
Classroom note: A note on weaving cubes

Robert S. D. Thomas

Abstract. This note recalls a sequence of papers on woven fabrics, based
on work of Branko Grünbaum and Geoffrey Shephard in the 1980s and
Richard Roth in the 1990s, and on woven cubes by Jean Pedersen in the
1980s. With no new theory, it shows examples of cubes woven in more
than two colours based on isonemal fabrics and having strong symmetry
properties.

1 Introduction

As this note concerns the mathematical idealization of woven fabrics cov-
ering both the plane and cubes, it will be helpful to set out what the
idealizations conventionally are, based on the pioneering work of Branko
Grünbaum and Geoffrey Shephard [1]. The simplest mathematical weaving
concerns strips running in perpendicular directions in two vertical paral-
lel planes and bounded by evenly spaced parallel lines. These strips are
the foundation of strands, which are almost coincident with the strips but
slightly narrower so as not to touch. It is convenient also to consider a
third parallel reference plane between the others. If the strands remain
in their distinct planes, there is no weaving. If they rise and fall to form
a structure from which no subset can be pulled off, the result is called a
fabric. It is nearly planar and can be represented as planar. Cubes can be
woven with the same interleaving behaviour but of short lengths of strand
with ends identified. A variety of pictorial representations of fabrics and
woven cubes are possible. The conventional one for fabrics is to picture a
fragment with the strands running top to bottom dark and those running
left to right pale as in Figure 1.1, illustrating plain weave twice with nine
cells, and Figure 2.1.
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(a) (b)

Figure 1.1: (a) Standard diagram of fragment of plain weave. (b) Standard
diagram of fragment of Figure 1.1(a) rotated about its centre.

(a) (b)

Figure 1.2: (a) Simplest cube covering with three strands. (b) Rear as seen
in a mirror behind cube. The diagram is ambiguous. Red can be behind
yellow and so yellow behind blue, or red can be behind blue and so blue
behind yellow.

(a) (b)

Figure 1.3: Covering by four woven strands. (a) Front. (b) Rear of cube
in mirror. On the front, red passes beneath yellow and then green, yellow
behind blue, blue behind red and then green. Green passes behind blue on
the left, yellow on the right, and red on top.

(a) (b)

Figure 1.4: (a) Cube woven with six strands. (b) Rear of cube in mirror.
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No colouring convention has been proposed for cubes. The simplest way
to indicate the pattern of over and under is to colour the different strands
different colours as in the examples in Figures 1.2, 1.3, and 1.4. What does
need a convention is how the hidden faces of a cube are to be displayed.
I have chosen to show the back side of the cube as it would appear in a
mirror behind the cube as a dentist looks at the hidden side of a tooth.
Seeing around the edges is easy, if not at first.1

2 Symmetry

As symmetry plays so important a part in this discussion, it will be as well
to indicate some aspects of it. The plane weaving patterns studied are all
periodic, so that translations in various directions are always symmetries. If
the full symmetry group G1 of a fabric is transitive on its strands, then it is
called isonemal . Three papers [11–13], based on [8], discuss the symmetry
groups of isonemal fabrics in full detail. The little required here concerns
rotations. If the fragment of the most symmetric of fabrics, plain weave,
in Figure 1.1(a) is rotated in its plane a quarter turn about its centre, the
result is that shown in Figure 1.1(b). Because it has been thought desirable
to consider this a symmetry of the weave, another operation is introduced,
reflection in the reference plane. This reflection reverses dark and pale;
so combined with the rotation it restores the diagram of Figure 1.1(a) by
reversing the sides of the fabric. This operation is never a symmetry, but
it can be combined with a lot of rigid motions to make symmetries in G1.
The subgroup of symmetries not involving this reflection—like translations
and the central half turns above—is called the side-preserving subgroup
H1, and it is all we are concerned with here because no natural operation
on a cube corresponds to reflection in the reference plane.

We need to consider the periodicity of the weaving. I use the term in its
two-dimensional sense as explained by Doris Schattschneider in her expo-
sition of plane symmetry groups [10]. There is a non-unique finite region,
and two linearly independent translations, such that the set of all images
of the region under the group generated by these translations reproduces
the original configuration, assumed to be infinite in all directions for con-
venience. She gives the name unit to any such smallest region of the plane.
Such units are all of the same area, the period , but in general can be of a

1Figures 1.2 and 1.3 are redrawn from [7], where they appear without colour. They
reappear as Figures 8.5, 9.7, 14.3, 14.6, and 14.8 in [4], which is mainly concerned with
more complex polyhedra. Figure 1.4 does not appear in either place, only instructions
for weaving the cube [7, fn. 3], credited to Geoffrey Shephard.
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(a) (b)

