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Abstract. A matroid is a combinatorial structure that captures and gen-
eralizes the algebraic concept of linear independence under a broader and
more abstract framework. Matroid theory is closely related to many other
topics in discrete mathematics, such as graphs, matrices, codes, and pro-
jective geometries. In this work, we define cyclic matroids as matroids
over a ground set of size n whose automorphism group contains an n-cycle.
We study the properties of such matroids, with special focus on the min-
imum size of their basis sets. For this, we broadly employ two different
approaches: the multiple basis exchange property and an orbit-stabilizer
method developed by analyzing the action of the cyclic group of order n
on the set of bases. We further present some applications of our theory to
algebra and geometry, illustrating connections to cyclic projective planes,
cyclic codes, and k-normal elements.

1 Introduction

Matroids are versatile combinatorial structures known to have close ties
with other objects in discrete mathematics such as graphs, matrices, codes,
and projective geometries. In this paper, we introduce the family of cyclic
matroids as matroids over a ground set of size n whose automorphism group
contains a cyclic subgroup of order n. We show that these matroids are
highly pertinent to the study of cyclic projective planes, cyclic codes, and
k-normal elements over finite fields.

We describe the properties of cyclic matroids, focusing our attention on the
size of their basis sets. Counting the bases of matroids is a common prob-
lem in combinatorics and in particular in optimization; see [6,11,16,19,25]
to mention but a few contributions. In full generality, giving an estimate
of the number of bases of a matroid is a difficult problem. Indeed, its exact

Key words and phrases: Cyclic matroids, Cyclic codes, k-normal elements, number of
basis, cyclic projective planes
Mathematics Subject Classifications: 05B35, 94B15
Coresponding author: Gianira N. Alfarano <gianira.alfarano@gmail.com>

ICA
BULLETIN OF THE ICA
Volume 104 (2025), 114–152

Received: 25 August 2023
Accepted: 12 August 2024 114



computational complexity is still only partially understood. Depending on
the class of matroids in question, the exact counting problem may be poly-
nomial time, #P-complete, or unsolved. For example, it is #P-complete to
count the number of bases of transversal matroids and bicircular matroids;
see [4, 7].

We show that the defining feature of a cyclic matroid enforces the presence
of certain types, and therefore a threshold number, of basis elements. Let
M be a cyclic matroid with ground set {0, 1, . . . , n − 1} and rank k. We
prove, in particular, that the subset B0 = {0, 1, . . . , k− 1} is always a basis
for M. Further, we provide some lower bounds on the number of bases
of M. For this purpose, we employ two different approaches. On the one
hand, we use the basis exchange property on the cyclic shifts of B0, i.e.,
Bi = {i, i+ 1, . . . , i+ k − 1}. On the other hand, we use the fact that the
basis set B is closed under the action of the cyclic group Zn of order n and
find the minimum number of orbits contained in B. While this group action
has been studied for different purposes (see for instance [1,17,21,24]), to the
best of our knowledge, its connection to matroids has not been investigated
before.

We finally describe the connections of cyclic matroids to well known struc-
tures in algebra and geometry. We observe that every cyclic code of length n
and dimension k gives rise to a representable cyclic matroid of rank k and
ground set {0, 1, . . . , n−1} and that, more generally, the incidence matrix of
every cyclic projective plane PG(2, q) can be represented as a binary cyclic
matroid over a ground set of size q2 + q+1 and rank depending on q. Fur-
thermore, we establish and explain a connection between k-normal elements
of Fqn and cyclic matroids of rank (n− k) and ground set {0, 1, . . . , n− 1}.
However, all these connections leave open a lot of questions; in particular,
it is not clear yet if representable cyclic matroids are always represented
by cyclic codes or k-normal elements. We leave those problems for further
investigation.

The paper is structured as follows. In Section 2, we give some preliminary
background on matroids, finite projective geometry, linear codes, and k-
normal elements. In Section 3, we introduce cyclic matroids and study
the structure and properties of their basis sets. To this end, we use the
multiple basis exchange property to provide different lower bounds on the
number of bases of cyclic matroids. Then, we study the orbits and the
stabilizers of the group action of Zn on the set 2Zn and then apply this
analysis to the bases of cyclic matroids to obtain two more lower bounds.
Since the formulas for these bounds are obtained using different approaches,
they are not directly comparable, and one may exceed the other depending
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on the relationship between n and k. Therefore, we provide and compare
some concrete values of all of our calculated bounds for different values of
n and k. In addition to concrete values, we also compare the asymptotic
behavior of all the bounds. In Section 4, we explain the link between cyclic
projective planes, cyclic codes, and k-normal elements and cyclic matroids.
These links indicate that the class of cyclic matroids deserves to be further
studied from different points of view and may hold powerful potential to
uncover results on related algebraic, combinatorial, and geometric objects.
Finally, in Appendix A we provide some concrete, non-trivial examples of
cyclic matroids found by computer search.

Notation

Let E be a finite set. We denote by 2E the set of all subsets of E. The
cardinality of E is denoted by |E|. Let A ⊆ E be any subset. We denote
by AC the complement set of A in E. Given a positive integer n, let Zn

denote the set of integers modulo n. By abuse of notation, we use the
same symbols for the integer a and its residue class a mod n and perform
arithmetic modulo n, unless stated otherwise. As is standard, the elements
of Zn are represented by integers 0 ≤ a ≤ n − 1, and so Zn inherits the
ordering on Z. We denote by Sn the symmetric group on n symbols, and
by the cycle (0 1 . . . n− 1) the permutation 0 7→ 1, 1 7→ 2, . . . , (n− 2) 7→
(n − 1), (n − 1) 7→ 0. Given a prime power q, we denote by Fq the finite
field of order q and by Fn

q the n-dimensional vector space over Fq.

2 Background

In this section, we provide some useful background for the rest of the paper.
We first briefly recall what a matroid is; later we introduce other combina-
torial and algebraic structures such as projective planes, linear codes, and
k-normal elements, which are closely related to the main object of study
of this paper, namely cyclic matroids. These relations are explained in
Section 4.

2.1 Matroids

We first recall the basic definitions of matroid theory that are used through-
out the paper. For a detailed treatment on matroids we refer the interested
reader to [18].
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Definition 2.1. A matroid M is a pair (E, I) where E is a finite set and I
is a subset of 2E satisfying the following properties:

(I1) ∅ ∈ I.
(I2) If I ∈ I and J ⊆ I, then J ∈ I.
(I3) If I, J ∈ I and |I| < |J |, then there is an element e ∈ J \ I such that

I ∪ {e} ∈ I.

The elements of I are called the independent sets of M, and the elements
outside I are called the dependent sets of M. A maximal (with respect to
inclusion) independent set in I is called a basis of M.

If B is the set of bases of M, then by (I1) it follows that

(B1) B ̸= ∅.

By (I3), it is easy to see that all the bases have the same cardinality, which
is called the rank of M. Moreover, the set of bases B satisfies the following
property, known as the basis exchange property :

(B2) If B1, B2 ∈ B and x ∈ B1\B2, then there exists an element y ∈ B2\B1

such that
(
B1 \ {x}

)
∪ {y} ∈ B.

Using (B1) and (B2), we get an equivalent characterization of a matroid in
terms of bases. Throughout the paper we define matroids using the bases
axioms, and use the notation M = (E,B) for a matroid with ground set E
and basis set B.

Example 2.2 (Uniform Matroid). Let E be a set of cardinality n and, for
an integer k ≤ n, denote by I the collection of subsets of E with at most
k elements and by B the collection of subsets of E with exactly k elements.
It is not difficult to verify that I satisfies properties (I1)–(I3) and B satisfies
properties (B1)–(B2); hence, the pair (E,B) defines a matroid of rank k,
denoted by Un,k and called the uniform matroid .

In Lemma 2.3, we state an equivalent formulation of the basis exchange
property given in [9], which we use many times in the paper.
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Lemma 2.3 (Multiple Exchange Property). LetM = (E,B) be a matroid on
a ground set E and let B be its collection of bases. Further, let B1, B2 ∈ B
and let Q ⊂ B1 \ B2. Then there exists a subset P ⊂ B2 \ B1 such that
(B1 \Q) ∪ P ∈ B.

Definition 2.4. Let M = (E,B) be a matroid. An automorphism τ of M
is a permutation of E such that B ∈ B if and only if τ(B) ∈ B, where
τ(B) := {τ(b) | b ∈ B}. The automorphism group Aut(M) is the group of
automorphisms of M under composition.

More generally, given a matroid M = (E,B), another matroid M′ =
(E′,B′) is said to be isomorphic to M if there exists a bijection τ : E → E′

such that τ(B) ∈ B′ if and only if B ∈ B.

We recall the notion of dual matroid.

Definition 2.5. Let M = (E,B) be a matroid with ground set E and collec-
tion of bases B. Let B∗ =

{
BC | B ∈ B

}
. Then B∗ satisfies the axioms (B1)

and (B2); hence, it is the collection of bases of a matroid M∗ = (E,B∗),
called the dual matroid of M.

Finally, we provide an example of matroids arising from matrices.

Example 2.6 (Representable Matroid). Let F be a field and let A be an
m × n matrix over F. We define E to be the index set of the columns of
A and I to be the collection of subsets of E that correspond to linearly
independent sets of columns of A. Then, M(A) = (E, I) is a matroid of
rank equal to the rank of A, and it is called a representable matroid . A
proof can be found in [18, Theorem 1.1.1].

2.2 Projective planes

In this short section, for convenience of the reader, we recall the definition of
a (cyclic) projective plane, incidence matrix, and collineation group.

Definition 2.7. A (point-line) incidence structure is a triple (P,L, I) of sets
with P called a set of points, L called a set of lines, and I ⊆ P×L called the
set of incidence relations. We say that a point P and a line ℓ are incident
with each other if (P, ℓ) ∈ I, and in this case we write P ∈ ℓ. A subset of
points is called collinear if they are all incident with the same line.
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Definition 2.8. Let n be an integer. A finite projective plane PG(2, n) is a
(point-line) incidence structure with n2 + n+1 points and n2 + n+1 lines
that satisfy the following axioms:

1. Every two points are incident with exactly one line.

2. Every two lines are incident with exactly one point.

3. There are four points such that no three of them are collinear.

When n = q, where q is a prime power, and the points and lines of PG(2, q)
are the one- and two-dimensional subspaces of F 3

q , then the projective plane
is called Desarguesian.

