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Abstract. We clarify the kinds of independence hypotheses among n vari-
ables that I.J. Good considered in a 1975 paper, and we give a new and
more concise proof to his exponential generating function for the total num-
ber of such hypotheses. We also examine two questions posed in 1979 by
C.L. Mallows about the total number of independence hypotheses among
n variables without the restrictions imposed by Good.

1 Introduction

In 1975, mathematician and statistician I.J. Good [5] enumerated the num-
ber of different hypotheses of independence that exist among the random
variables in a random vector (X1, . . . , Xn), or equivalently, the number of
different hypotheses of independence for a multidimensional contingency
table that cross-classifies n categorical variables (X1, . . . , Xn). By “inde-
pendence”, we mean either “unconditional independence” or “conditional
independence”.

If an is the total number of different hypotheses of independence that exist
among the random variables in the vector (X1, . . . , Xn), Good [5] proved
that the exponential generating function (e.g.f.) of the numbers (an : n ∈
Z≥0) is

A(y) :=

∞∑

n=0

an
n!

yn = exp(exp(y) + 2y − 1)− exp(3y). (1)
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Clearly, Eq. (1) is valid for all y ∈ (−∞,∞).

Some values of the sequence (an : n ∈ Z≥0) are given in Table 1.1.

Table 1.1: Good’s enumeration of hypotheses of independence.

n 0 1 2 3 4 5 6 7 8
an 0 0 1 10 70 431 2534 14820 88267

Unfortunately, the paper by Good [5] that contains the proof of Eq. (1) is
difficult to find, and most people know of the e.g.f. A(x) and the values in
Table 1.1 through other papers and books that cite it; e.g., see Fienberg [4,
p. 72], Good [6, p. 1171], and Good [7, p. 192].

In any case, in 2022, we were able to acquire the paper. In it, Good [5]
actually proved that

an =

n∑

k=0

(
n

k

)
Bk2

n−k − 3n, (2)

where Bn is the nth Bell number; see Comtet [1, Section 5.4].

In 2022, G.C. Greubel (after being provided by the author the original
paper by Good [5]) noticed that Eq. (2) simplifies to

an = Bn+2 −Bn+1 − 3n. (3)

See sequence A005465 in the OEIS [9] for more values of an and for Greubel’s
formula (3) (and see sequence A000110 for the Bell numbers).

Mallows [8] disagreed with Good [5], and for the case n = 3, he produced
17 kinds of independence among 3 variables rather than a3 = 10. Indeed,
indirectly, Good [7, p. 192] admitted that Mallows was correct. (In addition,
I.J. Good was the section editor of the journal where the short article by
Mallows [8] appeared!)

In this paper, we clarify what kinds of independence among n variables
Good [5] considered and give a new and more concise proof of his formula
(1) for the e.g.f. A(y). The proof and the formulas given in Section 2 of this
paper were obtained by the author before acquiring the paper by Good [5]
(and a version of the proof appeared in 2019 in the comments for sequence
A005465 in the OEIS [9]).
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In addition, we discuss Mallows’s [8] additional hypotheses of independence
among 3 variables, and we examine his two enumeration questions that he
posed for the total number of modes of independence among n variables.

For Mallows’s [8] second question about the total number of independence
hypotheses among n variables that ignore conditional independence, we
give a formula and the e.g.f. for the total number bn of such hypotheses
that were considered by Good [5]. See Eqs. (9) and (10) in Section 4 of the
paper. (Eq. (9) in this paper is also Eq. (9) in Good [5].)

Note, however, that we do not solve either one of the two problems posed
by Mallows [8], who asked us to remove Good’s [5] restrictions. These
problems are very difficult even in the case n = 4.

As a matter of notation, denote by f(x1, . . . , xn) the joint pdf or pmf (with
respect to the Lebesgue measure or the counting measure in Rn) of the
random variables X1, . . . , Xn. If A is a subset of the set of the indices
{1, 2, . . . , n} of the random variables X1, . . . , Xn, we denote by f((xi : i ∈
A)) the joint marginal pdf/pmf of the random variables (Xi : i ∈ A) that
we get from the joint pdf/pmf f(x1, . . . , xn).

