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Abstract. A Γ-supermagic labeling of a graph G = (V,E) is a bijection from
E to a group Γ of order |E| such that for every vertex x ∈ V a product of
labels of all edges incident with x is equal to the same element µ ∈ Γ. D2k-
supermagic labelings of the Cartesian, direct, and strong product of cycles
Cm and Cn by dihedral group D2k for any m,n ≥ 3 were found recently.
In this paper we present D2k-supermagic labelings of the four 4-regular
Archimedean graphs, antiprisms, and their non-planar generalizations, j-
antiprisms.

1 Introduction

A supermagic labeling (sometimes called vertex-magic edge labeling) of a
graph G = (V,E) is a bijection from the edge set E to the set of first |E|
positive integers such that the sum of labels of all edges incident with each
vertex (called the weight of x) is equal to the same constant c.

When the set of labels is instead a group Γ of order |E|, we speak about
Γ-supermagic labelings. Of course, when Γ is an Abelian group, then the
order in which the edge labels are used in the weight of x does not matter.
When Γ is non-Abelian, we require that some product of the incident edges
is equal to the same element µ ∈ Γ. Because of this, the problems seems
to be more complicated for general graphs, even if we restrict ourselves to
regular or even vertex-transitive graphs.

So far, the only results for Γ-supermagic labelings with non-Abelian groups
were obtained by the author for Cartesian, direct, and strong products of
cycles Cm and Cn by dihedral group D2k [2].
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A more detailed overview of the above mentioned results is given in Sec-
tion 3.

In this paper we restrict our investigation to one infinite class of 4-regular
graphs and four graphs of Archimedean solids. We consider antiprisms,
their non-planar generalization, and four Archimedean graphs: cuboctahe-
dron, rhombicuboctahedron, icosidodecahedron, and rhombicosidodecahe-
dron.

The Archimedean solids are convex polyhedra with similar arrangement of
non-intersecting regular plane convex polygons with unit side length of two
or more different types at each vertex.

Disclaimer. The topic of this paper is very similar to the topics of [2],
[5], and [6]. Most of the known results cited in this paper have also been
cited in these three papers, and the statements of the cited theorems here
are therefore identical. Also, some text in Sections 2 and 3 may be taken
directly from [2], [5], or [6].

2 Definitions

For the sake of completeness, we start with rigorous definitions of relevant
labelings. The notion of supermagic labeling was also studied under the
name of vertex-magic edge labeling.

Definition 2.1. A supermagic labeling of a graph G = (V,E) with |E| = q is
a bijection f from E to the set {1, 2, . . . , q} such that the sum of labels of
all incident edges of every vertex x ∈ V , called the weight of x and denoted
w(x), is equal to the same positive constant c, called the magic constant .
That is,

w(x) =
∑
xy∈E

f(xy) = c

for every vertex x ∈ V . A graph that admits a supermagic labeling is called
a supermagic graph.

There were also some more general forms of edge labelings studied by Sed-
láček [10] and by Stanley [12, 13]. Stewart [14] introduced the notion of
supermagic labelings, where the set of labels consisted of |E| consecutive
integers. When a supermagic graph is regular, then the edge labels can
start with any positive integer and therefore are always considered to be
1, 2, . . . , |E|.
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Definition 2.2. A Γ-supermagic labeling of a graph G = (V,E) with |E| = q
is a bijection f from E to a group Γ of order q such that for every vertex
x ∈ V and its incident edges e1, e2, . . . , er there exists an ordering ei1 , ei2 ,
. . . , eir for which the weight of x, denoted w(x) and defined as

w(x) = f(eir )f(eir−1) . . . f(ei1),

is equal to the same element µ ∈ Γ, called the magic constant .

When the edges incident with each vertex can be ordered in the same way
according to some well defined rule, we say that the labeling is uniform.

A graph that admits a Γ-supermagic labeling is called a Γ-supermagic
graph.

While for Abelian groups the order in which the edge labels are considered
is irrelevant, for non-Abelian groups different orders may produce different
weights. It is indeed desirable that the order for every vertex is in some
way predictable or uniform. Although for general graphs it may be hard
to achieve, for some classes of graphs it can be done in a uniform way. For
instance, when the graph is drawn in the plane or on the torus. Examples
of such labelings are presented in [2].

The dihedral group D2k of order 2k (sometimes also denoted by Dk) is the
group consisting of k rotations ri and k reflections si, where the rotations
form a cyclic group of order k and each reflection generates a subgroup of
order 2. A more formal definition is below.

