p = 11 and t = 2, using the path P1,2 with edge set{
x2
m,1 um,1, um,i um,i+3, um,p x

2
m,2 : 1 ≤ i ≤ p− 1

}
(modulo p− 1 when i = p− 2 or p− 1), we can get

L2(11, 2) =
{
L2(11, 2|1, a, b) + L2(11, 2|2, a′, b′)

}
with (a, b), (a′, b′) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. The graph
L2(11, 2|1, 1, 4) + L2(11, 2|2, 1, 3) is given in Figure 2.1.
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Figure 2.1: Graph L2(11, 2|1, 1, 4) + L2(11, 2|2, 1, 3) in L2(11, 2).

Figure 2.2: Paths P1,1, P1,2, P1,3 that give the first component.

Figure 2.3: Paths P2,1, P2,2, P2,3 that give the second component.

Lau

42



Example 2.3. Taking t = 2, p = 15, and n = 3, we can get various non-
isomorphic 2-component graphs. One of them with the paths Pm,ϕ and
the corresponding edge labels are given in Figures 2.2 and 2.3, respectively.
The end vertices of each path are merged to one of the vertices with induced
vertex label 97 bijectively, for example, the 3rd, 5th, and 7th vertex (from
the left) of degree 2, respectively. Each component of the resulting graph
has two degree 8 vertices with induced vertex label 395, seven vertices of
degree 6 with induced vertex label 291, and six vertices of degree 6 with
induced vertex label 288.

For 9 ≤ p1 ≤ p2 ≤ · · · ≤ pt, each pi is odd for 1 ≤ i ≤ t, t ≥ 2, we can now
define a family of more general graph, denoted

GLt

(
(p1, n1), (p2, n2), . . . , (pt, nt)

)
,

ni ≥ 2, 1 ≤ i ≤ t (also denoted GLt(p, n) if pi = p, ni = n) which is a family
of disconnected graphs with t compoments such that the m-th component
is Lt(p, nm|m, a1m, a2m, . . . , anm

m ) that has nm vertices of degree 2nm+2 and
pm − nm vertices of degree 2nm. Note that GLt(p, n) = Lt(p, n).

Observation 2.4. If ji+1 − ji is an odd constant k ≥ 3 for all i, we may
apply the concept of k-step Hamiltonian tour of cycles for odd k (see [5,
Theorem 2.5]) that can give us an algorithmic approach to obtain the edges
in Eϕ

m, 2 ≤ ϕ ≤ nm.

Example 2.5. Suppose pi = 23 for 1 ≤ i ≤ t, using the concept of k-step
Hamiltonian tour, we can have a graph in Lt(23, ni) for k ∈ {1} ∪N such
that N ⊆ {3, 5, 7, 9} using k ∈ {1, 3, 5, 7, 9}. Note that k ≤ pi−3

2 and
2 ≤ ni ≤ |N |+ 1. The corresponding paths of the m-th component can be
as follows.

(i) For k = 1, the induced path is um,1 um,2 . . . um,23.

(ii) For k = 3, the induced path is um,1 um,4 um,7 um,10 um,13 um,16 um,19

um,22 um,3 um,6 um,9 um,12 um,15 um,18 um,21 um,2 um,5 um,8 um,11

um,14 um,17 um,20 um,23.

(iii) For k = 5, the induced path is um,1 um,6 um,11 um,16 um,21 um,4 um,9

um,14 um,19 um,2 um,7 um,12 um,17 um,22 um,5 um,10 um,15 um,20 um,3

um,8 um,13 um,18 um,23.

(iv) For k = 7, the induced path is um,1 um,8 um,15 um,22 um,7 um,14 um,21

um,6 um,13 um,20 um,5 um,12 um,19 um,4 um,11 um,18 um,3 um,10 um,17

um,2 um,9 um,16 um,23.
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(v) For k = 9, the induced path is um,1 um,10 um,19 um,6 um,15 um,2 um,11

um,20 um,7 um,16 um,3 um,12 um,21 um,8 um,17 um,4 um,13 um,22 um,9

um,18 um,5 um,14 um,23.