In addition, if A and B are two disjoint subsets of {1, 2, . . . , n}, we denote
by

f((xi : i ∈ A) | (xj : j ∈ B))
the conditional joint pdf/pmf of the random variables (Xi : i ∈ A), given
(Xj : j ∈ B) = (xj : j ∈ B), that we get from the joint pdf/pmf
f(x1, . . . , xn).

If A, B, and C are three pairwise disjoint subsets of {1, 2, . . . , n}, then we
say that the two lists of variables (Xi : i ∈ A) and (Xi : i ∈ B) are
conditionally independent, given (Xj : j ∈ C), if and only if

f((xi : i ∈ A ∪ B) | (xj : j ∈ C)) = f((xi : i ∈ A) | (xj : j ∈ C))
× f((xi : i ∈ B) | (xj : j ∈ C))

for each vector (xj : j ∈ C) in the joint range of the random vector (Xj :
j ∈ C). The definition can be appropriately extended to more than three
pairwise disjoint subsets of {1, 2, . . . , n}.

Remark 1.1. Colin L. Mallows, famous for his Cp criterion in regression,
died in November 2023 at the age of 93. See Dalal and Landwehr [2].
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2 What kinds of hypotheses of independence
did Good consider?

In this section, we clarify the kinds of independence that Good [5] enumer-
ated and provide a new proof to his formula (1) for the e.g.f. A(y).

Indirectly, for n ≥ 2, Good [5] partitioned the index set {1, 2, . . . , n} for
the random variables X1, . . . , Xn into three disjoint groups: C, I, and L.
Except for I, each of these groups of indexes of variables may be empty.
The set C contains all the indexes for the variables on which we condition,
the set I contains the indexes for the variables whose joint pdf or pmf
(conditional on all the variables in C) we factor in all possible ways, and L
contains the indexes for the variables that are not used in the definition of
conditional independence in the hypothesis we examine.

If s = |C|, then we might choose the index set C in
(
n
s

)
ways and s ∈

{0, 1, ..., n− 2}.

Note that we can only condition on up to n−2 variables, because we need at
least two variables to define any kind of independence: conditional (s ≥ 1)
or unconditional (s = 0). Thus,

2 ≤ n− s = |I|+ |L| ≤ n and a0 = a1 = 0.

If we let t = |I|, then there are
(
n−s
t

)
ways of choosing the index set I and

t ∈ {2, . . . , n− s}.

If r ∈ Z≥2 and {S1, . . . , Sr} is a partition of the set of indexes I (with
|Si| ≥ 1 for i = 1, 2, . . . , r), the hypothesis of independence corresponding
to this partition (with C and L defined as above) is that

f ((xi : i ∈ I) | (xj : j ∈ C)) =
r∏

k=1

f ((xi : i ∈ Sk) | (xj : j ∈ C))

for each vector (xj : j ∈ C) in the joint range of the random vector

(Xj : j ∈ C).

Given the set I with t = |I|, there are Bt − 1 ways to form a partition
{S1, ..., Sr} of I with r ≥ 2, |Si| ≥ 1, and S1 ∪ · · · ∪ Sr = I. This is a
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well-known property of the Bell numbers (and the −1 is due to the fact
that we exclude the partition {S1} = {I} that has r = 1).

Thus, in the sense of Good [5], there are

an =

n−2∑

s=0

n−s∑

t=2

(
n

s

)(
n− s

t

)
(Bt − 1)

kinds of independence among n variables.

Letting k = n− s, we get

an =

n∑

k=2

k∑

t=2

(
n

n− k

)(
k

t

)
(Bt − 1) =

n∑

k=2

k∑

t=2

(
n

k

)(
k

t

)
(Bt − 1). (4)

Note that Eq. (4) hold even for n ∈ {0, 1} because empty sums are by
definition 0 and we have a0 = a1 = 0.

