
A combinatorial proof for the

Fibonacci dying rabbits problem

Roberto De Prisco

Abstract. We consider the generalized Fibonacci counting problem with
rabbits that become fertile at age f and die at age d, with 1 ≤ f ≤ d, and d
finite or infinite. We provide a combinatorial proof of a recurrence relation
for the number of rabbits at each generation. The proof is based exclusively
on a counting argument and uses only elementary mathematics. The recur-
rence relation generalizes both the original Fibonacci sequence and several
other Fibonacci-related sequences, such as the Padovan sequence and the
Tribonacci, Tetranacci, and alike sequences.

1 Introduction

Leonardo Bonacci, better known as Fibonacci, among his many contribu-
tions to the field, considered the well known rabbits counting problem that
resulted in the so-called Fibonacci sequence of integers. The problem is
the following: A population of pairs of rabbits, starting with one newborn
pair, grows in each generation with every fertile pair of rabbits giving birth
to a new pair of rabbits. A pair of rabbits becomes fertile at age 2; that
is, it does not proliferate in the generation in which it is born, but starts
proliferating in the next generation, and the newborns are added the subse-
quent generation. The problem is that of counting the number Fn of pairs
of rabbits at every generation n ≥ 1. The initial condition gives F1 = 1.
The unique pair of rabbits is not fertile in the first generation, and thus
F2 = 1. In the second generation, the pair proliferates giving birth to a
newborn pair of rabbits, which is added to the subsequent generation, and
thus F3 = 2. For the next generation only the initial pair of rabbits pro-
liferates and thus F4 = 3. For the subsequent one, there are two pairs of
rabbits that proliferate, and thus F5 = 5. Proceeding in this way one gets
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the so-called Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

The well known recurrence relation

Fn = Fn−1 + Fn−2 (1)

gives an easy way to compute the Fibonacci sequence, for any n ≥ 3,
starting from the initial conditions F1 = 1 and F2 = 1. One can extend the
sequence by adding F0 = 0, and the formula is still valid for n ≥ 2, with
the initial conditions F0 = 0 and F1 = 1. Binet’s closed formula provides a

direct way of computing Fn = 1√
5

[(
1+

√
5

2

)n

−
(

1−
√
5

2

)n]
. It is well know

that the Fibonacci sequence has many interesting properties that have led
to its fame.

A number of generalizations have been considered. For example the Lucas
sequence, is obtained by changing the initial conditions to F0 = 2 and
F2 = 1. The Gibonacci sequence is a further generalization for which F0

and F1 can be arbitrary; thus Fibonacci and Lucas numbers are special
cases of Gibonacci numbers.

The Padovan sequence is defined as Fn = Fn−2 + Fn−3, with initial values
F0 = F1 = F2 = 1, and has properties similar to those of the Fibonacci
sequence.

Another generalization, that has been widely studied, is the k-step Fi-
bonacci sequence [8], where an element of the sequence is obtained by

adding the previous k elements, that is, Fn =
∑k

i=1 Fn−i. For the case
of 3 or 4 terms, the sequences are called Tribonacci and Tetranacci num-
bers (see also [9] for further details). A closed formula for this generalization
is given in [3].

There are other generalizations. Plenty of research papers and several books
have been written about the Fibonacci numbers, their many properties
and their generalizations; we refer the reader to [7, 10] for more informa-
tion.

The generalizations that we cited above consider a direct modification of
the recurrence relation Fn = Fn−1 + Fn−2. In this paper we consider the
generalization in which, in the original problem, cast as a counting problem
of a growing population of rabbits, the rabbits become fertile after some
number f of generations and at some point, after d generations, they die.

De Prisco

26



This problem is also called the dying rabbits problem and has been studied
in several papers [1, 2, 4–6, 11]. This specific generalization is equivalent to
some generalizations that directly change the recurrence relation.

Contribution of this paper. We provide a combinatorial proof for a recur-
rence relation that gives the nth generalized Fibonacci number as a function
of 2 or 3 previous numbers. More specifically, we prove that, with the ini-
tial condition F1 = 1, the number of rabbits for the nth generation is given
by

Fn =


1, for 2 ≤ n ≤ f (case 1),

Fn−1 + Fn−f , for f + 1 ≤ n ≤ d (case 2),

Fn−1 + Fn−f − 1, for n = d+ 1 (case 3),

Fn−1 + Fn−f − Fn−d−1, for n ≥ d+ 2 (case 4).

This formula clearly generalizes Equation (1). Indeed the Fibonacci se-
quence is the case for which f = 2 and d = ∞, and for this choice of the
two parameters, we only have cases 1 and 2. For n = 2, we have case 1,
which gives F2 = 1, and for n ≥ 3, case 2 becomes Fn = Fn−1 +Fn−2. The
formula generalizes also several other well known Fibonacci-like sequences,
as we will point out in Section 4.6. We remark that the problem of count-
ing the rabbits for the dying rabbits problem has been solved in [6] (more
details in Section 2). However, the recurrence relation that we propose in
this paper has not been explicitly given in previous papers. Moreover, the
proof that we provide is quite simple and uses only elementary mathemat-
ics.