Figure 2.1: (a) Standard diagram of fabric 10-107-1, with lattice unit of G1

marked, coloured in Figure 2.3(g). [18, Fig. 4a]. (b) Standard diagram of
fabric 10-93-1, with alternative lattice units of G1 and lattice unit (dashed)
of H1 marked, coloured in Figure 2.3(h). [18, Fig. 13a]. The marked points
are centres of rotational symmetry.

variety of shapes. Units whose vertices are all images of a single point under
the action of the translation group are called lattice units. Lattice units of
isonemal fabrics can be either rectangular or rhombic; those here are both,
square. The standard diagrams of two fabrics are shown in Figure 2.1 with
their lattice units.2

One other aspect of symmetry needs to be described. An ordinary symme-
try, an operation comprised by G1, acts on a fabric but leaves its structure
(diagrammatic appearance) unchanged. A weaker class of action has al-
ready been indicated for weaving diagrams, an action like the quarter turn
in Figure 1.1 that leaves the diagram changed in colour consistently but only
in colour. Such a non-symmetry is called a colour symmetry . For standard
weaving diagrams, colour symmetries are the actions made into symmetries
by reflection in the reference plane. This special case has always been a
feature of the weaving literature. When more than two colours are used and
for cubes, where there is no reference plane, colour symmetries are of just
as much interest as full symmetries. Note the full colour symmetry of the
cube colouring in Figure 1.2. Each of the 24 rigid-body symmetries of the
cube is a colour symmetry producing a permutation of the three colours:
fourfold rotations about the three axes joining opposite face centres, three-
fold rotations about the four axes joining diagonally opposite vertices, and
the twofold rotations about six axes joining diagonally opposite mid-points
of edges. In contrast, the number of full symmetries is very small, just the

2Catalogue numbers of fabrics refer to the catalogues of Grünbaum and Shephard [2, 3]
and extensions.
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(a) (b)

Figure 2.2: (a) Cube coloured by the thick striping catalogued as 20-8367-2*
[15, Fig. 14]. (b) Back of the cube of (a) reflected in a mirror [15, Fig. 15].

three half turns about the fourfold axes. I believe that the cube of Fig-
ure 1.3 is also fully colour symmetric but has no full symmetry. The cube
of Figure 1.4 also has no full symmetry and has as colour symmetries only
the half turns about the fourfold axes and the threefold rotations. One
feature of the colouring of these three cubes that is significantly distinct
from those to appear below is that no strand crosses itself.

3 Results

This note provides the aesthetic conclusion of a long project whose math-
ematical high point was published in [14, 15] before the intended conclu-
sion was reached. Having studied weaving with W.D. Hoskins [6] following
Grünbaum and Shephard [1], I wondered what weaving with more than the
two colours conventionally used to code the topology would look like. With
J.A. Hoskins, I found that the case of just two colours not used conven-
tionally was interesting [5], but we did not know how to deal with more
colours. Inspired, he said, by our work, Richard Roth studied the sym-
metry groups of all isonemal fabrics [8] and perfect colourings with two
colours [9]. Thinking that his classification allowed for the multi-coloured
study, I again found mathematically interesting results [14, 15] with only
two colours, including application to woven cubes. In particular, I found
that fully colour-symmetric cubes woven with two colours from fabrics of
the smallest lattice units were from a family represented by the cube of
Figure 2.2.3

3I had not yet discovered TikZ, and so Figures 2.2 and 3.1 are photos of models kindly
taken by Allen Patterson working for the University of Manitoba.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.3: (a) Fabric 12-183-1 3-coloured [17, Fig. 4b]. (b) 12-315-4
3-coloured [17, Fig. 7b]. (c) 12-189-1 3-coloured [17, Fig. 19b]. (d) 8-11-1
4-coloured [17, Fig. 34b]. (e) 8-11-1 4-coloured differently [17, Fig. 34c]. (f)
8-5-1 4-coloured [17, Fig. 43b]. (g) 10-107-1 5-coloured [18, Fig. 4b]. (h)
10-93-1 5-coloured [18, Fig. 13b]. (i) 12-111-2 6-coloured [18, Fig. 31a].
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I moved on to more colours [16, 17], losing interest beyond six colours for
lack of visual interest or mathematical significance. It is much easier to have
colour symmetries with more colours: if all the strands of a fabric are of
different colours, then every symmetry is a colour symmetry. As Figure 1.4
illustrates, that is not true of cubes. Patterns can be isonemally woven
with adjacent pairs of strands of the same colour, called thick striping. The
weaving of the cube in Figure 2.2 is thickly striped. Independent striping
is called thin. Analysis similar to that for two colours can be done, and
the visual results are as interesting and attractive as I hoped they would
be (Figure 2.3).