Definition 2.3. The dihedral group of order 2k where k ≥ 3, denoted by D2k,
is defined on the set of elements {r0, r1, . . . , rk−1, s0, s1, . . . , sk−1} where
r0 = e, ri = ri, s0 = s, si = ris, s2i = e, and ris = sr−i for i = 0, 1, . . . , k−
1. The elements ri are called rotations, and the elements si are called
reflections.

An important property of D2k is used in our constructions. If follows di-
rectly from the definition.

Proposition 2.4. In any dihedral group D2k, we have sris = r−i for every
i = 0, 1, . . . , k − 1.

Froncek

82



3 Known results

The study of 4-regular supermagic graphs was initiated by Ivančo [7] who
investigated labelings with positive integers. He proved two results.

Theorem 3.1 (Ivančo, [7]). Let n ≥ 3. Then the Cartesian product Cn□Cn

has a supermagic labeling.

Theorem 3.2 (Ivančo, [7]). Let m,n ≥ 4 be even integers. Then Cm□Cn

has a supermagic labeling.

Ivančo also conjectured that there exists a supermagic labeling for all Carte-
sian products Cm□Cn.

Conjecture 3.3 (Ivančo, [7]). The Cartesian product Cm□Cn allows a su-
permagic labeling for any m,n ≥ 3.

Froncek in an unpublished manuscript [1] verified that the conjecture is
true also when m,n are both odd and not relatively prime.

Theorem 3.4 (Froncek, [1]). Let m,n ≥ 3 be odd integers and gcd(m,n) >
1. Then Cm□Cn has a supermagic labeling.

Froncek, McKeown, McKeown, and McKeown [3] and later Froncek and
McKeown [4] (using a different labeling) proved a result similar to Theo-
rems 3.2 and 3.4 for the cyclic group Z2mn.

Theorem 3.5 (Froncek et al.,[3,4]). The Cartesian product Cm□Cn admits
a Z2mn-supermagic labeling for all m,n ≥ 3.

The construction from [4] was then used by Sorensen [11] and Paananen [9]
to obtain a slightly more general result.1 Notice that when mn is even, the
group used in the theorem is not cyclic.

Theorem 3.6 (Paananen [9] and Sorensen [11]). For any m,n ≥ 3, the
Cartesian product Cm□Cn admits a Γ-supermagic labeling for Γ = Zmn ⊕
Z2.

1Paananen [9] and Sorensen [11] worked on a joint project for their MS theses. While
all results cited here are their joint work, their theses were written and defended inde-
pendently. Both theses contain Theorem 3.6.
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Paananen [9] and Sorensen [11] also proved some more partial results that
were later generalized by Froncek, Paananen, and Sorensen [5, 6].

Theorem 3.7 (Froncek et al., [5, 6]). Let m,n ≥ 3 and m ≡ n (mod 2).
Then the Cartesian product Cm□Cn admits a Γ-supermagic labeling by
any Abelian group Γ of order 2mn.

The case of m ≡ n + 1 (mod 2) remains open except for the groups Z2mn

and Zmn ⊕ Z2.

4 Antiprisms

An antiprism A2n of order 2n is a graph consisting of two cycles Cn (called
rims) on vertices x0, x1, . . . , xn−1 (upper rim) and y0, y1, . . . , yn−1 (lower
rim) with edges ai = xixi+1 and bi = yiyi+1, respectively, and a set of edges
(called spokes) forming two perfect matchings with edges di = xiyi for i =
0, 1, . . . , n− 1 (called vertical spokes) and ti = yixi+1 for i = 0, 1, . . . , n− 1
(called tilt spokes). Addition in the subscripts is performed modulo n. The
spokes induce a cycle of length 2n on vertices x0, y0, x1, y1, . . . , xn−1, yn−1

with edges d0, t0, d1, t1, . . . , dn−1, tn−1. It is usually assumed that n ≥
4; for n = 3 the graph is one of the five Platonic graphs, namely the
octahedron.

We label the edges of A2n with D4n as follows.

Construction 4.1 (Uniform D4n-supermagic labeling of A2n). We label the
spokes with the subgroup of all rotations and the rims with two cosets of
reflections. In particular, we set

f(ai) = r2is, f(bi) = r2i+1s

and
f(di) = r2i, f(ti) = r2i+1.

Now for the upper rim, we calculate the weights as

w(xi) = f(ti−1)f(ai)f(di)f(ai−1),

and obtain

w(xi) = r2i−1(r2is)r2i(r2i−2s)

= r2i−1r2i(sr2ir2i−2s)

= r2i−1r2ir−2ir−(2i−2)

= r.
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xi−2 xi−1 xi xi+1 xi+2

yi−2 yi−1 yi yi+1 yi+2

ai−2 ai−1 ai ai+1

bi−2 bi−1 bi bi+1

di−2 di−1 di di+1 di+2ti−2 ti−1 ti ti+1

Figure 4.1: Antiprism in natural position.