In this paper, we assume that PG(2, q) is Desarguesian. It is immediate to
see that every line in PG(2, q) is incident with exactly q+1 points and that,
dually, every point is incident with exactly q+1 lines. The incidence relation
of PG(2, q) can be represented via an incidence matrix A, whose rows and
columns are indexed by points and lines respectively such that

Ai,j =

{
1, if Pi ∈ ℓj ,

0, otherwise,

where for i, j ∈ {1, . . . , q2 + q + 1} the Pi’s are the points and ℓj ’s are the
lines of the projective plane.

Definition 2.9. A collineation of PG(2, q) is a permutation of the points of
PG(2, q) that preserves their collinearity, i.e., lines are mapped onto lines.
The set of collineations forms a group, called a collineation group.

Definition 2.10. A projective plane PG(2, q) is called cyclic if its collineation
group is transitive on the points of PG(2, q) and there exists a collineation
that generates a cyclic subgroup of order q2 + q + 1.

2.3 Linear codes

This section introduces linear codes, with a particular focus on cyclic codes.
For a more detailed treatment of the topic we refer the interested reader
to [27].

Definition 2.11. Let 1 ≤ k ≤ n. An [n, k]q (linear) code C is a k-dimen-
sional Fq-subspace of Fn

q . The vectors in C are called codewords. A matrix

G ∈ F k×n
q whose rows form a basis for C is called a generator matrix for C.
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In 1976, Greene [10] explored several connections between matroids and
linear codes. Ever since, many authors have exploited this link and used
matroid theory to prove coding theoretic results. It is straightforward to
obtain a representable matroid M(G) from a generator matrix G of a linear
code C; see Example 2.6. Moreover, M(G) does not depend on the choice
of the generator matrix G.

In this work, we are interested in a special class of linear codes, called
cyclic codes, which are one of the most studied families of codes due to
their polynomial representation as ideals of F[x]/⟨xn − 1⟩. More precisely,
they are defined as follows.

Definition 2.12. A code C ⊆ Fn
q is said to be cyclic if for every codeword

c = (c0, c1, . . . , cn−1), the cyclic shift of c, namely

sh(c) = (cn−1, c0, . . . , cn−2),

is also a codeword.

Consider the following map ϕ : Fn
q → Fq[x]/⟨xn − 1⟩ where

(c0, . . . , cn−1) 7→ c0 + c1x+ · · ·+ cn−1x
n−1.

It is easy to see that ϕ is an isomorphism of vector spaces, and it turns out
that C ⊆ Fn

q is a cyclic code if and only if ϕ(C) is an ideal of Fq[x]/⟨xn−1⟩,
which derives from the fact that ϕ

(
sh(c)

)
= xϕ(c) mod (xn − 1). With

abuse of notation, we then identify C with ϕ(C), and we say that a cyclic
code is an ideal of Fq[x]/⟨xn − 1⟩.

Since Fq[x]/⟨xn − 1⟩ is a principal ideal ring, every cyclic code consists
of the multiples of a polynomial g(x), which is the monic polynomial of
lowest degree in the ideal. Such a polynomial g(x) is called a generator
polynomial ; it divides xn − 1; and if g(x) has degree n− k, then the cyclic
code that it generates has dimension k.

2.4 k-normal elements

In this last introductory section, we introduce k-normal elements.
We are interested in studying elements in a finite extension Fqn of degree n
over Fq. An element α ∈ Fqn is called a normal element over Fq if all

its Galois conjugates, i.e., the n elements
{
α, αq, . . . , αqn−1}

, form a basis
of Fqn as a vector space over Fq. A basis of this form is called a normal
basis.
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As a generalization of normal elements, in [14] k-normal elements were
defined.

Definition 2.13. An element α ∈ Fqn is called k-normal if

dimFq

(
spanFq

{
α, αq, . . . , αqn−1

})
= n− k.

Questions on the existence of k-normal elements have been investigated in
[22] and in [26]. In this last work, a general lower bound for the number of
k-normal elements was also provided.

3 Cyclic matroids

In this section we introduce cyclic matroids and study the structure of their
basis sets.

Definition 3.1. Let n be a positive integer. A matroid M = (E,B) on the
ground set E with |E| = n is called a cyclic k-matroid if it has rank k and
satisfies one of the following equivalent conditions:

1. The automorphism group Aut(M) contains an isomorphic copy of the
cyclic group Zn.

2. There exists a cycle σ of length n acting on E such that σ(B) ∈ B
for each B ∈ B.

3. M is isomorphic to some matroidM0 with ground set {0, 1, . . . , n−1}
such that (0 1 . . . n− 1) ∈ Aut(M0).

When the rank is clear or not necessary, we simply say that M is a cyclic
matroid . Using the definition of an automorphism ofM (see Definition 2.4),
it is easy to see that the above three conditions are equivalent.

For simplicity, we fix the ground set E = {0, 1, . . . , n − 1}, and use Zn

interchangeably with E. Without loss of generality, we assume that the
automorphism group of a cyclic matroid contains the n-cycle (0 1 . . . n−1).
We define cyclic shifts on the subsets of E as follows: let s ∈ Zn and
A ⊆ E, then the shifted subset s + A is defined as σs(A), where σ is the
permutation (0 1 . . . n − 1). If A = {g0, g1, . . . , gk−1}, then s + A =
{s+ g0 mod n, s+ g1 mod n, . . . , s+ gk−1 mod n}.

Notice that in [28, p. 330], Welsh defines a matroid M to be cyclic if
Aut(M) = Zn. We redefine cyclic matroids because often, in the literature,
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cyclic objects are the ones that are closed under cyclic shifts. Definition 3.1
introduces a more general class of matroids, which strictly includes Welsh’s
cyclic matroids. For instance, the uniform matroid Uk,n defined in Exam-
ple 2.2 has automorphism group equal to the symmetric group Sn; hence,
it is not cyclic according to Welsh’s definition. Another example is the well
known Fano matroid, which is described in Example 4.7.

Remark 3.2. For fixed values of n and k, cyclic matroids are not uniquely
determined. For example, in the case of n = 4 and k = 2, we have two
distinct cyclic k-matroids with bases B =

{
{0, 1}, {1, 2}, {2, 3}, {0, 3}

}
and

B′ =
{
{0, 1}, {1, 2}, {2, 3}, {3, 0}, {0, 2}, {1, 3}

}
. Note that the matroid(

{0, 1, 2, 3},B′) is the uniform matroid U2,4.

Remark 3.3. It is easy to see that the dual matroidM∗ of a cyclic k-matroid
with ground set of size n is a cyclic (n− k)-matroid. Moreover, for k ≥ 1,
every singleton in a cyclic matroid clearly has rank 1. So a non-trivial cyclic
matroid, i.e., with B ̸= {∅}, does not have loops (i.e, elements that do not
belong to any basis), and a proper cyclic matroid, i.e., with B ⊊ 2E , does
not have coloops (i.e., elements that belong to every basis).

The main problem we address in this paper is counting the minimum num-
ber of basis elements, i.e., finding the minimum cardinality |B| in a cyclic
k-matroid. Throughout, we let

B0 := {0, 1, . . . , k − 1}.

Given a cyclic k-matroid M, we show in Proposition 3.7 that B0 is always
a basis of M. As a result, each of its shifts Bi = i + B0 for 1 ≤ i ≤ n − 1
is also a basis. We refer to these bases B0, B1, . . . , Bn−1 as cyclic bases for
the matroid M. To prove this result, we associate to each subset of Zn a
set partition in the following way.

Definition 3.4. Let A ⊆ Zn be any set. The consecutive block structure of A
is the (ordered) set partition of A given by π(A) = (D1, D2, . . . , Dℓ), where
each Di = {di, di+1, . . . , di+ |Di|−1} is a maximal subset of A containing
consecutive elements modulo n, ordered according to

d1 < d2 < · · · < dℓ.
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It is useful also to associate to a k-subset of Zn the following tuple.

Definition 3.5. If |A| = k, given the consecutive block structure of A,
π(A) = (D1, D2, . . . , Dℓ), the composition (ordered integer partition) |D1|+
|D2| + · · · + |Dℓ| of k is called the block composition of A, denoted by
c(A) =

(
|D1|, |D2|, . . . , |Dℓ|

)
.

Example 3.6. Let A = {0, 2, 3, 4, 6, 7, 9} ⊆ Z10, then the consecutive block
structure of A is π(A) = ({2, 3, 4}, {6, 7}, {9, 0}), and the block composition
of A is c(A) = (3, 2, 2).

Proposition 3.7. Let M = (E,B) be a cyclic k-matroid. Then B0 ∈ B.

Proof. Let B ∈ B be a basis of M, and let π(B) = (D1, D2, . . . , Dℓ) be its
consecutive block structure, i.e., B = D1 ∪D2 ∪ · · · ∪Dℓ. If ℓ = 1, then we
are done, as one of the shifts of B must be equal to B0.

Now assume that ℓ > 1. Using the basis exchange property, we construct
a new basis that has ℓ − 1 blocks in its consecutive block structure. Note
that this is enough to prove the result, as we can apply this argument
repetitively until we obtain ℓ = 1.

Let Di = {di, di + 1, . . . , di + |Di| − 1} for each i ∈ {1, 2, . . . , ℓ}. We apply
the basis exchange property (B2) with respect to bases B and B+1. Note
that B \ (B + 1) = {d1, d2, . . . , dℓ}, hence we obtain a new basis element
B′ = (B \{dℓ})∪{p}, for some p ∈ (B+1)\B = {d1+ |D1|, . . . , dℓ+ |Dℓ|}.