Paper organization. In Section 2 we cite and compare relevant previous
work. Then, in Section 3 we provide some basic observations and the “base
equation”, and in Section 4 we give the proof of the recurrence relation
by “unraveling” the base equation. Section 5 closes the paper with a brief
conclusion. In Appendix B we give a numerical example, and Appendix A
contains a Java program that counts the rabbits through a simulation of
the evolution of the population.

2 Previous work

The earliest papers, that we are aware of, about the Fibonacci counting
problem with dying rabbits, are by Brother U. Alfred who, in [1], posed
the question of counting the rabbits for the specific case f = 2 and d = 12,
seemingly thinking that it was a relatively easy counting problem, and later,
in [2], concluded that the problem did not seem that easy. A recurrence
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relation that correctly solves the case f = 2, d = 12, was provided by
Cohn [4]. The recurrence relation matches the general formula that we
provide in this paper.

Hoggatt and Lind [5, 6] considered a generalization on the breeding pat-
tern: Each pair of rabbits breeds B1 new pairs in its first generation, B2

in the second and so on, with B0 = 0; rabbits die after a fixed number
d of generations. In [6] the authors provided a solution in terms of the
polynomials associated to the birth and death patterns. More specifically,
denoting with B(x) =

∑
n≥0 Bnx

n the polynomial associated to the birth

pattern and with D(x) = xd the one associated to the deaths, the solution
provided in [6] is

F (x) =
1−D(x)

(1− x)(1−B(x))
.

From this equation it is possible to get a recurrence relation for specific birth
and death patterns. However no general recurrence relation is provided
in [6], neither for the case we are considering, that is for the pattern Bn = 0
for 0 ≤ n ≤ f − 1 and Bn = 1 for n ≥ f and D(x) = xd, nor for other
cases—with the exception of two examples, one of which is the specific case
considered in [1].

For the specific problem that we consider in this paper, Oller-Marcén [11]
provides a recurrence relation, namely1

Fn =


1, for 1 ≤ n ≤ f,

Fn−1 + Fn−f , for f < n ≤ d,

Fn−f + Fn−f−1 + · · ·+ Fn−d, for n > d.

(2)

The proof of the above equation provided in [11], in Proposition 9, is quite
short, and although the first two cases are easy and clear, the third case,
the one for n > d, is not as much clear2.

1The notation used in [11] uses h for the age in which rabbits become fertile and k for the
generations that rabbits live after the fertile age. Appropriately matching the different
notations, the correspondence is f = h and d = k + h− 1.

2Literally—adjusting only the terminology and the notation to make them conform to
the ones we are using in this paper—the proof states, “The number of rabbits at the
nth generation can be computed as the sum of all the preceding rabbits except those
which are not mature yet (Fn−j , with 1 ≤ j ≤ f −1) and those which have died (Fn−j ,
with j > n − d)”. Although this sentence describes the right side of the third case of
Equation (2), it is not clear why it should give the total number of rabbits for the nth

generation. It is not true that the number of rabbits that are not mature in generation
n is equal to Fn−1+Fn−2+ · · ·+Fn−f+1, as this sum is the sum of all the alive rabbits
in a number of generations, and thus non-mature rabbits would be counted multiple
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The approach used in the proof that we provide in this paper, leading to a
more compact formula, can probably be used to explain also (2), which in
fact is equivalent to the one we propose, as we show in Section 4.6. In [11]
the solution is studied also as a function of the roots of the characteristic
polynomial.

3 The “base equation”

First, to ease the wording, we will talk about single rabbits instead of pairs
of rabbits. A single rabbit that proliferates is not natural3, but considering
single rabbits instead of pairs of rabbits does not change the underlying
counting problem. Let Fn be the number of rabbits at the nth generation,
with the initial condition F1 = 1. The rabbits become fertile at the f th

generation and die at the age of d, with 1 ≤ f ≤ d (the case d < f is trivial
since the single initial rabbit will die before proliferating).

Rabbits with age d first proliferate and then die. A newborn rabbit has
age 1. The “step of the evolution” is as follows: Given a population Fn,
every element of the population with age at least f gives birth to a new
element for the next population; then the age of each element is increased
by 1, and rabbits with age > d die and thus will not be part of the next
generation.

The Fibonacci sequence is the special case f = 2 and d = ∞, in which
the rabbits become fertile after their first generation, that is, at the second
generation, and never die.

Consider the nth generation and define newbornsn and deathsn as the num-
ber of, respectively, newborn rabbits and deaths that affect the population
of this generation. Notice that newbornsn is equal to the number of fer-
tile rabbits in the previous (n − 1)th generation and deathsn is equal to
the number of rabbits that have exactly age d in the previous (n − 1)th

generation—we remark that these rabbits were alive in generation n − 1,
as they die at the end of generation n − 1. The following basic fact is
immediate.