For the lower rim, we calculate the weights as

w(yi) = f(di)f(bi)f(ti)f(bi−1).

yi−2 yi−1 yi yi+1 yi+2

xi−1 xi xi+1 xi+2 xi+3
ai−2 ai−1 ai ai+1

bi−2 bi−1 bi bi+1

ti−2 ti−1 ti ti+1 ti+2di−1 di di+1 di+2

Figure 4.2: Upside-down shifted antiprism

While the order of edges in the weight may seem different from w(xi), it is
in fact following the same pattern as can be observed in Figures 4.1–4.2. We
turned the antiprism upside-down and then shifted the vertices xi by one
position counter-clockwise. This way the (originally tilt) spoke ti becomes
vertical and di (originally vertical) becomes tilt. The weight then is

w(yi) = r2i(r2i+1s)r2i+1(r2i−1s)

= r2ir2i+1(sr2i+1r2i−1s)

= r2ir2i+1r−(2i+1)r−(2i−1)

= r.

Our first result follows immediately.
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Theorem 4.2. The antiprism A2n is uniformly D4n-supermagic for every
n ≥ 3.

The notion of antiprism can be generalized into a non-planar 4-regular
graph with similar structure. A j-antiprism j-A2n of order 2n is a graph
consisting of two cycles Cn (called rims) on vertices x0, x1, . . . , xn−1 (upper
rim) and y0, y1, . . . , yn−1 (lower rim) with edges ai = xixi+1 and bi =
yiyi+1, respectively, and a set of edges (called spokes) forming two perfect
matchings with edges di = xiyi for i = 0, 1, . . . , n−1 (called vertical spokes)
and ti = yixi+j for i = 0, 1, . . . , n − 1 (called j-tilt spokes). Addition
in the subscripts is performed modulo n. The spokes induce k cycles of
length m = 2n/k where k = gcd(n, j) on vertices xi, yi, xi+j , yi+j , . . . ,
xi−j , yi−j with edges di, ti, di+j , ti+j , . . . , di−j , ti−j . Notice that, because
of symmetry, we can always assume that j ≤ n/2, and therefore we can
always set 0 ≤ i ≤ m− 1. Of course, a 1-antiprism 1-A2n is just the usual
antiprism A2n.

Construction 4.3 (Uniform D4n-supermagic labeling of j-A2n). The rim
edges are labeled exactly as in Construction 4.1. That is,

f(ai) = r2is, f(bi) = r2i+1s.

The spokes are labeled as follows. Let i = uj + v, where 0 ≤ u < 2n and
0 ≤ v < j. Then

f(di) = f(duj+v) = r2uj+v, f(ti) = f(tuj+v) = r(2u+1)j+v.

For the upper rim, we define

w(xi) = f(ti−j)f(ai)f(di)f(ai−1),

and obtain

w(xi) = w(xuj+v) = r(2(u−1)+1)j+v(r2is)r2uj+v(r2i−2s)

= r(2u−1)j+vr2i(sr2uj+vr2i−2s)

= r2uj−j+vr2ir−(2uj+v)r−(2i−2)

= r−j+2.

For the lower rim, we calculate the weights as

w(yi) = f(di)f(bi)f(ti)f(bi−1).
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To see that we follow the same pattern as for the upper rim, we again
perform the same operations as in Construction 4.1. That is, turn the j-
antiprism upside-down and then shift the vertices xi by j positions counter-
clockwise. This way the (originally j-tilt) spoke ti becomes vertical and di
(originally vertical) becomes j-tilt.

The weight is then

w(yi) = w(yuj+v) = r2uj+v(r2i+1s)r(2u+1)j+v(r2i−1s)

= r2uj+vr2i+1(sr2uj+j+vr2i−1s)

= r2uj+vr2i+1r−(2uj+j+v)r−(2i−1)

= r−j+2.

Thus we proved the following.

Theorem 4.4. The j-antiprism j-A2n is uniformly D4n-supermagic for every
n ≥ 3 and every 1 ≤ j ≤ n− 1.