Let B′ = D′
1 ∪ · · · ∪D′

ℓ′ be the consecutive block structure of B′. Consider
the two possibilities |Dℓ| > 1 and |Dℓ| = 1. If |Dℓ| > 1, then B \ {dℓ} also
has ℓ blocks in its consecutive block structure. Every p ∈

{
d1 + |D1|, . . . ,

dℓ + |Dℓ|
}
gets added to one of these blocks, so ℓ′ = ℓ. If |Dℓ| = 1, then

B \ {dℓ} contains ℓ− 1 blocks. If p ̸= dℓ + 1, then p just gets added to one
of the blocks in B \ {dℓ}, and B′ has ℓ − 1 blocks. If p = dℓ + 1, then it
forms its own separate block, and ℓ′ = ℓ. Thus, ℓ′ = ℓ or ℓ′ = ℓ − 1. If
ℓ′ = ℓ − 1, then we are done. So assume that ℓ′ = ℓ. This implies that
D′

ℓ =
{
dℓ+1, . . . , dℓ+|Dℓ|−1

}
or D′

ℓ =
{
dℓ+1, . . . , dℓ+|Dℓ|

}
. In each case,

the smallest element in D′
ℓ increases by 1. Hence, by applying this basis

exchange process repeatedly, the block D′
ℓ either vanishes or merges with

the next block D′
1, and this results in a new basis with ℓ − 1 consecutive

blocks.

On cyclic matroids and their applications

123



Proposition 3.7 therefore shows that each of the cyclic bases

B0, B1, . . . , Bn−1

is indeed a basis for any cyclic k-matroid.

Example 3.8. Let n and k be integers such that k | n. Consider a repre-
sentable matroid M(A) = (E,B), where A is the k × n matrix

A =
(
Idk Idk · · · Idk

)
∈ F k×n

with F being any field and Idk denoting the k × k identity matrix. If
E = {0, 1, . . . , n − 1} is the index set of the columns of A, then the set of
bases B is given by

B =
{
{a0, a1, . . . , ak−1} | ai ≡ i (mod k)

}
.

It is easy to check that M is a cyclic k-matroid.

3.1 Basis exchange approach for the number of bases

In this section, we present some lower bounds on the size of the collection
of bases B of an arbitrary cyclic matroid M = (Zn,B). In particular, we
use the basis exchange property on the cyclic bases B0, B1, . . . , Bn−1 to
construct other basis elements.

We first prove some properties of the cyclic bases that we use to count the
number of bases in a cyclic matroid. In the following result we compute
the size of the difference between the intersection of two cyclic bases and
the basis set B0.

Lemma 3.9. Let 1 ≤ j ≤ i ≤ n− 1. Then,

∣∣(Bi ∩Bj) \B0

∣∣ = {
0, if i− j ≥ k,

j + k −max{k, i}, otherwise.

Proof. Write ℓ = i− j. Assume k ≤ n/2. Then we can observe that

Bi ∩Bj =


{i, i+ 1, . . . , j + k − 1}, if ℓ < k,

{j, j + 1, . . . , i− n+ k − 1}, if ℓ > n− k,

∅, if k ≤ ℓ ≤ n− k.
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Similarly, if k > n/2, we have that

Bi ∩Bj =


{i, i+ 1, . . . , j + k − 1}, if ℓ < n−k,

{j, j + 1, . . . , i− n+ k − 1}, if ℓ ≥ k,

{j, j + 1, . . . , i− n+ k − 1}
∪ {i, . . . , j + k − 1}, if n− k ≤ ℓ ≤ k.

Therefore, if ℓ ≥ k, then Bi ∩ Bj = ∅ or Bi ∩ Bj ⊆ B0. Whereas, if ℓ < k
then

(Bi ∩Bj) \B0 =

{
{k, k + 1, . . . , j + k − 1}, if i ≤ k,

{i, i+ 1, . . . , j + k − 1}, if i > k.

In order to apply the basis exchange property on B0, we calculate the collec-
tion of all cyclic shifts of B0 that intersect trivially (i.e., empty intersection)
with a subset of B0.

Lemma 3.10. Let Q ⊆ B0. Let q1 and q2 be the smallest and largest
elements of Q, respectively. For i ∈ {q2−q1+1, . . . , n−k}, the n−k−q2+q1
bases B0 + q1 + i intersect trivially with Q, and any cyclic basis satisfying
this property must lie among these.

Proof. We may rule out cyclic bases of the form B0 + j with j < q2, since
these would always contain q2. So, we are looking for cyclic bases of the
form B0 + q1 + i with i > q2 − q1. For q1 to lie outside these bases, we
would additionally need k − 1 + q1 + i < n + q1, so i ≤ n − k. Now let
q ∈ Q and suppose that q ∈ B0+ q1+ i for some q2− q1 < i ≤ n− k. Thus,
q = b0 + q1 + i or q + n = b0 + q1 + i for some q2 − q1 < i ≤ n − k and
b0 ∈ B0. Since q < q2, the first case is impossible. Similarly, b0 + q1 + i <
k− 1+ q1 + i < n+ q1 < n+ q, so the second case is also impossible. Thus,
Q ⊆ B0 \ Bq1+i for all q2 − q1 < i ≤ n − k. The number of such bases is
clearly given by n− k− q2 + q1, which is the number of valid indices i.

Lemma 3.11. Let Q ⊆ B0 be fixed with |Q| = r. Let q1 and q2 be the
smallest and largest elements of Q, respectively, and assume that q2− q1 <
n − k. For any q ∈ B0 and q2 − q1 + 1 ≤ j < i ≤ n − k, we have that∣∣(Bq+i \B0) ∩ (Bq+j \B0)

∣∣ < r if and only if i− j ≥ k − r + 1.
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Proof. Let q2 − q1 + 1 ≤ j < i ≤ n − k and i − j ≥ k − r + 1. Note first
that (Bq+i \B0)∩ (Bq+j \B0) = (Bq+i ∩Bq+j) \B0. Thus, by Lemma 3.9,
we have

∣∣(Bq1+i \B0)∩(Bq1+j \B0)
∣∣ = {

0, if i− j ≥ k,

q1 + j + k −max{k, q1 + i}, otherwise.

Now, since r ≤ q2 − q1 + 1 ≤ j < i, the smallest values for j and i in the
above expressions are, respectively, q2−q1+1 and q2−q1+k−r+2. Thus,
q1 + i ≥ (q2 − r) + k + 2 ≥ q1 + 1 + k > k, and so for any q ∈ B0 we have
max{k, q+ i} = q1 + i for the relevant values of i. Now, if i− j ≥ k, we are
done. If i− j < k, then,

∣∣(Bq+i \B0)∩ (Bq+j \B0)
∣∣ < r, which can happen

if and only if q + j + k − q − i < r and equivalently when i − j > k − r.
This completes the proof.

For an arbitrary cyclic k-matroid M = (Zn,B), we know from Proposi-
tion 3.7 that all the n shifts of B0 are bases of M. In the rest of the
section, we use Lemma 2.3 to show the existence of more bases in B.

Proposition 3.12. Let M = (Zn,B) be a cyclic k-matroid and let Q ⊆
B0 = {0, 1, . . . , k− 1} with |Q| = r. Let q1 and q2 denote, respectively, the
smallest and largest elements of Q and assume that q2− q1 < n−k. Define
m =

⌊
n−k−q2+q1−1

k−r+1

⌋
+ 1. Then, there exist m distinct bases in B of the

form (B0 \Q) ∪ Pi, where Pi ⊆ Bq1+i \B0 and q2 − q1 < i ≤ n− k.

Proof. By Lemma 3.10, we have Q ∩ Bq1+i = ∅ precisely for the n − k −
q2 + q1 values of i ∈ I := {q2 − q1 + 1, . . . , n − k}. Applying the basis
exchange property (B2) to B0 and Bq1+i for each i ∈ I, we get subsets
Pi ⊆ Bq1+i \B0 such that (B0 \Q) ∪ Pi is a basis.

Using Lemma 3.11 for q = q1, we have
∣∣(Bq1+i \B0)∩ (Bq1+j \B0)

∣∣ < r for
each pair i, j ∈ I that satisfies i− j ≥ k − r + 1. Thus, for each

i ∈
{
q2 − q1 + 1, q2 − q1 + 1 + (k − r + 1), . . . , q2 − q1 + 1 + m̃(k − r + 1)

}
,

where m̃ =
⌊
n−k−q2+q1−1

k−r+1

⌋
is the largest integer such that q2 − q1 + 1 +

m̃(k − r + 1) ≤ n− k, we get distinct bases (B0 \Q) ∪ Pi. Thus, there are
m = m̃+ 1 bases in B of this form.
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We now apply Proposition 3.12 on each subset Q of B0 to obtain a lower
bound on the size of B. For the next two theorems, we use the following
convention for binomial coefficients:

(
a
−1

)
:=

{
0, if a ≥ 0,

1, if a = −1.

Theorem 3.13. Let M = (Zn,B) be a cyclic k-matroid. Then, there are at
least m1(n, k) distinct bases in B of the form (B0 \Q)∪ P , where Q ⊆ B0,
P ⊆ Bi for some 1 ≤ i ≤ n− 1, and

m1(n, k) = 1 +

min{k−1,n−k−1}∑
∆=0

∆+1∑
r=1

(k −∆)
(
∆−1
r−2

)(⌊
n−k−∆−1
k−r+1

⌋
+ 1

)
.

Proof. First note that for distinct subsets Q and Q′ of B0, bases of the
form (B0 \ Q) ∪ P and (B0 \ Q′) ∪ P ′ are distinct, where P and P ′ are
some subsets outside B0. So, we may simply add up the number of bases
resulting from the individual subsets Q.

Now for a subset Q of B0 with smallest and largest terms q1 and q2, re-
spectively, and size r ≥ 1, write ∆ = q2 − q1 as the value corresponding
to Q.

In the case of ∆ = 0, we get r = 1 and the number of bases of the form(
B0 \ {q}

)
∪ {p} is given by k

(⌊
n−k−1

k

⌋
+ 1

)
. This directly follows from

Proposition 3.12 by taking q1 = q2 = q and r = 1.