Next we claim that

an =

n∑

k=2

(Bk+1 − 2k)

(
n

k

)
. (5)

This can be proved by using Eq. (4) and the identities

Bk+1 =

k∑

m=0

(
k

m

)
Bm and 2k =

k∑

m=0

(
k

m

)
, (6)

which are valid for all nonnegative integers k. (Note that B0 = B1 = 1.)
For the first equation in (6), see Comtet [1, Section 5.4, Eq. (4c)].

Since Bk+1 = 2k for k = 0, 1, we may alternatively write Eq. (5) as

an =

n∑

k=0

(Bk+1 − 2k)

(
n

k

)
. (7)

Finally, we prove Eq. (1) using Eq. (7). To achieve that, we use the e.g.f.
of the Bell numbers; see Comtet [1, Section 5.4, Eq. (4b)]:

∞∑

n=0

Bn

n!
yn = exp(exp(y)− 1). (8)
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Differentiating both sides of Eq. (8) with respect to y and shifting the index
of summation, we get

∞∑

m=0

Bm+1

m!
ym =

∞∑

n=1

Bn

(n− 1)!
yn−1 = exp(exp(y) + y − 1).

Using the above equations, we get

∞∑

n=0

an
n!

yn =

∞∑

n=0

1

n!

(
n∑

k=0

(Bk+1 − 2k)

(
n

k

))
yn

=

∞∑

k=0

yk

k!
(Bk+1 − 2k)

∞∑

n=k

yn−k

(n− k)!

=

( ∞∑

k=0

yk

k!
Bk+1 −

∞∑

k=0

(2y)k

k!

)( ∞∑

ℓ=0

yℓ

ℓ!

)

= exp (exp(y) + 2y − 1)− exp(3y).

This proves Eq. (1).

Remark 2.1. Consider a partition {S1, . . . , Sr} of the index set I with
r≥2. For k = 1, . . . , r, let

Xk = (Xi : i ∈ Sk).

Good [5] considered modes of independence of the following kind:

Random vectors X1, . . . ,Xr are conditionally independent, given
each value in the joint range of the random vector (Xj : j ∈ C).

3 Mallows’s discussion of modes of
independence among three variables

Consider three random variables X1, X2, X3, and denote

• by s1 the statement thatX1 is independent of the random vector (X2, X3);

• by s′1 the statement that X2 and X3 are (unconditionally) independent;
and

• by s′′1 the statement that X2 and X3 are conditionally independent given
each value in the range of X1.

Define similarly the statements s2, s
′
2, s

′′
2 and s3, s

′
3, s

′′
3 .
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We invite the reader to prove the following equivalences:

• s′1 & s′′2 ⇔ s′′1 & s′2 ⇔ s′′1 & s′′2 ⇔ s3;

• s′2 & s′′3 ⇔ s′′2 & s′3 ⇔ s′′2 & s′′3 ⇔ s1;

• s′3 & s′′1 ⇔ s′′3 & s′1 ⇔ s′′3 & s′′1 ⇔ s2;

• s1 & s2 ⇔ s2 & s3 ⇔ s3 & s1 ⇔ s1 & s2 & s3.

The last statement,
s1 & s2 & s3,

is also equivalent to the statement

“X1, X2, X3 are independent”.

Mallows [8] wrote that there are 17 independence hypotheses for the case
n = 3:

(i) 1 like s1 & s2 & s3

(ii) 3 like s1

(iii) 3 like s′1

(iv) 3 like s′′1

(v) 3 like s′1 & s′′1

(vi) 3 like s′1 & s′2

(vii) 1 like s′1 & s′2 & s′3

The previous equivalences guarantee that we did not leave any cases behind.
Cases (i)–(iv) were examined by Good [5], who counted a3 = 1+3+3+3 =
10 possibilities. The rest were not considered by him.

Mallows [8] then asked: “How many possibilities are there when the number
of variables is 4, 5, 6, . . .?” He did not answer that question and neither do
we! Finding the total number of hypotheses (in the sense of Mallows [8])
for a general n is extremely difficult.
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Determining which combinations of independence statements among n vari-
ables are equivalent for a general n (like what we did above for the case
n = 3) is very difficult. One might start with the classic paper by Dawid [3]
and try to follow up the thousands of papers that reference it.