Base equation. The number of rabbits at the nth generation is equal to the
number of rabbits in the previous generation plus the number of newborns

times. Moreover, some fertile rabbits, alive in the previous generations, might have
died before generation n. A similar remark, about the multiple counting, applies to the
number of rabbits that have died.

3Also the setting of the original problem is not very natural!
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minus the number of deaths, that is,

Fn = Fn−1 + newbornsn − deathsn. (3)

We call the above equation the base equation. Once we are able to evaluate
the newborns and the deaths for each generation, the base equation gives,
in a straightforward way, the solution.

Before we proceed, let us make some observations. The degenerate case
d < f would give rise to the sequence

1, 1, . . . , 1︸ ︷︷ ︸
d times

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .

since the unique rabbit dies before proliferating. Thus, it is not interesting,
and this is why we consider only the case f ≤ d.

The borderline case f = d, is simple to deal with. Indeed, in this case
every rabbit proliferates in the same generation in which it dies, that is,
newbornsn = deathsn (either 0 for 1). Hence, the total number of rabbits
never changes. Thus, the sequence that we get is

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . .

When f < d, evaluating the number of newborns and deaths becomes trick-
ier; however, if d = ∞ evaluating the deaths is easy: deathsn = 0.

The special case f = 1 (and d = ∞), for which rabbits are immediately
fertile, leads to a doubling of the rabbits at every generation. Indeed we
would have newbornsn = Fn−1, leading to Fn = 2Fn−1, which gives the
sequence of powers of 2:

1, 2, 4, 8, 16, 32, 64, 128, 256, 1024, . . . .

For the original Fibonacci sequence, beside d = ∞, we have f = 2, and
also in this case it is easy to evaluate the newborns: Among the previous
population of size Fn−1 there are exactly Fn−2 fertile elements, since rabbits
become fertile at age 2, and thus there are exactly Fn−2 newborns for the
new generation, that is, newbornsn = Fn−2. Thus for the case f = 2, d =
∞, we have the well known Fibonacci’s formula Fn = Fn−1 + Fn−2.

More in general, for the case d = ∞ and any finite f , we have that the
number of rabbits that are fertile for generation n is exactly Fn−f , that is,
all the rabbits that were in the population f generations before; indeed all
these rabbits have age at least f in generation n and they have not died.
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All the other rabbits are still too young. The number of fertile rabbits gives
the number of newborns, that is, newbornsn = Fn−f . This results in the
recurrence relation Fn = Fn−1+Fn−f , as also stated in Equation (2).

However, when d is finite, evaluating the exact number of newborns and
deaths seems trickier. Indeed it is not true anymore that the number of
fertile rabbits for the nth generation is equal to Fn−f because some of those
rabbits could have died meanwhile. Also the total number of deaths seems
more difficult to assess.

4 Unraveling the base equation

Keeping track only of the total number of rabbits in each generation does
not help that much. Counting also the number of rabbits for each possible
age allows to clearly define the relations among the numbers that we get
from the counting. In the following we first provide some basic definitions
and properties. Then, exploiting such properties, we prove the four cases
of the proposed recurrence relation.

4.1 Definitions and properties

We start with the following definition for the number of rabbits with a
specific age in a given generation.

Definition 4.1. Define F x
n , for x = 1, 2, . . . , d as the number of rabbits of

age x at (the beginning of) generation n.

In the following, we study the relation among all the F x
n , for any n and

x, and the total number of rabbits in each generation, that is, Fn, for any
n ≥ 1.

Example. In order to clarify the theoretical analysis we will instantiate each
relation with an example. In Appendix B, Table B.1, we provide a table
that reports the values for the specific case of f = 3 and d = 9 up to
n = 35, and in the following we will refer to pieces of that table to provide
the examples.

We start with an obvious relation which follows directly from the definition
of the F x

n .
Fn = F 1

n + F 2
n + · · ·+ F d−1

n + F d
n . (4)
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Example. Below is the row for the 14th generation from Table B.1. The
total number of rabbits is F14 = 79 and among these 79 rabbits, 25 are
newborns (that is, with age 1), 18 with age 2, 12 with age 3 and so on, up
to just 1 rabbit with age 9.

n Fn F 1
n F 2

n F 3
n F 4

n F 5
n F 6

n F 7
n F 8

n F 9
n

14 79 25 18 12 8 6 4 3 2 1

We have that 79 = 25 + 18 + 12 + 8 + 6 + 4 + 3 + 2 + 1.

Lemma 4.2. For any x ≤ min{d, n}, we have that F x
n = F x−1

n−1 = F x−2
n−2 =

· · · = F 1
n−x+1.

Proof. The age of the rabbits increases by 1 at each generation. Thus, if
there are F x

n rabbits (of age x) at generation n, there must have been the
same number F x−1

n−1 (of age x−1) at generation n−1, and the same number

F x−2
n−2 (of age x−2) at generation n−2 and so on, up to generation n−x+1,

in which the rabbits were newborns. The condition x ≤ min{d, n} ensures
that F x

n is defined and that n−x+1 ≥ 1 refers to an existing generation.