5 Cuboctahedron

The cuboctahedron graph has 12 vertices, 24 edges, 8 triangular, and 6 rect-
angular faces. We denote the triangles as T 0, T 1, . . . , T 7 with the provision
that T 0, T 1, T 2, and T 3 share edges with the top rectangle consecutively.
That is, T i has a common vertex with T i−1 and T i+1, where the super-
scripts are calculated modulo 4. Similarly, T 4, T 5, T 6 and T 7 share edges
with the bottom rectangle consecutively. Here T i has a common vertex
with T i−1 and T i+1, and in particular T 7 shares a vertex with T 6 and
T 4. Moreover, T 0 shares a vertex with T 7, T 1 shares a vertex with T 4, T 2

shares a vertex with T 5, and T 3 shares a vertex with T 6. Therefore, T i

and T j share a vertex only when i and j have different parity.

It should be obvious that the four odd-numbered triangles form one 2-
factor 4C3 while the even-numbered ones form another 2-factor 4C3. We
label each triangle with a coset of the subgroup ⟨r8⟩: the odd ones with
reflections and the even ones with rotations.

Construction 5.1 (UniformD24-supermagic labeling of cuboctahedron). We
denote the edges in T i as ti0, t

i
1, t

i
2, rotating counter-clockwise.
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Figure 5.1: Cuboctahedron.

We label the edges of the odd triangles by the cosets of reflections of the
subgroup ⟨r4⟩ as

f(tik) = r4k+is,

that is, each T i is labeled by the coset ⟨r4⟩ris.

The edges of the even triangles are labeled by the cosets of rotations of the
subgroup ⟨r4⟩ as

f(tjm) = r4m+j ,

which means that each T j is labeled by the coset ⟨r4⟩rj .

Every vertex x is then incident with edges tik, t
i
k+1, t

j
m, and tjm+1 for some

i, j, k,m in the relevant range, where i is odd and j is even. We define the
weight of each vertex as

w(x) = f(tjm+1)f(t
i
k+1)f(t

j
m)f(tik).

Therefore, for each x we have

w(x) = f(tjm+1)f(t
i
k+1)f(t

j
m)f(tik)

= r4(m+1)+j(r4(k+1)+is)r4m+j(r4k+is)

= r4(m+1)+jr4(k+1)+i(sr4m+jr4k+is)

= r4(m+1)+jr4(k+1)+ir−(4m+j)r−(4k+i)

= r8

for each vertex x regardless of its location. Therefore, the labeling is uni-
formly D24-supermagic.

Thus we proved the following.

Theorem 5.2. The cuboctahedron graph is uniformly D24-supermagic.
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Figure 6.1: Rhombicuboctahedron.

6 Rhombicuboctahedron

The rhombicuboctahedron graph has 24 vertices, 48 edges, 8 triangles, and
18 squares. It can be decomposed into two uniform 2-factors. One consist-
ing of the 8 triangles and one consisting of 6 squares, depicted in red in
Figure 6.1.

We label the triangular factor with cosets of reflections of the subgroup ⟨r8⟩
and the squares with cosets of rotations of the subgroup ⟨r6⟩.

Construction 6.1 (Uniform D24-supermagic labeling of rhombicosidodeca-
hedron). We denote the triangles in the factor 8C3 as T 1, T 2, . . . , T 8 and
the squares in 6C4 as Q1, Q2, . . . , Q6. The exact location of each triangle
or square in the graph is irrelevant. Denote the edges in each T i by ti0, t

i
1, t

i
2

and in each Qj by qj0, q
j
1, q

j
2, q

j
3, rotating in both cases counter-clockwise.

We label the edges of the triangles by the cosets of reflections of the sub-
group ⟨r8⟩ as

f(tik) = r8k+is,

that is, each T i is labeled by the coset ⟨r8⟩ris.

The edges of the squares are labeled by the cosets of rotations of the sub-
group ⟨r6⟩ as

f(qjm) = r6m+j ,

which means that each Qj is labeled by the coset ⟨r6⟩rj .

Now every vertex x is incident with edges tik, t
i
k+1, q

j
m, and qjm+1 for some

i, j, k,m in the relevant range. We define the weight of each vertex as

w(x) = f(qjm+1)f(t
i
k+1)f(q

j
m)f(tik).
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Figure 7.1: Icosidodecahedron.

Then for each x we have

w(x) = f(qjm+1)f(t
i
k+1)f(q

j
m)f(tik)

= r6(m+1)+j(r8(k+1)+is)r6m+j(r8k+is)

= r6(m+1)+jr8(k+1)+i(sr6m+jr8k+is)

= r6(m+1)+jr8(k+1)+ir−(6m+j)r−(8k+i)

= r14

regardless of the location of vertex x, and therefore the labeling is uniformly
D24-supermagic.

We thus proved our next result.

Theorem 6.2. The rhombicuboctahedron graph is uniformly D24-super-
magic.