For a fixed value of ∆ ∈
{
1, 2, . . . ,min{k− 1, n−k− 1}

}
, we may calculate

the number of subsets Q corresponding to ∆ and with a fixed size r as
follows. There are (k−∆) subsets of B0 of the form {q1, q1+1, . . . , q1+∆},
each with size ∆ + 1. Any Q must contain q1 and q1 + ∆ and may then
contain any (r−2)-subset of the remaining ∆+1−2 = ∆−1 elements of this
set. Thus, this gives us a total of (k−∆)

(
∆−1
r−2

)
options for Q corresponding

to r.

We may further sum over the relevant values of r for a given value of
∆, i.e., from 2 to ∆ + 1. For each of these subsets Q, there are at least⌊
n−k−∆−1
k−r+1

⌋
+ 1 distinct bases in B, by Proposition 3.12. Finally, we add 1

to include the case Q = ∅. This completes the proof.
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Lemma 3.14. For ℓ = ⌊n/k⌋ − 1, we have
∣∣B(ℓ+1)k \ B0

∣∣ = n − (ℓ + 1)k =∣∣B0 \B(ℓ+1)k

∣∣.
Proof. There exists some i with 0 ≤ i ≤ k − 1, such that (ℓ+ 1)k + i = n.
Clearly, i = n−(ℓ+1)k. The number of terms in B0∩B(ℓ+1)k is the number
of terms starting at (ℓ+ 1)k + i and ending at (ℓ+ 1)k + (k − 1), i.e. k − i
terms, i.e. k − n + (ℓ + 1)k = (ℓ + 2)k − n. Therefore,

∣∣B(ℓ+1)k \ B0

∣∣ =
|B(ℓ+1)k| −

∣∣B0 ∩ B(ℓ+1)k

∣∣ = k − (ℓ + 2)k + n = n − (ℓ + 1)k. Also, we

have
∣∣B0 \B(ℓ+1)k

∣∣ = |B0| −
∣∣B0 ∩B(ℓ+1)k

∣∣ = |B(ℓ+1)k| −
∣∣B0 ∩B(ℓ+1)k

∣∣ =∣∣B(ℓ+1)k \B0

∣∣.
The next result provides a different bound on the number of bases of a
cyclic matroid.

Theorem 3.15. Let M = (Zn,B) be a cyclic k-matroid. Then, there are at
least m2(n, k) distinct bases in B of the form (B0 \ Q) ∪ Pk ∪ P2k ∪ · · · ∪
Pℓk ∪ P(ℓ+1)k, where ℓ =

⌊
n
k

⌋
− 1, ∅ ⊆ P(i+1)k ⊆ B(i+1)k for 0 ≤ i ≤ ℓ, and

m2(n, k) =

k∑
|Q|=0

min{n−(ℓ+1)k,|Q|}∑
j=0

(
n−(ℓ+1)k

j

)(
k−j
|Q|−j

)(|Q|−j+ℓ−1
ℓ−1

)
.

Proof. Note that ℓ =
⌊
n
k

⌋
− 1 gives the number of cyclic bases of the form

Bik, 1 ≤ i ≤ ℓ, which are disjoint pairwise as well from B0 and for which
basis exchange is possible for any subset Q ⊆ B0. If k ∤ n, then we have
an additional basis B(ℓ+1)k with

∣∣B(ℓ+1)k \ B0

∣∣ = n − (ℓ + 1)k. Clearly,
on performing multiple basis exchanges, for every Q ⊆ B0 we obtain that
there must be at least one basis element of the form(

B0 \Q
)
∪ Pk ∪ P2k ∪ · · · ∪ Pℓk ∪ P(ℓ+1)k, (1)

where ∅ ⊆ P(i+1)k ⊆ B(i+1)k for 0 ≤ i ≤ ℓ. Note that any such basis
element can be uniquely written as in (1), hence it is counted at most once.

We count all sets of this form as follows. For a given subset Q, let j denote
the number of elements P(ℓ+1)k picked from the last basis element B(ℓ+1)k.
This leaves |Q| − j elements to be picked from the remaining bases, which
is possible in any way since they are all disjoint from B0. For fixed Q, the
number of possibilities for doing basis exchange with the sets Bk, . . . , Bℓk is
given by the number of ways to split the number |Q|−j into ℓ summands—
allowing each summand to be equal to zero—i.e., to the number of length-ℓ
weak compositions of |Q| − j. This is given by the number

(|Q|−j+ℓ−1
ℓ−1

)
.
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Note that in the case k > n/2, i.e., ℓ = 0, the above number is 1 if and only
if |Q| = j, i.e., if all elements are picked from Bk, and 0 otherwise. The
latter value represents the fact that, if ℓ = 0, there are no bases of the form
Bik disjoint from B0, and the basis exchange must necessarily take place
with Bk.

Now, for fixed values of |Q| and j, we can choose Q in the following way:
first pick j elements from B0 \ B(ℓ+1)k and then |Q| − j elements from
the remaining k − j elements in B0. Thus, the total number of bases
obtained by this process for a fixed cardinality |Q| and fixed j ≥ 0 is(
n−(ℓ+1)k

j

)(
k−j
|Q|−j

)(|Q|−j+ℓ−1
ℓ−1

)
.

Finally, note that
∣∣B(ℓ+1)k \ B0

∣∣ = n − (ℓ + 1)k =
∣∣B0 \ B(ℓ+1)k

∣∣. So, we

must have j ≤ min
{
|Q|, n− (ℓ+1)k

}
. Because Q is allowed to vary across

all subsets of B0, we take a sum over 0 ≤ |Q| ≤ k. This completes the
proof.

3.2 Group action approach for the number of bases

In order to further investigate cyclic matroids, we define the following group
action φ : Zn × 2Zn → 2Zn where

(s,A) 7→ A+ s. (2)

It follows from the definition that the basis set B of a cyclic matroid is
closed under the action φ. In other words, B is a union of orbits of 2Zn

under φ. Therefore, in order to study some properties of a cyclic matroid,
we analyze here the orbits and stabilizers of φ.

For any A ⊆ Zn, the orbit of A is denoted by Orb(A) = {A+ s : s ∈ Zn},
and the stabilizer of A is denoted by Stab(A) = {s ∈ Zn : A+s = A}.

Remark 3.16. Let A ⊆ Zn. Then Stab(A) = Stab(AC), and hence |Orb(A)|
=

∣∣Orb
(
AC

)∣∣, where AC denotes the complement of A in Zn.

3.2.1 Size of a stabilizer

We know that for anyA ⊆ Zn, Stab(A) is a subgroup of Zn, and so |Stab(A)|
divides n. Moreover, Stab(A) = ⟨s0⟩ for some s0 that divides n.

Proposition 3.17. Let A ⊆ Zn and s ∈ {1, . . . , n− 1}. Then s ∈ Stab(A) if
and only if A is a union of arithmetic progressions with common difference
s, each with length n

gcd(n,s) .
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Proof. First assume that A = A1 ∪ A2 ∪ · · · ∪ Ar, where each Ai is an
arithmetic progression with common difference s and having length n

gcd(n,s) .

Pick a “first term” in each Ai and denote it by ai (this choice is arbitrary
since we are working modulo n). Note that the additive order of s mod n
is equal to the cardinality of Ai, i.e.,

n
gcd(n,s) , and so ai + j · s mod n ∈ Ai

for all j ≥ 0. In other words, we must have Ai + s = Ai, for every index
i ∈ {1, . . . , r}. Therefore, A+ s = A.

Conversely, assume that A + s = A and pick a1 ∈ A. Again, since the
additive order of s mod n is equal to n

gcd(n,s) , we must have a1+
n

gcd(n,s) ·s =
a1, and A1 :=

{
a1, a1 + s, . . . , a1 +

(
n

gcd(n,s) − 1
)
· s

}
⊆ A. If A = A1,

then the proof is complete. If not, we have some a2 ∈ A \ A1, so A2 :={
a2, a2+s, . . . , a2+

(
n

gcd(n,s) −1
)
·s
}
⊆ A, and A2∩A1 = ∅. Continuing in

this manner, we obtain, in a finite number of steps, A = A1 ∪A2 ∪ · · · ∪Ar,
where each Ai is an arithmetic progression with common difference s and
having length n

gcd(n,s) . This completes the proof.

The above proposition shows that for any s ∈ Stab(A), n
gcd(n,s) divides

|A|. In particular, the result also holds for a generator of the stabilizer
group.

Corollary 3.18. Let A ⊆ Zn, |A| = k, and Stab(A) = ⟨s0⟩. Then for

r = k gcd(n,s0)
n ∈ Z we have

A =

r⋃
i=1

(
ai + Stab(A)

)
,

for some a1, . . . , ar ∈ Zn. Consequently, |Stab(A)| divides k, and thus also
gcd(k, n).

Proof. Proposition 3.17 implies that s ∈ Stab(A) if and only if A is a union

of k gcd(n,s)
n many full-length arithmetic progressions, each with common

difference s. Thus, r ∈ Z, and we obtain

A =

r⋃
i=1

(
ai + Stab(A)

)
,

for some a1, . . . , ar ∈ Zn. We may assume that a1, . . . , ar ∈ {0, . . . , s− 1}.
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As a consequence of the above result, we note that whenever n and k are
co-prime, Stab(A) is trivial for all subsets A ⊆ Zn of size k.

In the following, we relate the size of the stabilizer of A with the number of
parts in the consecutive block structure π(A) of A; see Definition 3.4.

Proposition 3.19. LetA⊆Zn with π(A)= (D1, D2, . . . , Dℓ). Then |Stab(A)|
divides ℓ.

Proof. Let Stab(A) = ⟨s⟩. If s = 0, then the statement follows immediately.

Assume s ̸= 0 and let r = n/s = |Stab(A)|. We define the following relation
on the set {D1, . . . , Dℓ}:

Di ∼ Dj ⇐⇒ Di = Dj + ts for some t ∈ {0, . . . , r − 1}.

It is easy to check that ∼ is an equivalence relation. We show that each
equivalence class contains exactly r elements. For any i ∈ {1, . . . , ℓ} and
t ∈ {0, . . . , r−1}, we have that Di+ ts ∈ {D1, . . . , Dℓ} because A+ ts = A.
Moreover, if Di + t1s = Di + t2s for some t1, t2 ∈ {0, . . . , r − 1}, then
t1 = t2. This implies that each equivalence class contains r elements.
Hence, r divides ℓ.