Example. Below are the rows from the 12th through the 20th generation
from Table B.1. The F 1

12 = 12 rabbits with age 1 in generation 12 will have
age 2 in generation 13 (where they are counted as F 2

13), age 3 in generation
14 (F 3

14), and so on, up to age 9 in generation 20 (F 9
12). Then, they die and

will not be part of generation 21.

n Fn F 1
n F 2

n F 3
n F 4

n F 5
n F 6

n F 7
n F 8

n F 9
n

12 38 12 8 6 4 3 2 1 1 1
13 55 28 12 8 6 4 3 2 1 1
14 79 25 28 12 8 6 4 3 2 1
15 114 36 25 28 12 8 6 4 3 2
16 165 53 36 25 28 12 8 6 4 3
17 238 76 53 36 25 28 12 8 6 4
18 343 109 76 53 36 25 28 12 8 6
19 495 158 109 76 53 36 25 28 12 8
20 715 228 158 109 76 53 36 25 28 12

Graphically, Lemma 4.2, implies that all numbers F x
n move diagonally in

the table, down-right when going to the next generation, up-left when going
back to the previous generation.
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Lemma 4.3. For n ≥ 2, the number of rabbits that die at generation n, that
is, the ones that are alive in generation n− 1 but dead for generation n, is
F d
n−1.

Proof. Immediate from Definition 4.1: F d
n−1 is the number of rabbits with

age d. The condition n ≥ 2 ensures that F d
n−1 is defined.

Example. The row for the 34th generation of Table B.1 is shown below.

n Fn F 1
n F 2

n F 3
n F 4

n F 5
n F 6

n F 7
n F 8

n F 9
n

34 121644 38788 26875 18621 12902 8939 6194 4292 2973 2060

The total number of rabbits with age 9 is F 9
34 = 2060. These are the rabbits

that die at the end of generation 34 and thus will not be part of the 35th

generation.

Lemma 4.4. The number F 1
n of newborn rabbits at generation n is equal to∑d

x=f F
x
n−1.

Proof. The number of newborns is equal to the number of fertile rabbits in
the previous generation. Thus we need to consider all the rabbits that in the
previous generation have age at least f . By Definition 4.1 we have that there
are F f

n−1 rabbits of age f , F f+1
n−1 rabbits of age f +1, and so on up to F d

n−1

rabbits of age d. Thus the total number of rabbits that have a fertile age,
that is, an age at least f , in generation n−1, is F f

n−1+F f+1
n−1+· · ·+F d

n−1.

Example. Below are shown the rows for the 25th and the 26th generations
from Table B.1.

n Fn F 1
n F 2

n F 3
n F 4

n F 5
n F 6

n F 7
n F 8

n F 9
n

25 4477 1428 989 685 475 329 228 158 109 76
26 6461 2060 1428 989 685 475 329 228 158 109

The newborn rabbits for generation 26 are F 1
26 = 2060, and since f = 3,

we have 2060 = 685 + 475 + 329 + 228 + 158 + 109 + 76.

Now, armed with the above equalities, we can easily unravel the base equa-
tion. We distinguish four subcases.
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4.2 Case 1: 2 ≤ n ≤ f

In the first f generations there are no newborns nor deaths. Hence we have
newbornsn = deathsn = 0, and since F1 = 1, the base Equation (3) reduces
to

Fn = 1, for 2 ≤ n ≤ f. (5)

4.3 Case 2: f + 1 ≤ n ≤ d

Since n ≤ d, there are no deaths. Thus deathsn = 0. However, some
rabbits start to proliferate. By Lemma 4.4 we have that the newborns for
generation n are F 1

n =
∑d

x=f F
x
n−1.

By Lemma 4.2 we have that each element F x
n−1 of the sum can be sub-

stituted by the equal term F
x−(f−1)
n−1−(f−1), which we find by going up-left

diagonally for f −1 generations, and thus, starting from the base equation,
we have that

Fn = Fn−1 + newbornsn − deathsn

= Fn−1 + F 1
n − 0

= Fn−1 +

d∑
x=f

F x
n−1 (by Lemma 4.4)

= Fn−1 +

d∑
x=f

F x−f+1
n−f (by Lemma 4.2)

= Fn−1 +

d−f+1∑
x=1

F x
n−f (index substitution)

= Fn−1 +

d∑
x=1

F x
n−f (added elements are 0)

= Fn−1 + Fn−f (by Equation (4))

where the second-to-last step is true because for generation n − f there
are no rabbits with age x > d − f since the condition n ≤ d implies that
n− f ≤ d− f and thus no rabbit can have an age bigger than this number.
Thus F x

n−1 = 0 for x > d− f .
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Example. F9 = F8+F 3
8 +F 4