Each of the paths above will have both end-vertices joining to a single
vertex in {um,i : i = 3, 5, 7, . . . , 21} bijectively.

Problem 2.6. Study χla(G) for

G ∈ GLt

(
(p1, n1), (p2, n2), . . . , (pt, nt)

)
\ GLt(p, n).

Observe that for graphs in GLt(p, n), t ≥ 2, n ≥ 2, p ≥ 9 is odd, and the
defined local antimagic 3-coloring f , we may say every vertex of degree 2n
is incident to 2n′ edges (for 1 ≤ n′ < n) with equal labels sum in

{
n′[tn(p+

1)+1], n′[tn(p+1)]
}
(respectively, of degree 2n+2 is incident to 2n′ edges

(for 1 ≤ n′ ≤ n) with equal label sum n′[(2tn2 + 2tn + 1)(p + 1)/2 + n]).
We can now construct new families of connected graphs using an edge-swap
process as follows:

(1) Choose 2 vertices, say x and y, of same induced vertex label from two
different components.

(2) For each vertex, identify any 2n′ (1 ≤ n′ < n) incident edges with
equal labels sum in

{
n′[tn(p + 1) + 1], n′[tn(p + 1)]

}
(respectively,

identify any 2(n′+n′′) incident edges with equal labels sum n′[tn(p+
1)+1]+n′′(2tn+1)(p+1)/2 for n′+n′′ ≤ n, 1 ≤ n′ ≤ n, n′′ ∈ {0, 1}).

(3) Redraw the 4n′ edges (respectively, the 4(n′ + n′′) edges) so that
the 2n′ edges (respectively, the 2(n′ + n′′) edges) that are originally
incident to x of a component are now incident to y, and vice versa.

(4) Repeat the above process for as many times as possible.

Consequently, by keeping all the edge labels, the new graph obtained is a
connected graph that preserved the induced vertex labels. Note that all
the graphs such obtained are still tripartite. Let the family of graphs such
obtained using t ≥ 2 components graph in GLt(p, n) be denoted CLt(p, n).
We immediately have the following theorem with the proof omitted.

Theorem 2.7. Every graph in CLt(p, n) has local antimagic chromatic num-
ber 3.

Example 2.8. Using the component L2(11, 2|1, 1, 4) in Figure 2.1, we can
get various non-isomorphic graphs in CL2(11, 2). Two of them are given in
Figures 2.4 and 2.5.
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Figure 2.4: A graph in CL2(11, 2) by applying one time edge-swap.
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Figure 2.5: A graph in CL2(11, 2) by applying two times edge-swap.

More generally, we can also apply the idea of labeling graphs in GLt(p, n)
to define a familiy of graphs, denoted GCLs1,...,st(p, n) with si ≥ 2 for at
least an i ∈ [1, t] and the i-th component is in CLsi(p, n), if si ≥ 2, such
that the graphs obtained also has local antimagic chromatic number 3. The
theorem is stated below without proof.

Theorem 2.9. Every graph G ∈ GCLs1,...,st(p, n) has χla(G) = 3.

Example 2.10. We give a 3-component example in Figure 2.6 with s1 =
s2 = 1 and s3 = 2 using the two graphs in Example 2.8.

Further observe that the local antimagic 3-coloring f defined in the proof of
Theorem 2.1 induces a 3-independent partition with sizes tn, t(p−2n+1)/2,
and t(p− 1)/2 with vertices of degree 2n+2, 2n, and 2n, respectively. Let
t = rs ≥ 2, r ≥ 1, and s ≥ 2. Partition the t components of each graph in
GLt(p, n) = Lt(p, n) into r mutually disjoint set(s), say D1, D2, . . . , Dr, of
s components. For each graph in GLt(p, n), we now construct three families
of graphs as follows. Consider 1 ≤ ρ ≤ r.
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Figure 2.6: A 3-component graph in GCL1,1,2(11, 2).