We know from Proposition 3.7 that a cyclic k-matroid over Zn contains
bases of the form Bi = {i, i + 1, . . . , i + k − 1} for all i ∈ {0, . . . , n − 1}.
Clearly, all these bases belong to the same orbit, as Bi = B0 + i for each i.
Moreover, using Lemma 2.3 we get that, for each subset Q ⊂ B0, there
exists a basis of the form (B0 \Q)∪P for some P ⊂ BC

0 . As an application
of Proposition 3.19, we obtain the following bound on the size of the stabi-
lizer of such sets.

Corollary 3.20. Let A = (B0 \ Q) ∪ P ⊆ Zn, where Q ⊂ B0 and P ⊂ BC
0

with |Q| = |P |. Then |Stab(A)| ≤ 2|Q|+ 1.

Proof. Let r and s be the number of blocks in the consecutive block struc-
ture of Q and P , respectively. Observe that the number of blocks in the
consecutive block structure of A takes one of the values in the set {r+s−1,
r + s, r + s+ 1}. By Proposition 3.19, |Stab(A)| divides this value, and is
thus bounded from above by the value 2|Q|+ 1, as required.
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Example 3.21. Let A =
(
{0, 1, . . . , k − 1} \ {q}

)
∪ {p} for some

q ∈ {0, 1, . . . , k−1}
and

p ∈ {k, k + 1, . . . , n− 1}.

Using Corollary 3.20, we get that |Stab(A)| ∈ {1, 2, 3}. Note that if n is
not a multiple of 2 or 3, then Stab(A) is trivial. We examine the case
|Stab(A)| > 1. We may assume that 2 ≤ k ≤ n/2, as Stab(A) = Stab(AC).

1. |Stab(A)| = 3 if and only if n = 6, k = 3, and A = {0, 2, 4}.

In this case, the consecutive block structure of A is

π(A) =
(
{0, 1, . . . , q − 1}, {q + 1, . . . , k − 1}, {p}

)
.

Thus, Stab(A) = ⟨n/3⟩ if and only if the sizes of each block are equal
and the shift by n/3 permutes them. This is possible only if q = 1,
k = 3, p = 4, and n = 6.

2. |Stab(A)| = 2 if and only if n is even and A = {0, n/2} or A =
{1, n/2 + 1}.

In this case,∣∣A ∩ {0, 1, . . . , n/2− 1}
∣∣ = ∣∣A ∩ {n/2, n/2 + 1, . . . , n− 1}

∣∣.
Since k ≤ n/2, we have that

∣∣A ∩ {0, 1, . . . , n/2 − 1}
∣∣ ≥ k − 1 and∣∣A ∩ {n/2, n/2 + 1, . . . , n − 1}

∣∣ ≤ 1. Therefore, k = 2 and hence
A = {0, n/2} or A = {1, n/2 + 1}.

3.2.2 Number of bases

Let n ≥ 3, k ∈ {2, . . . , n−1}, and M = (Zn,B) be a cyclic k-matroid. Then
B is closed under the action (2) of Zn, and hence it is a union of some orbits
of subsets of size k. The following two results are based on the observation
that the block composition c(s + A) is simply a cyclic shift of the block
composition c(A); hence, they are equal as unordered sets. This leads to a
bound on the number of distinct orbits of bases of the form (B0 \Q) ∪ P ,
where B0 = {0, 1, . . . , k − 1}, Q ⊆ B0, and P ⊆ BC

0 , which are contained
in B.

Theorem 3.22. There are at least ⌊k/4⌋ + 1 orbits of bases of the form
A =

(
B0 \ {q}

)
∪ {p}, where p ∈ BC

0 . Consequently, there are at least
n

gcd(n,k)

(⌊
k
4

⌋
+ 1

)
bases in B.
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Proof. We first note that the block composition associated to

A =
(
B0 \ {q}

)
∪ {p}

has the following possibilities:

c(A) =



(q, k − q − 1, 1), if q /∈ {0, k − 1}, p /∈ {k, n− 1},
(k − q − 1, q + 1), if q /∈ {0, k − 1}, p = n− 1,

(q, k − q), if q /∈ {0, k − 1}, p = k,

(k − 1, 1), if q = 0, p ̸= k or q = k − 1, p ̸= n− 1,

(k), if q = 0, p = k or q = k − 1, p = n− 1.

Now suppose that A =
(
B0 \ {q}

)
∪ {p} and A′ =

(
B0 \ {q′}

)
∪ {p′} are in

the same orbit, i.e., s+A = A′ for some s. Clearly, the block composition
of A′ is then a shift of c(A). Thus, we have one of the following cases:

1. {q, k − q − 1, 1} = {q′, k − q′ − 1, 1}, i.e., q = q′ or q + q′ = k − 1.

2. {q + 1, k − q − 1} = {q′ + 1, k − q′ − 1}, i.e., q = q′ or q + q′ = k.

3. {q, k − q} = {q′, k − q′}, i.e., q = q′ or q + q′ = k + 1.

4. {q, k − q} = {q′ + 1, k − q′ − 1} or {q + 1, k − q − 1} = {q′, k − q′},
i.e., q = q′ ± 1 or q + q′ = k − 1.

5. q, q′ ∈ {0, k − 1}.

Lemma 3.10 shows that there exist (n − k) bases not containing q. Thus,
if we fix q and pick q′ so that |q − q′| > 1 and q + q′ < k − 1, then all the
resulting bases give rise to distinct orbits. In particular, there is a distinct
orbit corresponding to each of the m+1 values q ∈ {0, 2, 4, . . . , 2m}, where
2m + 2(m − 1) < k − 1 ≤ 2(m + 1) + 2m or m =

⌈
k−3
4

⌉
=

⌊
k
4

⌋
. The final

result on the number of bases follows using Corollary 3.18, which implies
that the size of an orbit is at least n

gcd(n,k) .

We further improve the lower bound on the number of orbits by considering
the bases of the form (B0 \Q) ∪ P , where |Q| > 1 and P ⊆ BC

0 .

Theorem 3.23. The total number of orbits in B is bounded from below by
M +

⌊
k
4

⌋
+ 1, where

M =

⌊
log2

(⌊
k
2

⌋
+ 2

3

)⌋
.

In particular, we have the following lower bound on the number of bases
in B:

m3(n, k) =
(
M +

⌊
k
4

⌋
+ 1

)
n

gcd(n,k) .
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Proof. Let r and s denote, respectively, the number of blocks in the con-
secutive block structure of Q and P . It is easy to see that the number of
blocks in the block structure of the basis element A = (B0 \ Q) ∪ P is at
least r + s − 1 and at most r + s + 1. Now, if |Q| ≤ ⌊k/2⌋, we can choose
Q so that r = |Q|. Then A has at least r and at most 2r + 1 blocks in its
decomposition.

Consider the finite sequence S = (x1 = 1, x2 = 4, . . . , xi, . . . , xℓ), where
xi = 2xi−1 + 2 for 2 ≤ i ≤ ℓ and where ℓ is such that xℓ ≤ ⌊k/2⌋ and
2xℓ + 2 ≥ k/2. Then for each pair of distinct r, r′ ∈ S, there are sets Qr

and Qr′ with |Qr| = r and |Qr′ | = r′ that have r and r′ blocks, respectively,
and give rise to distinct orbits. Thus, the size ℓ of the sequence S gives a
lower bound for the number of orbits.

We have

xi = 2xi−1 + 2 = 2 + 22 + 23 + · · ·+ 2i−2 + 2i = 3 · 2i−1 − 2.

Moreover, for each index i,

3 · 2i−1 − 2 = xi ≤ ⌊k/2⌋

or i ≤ log2

(
⌊k/2⌋+2

3

)
+ 1. Therefore, we have

ℓ =

⌊
log2

(
⌊k/2⌋+ 2

3

)⌋
+ 1.

From the discussion above, it is clear that the number of orbits arising from
the case |Q| > 1 is at least ℓ − 1. From Theorem 3.22, we also have the
lower bound ⌊k/4⌋ + 1 for the number of orbits for |Q| = 1. Plugging in
this value then gives the result.

Proposition 3.24. In any orbit under the action Zn×B → B, where (c,B) 7→
c+B, there exists a representative of the form

{0, a1, . . . , ak−1}

such that ai ≤ ni/k, for all 1 ≤ i ≤ (k − 1). Moreover, if ai < in/k for all
i, then such a representative is unique. In particular, if gcd(n, k) = 1, then
this representation is always unique.

Proof. (Existence) Consider an orbit Orb(A) of an arbitrary set A. We may
assume that A has a form {0, a1, . . . , ak−1} with ai’s in increasing order. If
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ai ≤ in/k for each i, then we are done. Therefore, we assume that this is
not the case.

Let 1 ≤ i ≤ k − 1 be such that ai − in/k is largest. We define B := A− ai
and write B as {0, b1, . . . , bk−1}. We claim that bj ≤ jn/k for each j.

For all 1 ≤ j ≤ k − i− 1, we note that

bj = ai+j − ai = ai+j − in/k − (ai − in/k)

≤ ai+j − in/k −
(
aj+i − (j + i)n/k

)
= jn/k.

The inequality above follows because i is such that ai − in/k is largest.
Similarly, for all k − i ≤ j ≤ k − 1, we note that

bj = n− ai + ak−i−j = (n− in/k) + ak−i−j − (ai − in/k)

≤ (k − i)n/k + ak−i−j −
(
ak−i−j − (k − i− j)n/k

)
= jn/k.

(Uniqueness) Let us assume that

A = {0, a1, . . . , ak−1} and B = {0, b1, . . . , bk−1}

are two distinct sets in the same orbit satisfying ai, bi < in/k for each i.
Since A and B are in the same orbit, B = A− ai for some i. This implies
bk−i = n − ai ≥ n − in/k = (k − i)n/k. This is a contradiction as by
assumption bk−i < (k − i)n/k.