8 +F 5
8 +F 6

8 +F 7
8 +F 8

8 +F 9
8 , that is 13 = 9+1+1+

1+0+0+1+0, which is also equal to F8+F 1
6 +F 2

6 +F 3
6 +F 4

6 +F 5
6 +F 6

6 +F 7
6 ,

and also to F8 +
∑

x = 19F x
6 since the added elements F 8

6 and F 9
6 are 0.

n Fn F 1
n F 2

n F 3
n F 4

n F 5
n F 6

n F 7
n F 8

n F 9
n

6 4 1 1 1 0 0 1 0 0 0
7 6 2 1 1 1 0 0 1 0 0
8 9 3 2 1 1 1 0 0 1 0
9 13 4 3 2 1 1 1 0 0 1

Hence we have

Fn = Fn−1 + Fn−f , for f < n ≤ d. (6)

4.4 Case 3: n = d + 1

This case is very similar to the previous one with the unique exception that
we need to account for the first death: Indeed, in generation d the first
rabbit dies, and it is the only one that dies. Thus we have that deathsn =
F d
n−1 = F d

d = 1. The analysis of the newborns carried out for the previous
case applies also to this case. Hence we have that

Fd+1 = Fd − Fd+1−f − 1. (7)

4.5 Case 4: n ≥ d + 2

Next, we unravel Equation (3) for the other values of n. The reasoning that
we will provide for this case cannot be applied to the previous ones because
it involves Fn−d−1, which is not defined for n < d+2. We have that

Fn = Fn−1 + newbornsn − deathsn

= Fn−1 + F 1
n − F d

n−1

= Fn−1 +

d∑
x=f

F x
n−1 − F d

n−1 (by Lemma 4.4)

= Fn−1 +

d−1∑
x=f

F x
n−1
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Example. F35 = F34 + F 3
34 + F 4

34 + F 5
34 + F 6

34 + F 7
34 + F 8

34, that is 175565 =
121644 + 18621 + 12902 + 8939 + 6194 + 4292 + 2973.

n Fn F 1
n F 2

n F 3
n F 4

n F 5
n F 6

n F 7
n F 8

n F 9
n

34 121644 38788 26875 18621 12902 8939 6194 4292 2973 2060

35 175565 55981 38788 26875 18621 12902 8939 6194 4292 2973

As done for case 2, by Lemma 4.2 we have that each element F x
n−1 of the

sum can be substituted by the equal term F
x−(f−1)
n−1−(f−1), which we find by

going up-left diagonally for f −1 generations, and thus we have that

Fn = Fn−1 +

d−1∑
x=f

F x
n−1

= Fn−1 +

d−1∑
x=f

F x−f+1
n−f (by Lemma 4.2)

= Fn−1 +

d−f∑
x=1

F x
n−f (index substitution)

Example. F35 = F34 + F 1
32 + F 2

32 + F 3
32 + F 4

32 + F 5
32 + F 6

32, that is 175565 =
121644 + 18621 + 12902 + 8939 + 6194 + 4292 + 2973.

n Fn F 1
n F 2

n F 3
n F 4

n F 5
n F 6

n F 7
n F 8

n F 9
n

32 58398 18621 12902 8939 6194 4292 2973 2060 1428 989

33 84284 26875 18621 12902 8939 6194 4292 2973 2060 1428

34 121644 38788 26875 18621 12902 8939 6194 4292 2973 2060

35 75565 55981 38788 26875 18621 12902 8939 6194 4292 2973

We now observe that

Fn−f =

d∑
x=1

F x
n−f =

d−f∑
x=1

F x
n−f +

d∑
x=d−f+1

F x
n−f ,

and thus we have that

d−f∑
x=1

F x
n−f = Fn−f −

d∑
x=d−f+1

F x
n−f .
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Hence, we have that

Fn = Fn−1 +

d−f∑
x=1

F x
n−f = Fn−1 + Fn−f −

d∑
x=d−f+1

F x
n−f .

Example. F35 = F34 + F32 − F 7
32 − F 8

32 − F 9
32, that is 175565 = 121644 +

58398− 2060− 1428− 989.

n Fn F 1
n F 2

n F 3
n F 4

n F 5
n F 6

n F 7
n F 8

n F 9
n

32 58398 18621 12902 8939 6194 4292 2973 2060 1428 989

33 84284 26875 18621 12902 8939 6194 4292 2973 2060 1428

34 121644 38788 26875 18621 12902 8939 6194 4292 2973 2060

35 175565 55981 38788 26875 18621 12902 8939 6194 4292 2973

As done before we can now shift up-left for d− f generations the terms of
the sum, using Lemma 4.2:

d∑
x=d−f+1

F x
n−f =

d−(d−f)∑
x=d−f+1−(d−f)

F x
n−d (by Lemma 4.2)

=

f∑
x=1

F x
n−d (index substitution)

Thus we have that

Fn = Fn−1 + Fn−f −
d∑

x=d−f+1

F x
n−f = Fn−1 + Fn−f −

f∑
x=1

F x
n−d. (8)

Example. First, we have that
∑9

x=7 F
x
32 =

∑3
x=1 F

x
26, since the three terms

are equal (they have just moved up-left diagonally for 6 generations. Then
we have F35 = F34 + F32 − F 1