(a) Let GL1
r

(
s(p−n)+n, n

)
be the family of graph(s) with r component(s)

such that the ρ-th component is of order s(p − n) + n obtained by
merging the k-th (k ∈ [1, n]) degree 2n + 2 vertex (with induced
vertex label (2tn2 + 2tn+ 1)(p+ 1)/2 + n) of each component in Dρ

bijectively. Each component of the graph obtained has n vertices of
degree s(2n + 2), s(p − 2n + 1)/2 vertices of degree 2n, and another
s(p− 1)/2 vertices of degree 2n.

(b) Let GL2
r

(
s(p+2n−1)/2+(p−2n+1)/2, n

)
be the family of graph(s)

with r component(s) such that the ρ-th component is of order s(p+
2n− 1)/2+ (p− 2n+1)/2 obtained by merging the k-th (k ∈ [1, (p−
2n+1)/2]) degree 2n vertex (with induced vertex label tn2(p+1)+n)
of each component in Dρ bijectively. Each component of the graph
obtained has (p−2n+1)/2 vertices of degree 2sn, sn vertices of degree
2n+ 2, and another s(p− 1)/2 vertices of degree 2n.

(c) Let GL3
r

(
s(p + 1)/2 + (p − 1)/2, n

)
be the family of graph(s) with r

component(s) such that the ρ-th component is of order s(p+ 1)/2 +
(p− 1)/2 obtained by merging the k-th (k ∈ [1, (p− 1)/2]) degree 2n
vertex (with induced vertex label tn2(p + 1)) of each component in
Dρ bijectively. Each component has (p− 1)/2 vertices of degree 2sn,
sn vertices of degree 2n+ 2, and another s(p− 2n+ 1)/2 vertices of
degree 2n.
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Theorem 2.11. If G ∈ GL1
r

(
s(p − n) + n, n

)
∪ GL2

r

(
s(p + 2n − 1)/2 + (p −

2n+ 1)/2, n
)
∪ GL3

r

(
s(p+ 1)/2 + (p− 1)/2, n

)
, then χla(G) = 3.

Proof. Clearly, χla(G) ≥ χ(G) = 3. Keeping the local antimagic 3-coloring
for the corresponding graph as defined in the proof of Theorem 2.1. Suppose
G ∈ GL1

r

(
s(p − n) + n, n

)
. Thus, G admits an edge labeling such that, in

each component, there are n degree s(2n + 2) vertices with induced label
s
(
(2tn2 + 2tn+ 1)(p+ 1)/2 + n

)
and the remaining degree 2n vertices still

have induced vertex labels tn2(p+ 1) + n or tn2(p+ 1).

Suppose G ∈ GL2
r

(
s(p+2n− 1)/2+ (p− 2n+1)/2, n

)
. Thus, G admits an

edge labeling such that, in each component, there are (p−2n+1)/2 degree
2sn vertices with induced label s

(
tn2(p + 1) + n

)
; the sn degree 2n + 2

vertices and the remaining s(p− 1)/2 degree 2n vertices still have induced
vertex labels (2tn2 + 2tn+ 1)(p+ 1)/2 + n and tn2(p+ 1), respectively.

Suppose G ∈ GL3
r

(
s(p + 1)/2 + (p − 1)/2, n

)
. Thus, G admits an edge

labeling such that, in each component, there are (p−1)/2 degree 2ns vertices
with induced label s

(
tn2(p + 1)

)
; the sn degree 2n + 2 vertices and the

remaining s(p−2n+1)/2 degree 2n vertices still have induced vertex labels
(2tn2 + 2tn+ 1)(p+ 1)/2 + n and tn2(p+ 1) + n, respectively.

In each case, it is easy to check that all the induced vertex labels are distinct
so that G admits a local antimagic 3-coloring. Thus, χla(G) ≤ 3. The proof
is complete.

Note that when p is sufficiently large, it is possible that every component
of a graph in GLt(p, n) has the n degree 2n+2 vertices, say u1, . . . , un, that
are not adjacent to nor have common neighbors with n degree 2n vertices
of same induced vertex label, say v1, . . . , vn, under the local antimagic 3-
coloring f as defined. Let G be the graph, necessarily without multiple
edges nor loops, obtained by merging u1, . . . , un with v1, . . . , vn bijectively.
We now define three more families of graphs naturally as follows.

