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1 Abstract

In Journal of Cryptology 1/1 (1988) 65-75 (= [Chau_88]) David Chaum describes a technique, the
DC-net, to send and receive messages anonymously over an arbitrary network. Section 2 gives a
short and slightly generalized description of the DC-net and describes some known reservation
techniques.

In [Chau_88] the untraceability of senders and recipients of messages is proved to be unconditional,
but this proof implicitly assumes a reliable broadcast network, i.e. each message broadcast by an
honest participant is received by each other participant without alterations.

Since unconditional Byzantine Agreement (i.e. BA in spite of an attacker with unlimited
computational power who may control an arbitrary number of participants) is impossible, such a
network cannot be realized by cryptographic means. Thus the assumption may be rather unrealistic.

In section 3 it is shown how the sending of a specific participant X can be traced by an active attacker
who is able to  manipulate broadcast and controls the current communication partner of X.

A number of countermeasures, called fail-stop key generation schemes, are suggested and it is
proved that each of them will realize the desired unconditional untraceability in spite of active attacks.

Section 4 discusses the problem of guaranteeing serviceability while preserving untraceability.
In [Chau_88 sect. 2.5] a protocol for solving this problem is suggested which again depends on

the assumption of a reliable broadcast network. It is shown that the protocol is insecure (even on the
reliable broadcast assumption): the sender of one randomly selected message can always be identified.

We give several solutions for the problem: Assuming for the attacker on untraceability …
• … reliable broadcast, we can guarantee computationally secure serviceability (sect. 4.3).
• … reliable broadcast and that there is an honest majority of all participants, we can guarantee

serviceability on the same assumption (sect. 4.5).
• … that the attacker is not able to prevent Byzantine Agreement, we can guarantee serviceability

as secure as the Byzantine Agreement (sect. 4.4.1).
• … that the attacker is not able to prevent the honest participants from communicating (which is

considerably less than reliable broadcast), we can guarantee computationally secure
serviceability (sect. 4.4.3).

Please notice that the attacker on serviceability is usually weaker than the attacker on untraceability,
i.e. there are attackers which may disturb superposed sending without being able to trace messages.

Our fourth solution is based on the problem of digital signatures whose forgery by an unexpectedly
powerful attacker is provable. We give a first such (one-time) signature scheme; the forgery of
signatures is equivalent to the factoring  problem (sect. 4.4.3.1.2).

With such signatures we can realize
• Fail-stop Byzantine Agreement, i.e. Byzantine agreement with signatures and the additional

property that as soon as the attacker is able to forge signatures all other participants will
recognize this (4.4.3.3). This can be used for implementing fail-stop broadcast.
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• Adaptive Byzantine Agreement, i.e. Byzantine agreement which can be disturbed only by an
attacker who controls more than a third of all participants and who is able to forge signatures
(sect. 5).

Some parts of this report will be published in [Waid_89].

2 Unconditional sender untraceability

Section 2.1 describes the basic mechanisms of the DC-net, superposed sending and broadcast, and
defines the notation used throughout this paper. Section 2.2 describes an example of an anonymity
preserving multi-access protocol for superposed sending, and in section 2.3 some general remarks on
sender untraceability schemes are given.

2.1 Superposed sending

Assume that a number of participants want to exchange messages over an arbitrary communication
network. A computationally unlimited attacker, who is able to eavesdrop the communication between
any two of the participants (e.g. because he collaborates with the network operator) and controls an
arbitrary subset of the participants, tries to trace the messages exchanged between the participants to
their senders and recipients.

If all messages are delivered to each participant, the attacker is not able to trace the intended recipient
of a message. Therefore unconditionally reliable broadcast guarantees unconditional recipient
untraceability.

It is important to notice that in this section as in [Chau_88] attackers are assumed to be unable to
manipulate the consistency of broadcast.

Sender untraceability is guaranteed by superposed sending, which realizes an anonymous multi-
access channel:

Let P = {P1, …, Pn} be the set of all participants and let G be an undirected self-loop free graph
with P as nodes. Let (F,⊕) be a finite abelian group. The set F is called the alphabet.

To be able to perform a single sending step, which is called a round, each pair of participants Pi,
Pj who are directly connected by an edge of G choose a key Kij  from F randomly1. Let Kji  := Kij .
Participants Pi and Pj keep their common key secret. The graph G is called key graph, the tuple K of
all keys is called key combination.