26 − F 2
26 − F 3

26, that is 175565 = 121644 +
58398− 2060− 1428− 989.
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n Fn F 1
n F 2

n F 3
n F 4

n F 5
n F 6

n F 7
n F 8

n F 9
n

26 6461 2060 1428 989 685 475 329 228 158 109

27 9325 2973 2060 1428 989 685 475 329 228 158

28 13459 4292 2973 2060 1428 989 685 475 329 228

29 19425 6194 4292 2973 2060 1428 989 685 475 329

30 28035 8939 6194 4292 2973 2060 1428 989 685 475

31 40462 12902 8939 6194 4292 2973 2060 1428 989 685

32 58398 18621 12902 8939 6194 4292 2973 2060 1428 989

33 84284 26875 18621 12902 8939 6194 4292 2973 2060 1428

34 121644 38788 26875 18621 12902 8939 6194 4292 2973 2060

35 175565 55981 38788 26875 18621 12902 8939 6194 4292 2973

And to conclude the unraveling of the formula, we observe that the sum
of the negative terms F x

n−d is equal to the total number of rabbits Fn−d−1

in the previous generation. Indeed, the first term F 1
n−d of this sum is the

number of newborns of generation n − d, which is equal to the number of
fertile rabbits in generation n− d− 1; that is,

F 1
n−d =

d∑
x=f

F x
n−d−1

and the other terms, shifting them up-left of 1 generation, using again
Lemma 4.2, are equal to

f∑
x=2

F x
n−d =

f−1∑
x=1

F x
n−d−1.

By putting together these facts we have that

f∑
x=1

F x
n−d = F 1

n−d +

f∑
x=2

F x
n−d =

d∑
x=f

F x
n−d−1 +

f−1∑
x=1

F x
n−d−1 = Fn−d−1. (9)

Example. F 1
26+F 2

26+F 3
26 = F25, that is 2060+1428+989 = 4477, because

F 1
26 = F 3

25 + F 4
25 + F 5

25 + F 6
25 + F 7

25 + F 8
25 + F 9

25, that is 2060 = 685 + 475 +
329+26+228+158+109+76 and the two missing terms are equal to the
two terms that come from the next generation, that is F 1

25 = F 2
26 = 1428

and F 2
25 = F 3

26 = 989.

n Fn F 1
n F 2

n F 3
n F 4

n F 5
n F 6

n F 7
n F 8

n F 9
n

25 4477 1428 989 685 475 329 228 158 109 76
26 6461 2060 1428 989 685 475 329 228 158 109
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Putting together Equations (8) and (9) we have that

Fn = Fn−1 + Fn−f − Fn−d−1, for n ≥ d+ 2. (10)

Example. F35 = F34 + F32 − F26, that is 175565 = 121644 + 58398− 4477.

n Fn F 1
n F 2

n F 3
n F 4

n F 5
n F 6

n F 7
n F 8

n F 9
n

25 4477 1428 989 685 475 329 228 158 109 76

26 6461 2060 1428 989 685 475 329 228 158 109

27 9325 2973 2060 1428 989 685 475 329 228 158

28 13459 4292 2973 2060 1428 989 685 475 329 228

29 19425 6194 4292 2973 2060 1428 989 685 475 329

30 28035 8939 6194 4292 2973 2060 1428 989 685 475

31 40462 12902 8939 6194 4292 2973 2060 1428 989 685

32 58398 18621 12902 8939 6194 4292 2973 2060 1428 989

33 84284 26875 18621 12902 8939 6194 4292 2973 2060 1428

34 121644 38788 26875 18621 12902 8939 6194 4292 2973 2060

35 175565 55981 38788 26875 18621 12902 8939 6194 4292 2973

4.6 The recurrence relation

To summarize, we provide the following theorem.

Theorem 4.5. Let F1 = 1 and let f and d be integers such that 1 ≤ f ≤ d.
The number Fn of rabbits at generation n, for a population of rabbits that
become fertile at age f and die at age d ≥ f , is given by

Fn =


1, for 2 ≤ n ≤ f

Fn−1 + Fn−f , for f < n ≤ d

Fn−1 + Fn−f − 1, for n = d+ 1

Fn−1 + Fn−f − Fn−d−1, for n ≥ d+ 2.

(11)

Proof. This follows from Equations (5), (6), (7), and (10).

The Fibonacci sequence is obtained with f = 2 and d = ∞.

Using f = 2 and d = 3, one obtains the Padovan sequence. Indeed, for the
Padovan sequence we have Fn = Fn−2+Fn−3 and also that Fn−1 = Fn−3+
Fn−4, from which one has Fn−3 = Fn−1 − Fn−4, and thus we have that
Fn = Fn−2+Fn−3 = Fn−1+Fn−2−Fn−4 = Fn−1+Fn−f −Fn−d−1.
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The k-step Fibonacci sequence corresponds to the case f = 1 and d = k.
Indeed, for the k-step Fibonacci numbers, we have that

Fn =

k∑
i=1

Fn−i.