Corollary 3.25. Let n, k be positive integers with gcd(n, k) ̸= 1 and let
A = {0, a1, . . . , ak−1} be an orbit representative with ai < in/k for each
i ∈ {1, . . . , k − 1}. Then, |Orb(A)| = n.

Proof. Suppose |Orb(A)| = s < n, then by Corollary 3.18 we have that s is
a multiple of n/ gcd(n, k). Let s = in/k for some 1 ≤ i ≤ k − 1.

Since A + s = A, there exists j such that aj + s = n ≡ 0 (mod n). This
implies aj = (k − i)n/k. Now, since aj ≤ jn/k, we have that k − i ≤ j.

As 0 < a1 < · · · < ak−1, we note that by adding s we are shifting the indices
by k − j. In particular, 0 + s = ak−j . Again, since ak−j ≤ (k − j)n/k, we
have that i ≤ k − j, i.e., j ≤ k − i. This implies that j = k − i, and hence
ai = ak−j = s = in/k. This is a contradiction because we assumed that
ai < in/k for all i.
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Corollary 3.26. Let n and k be positive integers such that gcd(n, k) ̸= 1.
Then, the number of orbits with size strictly less than n is at most O(nk−2).

Proof. Let A = {0, a1, a2, . . . , ak−1} be an orbit representative satisfying
Orb(A) < n, then from previous corollary it follows that ai = in/k for
some i ∈ {1, . . . , k − 1}.

Let Ti be the set of orbit representatives A satisfying |Orb(A)| < n and
ai = in/k. Then, the set of all orbit representatives satisfying Orb(A) < n

is equal to
⋃k−1

i=1 Ti. Note that |Ti| ≤ nk−2, as ai = in/k is fixed and aj has

at most jn/k choices for each j ̸= i. Therefore,
∣∣∣⋃k−1

i=1 Ti

∣∣∣ ≤ (k−1)nk−2.

Using the above results, we derive another bound on the minimum number
of bases in a cyclic k-matroid. The main idea here is to count the number
of orbit representatives that can be constructed using the multiple basis
exchange property.

In the following series of results we focus on the disjoint bases

B0, Bk, B2k, . . . , Bℓk,

where ℓ = ⌊n/k⌋ − 1. To ease the notations, we define β : Z≥0 → Z≥−1

given by

β(t) = max
{
s | (s+ 1)k − 1 ≤ t

}
=

⌊
(t+ 1)/k

⌋
− 1.

In other words, the value β(t) is the maximum index s such that

Bsk ⊆ {0, . . . , t}.

If no such index exists, then β(t) is −1 by convention.

Theorem 3.27. Let M = (Zn,B) be a cyclic k-matroid. Assume that k ≤
n/2, so that β

(
⌊in/k⌋

)
≥ 0 for i ≥ 1. Further, let

S :=
{
(s1, . . . , sk−1) ∈ Zk−1 | 0 ≤ s1 ≤ β

(
⌊n/k⌋

)
and

si−1 ≤ si ≤ β
(
⌊in/k⌋

)
for each i ∈ {2, . . . , k − 1}

}
.

Then, if gcd(n, k) = 1, then the total number of orbits in B is at least |S|.
If gcd(n, k) ̸= 1, then there exists a lower bound ns = |S| − O(nk−2) for
the total number of orbits in B.
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Proof. To bound the number of orbits, we first show that for each (s1, . . . ,
sk−1) ∈ S there exists a unique set A = {0, α1, . . . , ak−1} ∈ B satisfying
ai ≤ in/k.

We may assume that s1, . . . , sk−1 are as follows:

s1 = s2 = · · · = sj0 = 0,

sj0+1 = · · · = sj1 = i1,

...

sjt−1+1 = · · · = sjt = it,

for some t ≥ 0, 0 ≤ j0 < j1 < · · · < jt = k − 1, and 0 < i1 < i2 < · · · < it.
Here, j0 = 0 indicates that the first value s1 is also greater than 0.

Now, let Q be any subset of B0 \ {0} having size |Q| = k − j0 − 1. Then,
we apply multiple basis exchange property to obtain a basis

(B0 \Q) ∪ Pi1k ∪ · · · ∪ Pitk,

where Piw ⊆ Biwk of size |Pw| = jw − jw−1 for each w ∈ {1, . . . , t}. We
can write the obtained basis as {0, a1, . . . , ak−1} with a1, . . . , aj0 ∈ B0 and
ajw−1+1, . . . , ajw ∈ Biwk for each w ∈ {1, . . . , t}. In particular, ai ∈ Bsik for
each i ∈ {1, . . . , k−1}. Since each si ≤ β

(
⌊in/k⌋

)
, we get that ai ≤ in/k for

each i ∈ {1, . . . , k − 1}. Finally, we note that each (s1, . . . , sk−1) ∈ S gives
a distinct basis {0, a1, . . . , ak−1} of the above form because each ai ∈ Bsik

and Bk, B2k, . . . , Bℓk are pairwise disjoint.

Using Proposition 3.24, we know that each set A = {0, a1, . . . , ak−1} of the
above form corresponds to an orbit. If gcd(n, k) = 1, then this correspon-
dence is one-to-one because ai < in/k for each i, and such sets are unique
in each orbit.

Now assume that gcd(n, k) ̸= 1. In this case, the corresponding orbits may
not be unique. However, from Proposition 3.24 we observe that the non-
unique orbits correspond to sets A satisfying ai = in/k for some i. The
number of all such sets A is at most O(nk−2). Thus, there exists a lower
bound ns = |S|−O(nk−2) for the number of unique orbits obtained by this
process.

We observe that S is a set of integer vectors of a convex polytope. Using
Ehrhart’s theory for counting lattice points in certain polytopes, we can
approximate the size of S.
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Theorem 3.28. Let M = (Zn,B) be a cyclic k-matroid for k ≤ n/2 and let
S be as defined in Theorem 3.27. Then,

|S| = nk−1

k2k−2
+O(nk−2).

Consequently, a lower bound on the number of bases in B is

m4(n, k) =
nk

k2k−2
+O(nk−1).

Proof. We define a convex polytope Pn that is inspired by the constraints
of the set S, i.e.,

Pn :=
{
(s1, . . . , sk−1) ∈ Rk−1 | 0 ≤ s1 ≤ n/k2 and

si−1 ≤ si ≤ in/k2 for each i ∈ {2, . . . , k − 1}
}
.

Let T = Pn ∩ Zk−1. Then, it is easy to see that S ⊆ T because β(e) ≤ e/k
for any integer e. Moreover, T \ S contains vectors that have at least
one coordinate si satisfying β

(
⌊in/k⌋

)
< si ≤ in/k2. Thus we can write

T \ S =
⋃k−1

i=1 Ui, where

Ui =
{
(s1, . . . , sk−1) ∈ Pn ∩ Zk−1 | β

(
⌊in/k⌋

)
< si ≤ in/k2

}
.

Note that there is at most one integer in the interval
(
β
(
⌊in/k⌋

)
, in/k2

]
.

Thus, |Ui| ≤ O(nk−2) because si has at most one choice and 0 ≤ sj ≤
⌊in/k2⌋ for j ̸= i. This implies

|T \ S| = O(nk−2). (3)

Now, to calculate |T |, we define another convex polytope

P :=
{
(t1, . . . , tk−1) ∈ Rk−1 | 0 ≤ t1 ≤ 1/k2 and

ti−1 ≤ ti ≤ i/k2 for each i ∈ {2, . . . , k − 1}
}
.

We further note that Pn = nP =
{
n(t1, . . . , tk−1) | (t1, . . . , tk−1) ∈ P

}
.

To calculate
∣∣nP ∩ Zk−1

∣∣ we use Ehrhart’s theorem [5], which states that∣∣nP ∩Zk−1
∣∣ is a quasi-polynomial1 on n of degree k−1. Moreover, we have

that
|T | =

∣∣nP ∩ Zk−1
∣∣ = Volume(P) · nk−1 +O(nk−2). (4)

1A function f : Z → Z is quasi-polynomial of degree d if there exist periodic functions
fi : Z≥0 → Z such that f(n) =

∑d
i=0 fi(n)n

d.
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Finally, we observe that P is a parallelotope in Rk−1 of rank k − 1 defined
by the vectors v1 = (1/k2, 1/k2, . . . , 1/k2), v2 = (0, 1/k2, . . . , 1/k2), . . . ,

vk−1 = (0, . . . , 0, 1/k2), i.e., P =
{∑k−1

i=1 λivi | 0 ≤ λi ≤ 1
}
. The volume of

P is given by

Volume(P ) =
∣∣∣det([v1 . . . vk−1]

)∣∣∣ = (
1
k2

)k−1
. (5)

Combining (3), (4), and (5), we get

|S| = |T | − |T \ S| = nk−1

k2k−2
+O(nk−2).

If gcd(n, k) = 1, then we know that the size of each orbit is n. Hence, in
this case,

m4(n, k) = n|S| = nk

k2k−2
+O(nk−1).

If gcd(n, k) ̸= 1, then from Corollary 3.26 we know that the number of
orbits with size strictly less than n is at most O(nk−2). Therefore, there
are at least |S| − O(nk−2) orbits having maximum size n. This implies,

m4(n, k) =
nk

k2k−2
+O(nk−1).

Remark 3.29. Combining the results from Theorems 3.13, 3.15, 3.23, and
3.27, we get four distinct lower bounds on the number of basis elements:
m1(n, k), m2(n, k), m3(n, k), and m4(n, k). We can further improve these
bounds using the following observations:

1. The dual of a cyclic k-matroid is a cyclic (n − k)-matroid. Thus,
m1(n, n−k), m2(n, n−k), and m3(n, k) are also lower bounds on the
number of bases in a cyclic k-matroid. This is not true for m4(n, k),
since it explicitly assumes that k ≤ n/2. However, it does imply that
the boundm4(n, k) also applies without making this assumption on k.

2. When gcd(n, k) = 1, each orbit under the action (2) has n elements.
Since the set of bases B is a collection of orbits, the number of bases in
B in this case must be a multiple of n. So, the lower bound mi(n, k)
can be improved to

⌈
mi

n

⌉
n for i = 1, 2, 3.