Even if one determines exactly which statements of independence are equiv-
alent, theoretically, he or she has to provide examples to show that the dif-
ferent possibilities of non-equivalent modes of hypotheses among n variables
are indeed not equivalent. This, in general, is very tedious.

Remark 3.1. Note that Good [5] did not consider case (vii) above. Even
though, in this case, C = ∅ (since we do not condition on any variables)
and L = ∅ (since we do not omit any variable from consideration), we do
not really partition the index set I = {1, 2, 3} into {S1, . . . , Sr} for some
integer r ≥ 2. Here we actually have three index sets of variables that we
do not omit or condition on:

• I1 = {2, 3} (from condition s′1) with partition {{2}, {3}};

• I2 = {3, 1} (from condition s′2) with partition {{3}, {1}}; and

• I3 = {1, 2} (from condition s′3) with partition {{1}, {2}}.

Good [5] did not account for such a situation. (We may make similar
comments for case (vi) about each of the statements s′1 & s′2, s

′
2 & s′3, and

s′3 & s′1.)

4 Mallows’s second question about modes of
independence of variables

Mallows [8] asked a second question: “What if the cases that involve condi-
tional independence are ignored (6 of these 17)?” For n = 3, he is asking us
to ignore cases (iv) and (v) in Section 3 above; i.e., he is asking us to ignore
the six non-equivalent statements s′′1 , s

′′
2 , s

′′
3 , (s

′
1 & s′′1), (s

′
2 & s′′2), (s

′
3 & s′′3).

Out of 11 non-equivalent modes of independence among n = 3 variables
that ignore conditional independence, Good [5] only considered 7, those in
cases (i), (ii), and (iii) in Section 3.
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Since now C = ∅, by modifying the proof in Section 2, we may easily prove
that the total number of modes of independence that Good [5] considered
that ignore conditional independence is

bn =

n∑

t=2

(
n

t

)
(Bt − 1) =

n∑

t=0

(
n

t

)
(Bt − 1).

Using Eqs. (6), we get
bn = Bn+1 − 2n. (9)

(Again b0 = b1 = 0 since we need at least two variables to define indepen-
dence.)

By modifying again the proof in Section 2, one can easily prove that the
e.g.f. of the numbers (bn : n ∈ Z≥0) is

B(y) :=

∞∑

n=0

bn
n!

yn = exp(y + exp(y)− 1)− exp(2y). (10)

Some values of bn appear in Table 4.1. See also sequence A058681 in the
OEIS [9].

Table 4.1: The number of Good’s hypotheses of independence that ignore
conditional independence.

n 0 1 2 3 4 5 6 7 8
bn 0 0 1 7 36 171 813 4012 20891

Even though Mallows’s [8] second problem has definitely an easier solution
than his first one, we were still not able to solve it. Even for n = 4,
in addition to the b4 = 36 hypotheses of independence about variables
X1, X2, X3, X4 considered by Good [5], we need to consider complicated
statements such as the one below:

Each of the random vectors (X1, X2, X3), (X1, X4), (X2, X4),
and (X3, X4) consists of independent random variables.

Remark 4.1. Eq. (9) above was originally obtained by Good [5, Eq. (9),
p. 80], who called the number bn “the total number of purely marginal
independence hypotheses, which is also the number of purely conditional
independence hypotheses”.
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5 Conclusion

In this paper, we clarified the modes of independence among n variables
that were examined by Good [5] and Mallows [8], and we provided a new
and more concise proof of some of Good’s [5] formulas. In addition, we
explained the challenges in answering Mallows’s [8] two questions about
the enumeration of different kinds of independence among n variables.

Answering Mallows’s [8] interesting questions seems very difficult (even for
the case n = 4), but we hope our paper will inspire future researchers in
examining these problems in a new perspective. Maybe with the use of
symbolic computation software one may achieve that in the future (and we
believe that only the second question will be answered).
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