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Abstract. Parallel diffusion is a chip-firing process on graphs introduced by
Duffy et al. in 2018. In parallel diffusion each vertex in a graph has a stack
of chips, and at each step, every vertex gives one chip to each of its poorer
neighbors. A vertex is allowed to have a negative number of chips. Long
and Narayanan in 2019 showed that the process is ultimately periodic with
period 1 or 2. In this paper we define a ground configuration as a graph
together with an assignment of chips in which the poorest vertex has zero
chips. We then determine the maximum possible stack sizes in ground
configurations on paths and cycles.

1 Introduction

Parallel diffusion is a variation of chip-firing on graphs that was first de-
scribed by Duffy, Lidbetter, Messinger, and Nowakowski [2]. A configura-
tion C on a graph G having n vertices is a map C : V (G) → Zn, where C(v)
is the number of chips, or stack size at vertex v. We will use the notation
|v|t to denote the value of C(v) at time t, and when necessary we will use
Ct to denote the configuration C at time t. A vertex is richer than another
if it has more chips, and poorer if it has fewer. When fired, a vertex sends
one chip to each of its poorer neighbors. As this is parallel diffusion, at
each step all vertices fire simultaneously, resulting in a new configuration.
Chips are neither created nor destroyed in the firing process, so the sum
of the stack sizes (i.e., the total number of chips) remains constant. It is
possible for a vertex to have a negative stack size.

Repeatedly firing the vertices gives a dynamical system consisting of a
sequence of configurations. The authors of [2] conjectured that for any
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initial configuration on any finite graph, this sequence must be ultimately
periodic with period length 1 or 2. Long and Narayanan in [3] proved this
to be true. A configuration that is part of a period of length 2 is called a
p2 configuration.

In [1], Carlotti and Herrman showed that, on a graph with n vertices, a
sequence of configurations can be guaranteed to be non-negative by initially
placing at least n− 2 chips at each vertex.

Note that the movement of chips along an edge uv is determined only by
the difference |v|−|u|, and not by the actual values of |u| and |v|. Therefore,
adding or subtracting a constant number of chips to every vertex will not
change the dynamics of the system. Given a configuration with smallest
stack size k, subtracting k from each stack gives a configuration with the
same dynamics, but with smallest stack size 0. We call such a configuration
a ground configuration, borrowing the usage of “ground” from electrical
networks.

In [4], Mullen et al. show that the number of p2 ground configurations of
Pn is given by the recurrence

Tn+4 = 3Tn+3 + 2Tn+2 + Tn−1 − Tn

with initial conditions T1 = 0, T2 = 2, T3 = 8, and T4 = 26.

The question we focus on in the remainder of this paper is to find the
largest possible difference among stack sizes in p2 configurations on paths
and cycles. We can now restate this as finding the largest possible stack
size in p2 ground configurations on paths and cycles.

2 Paths

2.1 Small cases

For small n, the p2 ground configurations of Pn can be enumerated by
hand. Note that for any graph, the configuration {0, 0, . . . , 0} is a ground
configuration, but not a p2 ground configuration.

For P1, there’s only one vertex. Thus the only ground configuration is {0},
which is a fixed configuration. Thus it has no p2 configuration.

For P2, the p2 ground configurations are {1, 0} and {0, 1}. So the maximum
stack size is 1.
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For P3, the p2 ground configurations are below. The maximum stack size
is 2. Note that it is possible for a ground configuration to fire resulting
in a non-ground configuration. On P3 this happens with configurations A
and H.

A B C D
{0, 1, 0} {0, 2, 0} {0, 2, 1} {1, 0, 1}

E F G H
{1, 0, 2} {1, 2, 0} {2, 0, 1} {2, 0, 2}

From this scant evidence, one might guess that the maximum stack size for
ground configurations on Pn is n− 1. We will show that this is true.

2.2 Limitations on differences between neighbors

Denote the path graph on n vertices as Pn = v1e1v2e2 . . . en−1vn, and
denote the stack size of vertex vi by |vi|. As in [4], we consider v1 to
be the rightmost vertex and vn to be the leftmost. We first observe that
in a p2 configuration on a path, the stack sizes of adjacent vertices can’t
differ very much. To quantify this, we define the delta of edge ei to by
δ(ei) = |vi+1| − |vi| for 1 ≤ i ≤ n− 1. When dealing with path graphs, we
can shorten δ(ei) to δi with no ambiguity. These delta values are essentially
the same as the multipliers used in [4]. We also observe that consecutive
delta values cannot differ by very much.