From

Fn−1 =

k+1∑
i=2

Fn−i = Fn−2 +

k+1∑
i=3

Fn−i

we have that

Fn−2 = Fn−1 −
k+1∑
i=3

Fn−i

and thus

Fn = Fn−1 + Fn−2 +

k∑
i=3

Fn−i

= Fn−1 + Fn−1 −
k+1∑
i=3

Fn−i +

k∑
i=3

Fn−i

= Fn−1 + Fn−1 − Fn−k−1

= Fn−1 + Fn−f − Fn−d−1 (since f = 1 and k = d).

We also notice that, beside the case f = 2 and d = ∞, the original Fibonacci
sequence is produced also by the case f = 1 and d = 2, although with a
missing first term. Indeed for f = 1 and d = 2, we have that F1 = 1,
F2 = 2 and F3 = 3 (initial condition and cases 2 and 3), and then for any
n ≥ d+ 2 = 4 we have that

Fn = Fn−1 + Fn−1 − Fn−3

(since Fn−1 = Fn−2 + Fn−2 − Fn−4 we have)

= Fn−1 + Fn−2 + Fn−2 − Fn−3 − Fn−4

(since Fn−2 = Fn−3 + Fn−3 − Fn−5 we have)

= Fn−1 + Fn−2 + Fn−3 − Fn−4 − Fn−5.
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By iterating this reasoning we have that

Fn = Fn−1 + Fn−2 + Fn−4 − Fn−5 − Fn−6

= Fn−1 + Fn−2 + Fn−5 − Fn−6 − Fn−7

= Fn−1 + Fn−2 + Fn−6 − Fn−7 − Fn−8

= . . .

= Fn−1 + Fn−2 + F3 − F2 − F1

= Fn−1 + Fn−2 + 3− 2− 1

= Fn−1 + Fn−2.

Finally we show that (2) is indeed equivalent to (11). From (2) we have

Fn = Fn−f + Fn−f−1 + · · ·+ Fn−d

and also

Fn−1 = Fn−f−1 + · · ·+ Fn−d + Fn−d−1

from which

Fn−f−1 + · · ·+ Fn−d = Fn−1 − Fn−d−1.

Thus we have

Fn = Fn−f + Fn−f−1 + · · ·+ Fn−d = Fn−f + Fn−1 − Fn−d−1.

Table 4.1 summarizes the correspondence of Equation (11) with known
sequences from the On-Line Encyclopedia of Integer Sequences (OEIS) [12].

5 Conclusions

We have given a simple recurrence relation, proved with a straightfor-
ward combinatorial argument, for the number of rabbits in the gener-
alized Fibonacci problem, in which rabbits become fertile after an arbi-
trary number of generations and they also, at some point, die. The recur-
rence relation generalizes both the original Fibonacci sequence and other
Fibonacci-related sequences, such as the Padovan sequence, the Tribonacci,
Tetranacci, and alike sequences. Although the problem of counting rabbits
for the dying rabbits problem has been solved in previous studies, the re-
currence relation proposed in this paper has not been explicitly given pre-
viously. Moreover, the proof that we have provided in this paper is simple
and elementary.
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Table 4.1: Correspondence with other Fibonacci-like sequences.

f d OEIS code Name

2 ∞ A000045 Fibonacci
1 2 A000045 Fibonacci
1 3 A000073 Tribonacci
1 4 A000078 Tetranacci
1 5 A001591 Pentanacci
1 k - k-step Fibonacci
2 3 A000931 Padovan
2 4 A000930 -
2 5 A072465 -
2 6 A060961 -
2 8 A117760 -
2 12 A000044 -
3 4 A079398 -
3 5 A017818 -
3 6 A003269 -
4 5 A103372 -
4 7 A017829 -
4 8 A003520 -
4 10 A160333 -

The dying rabbits problem was posed by Brother U. Alfred in the first issue
of the Fibonacci Quarterly [1], probably as what the author expected to
be an easy counting problem. Here is a verbatim quote from a subsequent
paper [2] by Brother U. Alfred:

Originally, it was thought that the rabbits removed would con-
stitute a sequence which could be readily identified with an
expression involving Fibonacci numbers. But after several at-
tempts by a number of people it appeared that it would be
difficult to arrive at an answer by straightforward intuition.

In this paper we have shown that, after all, Brother U. Alfred was right in
considering the dying rabbits problem an easy counting problem.
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Appendix A Program simulation

In this section we provide the code of a Java program that simulates the
growth of the population of rabbits.