3. Using Corollary 3.18, it follows that the size of each orbit under the
action (2) is a multiple of n/ gcd(n, k). Since the set of bases B is a
collection of orbits, the number of bases in B must be a multiple of
n/ gcd(n, k).
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(a) n = 12 (b) n = 17 (c) n = 20

Figure 3.1: Comparison of the bounds for fixed values of n and varying k.

From the above remark, we obtain the best possible lower bound mB from
m1, m2, and m3:

mB(n, k) = max

{⌈
mi(n, t)(

n/ gcd(n, t)
)⌉ n

gcd(n, t)

∣∣ i ∈ {1, 2, 3}, t ∈ {k, n− k}
}
.

3.3 Experimental results

In the following discussion, we compare explicit values of the different
bounds for some values of n and k. In Table 3.1, for each bound we provide
some values of the number of bases for different n and k. Note that in
the case of n = 6 and k = 3, the bound 8 is achieved exactly in the cyclic
matroid M1 of Example 4.9. We graphically show in Figures 3.1 and 3.2
the variation of the bounds m1, m2, and m3 with different values of, and
relationships between, n and k.

Observe that the bounds m1 and m2 by far exceed m3 for the “middle”
values of k, whereas m3 becomes significant when k is large enough, partic-
ularly when k attains its maximum value k = n−2. (We disregard the case
k = n − 1 since this only gives the uniform matroid.) It is also observed
that the difference between m2 and the other two bounds increases rapidly
as n is increased. This is to be expected since m2 counts more types of
bases than m1 and m3, and the possibilities for these types grow rapidly
with n.

In Appendix A we provide some explicit examples of cyclic matroids gen-
erated through a randomized computer search.
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Table 3.1: Comparison of the lower bounds on the number of bases in an
arbitrary cyclic k-matroid over a ground set of size n.

k m1(n, k) m1(n, n− k) m2(n, k) m2(n, n− k) m3(n, k) m3(n, n− k) mB

2 8 8 8 4 3 6 9
3 8 8 8 8 2 2 8

(a) n = 6

k m1(n, k) m1(n, n− k) m2(n, k) m2(n, n− k) m3(n, k) m3(n, n− k) mB

2 19 18 24 4 11 44 44
3 27 28 36 8 11 44 44
4 35 40 40 15 22 22 44
5 47 48 48 6 22 22 55

(b) n = 11

k m1(n, k) m1(n, n− k) m2(n, k) m2(n, n− k) m3(n, k) m3(n, n− k) mB

2 27 26 41 4 15 75 75
3 40 44 63 8 5 25 65
4 60 72 108 16 30 60 120
5 85 112 112 32 6 12 114
6 124 160 216 42 10 20 220
7 156 192 192 8 30 60 195

(c) n = 15

(a) n ≤ 30, k = ⌊n
2
⌋ (b) n ≤ 30, k = ⌊n

3
⌋ (c) n ≤ 30, k = ⌊n

4
⌋

(d) n ≤ 30, k = n− 2 (e) n ≤ 30, = n− 3 (f) n ≤ 30, 3 | n, k = n/3

Figure 3.2: Comparison of the bounds for fixed values of k and varying n.

On cyclic matroids and their applications

141



3.4 Asymptotic analysis of the bounds

Finite values of these bounds do not provide any intuition towards the
tightness of the bounds. Therefore, we analyze their asymptotic behavior.
In order to do so, we fix the value of k to be a constant and let n go to
infinity.

Let M(n, k) be the minimum number of bases in a cyclic k-matroid on
n elements. Then, in this section, we are interested in computing the
following limit

lim inf
n→∞

1

nk
M(n, k)

where k is a fixed constant.

It is easy to see that the first and third lower bound, i.e., m1(n, k) and
m3(n, k), are O(n), assuming k is a constant. Therefore, it follows that, for
any k ≥ 2,

lim
n→∞

1

nk
m1(n, k) = lim

n→∞

1

nk
m3(n, k) = 0.

However, the asymptotic behavior of lower bounds m2(n, k) and m4(n, k)
are more interesting.

Proposition 3.30. Let k be a fixed integer. Then,

lim
n→∞

1

nk
m2(n, k) ≥

1

k! · kk
.

Proof. Recall from Theorem 3.15 that

m2(n, k) =

k∑
|Q|=0

min{n−(ℓ+1)k,|Q|}∑
j=0

(
n−(ℓ+1)k

j

)(
k−j
|Q|−j

)(|Q|−j+ℓ−1
ℓ−1

)
.

As ℓ =
⌊
n
k

⌋
− 1, the value of ℓ goes to infinity when n goes to infinity.

Therefore, the most dominant factor in the above expression is
(|Q|−j+ℓ−1

ℓ−1

)
,

because all the other factors are polynomial in k. It is easy to see that(|Q|−j+ℓ−1
ℓ−1

)
maximizes when |Q| = k and j = 0. Hence, we get the following

m2(n, k) ≥
(
k+ℓ−1
ℓ−1

)
=

(
k+ℓ−1

k

)
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This implies,

lim
n→∞

1

nk
m2(n, k) ≥ lim

n→∞

1

nk

(
k + ℓ− 1

k

)
= lim

n→∞

(ℓ+ k − 1)(ℓ+ k − 2) · · · (ℓ)
nkk!

=
1

k!(k)k
.

Proposition 3.31. Let k be a fixed integer. Then,

lim
n→∞

1

nk
m4(n, k) =

1

k2k−2
.

Proof. This follows directly from Theorem 3.28.

With respect to the above analysis, we observe that m4(n, k) is asymptoti-
cally the largest lower bound on the number of basis elements. In particular,
for k = 2 the m4(n, k) bound is asymptotically tight.

Corollary 3.32. Let k = 2. Then, m4(n, k) is asymptotically tight.

Proof. For each even n ≥ 2, we consider the matroid Mn = (En,Bn) as
defined in Example 3.8, i.e., the basis set is given by

Bn =
{
{a0, ai} | ai ≡ i (mod n)

}
.

Then, the number of basis elements in Mn is equal to (n/2)2. Therefore,

lim
n→∞

1

n2
|Bn| =

1

4
= lim

n→∞

1

nk
m4(n, 2).

4 Algebraic and geometric connections

In this section, we provide examples of algebraic, geometric, and combina-
torial objects that may be linked to cyclic matroids. The main objects of
interest are the ones introduced in Sections 2.2, 2.3, and 2.4.
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4.1 Cyclic projective planes and cyclic codes

There are many works on the existence and non-existence of cyclic projec-
tive planes and their collineation groups. We refer the interested reader to
[2, 12, 23]. Moreover, cyclic projective codes have been studied in relation
with designs, difference sets, and cyclic codes; see [15, Section 8.7].

Let q be a prime power and consider a Desarguesian projective plane
PG(2, q) and its incidence matrix A. Then, it is known that A is necessarily
a circulant matrix; see for instance [13, Theorem 4.2.2 and its corollary].
Since the entries of A are only 0’s and 1’s, we can consider A as a matrix
over a finite field Fp for p prime. In this case, the rank of A has been com-
pletely determined by Graham and MacWilliams [8]. Here we state their
result only for p = 2.

Theorem 4.1. The rank over F2 of the incidence matrix A of a Desarguesian
projective plane PG(2, q) is

k =

{
q2 + q, if q is odd,

3t + 1, if q = 2t.

Corollary 4.2. Let M(A) be the representable matroid constructed from
the incidence matrix A of a cyclic projective plane. Then, M(A) is a cyclic
k-matroid, representable over F2, with k equal to the rank of A.

Proof. It is easy to see that, by rearranging the columns, the incidence
matrix A is a circulant matrix. We know that the bases in the matroid
M(A) correspond to the sets of indices of k linearly independent columns—
see Example 2.6 for the definition of M(A). Hence, the cyclic shift of a
basis in M(A) is again a basis.

Moreover, Pless [20] showed also that the incidence matrix of a Desarguesian
cyclic projective plane generates a binary cyclic code. Hence, this class of
cyclic matroids is a subclass of the one deriving from cyclic codes. Let C
be a k-dimensional linear code in Fn

q . Then, using a generator matrix G of
C, we can associate a representable matroid MC = M(G).

Proposition 4.3. Let C be an [n, k]q cyclic code with generator matrix G.
Then M(G) is a cyclic k-matroid.
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Proof. The proof is similar to the proof of the above corollary. Observe
that, since C is cyclic, then the matrix sh(G) obtained by shifting to the
right every row of G is still a generator matrix for C. In particular, the
cyclic shift of each basis is still a basis.

Remark 4.4. It is immediate to see that the cyclic property is not invariant
under permutation of the coordinates. Hence, in general, it is necessary
to find an appropriate relabelling of the points of the matroid, in order to
obtain a cyclic one. The same property is not invariant for cyclic codes,
i.e., cyclicity is not preserved under permutation of columns.

Remark 4.5. Note that in general the cyclic matroid arising from cyclic
codes does not satisfy the cyclicity property defined by Welsh. Indeed, for
a binary cyclic code C of odd length n with n ≥ 3, it is not difficult to see
that the automorphism group of C strictly contains Zn; see [3].

Example 4.6. The cyclic matroid defined in Example 3.8 is a matroid arising
from the [n, k] cyclic code over a field F with generator polynomial 1+xk+
x2k + · · ·+ xn−k ∈ F[x]/⟨xn − 1⟩.

Example 4.7. Consider the simplex code [7, 3]2 with generator matrix

G =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

G is clearly the generator matrix of a cyclic code. Moreover, the matroid
M(G) associated to it is the well known Fano matroid , whose name derives
from the Fano plane PG(2, 2). This is denoted by F7, the ground set is
E = {0, 1, . . . , 6}, the set of bases is

B = {{0, 3, 6}, {0, 2, 5}, {0, 2, 4}, {3, 4, 5}, {0, 2, 3}, {0, 1, 5}, {1, 2, 5},
{2, 3, 6}, {0, 1, 4}, {0, 4, 6}, {1, 3, 5}, {2, 5, 6}, {1, 3, 6}, {0, 3, 5},
{2, 4, 5}, {1, 2, 3}, {3, 5, 6}, {0, 1, 2}, {0, 1, 6}, {2, 3, 4}, {0, 5, 6},
{0, 3, 4}, {1, 2, 6}, {1, 3, 4}, {1, 4, 5}, {4, 5, 6}, {2, 4, 6}, {1, 4, 6}},

and it is not difficult to see that it satisfies the property of cyclic 3-matroids.
It can be graphically represented as in Figure 4.1, where each basis is made
of three points that are not collinear.