A configuration on a graph induces a partial orientation on the edges. If
both vertices incident to an edge have the same stack size, we call the edge
flat , and leave it undirected. If the incident vertices have different stack
sizes, we direct the edge toward the vertex with smaller stack size. The
directed edges indicate the direction a chip will move during the subsequent
firing. The following lemmas will be useful:

Lemma 2.1 (J. Long and B. Narayanan, [3]). Let C be a p2 configuration
on a graph, and let C′ be the other p2 configuration in the period. Then
every undirected edge in C is also undirected in C′, and every directed edge
in C has the opposite orientation in C′.

Lemma 2.2. For any edge ei, 1 ≤ i ≤ n−1, in a p2 configuration on a path,
−3 ≤ δi ≤ 3.

Proof. Let Ct be a configuration on a path at time t, and for some 0 ≤
i ≤ n − 1 let vi and vi+1 be adjacent vertices on the path. Now suppose

Maximum stack sizes in parallel diffusion on paths...

97



that |vi|t − |vi+1|t > 3, making the edge directed from vi to vi+1 in Ct. In
Ct+1, |vi|t+1 must be |vi|t, |vi|t − 1, or |vi|t − 2. Similarly |vi+1|t+1 must be
|vi+1|t, |vi+1|t+1, or |vi+1|t+2. In all cases we have that |vi|t+1 ≥ |vi+1|t+1,
which leaves the orientation of the edge unchanged. Thus Ct cannot be a
p2 configuration.

Lemma 2.3. Let Ct be a p2 orientation on a path at time t. Then for any
two consecutive edges ei and ei+1, the ordered pair (δi, δi+1) cannot be any
of the following:

±(3, 3), ±(2, 3), ±(3, 2), ±(2, 2), ±(3, 1), ±(1, 3),

±(0, 3), ±(3, 0), ±(2, 1), ±(1, 2), (0, 0).

Proof. The ordered pair (0, 0) is excluded by Theorem 2a of [4]. We will
show that if any of the other ordered pairs exist in a configuration Ct,
then there is at least one edge whose orientation is not reversed in Ct+1.
It suffices to show this for only the positive ordered pairs; the argument
for the negative ordered pairs is equivalent but with all of the orientations
reversed.

(3, 3): Suppose that for some i, |vi|t = a, |vi+1|t = a+3, and |vi+2|t = a+6.
Both ei and ei+1 are directed to the right in Ct. Then |vi|t+1 ∈
{a, a+1, a+2}, |vi+1|t+1 = a+3, and |vi+2|t+1 ∈ {a+4, a+5, a+6}.
In all cases, both edges are still directed to the right in Ct+1. Thus
Ct is not a p2 configuration.

(2, 3): Suppose that for some i, |vi|t = a, |vi+1|t = a+2, and |vi+2|t = a+5.
Both ei and ei+1 are directed to the right in Ct. Then |vi|t+1 ∈
{a, a+1, a+2}, |vi+1|t+1 = a+2, and |vi+2|t+1 ∈ {a+3, a+4, a+5}.
In all cases, the edge ei+1 is still directed to the right in Ct+1. Thus
Ct is not a p2 configuration.

(3, 2): Suppose that for some i, |vi|t = a, |vi+1|t = a+3, and |vi+2|t = a+5.
Both ei and ei+1 are directed to the right in Ct. Then |vi|t+1 ∈
{a, a+1, a+2}, |vi+1|t+1 = a+3, and |vi+2|t+1 ∈ {a+3, a+4, a+5}.
In all cases, the edge ei is still directed to the right in Ct+1. Thus Ct
is not a p2 configuration.

(2, 2): Suppose that for some i, |vi|t = a, |vi+1|t = a+2, and |vi+2|t = a+4.
Both ei and ei+1 are directed to the right in Ct. Then |vi|t+1 ∈
{a, a+1, a+2}, |vi+1|t+1 = a+2, and |vi+2|t+1 ∈ {a+2, a+3, a+4}.
In none of these is either edge directed left in Ct+1. Thus Ct is not a
p2 configuration.
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(3, 1): Suppose that for some i, |vi|t = a, |vi+1|t = a+3, and |vi+2|t = a+4.
Both ei and ei+1 are directed to the right in Ct. Then |vi|t+1 ∈
{a, a+1, a+2}, |vi+1|t+1 = a+3, and |vi+2|t+1 ∈ {a+2, a+3, a+4}.
In all cases, ei is still directed to the right in Ct+1. Thus Ct is not a
p2 configuration.