(a) Let GL4
t (p − n, n) be the family of graphs with t ≥ 1 component(s)

such that the m-th component is of order p− n obtained by merging
the n degree 2n+2 vertices bijectively with n degree 2n vertices that
have induced label tn2(p+ 1) + n.

(b) Let GL5
t (p − n, n) be the family of graphs with t ≥ 1 component(s)

such that the m-th component is of order p− n obtained by merging
the n degree 2n+2 vertices bijectively with n degree 2n vertices that
have induced label tn2(p+ 1).
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(c) Let GL6
t (p−n+1, n) be the family of graphs with t ≥ 1 component(s)

such that them-th component is of order p−n+1 obtained by merging
all the n degree 2n+ 2 vertices into a vertex of degree n(2n+ 2).

Theorem 2.12. If G ∈ GL4
t (p − n, n) ∪ GL5

t (p − n, n) ∪ GL6
t (p − n + 1, n),

then χla(G) = 3.

Proof. By definition, G is still tripartite so that χla(G) ≥ χ(G) = 3.
(a) Note that ui (1 ≤ i ≤ n) has induced vertex label (2tn2 + 2tn+ 1)(p+
1)/2 + n. If vi (1 ≤ i ≤ n) has induced vertex label tn2(p + 1) + n, after
merging, the degree 4n + 2 vertices obtained have induced vertex labels
(4tn2+2tn+1)(p+1)/2+2n, which is larger than the remaining degree 2n
vertices with induced vertex labels tn2(p+ 1) + n and tn2(p+ 1). (b) Sim-
ilarly if vi has induced vertex label tn2(p + 1). (c) The degree n(2n + 2)
vertex has induced vertex label n(2tn2 + 2tn + 1)(p + 1)/2 + n2 while the
other vertices have the same induced vertex labels. Thus, χla(G) ≤ 3. This
completes the proof.

Example 2.13. A graph in L1(17, 2) that can give a graph in Theorem 2.12
is shown in Figure 2.7.
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Figure 2.7: A graph in L1(17, 2).

Remark 2.14. We note that the construction of graphs in Theorems 2.11
and 2.12 using the graphs in GLt(p, n) can be done by using the graphs
in CLt(p, n) ∪ GCLs1,...,st(p, n) as well so that theorems similar to Theo-
rems 2.11 and 2.12 can be obtained, too.
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3 Conclusion and open problems

In this paper, we introduce algorithmic approaches to contruct various fam-
ilies of non-regular (possibly disconnected) tripartite graphs of even size and
prove that all these graphs have local antimagic chromatic number 3.

In [7, Lemmas 2.3 & 2.4], the authors obtained sufficient conditions to have
χla(G) = χla(G− e). Let e be an edge of a graph G in any of the theorems
in Section 2 with label 1 or |E(G)| under the local antimagic 3-coloring
f as defined. One may check the conditions in [7, Lemmas 2.3 & 2.4] to
obtain the exact value of χla(G− e). In general, we can have the following
problem.

Problem 3.1. If e is an edge of G, determine χla(G− e).

Observe that if we redefine graphs in GLt(p, n) so that the degree 2n + 2
vertices are um,i and um,i′ where i, i′ not both odd for 1 ≤ m ≤ t, then we
have either a bipartite graph B ∈ B with distinct partite set size or else
a tripartite graph T ∈ T that admits a local antimagic 3- or 4-coloring,
respectively. Thus, 2 ≤ χla(B) ≤ 3 and 3 ≤ χla(T ) ≤ 4.

Problem 3.2. Determine χla(B) and χla(T ).

We end this paper with the following problems.

Problem 3.3. Determine the maximum value of n for each possible value of p.

Problem 3.4. Study the properties of the various graph polynomials (and
uniqueness), and graph parameters of every graph in Section 2 such as (but
not limited to) chromatic, domination, independent, star (or neighborhood)
polynomials, magicness, antimagicness, Roman domination number, and
Sudoku number.
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