7 Icosidodecahedron

The icosidodecahedron graph has 60 vertices, 120 edges, 20 triangles, and
12 pentagons. It can be decomposed into two Hamiltonian cycles as shown
in Figure 7.2. We label the red cycle with the coset of all reflections of the
subgroup ⟨r⟩ and the blue one with the subgroup of all rotations ⟨r⟩.

Construction 7.1 (Uniform D120-supermagic labeling of rhombicosidodeca-
hedron). We denote the edges in the red cycle C60 as a0, a1, . . . , a59 and in
the blue C60 as b0, b1, . . . , b59.

We label the edges of the red cycle by the coset of reflections of the subgroup
⟨r⟩ as

f(ai) = ris
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1

Figure 7.2: Hamiltonian cycles in an icosidodecahedron.

and the edges of the blue cycle by the subgroup of all rotations ⟨r⟩ as

f(bj) = rj .

Every vertex x is incident with edges ai, ai+1, bj , and bj+1 for some 0 ≤
i, j ≤ 59. We define the weight of each vertex as

w(x) = f(bj+1)f(ai+1)f(bj)f(ai).

This yields

w(x) = f(bj+1)f(ai+1)f(bj)f(ai)

= rj+1(ri+1s)rj(ris)

= rj+1ri+1(srjris)

= rj+1ri+1r−jr−i

= r2

regardless of the location of vertex x, and therefore the labeling is D120-
supermagic.

The following then holds.

Theorem 7.2. The icosidodecahedron graph is D120-supermagic.
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Figure 8.1: Rhombicosidodecahedron.

8 Rhombicosidodecahedron

The rhombicosidodecahedron graph has 60 vertices, 120 edges, 20 trian-
gles, 30 squares, and 12 pentagons. It can be decomposed into two uniform
2-factors: one consisting of the 20 triangles and one consisting of the 12 pen-
tagons. We use the factorization in our labeling as follows.

Construction 8.1 (Uniform D120-supermagic labeling of rhombicosidodec-
ahedron). We denote the triangles in the factor 20C3 as T 1, T 2, . . . , T 20

and the pentagons in 12C5 as P 1, P 2, . . . , P 12. The exact location of each
triangle or pentagon in the graph is irrelevant. We denote the edges in
each T i by ti0, t

i
1, t

i
2 and in each P i by pi0, p

i
1, . . . , p

i
4, rotating in both cases

counter-clockwise.

We label the edges of the triangles by the cosets of reflections of the sub-
group ⟨r20⟩ as

f(tik) = r20k+is,

that is, each T i is labeled by the coset ⟨r20⟩ris.

The edges of the pentagons are labeled by the cosets of rotations of the
subgroup ⟨r12⟩ as

f(pjm) = r12m+j ,

which means that each P j is labeled by the coset ⟨r12⟩rj .

Now every vertex x is incident with edges tik, t
i
k+1, p

j
m, and pjm+1 for some

i, j, k,m in the relevant range. We define the weight of each vertex as

w(x) = f(pjm+1)f(t
i
k+1)f(p

j
m)f(tik).
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Therefore, for each x we have

w(x) = f(pjm+1)f(t
i
k+1)f(p

j
m)f(tik)

= r12(m+1)+j(r20(k+1)+is)r12m+j(r20k+is)

= r12(m+1)+jr20(k+1)+i(sr12m+jr20k+is)

= r12(m+1)+jr20(k+1)+ir−(12m+j)r−(20k+i)

= r32

regardless of the location of vertex x, and therefore the labeling is uniformly
D120-supermagic.

The following then holds.

Theorem 8.2. The rhombicosidodecahedron graph is uniformly D120-super-
magic.

9 Concluding remarks

We have foundD2k-supermagic labelings of the infinite classes of antiprisms
and j-antiprisms as well as of the four 4-regular graphs of Archimedean
solids:

• cuboctahedron,

• rhombicuboctahedron,

• icosidodecahedron, and

• rhombicosidodecahedra.

A natural next step would be to find D2k-supermagic labelings of infinite
classes of other 4-regular (vertex-transitive) graphs.

The remaining nine Archimedean solids are 3- or 5-regular. We are not
aware of any odd-regularD2k-supermagic graphs and currently do not know
if any such graphs exist.

Attribution. The Hamiltonian decomposition of the icosidodecahedron
shown in Figure 7.2 and the figure itself were provided by Don Kreher [8].
The remaining figures were created by Tilman Piesk and taken from Wiki-
pedia.org under the Creative Commons Attribution 4.0 International li-
cense.
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