(1, 3): Suppose that for some i, |vi|t = a, |vi+1|t = a+1, and |vi+2|t = a+3.
Both ei and ei+1 are directed to the right in Ct. Then |vi|t+1 ∈
{a, a+1, a+2}, |vi+1|t+1 = a+1, and |vi+2|t+1 ∈ {a+2, a+3, a+4}.
In all cases, ei+1 is still directed to the right in Ct+1. Thus Ct is not
a p2 configuration.

(0, 3): Suppose that for some i, |vi|t = a, |vi+1|t = a, and |vi+2|t = a + 3.
Now ei+1 is directed to the right and ei is flat in Ct. Then |vi|t+1 ∈
{a−1, a, a+1}, |vi+1|t+1 = a+1, and |vi+2|t+1 ∈ {a+1, a+2, a+3}.
In all cases, ei+1 is either flat or still directed to the right in Ct+1.
Thus Ct is not a p2 configuration.

(3, 0): Suppose that for some i, |vi|t = a, |vi+1|t = a+3, and |vi+2|t = a+3.
Now ei is directed to the right and ei+1 is flat in Ct. Then |vi|t+1 ∈
{a, a+1, a+2}, |vi+1|t+1 = a+2, and |vi+2|t+1 ∈ {a+2, a+3, a+4}.
In all cases, ei is either flat or still directed to the right in Ct+1. Thus
Ct is not a p2 configuration.

(2, 1): Suppose that for some i, |vi|t = a, |vi+1|t = a+2, and |vi+2|t = a+3.
Both ei and ei+1 are directed to the right in Ct. Then |vi|t+1 ∈
{a, a+1, a+2}, |vi+1|t+1 = a+2, and |vi+2|t+1 ∈ {a+1, a+2, a+3}.
In all cases, ei is either flat or still directed to the right in Ct+1. Thus
Ct is not a p2 configuration.

(1, 2): Suppose that for some i, |vi|t = a, |vi+1|t = a+1, and |vi+2|t = a+3.
Both ei and ei+1 are directed to the right in Ct. Then |vi|t+1 ∈
{a, a+1, a+2}, |vi+1|t+1 = a+1, and |vi+2|t+1 ∈ {a+1, a+2, a+3}.
In all cases, ei+1 is either flat or still directed to the right in Ct+1.
Thus Ct is not a p2 configuration.

Corollary 2.4. Let C be a p2 configuration on a path. Then for any two
consecutive edges ei and ei+1, −2 ≤ δi + δi+1 ≤ 2.

Proof. Suppose that C is a p2 configuration on a path. By Lemma 2.2, the
delta values all come from the set {−3,−2,−1, 0, 1, 2, 3}. The only ordered
pairs from this set that have a sum of 3 or greater are

(3, 3), (3, 2), (2, 3), (2, 2), (3, 1), (1, 3), (2, 1), (1, 2), (0, 3), (3, 0)
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all of which are excluded from p2 configurations by Lemma 2.3. Thus we
have δi + δi+1 ≤ 2.

A symmetric argument shows that δi + δi+1 ≥ −2.

Theorem 2 of [4], restated specifically for paths, gives us the following
lemmas:

Lemma 2.5. Let C be a p2 configuration on a Pn. No two consecutive delta
values are 0.

Lemma 2.6. Let C be a p2 configuration on a Pn. Then δ1 ̸= 0 and δn−1 ̸= 0.

Lemma 2.7. Let C be a p2 configuration on a path. Then no three consec-
utive deltas have the same sign.

Lemma 2.8. Let C be a p2 configuration on a path. If δi = 0, then δi−1 and
δi+1 cannot have the same sign.

Lemma 2.9. Let C be a p2 configuration on Pn. Then δ1 and δ2 cannot have
the same sign, and δn−2 and δn−1 cannot have the same sign.

We now prove a lemma similar to Lemma 2.6.