Each participant Pi chooses a message character Mi from the alphabet F, outputs his local sum

Oi := Mi ⊕ ∑
{P i ,Pj} ∈  G

 

   sign(i- j)  • Ki j
 
 

(2.1)

1 In the following the term "X is randomly chosen from a set M" is abbreviated by "X ∈R M". This means that X is
a uniformly distributed random variable which is independent from "all other variables". What is meant by "all other
variables" should always be clear from the context.
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and receives as input the global sum

S := ∑
j=1

n

 O j
 
 

(2.2)

(Fig. 1). As usually the symbolic operation ±1•Kij  is defined by +1•x := x and -1•x := -x.
Because each key is both added and subtracted exactly once, the sum in (2.2) is the sum of all

characters Mi. If exactly one character Mi has been chosen unequal to 0, this character is successfully
delivered to all participants. Otherwise a (digital) collision occurs which has to be resolved by a multi-
access protocol, cf. section 2.2.

1 2

3 4

5 6

7 8

K24 K48

K34

Figure 1 Example of a simple (and incomplete) key graph G. According to eq. (2.1)

O4 = M4 ⊕ K24 ⊕ K34 ⊕ -K48
According to lemma 2.1, each attacker A with |A| ≤ 2 can be tolerated.

Superposed sending guarantees unconditional sender untraceability. Let A denote the subset of
participants controlled by the attacker. If the graph G \ (P × A) is connected, the attacker gets no
additional information about the characters Mi besides their sum.

Lemma 2.1 Superposed sending. Let A be the subset of participants controlled by the attacker
and assume G \ (P × A) to be connected. Let (O1,…,On) ∈ Fn be the output of a
single round.

Then for each vector (M1,…,Mn) ∈ Fn  which is consistent with the attacker's a
priori knowledge about the Mi and which satisfies

∑
j=1

n

 Oj
 
 
 = ∑

j=1

n

 M j
 
 

(2.3)

there is the same number of key combinations which satisfy equation (2.1) and
which are consistent with the attacker's a priori knowledge about the Kij .

Hence the conditional probability for (M1,…,Mn) given the output (O1,…,On)
(i.e. the a posteriori probability) is equal to the conditional probability for
(M1,…,Mn) given only the sum in (2.3) (i.e. the a priori probability).

This is stated and proved in [Cha3_85, Chau_88] for F = GF(2) by a technique which can easily be
applied to any finite field. In [Pfit_89 sect. 2.5.3.1] and in the following, lemma 2.1 is proved for
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any finite abelian group F. (The general applicability of finite abelian groups was also mentioned in
[Pfi1_85].)

Proof. Let M' := (M'1,…,M'n) ∈ Fn be another vector which satisfies (2.3) and which is consistent
with the attacker's a priori knowledge about the Mi.

To prove lemma 2.1, a finite sequence M0, M1, … of vectors from Fn is defined, which all satisfy
eq. (2.3) and which differ in only two components. Let denote Mk = (Mk

1, …, Mk
n).

Let M0 := (M1,…,Mn), hence M0 satisfies eq. (2.3). If Mk = M' then stop. Now assume
Mk ≠ M'.Since both Mk (by induction hypothesis) and M' satisfy eq. (2.3) there are at least two
different indices i, j with Mk

i ≠ M'i and Mk
j ≠ M'j, and since both Mk and M' are consistent with the

attacker's a priori knowledge Pi, Pj ∉ A. Define

Mk+1
i := M'i

Mk+1
j := Mk

j ⊕ Mk
i  ⊕ -M'i (2.4)

Mk+1
h := Mk

h  for all h ∉{i,j}
Obviously Mk+1 satisfies (2.3). After at most n-1 steps the sequence stops with Mk = M'.

Let Kk be the set of all key combinations which satisfy (2.1) for the vector Mk and which are
consistent with the attacker's a priori knowledge. Between each pair Kk, Kk+1 a bijection φk is
defined. Hence |Kk| = |Kk+1| for all k and therefore |K0| = |Kn-1| where Mn-1 = M'.

To define φk consider the equations (2.4). Let ∆ := Mk+1
i ⊕ -Mk

i. Then Mk+1
i = Mk

i ⊕ ∆ and
Mk+1

j = Mk
j ⊕ -∆.