We do not know if in general the converse of Proposition 4.3 is true or not.
We state this as an open problem.
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Figure 4.1: Cyclic Fano matroid F7.

Problem 4.8. Verify the converse of Proposition 4.3: given a representable
cyclic k-matroid M on n elements, determine if there exists a field Fq and
an [n, k]q cyclic code C with MC = M.

In some cases, experimental results show that the answer to the previous
open problem should be positive, as the next example illustrates.

Example 4.9. Let n = 6 and k = 3. An exhaustive computer search
shows that there are exactly three cyclic matroids on the ground set E =
{0, 1, 2, 3, 4, 5} having rank 3. Each of the three matroids corresponds to a
cyclic code.

1. M1 has 8 basis elements, comprising 6 bases from the orbit of {0, 1, 2}
and 2 bases from the orbit of {0, 2, 4}.

For C1 = ⟨x3 + 1⟩ ⊆ F2[x]/⟨x6 − 1⟩, we get M1 = MC1
.

2. M2 has 18 basis elements, comprising 6 bases from the orbit of
{0, 1, 2}, 6 bases from the orbit of {0, 1, 3}, and 6 bases from the
orbit of {0, 1, 4}.

For C2 = ⟨x3 + 2x2 + 2x+ 1⟩ ⊆ F3[x]/⟨x6 − 1⟩, we get M2 = MC2
.

3. M3 with 20 basis elements, comprising all the 20 subsets of size 3.

For C3 = ⟨x3 + 2x2 + 2x+ 1⟩ ⊆ F5[x]/⟨x6 − 1⟩, we get M3 = MC3
.

4.2 k-normal elements

In this section we establish a connection between (n− k)-normal elements
and cyclic k-matroids. The connection between matroids and k-normal ele-
ments has never been observed before, to the best of our knowledge.
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Given an (n− k)-normal element α ∈ Fqn , let

V := spanFq

{
α, αq, . . . , αqn−1

}
be the k-dimensional span over Fq of the conjugates of α. We may associate
a matroidM = (Zn,B) on n symbols to α as follows. Let I be a collection of

subsets of Zn such that S ∈ I if and only if the set of powers
{
αqi | i ∈ S

}
is linearly independent over Fq. Then I clearly satisfy axioms (I1)–(I3);
hence, it is the collection of independent sets of a matroid. In particular,
the collection of bases of such a matroid is defined as

B =
{
{i1, . . . , ik} ⊆ Zn | {αqi1 , αqi2 , . . . , αqik } is a linear basis

of V as a vector space over Fq

}
.

Proposition 4.10. The matroidM = (Zn,B) associated to an (n−k)-normal
element α ∈ Fn

q is a cyclic k-matroid.

Proof. Since the first k powers of α must be linearly independent in or-
der for all of them to span a k-dimensional vector space, we must have

{0, 1, . . . , k − 1} ∈ B. Further, for any s ∈ Zn,
{
αqi1, αqi2, . . ., αqik

}
is

linearly independent if and only if
{
αqi1+s

, αqi2+s

, . . ., αqik+s}
is linearly

independent, by the properties of the Frobenius automorphism. Thus, M
is a cyclic k-matroid.

In [26], it was left as an open problem to determine which subsets of{
α, αq, αq2, . . . , αqn−1}

of size k or smaller, apart from
{
α, αq, αq2, . . ., αqk−1}

, are linearly inde-
pendent, for an (n − k)-normal element α of Fqn . Clearly, the results of
Section 3.1 give lower bounds on the number of k-subsets of

{
α, αq, . . .,

αqn−1}
(where α is (n − k)-normal), which form bases over Fq, or equiva-

lently upper bounds on the number of dependent k-subsets.

We assert that our association of k-normal elements with matroids strongly
suggests that a complete and general solution to the mentioned problem
may be very difficult to arrive at.

We further state the following open problem, whose solution we conjecture
is positive based on multiple computer experiments and observations.

On cyclic matroids and their applications

147



Problem 4.11. Given a representable cyclic k-matroid M = (Zn,B), deter-
mine if there exists a prime power q and an (n−k)-normal element α ∈ Fqn

such that all the bases of the Fq-span of α, aq, . . . , αqn−1

are given by the

sets
{
αqi1, αqi2, . . . , αqik

}
where {i1, i2, . . . , ik} ∈ B.
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A Explicit cyclic k-matroids

Computer search was used to find examples of cyclic k-matroids different
from the uniform matroid. Due to the randomized nature of the algorithm
used when gcd(n, k) = 1, the matroids obtained were all quite close to
the uniform matroid, usually missing one or two cyclic orbits. We list the
orbit representatives of the basis set for a few select cases. Thus, the bases
sets of matroids represented by the below examples are obtained by taking
all the cyclic shifts of these orbit representatives. Using the orbits, we also
formally compute the exact number of bases when gcd(n, k) = 1 and a lower
bound when gcd(n, k) ̸= 1, exploiting the fact that the size of each orbit
is at least n/ gcd(n, k). We compare this number to the number of bases
in the uniform matroid, i.e.,

(
n
k

)
. Note that, for given n and k, the listed

matroid need not be the only non-uniform cyclic matroid. The working
code for the generation algorithm, as well as for the bound calculations in
Section 3.3, can be found at https://github.com/simran-tinani/Cycl
ic-matroids.

n k Basis Orbit Representatives Bases Bases (UM)

6 3 {0, 1, 2}, {0, 2, 4} 8 20

6 4 {0, 1, 2, 4}, {0, 1, 2, 3} 12 15

7 3 {0, 1, 4}, {0, 1, 2}, {1, 3, 6}, {1, 5, 6} 28 35

9 3 {2, 5, 7}, {0, 1, 2}, {0, 3, 8}, {1, 7, 8},
{1, 4, 5}, {0, 6, 8}, {0, 5, 7}, {2, 4, 7},
{1, 5, 6}

≥27 84

9 4 {3, 4, 6, 8}, {1, 3, 4, 5}, {0, 3, 5, 6},
{0, 5, 6, 8}, {1, 2, 3, 6}, {0, 1, 2, 6}
{0, 2, 5, 8}, {0, 1, 2, 3}, {2, 3, 6, 7},
{2, 4, 6, 7}, {0, 3, 5, 7}, {3, 4, 5, 7},
{1, 5, 7, 8}

117 126

10 6 {0, 1, 2, 4, 7, 9}, {2, 3, 6, 7, 8, 9},
{1, 2, 3, 5, 6, 7}, {0, 1, 2, 4, 8, 9},
{1, 3, 4, 5, 6, 9}, {0, 1, 3, 4, 6, 8},
{2, 3, 4, 7, 8, 9}, {2, 3, 4, 6, 7, 9},
{1, 2, 3, 4, 5, 8}, {0, 2, 3, 6, 7, 8},
{0, 2, 5, 6, 8, 9}, {1, 2, 4, 5, 6, 7},
{2, 3, 4, 5, 7, 8}, {0, 1, 2, 3, 4, 5},
{0, 1, 3, 5, 8, 9}, {0, 1, 2, 3, 7, 9},
{1, 3, 4, 6, 8, 9}, {0, 1, 3, 5, 6, 7},
{1, 2, 3, 6, 8, 9}, {1, 2, 3, 5, 6, 9},
{0, 2, 3, 6, 7, 9}, {0, 1, 2, 4, 6, 8}

≥110 210
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n k Basis Orbit Representatives Bases Bases (UM)

11 4 {0, 3, 5, 10}, {3, 5, 7, 8}, {0, 1, 5, 9},
{1, 4, 6, 9}, {2, 6, 9, 10}, {1, 6, 7, 9},
{0, 5, 8, 9}, {0, 5, 7, 10}, {0, 3, 4, 8},
{0, 2, 8, 9}, {5, 6, 7, 10}, {3, 5, 7, 10},
{0, 4, 5, 9}, {2, 6, 7, 9}, {0, 1, 2, 9},
{1, 3, 8, 10}, {0, 4, 5, 6}, {2, 3, 8, 9},
{0, 1, 2, 6}, {1, 2, 7, 10}, {0, 1, 2, 3},
{2, 3, 6, 9}, {2, 3, 6, 7}, {0, 2, 3, 10},
{2, 4, 5, 8}, {0, 1, 3, 9}, {1, 2, 3, 9},
{0, 1, 2, 4}, {2, 4, 8, 10}

319 330

13 3 {3, 4, 7}, {0, 1, 2}, {4, 11, 12},
{0, 4, 12}, {7, 10, 12}, {0, 6, 12}
{3, 7, 9}, {4, 8, 11}, {2, 3, 10},
{5, 7, 8}, {0, 7, 9}, {6, 8, 11} {0, 6, 8},
{3, 7, 12}, {2, 5, 6}, {4, 6, 12},
{7, 8, 10}, {7, 9, 11} {1, 6, 11},
{1, 5, 6}, {1, 8, 11}

273 286

15 3 {0, 1, 2}, {3, 12, 13}, {0, 4, 12},
{5, 13, 14}, {9, 10, 13}, {7, 10, 13},
{3, 7, 9}, {4, 8, 11}, {6, 11, 14},
{1, 5, 12}, {4, 9, 10}, {3, 5, 13},
{0, 2, 7}, {5, 6, 14}, {2, 3, 10},
{5, 7, 8}, {0, 7, 9}, {6, 8, 11},
{0, 1, 12}, {2, 6, 12}, {0, 6, 8}
{3, 9, 12}, {7, 9, 11}, {3, 13, 14},
{7, 8, 10}, {2, 11, 13}, {2, 4, 14},
{1, 6, 11}, {1, 5, 6}, {1, 8, 11}

≥150 455
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