Lemma 2.10. Let C be a p2 configuration on a path. Then δ1 ̸= ±3 and
δn−1 ̸= ±3.

Proof. Suppose that Ct is a p2 configuration on a Pn with |v1|t = 0. First
suppose that δ1 = 3. Then we have |v2|t = 3, and e1 is directed to the
right. In Ct+1, |v0|t+1 = 1 and |v2|t ∈ {1, 2, 3}. Thus in Ct+1, e1 is either
flat or still directed to the right. Thus Ct is not a p2 configuration.

The cases for δ1 = −3, δn−1 = 3, and δn−1 = −3 can be proved similarly.
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2.3 Configurations with maximum stack size

Now we turn to constructing a p2 ground configuration with the largest
possible stack size. We will assume that |v1| = 0 and describe the configu-
ration in terms of its delta values. To maximize the stack size of a vertex,
we’d want the sum of the delta values before it to be as large as possible so
that, as we progress toward vn, the stack sizes grow. However, our choices
of delta values are limited by Lemmas 2.2–2.9. The table below shows all
(δi, δi+1) pairs, with those eliminated by Lemma 2.4 and Lemma 2.3 grayed
out.

(−3,−3) (−3,−2) (−3,−1) (−3, 0) (−3, 1) (−3, 2) (−3, 3)
(−2,−3) (−2,−2) (−2,−1) (−2, 0) (−2, 1) (−2, 2) (−2, 3)
(−1,−3) (−1,−2) (−1,−1) (−1, 0) (−1, 1) (−1, 2) (−1, 3)
(0,−3) (0,−2) (0,−1) (0, 0) (0, 1) (0, 2) (0, 3)
(1,−3) (1,−2) (1,−1) (1, 0) (1, 1) (1, 2) (1, 3)
(2,−3) (2,−2) (2,−1) (2, 0) (2, 1) (2, 2) (2, 3)
(3,−3) (3,−2) (3,−1) (3, 0) (3, 1) (3, 2) (3, 3)

The stack size of vertex vk is given by

|vk| =
k−1∑
i=1

δi.

We need to find the maximum possible value of this sum, subject to the
restrictions imposed by Lemmas 2.2–2.9. In Theorem 2.11 we construct a
p2 ground configuration with stack size n−1 for all n, and in Theorem 2.12
we show that a ground configuration with a stack size of n or larger is
impossible.

Theorem 2.11. Let n be a positive integer. Then there exists a p2 ground
configuration on Pn with a stack size of n− 1.

Proof. We give direct constructions for the even and odd cases. For n even,
we let |v1|0 = 0 and let

δi =


−2, if i = 1,

3, if i is even,

−1, if i > 1 and i is odd.

(1)

These delta values induce a p2 configuration in which v2 has the lowest stack
size of −2 and vn−1 has the highest stack size of n− 3. Adding 2 chips to
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each stack makes this a p2 ground configuration in which vn−1 has stack
size n− 1.

For n odd, we let |v1|0 = 0 and let

δi =


−2, if i = 1,

3, if i is even and i < n− 1,

−1, if i > 1 and i is odd,

2, if i = n− 1.

(2)

These delta values induce a p2 configuration in which v2 has the lowest
stack size of −2 and vn has the highest stack size of n− 3. Adding 2 chips
to each stack gives a p2 ground configuration in which vn has stack size
n− 1.

Theorem 2.12. Let n be a positive integer. There is no p2 ground configu-
ration on Pn with a stack size of n.

Proof. When n is odd, the number of edges (i.e., the number of delta values)
is n− 1, which is even. We partition them into

{δ1, δ2}, {δ3, δ4}, . . . , {δn−2, δn−1}.

By Lemma 2.4, each of these pairs has a sum that is at most 2. Since there
are (n− 1)/2 pairs, the sum of all deltas is

n−1∑
i=1

δi ≤ 2

(
n− 1

2

)
= n− 1.

For even n, assume to the contrary that we have a p2 ground configuration
with |vn| ≥ n. We partition the n−1 delta values into (n−4)/2 consecutive
pairs and a triple at the end:

{δ1, δ2}, {δ3, δ4}, . . . , {δn−5, δn−4}, {δn−3, δn−2, δn−1}.

In order for the delta sum to equal or exceed n and given that each pair
sums to at most 2, the sum of the triple must be at least n− 2

(
n−4
2

)
= 4.