1 import java.util .*;

2 public class CountFibRabbits {

3 static Set <Rabbit > population = new HashSet ();

4 public static void main(String [] args) {

5 int FERTILE_AT = 3; // >= 1

6 int DIES_AT = 9; // >= 0, 0 means rabbits never die

7 int GENERATIONS = 35;

8 // Initial population , one (couple of) rabbit(s)

9 Rabbit r = new Rabbit(DIES_AT ,FERTILE_AT);

10 population.add(r);

11 String allSizes = "Sequence :\n";

12 // Evolution

13 for (int n=1; n<= GENERATIONS; n++) {

14 System.out.printf("n=%d Fn=%d",n,population.size());

15 // Compute and print ages only if DIES_AT >0

16 if (DIES_AT >0) {

17 int[] ages = new int[DIES_AT +1];

18 for (int x=0; x<= DIES_AT; x++) ages[x]=0;

19 for (Rabbit myr: population)ages[myr.getAge ()]++;

20 System.out.print(" ages=");

21 for (int x=1; x<= DIES_AT; x++)

22 System.out.printf(" %d",ages[x]);

23 }

24 System.out.println("");

25 allSizes = allSizes + population.size() + " ";

26 Set <Rabbit > next = new HashSet ();

27 for (Rabbit rabbit : population) {

28 //First increase age

29 boolean alive = rabbit.increaseAge ();

30 //so that if rabbit is fertile , gives birth

31 Rabbit child = rabbit.reproduce ();

32 if (child != null) next.add(child);

33 //if still alive , keep it in the population

34 if (alive) next.add(rabbit);

35 }

36 population = next;

37 }

38 System.out.println(allSizes);

39 }

40 }
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41 public class Rabbit {

42 private int age;

43 private int dies_at; //if 0, never dies

44 private int fertile_at;

45 public Rabbit(int dies_at , int fertile_at) {

46 this.fertile_at = fertile_at;

47 this.dies_at = dies_at;

48 age =1;

49 }

50 public boolean increaseAge () {

51 age ++;

52 if (dies_at < 1 || age <= dies_at) return true;

53 return false;

54 }

55 public Rabbit reproduce () {

56 Rabbit child = null;

57 if (age >fertile_at) {

58 child = new Rabbit(dies_at , fertile_at);

59 }

60 return child;

61 }

62 public int getAge () {

63 return age;

64 }

65 public int getDiesAt () {

66 return dies_at;

67 }

68 }

The class CountFibRabbits contains the main program4 that simulates the
evolution by exploiting the class Rabbit that implements the behavior of
the rabbits. The program computes the number of rabbits at each gener-
ation n, for small values of n, that is, for values of n that do not cause
memory problems (out of memory or overflow) to the machine running the
program.

4To run the program in an environment like Eclipse, create a new Java project with
name CountFibRabbits, create a unique package name and within the package create
the two classes: the main one named CountFibRabbits and the auxiliary one named
Rabbit and copy the code.
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Appendix B An example

Table B.1 shows the values of Fn and F x
n , for the specific case of f = 3 and

d = 9 and for n up to 35, obtained with the simulation program provided
in Appendix A.

Table B.1: Counting table for f = 3 and d = 9.

n Fn F 1
n F 2

n F 3
n F 4

n F 5
n F 6

n F 7
n F 8

n F 9
n

1 1 1 0 0 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 0 0 1 0 0 0 0 0 0
4 2 1 0 0 1 0 0 0 0 0
5 3 1 1 0 0 1 0 0 0 0
6 4 1 1 1 0 0 1 0 0 0
7 6 2 1 1 1 0 0 1 0 0
8 9 3 2 1 1 1 0 0 1 0
9 13 4 3 2 1 1 1 0 0 1
10 18 6 4 3 2 1 1 1 0 0
11 26 8 6 4 3 2 1 1 1 0
12 38 12 8 6 4 3 2 1 1 1
13 55 18 12 8 6 4 3 2 1 1
14 79 25 18 12 8 6 4 3 2 1
15 114 36 25 18 12 8 6 4 3 2
16 165 53 36 25 18 12 8 6 4 3
17 238 76 53 36 25 18 12 8 6 4
18 343 109 76 53 36 25 18 12 8 6
19 495 158 109 76 53 36 25 18 12 8
20 715 228 158 109 76 53 36 25 18 12
21 1032 329 228 158 109 76 53 36 25 18
22 1489 475 329 228 158 109 76 53 36 25
23 2149 685 475 329 228 158 109 76 53 36
24 3102 989 685 475 329 228 158 109 76 53
25 4477 1428 989 685 475 329 228 158 109 76
26 6461 2060 1428 989 685 475 329 228 158 109
27 9325 2973 2060 1428 989 685 475 329 228 158
28 13459 4292 2973 2060 1428 989 685 475 329 228
29 19425 6194 4292 2973 2060 1428 989 685 475 329
30 28035 8939 6194 4292 2973 2060 1428 989 685 475
31 40462 12902 8939 6194 4292 2973 2060 1428 989 685
32 58398 18621 12902 8939 6194 4292 2973 2060 1428 989
33 84284 26875 18621 12902 8939 6194 4292 2973 2060 1428
34 121644 38788 26875 18621 12902 8939 6194 4292 2973 2060
35 175565 55981 38788 26875 18621 12902 8939 6194 4292 2973
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