In Figure 2.2, crossing pairs of strands (thick stripes) of the same colour can
be readily identified in the squares of four cells of that colour. In Figure 2.2
a thick stripe cannot be traced like each strand because each such pair, when
it reaches a vertex, is split with the two strands crossing each other and
going their perpendicular ways. It is not quite meaningful to ask how many
stripes of each colour there are for this reason, but there is a sense in which
one can say that there are two of each. Colouring each strand differently,
which takes eight colours, is again a colour-symmetric colouring. However,
a point of this note is that one can colour pairs of adjacent strands with
four colours and preserves the colour symmetry of the rotations (Figure 3.1)
[18]. The stripes so coloured are not the stripes of Figure 2.2 and cannot
be. For their colours to be permuted by quarter turns at the centre of
faces, all four thick stripes must pass by the centre, whereas the cube of
Figure 2.2 has two thick stripes crossing at those centres. To the extent that
there is a theory of thick and thin striping, it involves these places where
a colour crosses itself, called redundant cells because—as far as colour is
concerned—it does not matter how they are woven. The distribution of
redundant cells, singly or in groups of four, determines the distribution of
stripes.

A natural question to ask is, since Figure 2.2 is a cube woven from a fabric
of minimal lattice with two colours and is also colourable with four colours
(easier), how small can a lattice unit of a fabric be and be the face of a
cube coloured with four colours in the normal way with redundant cells. A
candidate that suggests itself is the cube woven from strands arranged like
the stripes in Figure 3.1, shown in Figure 3.2. It has the right symmetry
conditions, but Figure 3.2 does not indicate how it comes from a woven
fabric. A woven fabric from which it comes is 10-107-1, displayed in Fig-
ure 2.1(a). It is 5-coloured in Figure 2.3(g), where the fifth colour (red)
required for the plane, is not needed because it lies outside the cube face
outlined in Figure 2.1(a) as the G1 lattice unit.
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(a) (b)

Figure 3.1: (a) Four-colouring of the cube of Figure 2.2. (b) The back as
reflected in a mirror.

(a) (b)

Figure 3.2: (a) 4-coloured cube inspired by Figure 3.1. (b) Back as reflected
in a mirror.

(a) (b)

Figure 3.3: (a) Second 4-coloured cube. (b) Back as reflected in a mirror.
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That cube is not unique. Similar to it is another cube that has the right
symmetry conditions, shown in Figure 3.3. A woven fabric from which
it comes is 10-93-1, displayed in Figure 2.1(b). It is 5-coloured in Fig-
ure 2.3(h), where the fifth colour (red) required for the plane, is not needed
because it lies outside the cube face with dashed outline in Figure 2.1(b).
I identify these cubes as + and ÷ respectively.

The symmetry group G1 of each fabric in Figure 2.1 has a lattice unit with
solid outline; in the case of Figure 2.1(b) there are alternatives. In Figures
2.1(a) and 2.3(g) the G1 lattice unit is used as the face of the + cube. In
Figures 2.1(b) and 2.3(h) it is lattice unit of the side-preserving subgroup
H1 of the fabric that is used as the face of the ÷ cube. As in the + cube,
the fifth colour required for the plane in Figure 2.3(h) (red) is not needed
for the ÷ cube.

Finally, there is a handedness to the weaving of all of the cubes shown
here, Figures 1.2–1.4, 2.2 and 3.1–3.3. Their mirror images have the oppo-
site handedness, and they can be seen, following the same conventions, by
looking at the given diagrams upside down.

Acknowledgments

I am particularly grateful to photographer Allen Patterson for producing
Figures 2.2 and 3.1 from my models when working for the University of
Manitoba.

References
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[3] B. Grünbaum and G. C. Shephard, An extension to the catalogue of
isonemal fabrics, Discrete Math., 60 (1986), 155–192.

[4] P. J. Hilton, J. Pedersen and S. Donmoyer, A mathematical tapestry:
Demonstrating the beautiful unity of mathematics, Cambridge: Cam-
bridge University Press, 2010.

[5] J. A. Hoskins and R. S. D. Thomas, The patterns of the isonemal two-
colour two-way two-fold fabrics, Bull. Aust. Math. Soc., 44 (1991),
33–43.

A note on weaving cubes

55



[6] W. D. Hoskins and R. S. D. Thomas, Conditions for isonemal arrays
on a Cartesian grid, Linear Algebra Appl., 57 (1984), 87–103.

[7] J. Pedersen, Some isonemal fabrics on polyhedral surfaces, in The ge-
ometric vein, pp. 99–122. C. Davis, B. Grünbaum, and F. A. Sherk,
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