The only possible triples of consecutive deltas with a sum of 4 or greater
are

{2,−1, 3}, {2, 0, 2}, {3,−2, 3}, {3,−1, 3}, and {3,−1, 2}.
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The first four triples listed are impossible by Lemma 2.8 and Lemma 2.10.

The triple {3,−1, 2} is also impossible. Since this triple sums to 4, all of
the pairs must sum to at least n− 4. Since two consecutive deltas sum to
at most 2, it follows that every pair must sum to exactly 2. Thus each pair
must be one of the following:

{−1, 3}, {0, 2}, {1, 1}, {2, 0}, {3,−1}.

We are restricted in which pair can be used first:

1. {δ1, δ2} can’t be {3,−1} by Lemma 2.10.

2. {δ1, δ2} can’t be {0, 2} by Lemma 2.6.

3. {δ1, δ2} can’t be {1, 1} by Lemma 2.9.

If {δ1, δ2} = {2, 0}, then {2, 0} cannot be followed by {0, 2}, {1, 1}, {2, 0},
{3,−1}, or {3,−1, 2} by Lemmas 2.5 and 2.8. This leaves only {−1, 3} as
possible values for {δ3, δ4}.

So it must be the case that either {δ1, δ2} = {−1, 3} or {δ3, δ4} = {−1, 3}.
This {−1, 3} pair cannot be followed by anything other than another {−1, 3}
pair. It can’t be followed by {0, 2}, by Lemma 2.8; it can’t be followed by
the other pairs or the triple {3,−1, 2}, by Corollary 2.4. Thus it is impos-
sible to construct a p2 ground configuration on Pn with a vertex having
stack size n or greater.

Theorems 2.11 and 2.12 together give the main result of this section:

Theorem 2.13. Let C be a ground configuration on Pn. Then the largest
possible stack size in C is n− 1.

3 Cycles

We now look at the maximum stack sizes possible in a ground p2 config-
uration on the cycle graph Cn. For small values of n, this is feasible to
determine by computer (or even by hand for n ≤ 4). The following table
lists the distinct p2 configurations on Cn for n ≤ 4.
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n #p2 # non-isomorphic non-isomorphic
GCs p2 GCs GCs

3 18 5 {0, 0, 1}, {0, 0, 2}, {0, 1, 1}, {0, 1, 2}, {0, 2, 2}
4 46 12 {0, 0, 1, 1}, {0, 1, 0, 1}, {0, 1, 0, 2}, {0, 1, 0, 3}

{0, 1, 2, 1}, {0, 2, 0, 2}, {0, 2, 0, 3}, {0, 2, 1, 2}
{0, 2, 1, 3}, {0, 3, 0, 3}, {0, 3, 1, 3}, {0, 3, 2, 3}

The numbers in the second column of the table are for a labeled graph;
the numbers in the third column are for unlabeled graphs (i.e., the con-
figurations {0, 1, 1}, {1, 0, 1} and {1, 1, 0} on C3 are counted as three con-
figurations in the second column and a single configuration in the third
column).

For the remainder of this section, we will assume that n ≥ 5. We number the
vertices of Cn as shown in the diagrams below, using {0,±1,±2, . . . ,±n−1

2 }
if n is odd and {0,±1,±2, . . . ,±n−1

2 , n
2 } if n is even.

n odd n even

v0

v1 v2 v3
vn−1

2

v−1 v−2 v−3 v−n+1
2

v0

v1 v2 v3
vn

2
−1

vn
2

v−1 v−2 v−3 v−n
2

+1

We call the vertices and edges with positive indices the top of the cycle and
those with negative indices the bottom. For odd n, we call the edge between
vn−1

2
and v−n+1

2
the middle edge; for even n we call vertex vn

2
the middle

vertex . We label the edges (other than the middle edge) as ei, where i is
the index of the incident vertex further from v0.

As with paths, two adjacent vertices cannot have stack sizes that differ by
more than 3:

Lemma 3.1. Let C be a p2 configuration on a cycle Cn with n ≥ 5. Then
for any two adjacent vertices, the stack sizes differ by at most 3.

Proof. Let Cn be a cycle of length at least 5, and let u and v be adjacent
vertices in Cn. The subgraph induced by u, v, and their two other neighbors
is a path on four vertices. By Lemma 2.2 we have that

∣∣|u| − |v|
∣∣ ≤ 3.
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The construction of a p2 configuration with maximum stack size on a cycle
is very similar to that of paths. We start with vertex v0 having zero chips,
and choose delta values that will make the stack sizes increase as we move
away from v0. But we can’t do this all the way around the cycle. If
we did, starting along the top, then the difference between |v−1| and |v0|
would be greater than 3. The best we can do is to start at v0 and along
both the top and the bottom choose delta values that make the stack sizes
increase, meeting in the middle, and giving a maximum stack size that is
roughly n/2.

A similar argument gives us the following lemma:

Lemma 3.2. Let C be a p2 configuration on a cycle Cn with n ≥ 5. Let ei
and ei+1 be adjacent edges that are either both on the top or both on the
bottom of the cycle. Then |δi + δi+1| ≤ 2.

Proof. Let ei and ei+1 be adjacent edges along either the top or bottom
of the cycle. The subgraph induced by these two edges is a path on three
vertices, and by Lemma 2.3 and Corollary 2.4 the result follows.

Theorem 3.3. Let C be a ground configuration on Cn. Then the maximum
possible stack size for a vertex in C is given by

n+1
2 , if n is odd,

n+2
2 , if n = 4k,

n+4
2 , if n = 4k + 2.

Proof. From the listing of p2 configurations above, the result holds for n = 3
and n = 4. When n ≥ 5 we break into four cases depending on the value
of n modulo 4.

Case 1: n = 4k + 1

By Lemma 3.2, the delta values of two adjacent edges is at most 2.
If n = 4k + 1, we construct a p2 configuration by defining the delta
values of the edges as

δi =


3, if |i| is odd and i ≤ n−1

2 ,

−1, if |i| is even,
0, for the middle edge.

(3)
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This results in each pair of adjacent edges along the top (and bottom)
summing to 2, which is best possible. Since there are an even number
of edges along the top, the last top edge has delta value −1, and hence
the penultimate vertex on the top, vn−3

2
, has stack size

3
(
n−1
4

)
− 1

(
n−1
4 − 1

)
= n+1

2 ,

which is the maximum possible.

Case 2: n = 4k + 3

If n = 4k + 3, we construct a p2 configuration by defining the delta
values of the edges as

δi =


3, if |i| is odd and i < n−1

2 ,

−1, if |i| is even and i < n−3
2 ,

2, if |i| = n−1
2 ,

0, if |i| = n+1
2 .

(4)

The edges along the top have indices 1, 2, . . . , n−1
2 . This is an odd

number. The maximum possible stack size for the penultimate ver-
tex along the top would be 2(n−3

4 ) = n−3
2 . Since delta values can’t

exceed 3, the stack size of the last vertex on top is at most n−3
2 + 3.

However, using δn−1
2

= 3 results in a non-period configuration. Using

δn−1
2

= 2 instead gives the last vertex on top a stack size of

2
(
n−3
4

)
+ 2 = n+1

2 ,

which is the maximum possible.

Case 3: n = 4k

If n = 4k, we construct a p2 configuration by defining the delta values
of the edges as

δi =

{
3, if |i| is odd,

−1, if |i| is even.
(5)

This results in each pair of adjacent edges along the top (and bottom)
summing to 2, which is best possible. Since there are an even number
of edges along the top, the last top edge has delta value −1, and hence
the penultimate vertex on the top, vn−2

2
, has stack size

3
(
n
4

)
− 1

(
n
4 − 1

)
= n+2

2 ,

which is the maximum possible.
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Case 4: n = 4k + 2

If n = 4k + 2, we construct a p2 configuration by defining the delta
values of the edges as

δi =

{
3, if |i| is odd and i < n−1

2 ,

−1, if |i| is even and i < n−3
2 .

(6)

This results in each pair of adjacent edges along the top (and bottom)
summing to 2, which is best possible. Since there is an odd number
of edges along the top, the last top edge has delta value 3, and hence
the last vertex is the middle vertex vn

2
, which has stack size

3
(
n+2
4

)
− 1

(
n−2
4

)
= n+4

2

which is the maximum possible.

4 Open problems

It remains to determine the maximum stack sizes for graphs other than
paths and cycles. This will require more advanced machinery to deal
with graphs with higher-degree vertices. Another interesting open question
would be to determine the maximum total number of chips in a ground
configuration.
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