Because of the connectivity of G \ (P × A) there exists a path (Pi = Pk1
,…,Pkm

 = Pj) with
Pkh

 ∉ A and (Pkh
,Pkh+1

) ∈ G \ (P × A). Let K ∈ Kk. Then φk(K) is defined by changing the keys on
this path appropriately:

 ∀ h=1,…,m-1:  φk(K)khkh+1
 := Kkhkh+1

 ⊕ -∆ • sign(kh-kh+1),

φk(K)kh+1kh
 := φk(K)khkh+1

and

 ∀ (f,g) ∉ { (kh, kh+1), (kh+1, kh) | h=1,…,m-1 }:  φk(K) fg := Kfg
The construction of φk is depicted in figure 2.

+∆ - ∆

Pk1
Pk7

- ∆+∆ +∆ +∆

Pk2
Pk3

Pk4
Pk5

Pk6

+∆ - ∆

Mk
k1 Mk

k7 

Figure 2 Construction of φk from a path with m = 7. The vertical arrows indicate the change of Mk
kh

,

h=1,7, the horizontal arrows the numerical order of the kh, the ±∆ the change of Kkhkh+1
:

+∆

Pkh
Pkh+1

:⇔ kh < kh+1 and therefore φk(K)khkh+1
 := Kkhkh+1

 ⊕ ∆

Obviously, the local outputs of Pkh
, h = 1,…,7, are not changed by φk.
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It can easily be checked that φk(K) satisfies (2.3). Because φk(K) differs from K only in such keys
which are unknown to the attacker, φk(K) is necessarily consistent with the attacker's a priori
knowledge. Since φk is simply a translation of the group F|G|, the bijectivity of φk is obvious.

2.2 Efficient and anonymity preserving multi-access
protocols

To use the multi-access channel superposed sending offers it is necessary to regulate the participants'
access to the channel by an appropriate, i.e. efficient and anonymity preserving protocol. For an in
depth discussion of possible protocols cf. [Pfit_89 sect. 3.1.2].

In the following only three protocols are considered, slotted ALOHA, a bit map reservation
technique, and superposed receiving.

The first step for each multi-access protocol is to combine a fixed number c of characters into a
message. Each message is transmitted in c consecutive rounds, which are called a slot.

In the following, rounds are numbered from 1 to a maximum number tmax. Parameter tmax is
necessary only for technical reasons. Usually ld(|F|) • tmax, i.e. the maximum number of transmitted
bits, can be assumed to be very large, e.g. ld(|F|) • tmax = 1025. Even with a rather unrealistic
transmission rate of 1015 bps this is sufficient for about 317 years of superposed sending.

The character and output of participant Pi in round t are named Mi
t and Oi

t, respectively, the
global sum in round t is named St.

The simplest protocol is the well known (slotted) ALOHA  [Chau_88, Tane_88 sect. 3.2]: If Pi has a
message to send he simply does so in the next slot. If another participant has decided to send a
message, too, a collision occurs, which is detected by Pi. After waiting a random number of slots, Pi
retransmits his message.

Obviously ALOHA preserves anonymity, but wastes the transmission capacity of the network.

To avoid collision of messages a simple reservation map technique can be used: a slot of r rounds, the
reservation frame, is used to reserve the following up to r slots [Pfi1_85 sect. 2.2.2.2].

F is assumed to be the additive group of integers modulo a fixed integer m. For each message Pi
plans to send he chooses an index k from {1,…,r} at random and outputs 1 as his k-th character for
the reservation frame. The resulting reservation message consists of three classes of characters: 0,
indicating an unreserved slot, 1, indicating a reserved slot, and {2,…,m-1}, indicating collisions.
Since all message slots with corresponding reservation character ≠1 are of no use, they are skipped,
i.e. the reservation frame is followed only by as much message slots as there are successful
reservations. Slots with reservation character =1 are used by that participant who has sent a 1 in the
corresponding reservation round (fig. 3).

If m is chosen ≥ |P| this scheme avoids any collisions of messages.
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0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 1 0 1 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

1

0

0 3 1 1 0

used
by P

9

used
by P

4

P1

P2

P3

P4

P5

P6

P7

P8

P9

reservation frame
with r = 5

message frames

Figure 3 Reservation map technique with 9 participants, a reservation frame of length r = 5, and m ≥
4. The 1st, 2nd, and 5th slots would be unused and are therefore skipped.

A similar reservation technique is described in [Cha3_85, Chau_88]: instead of using a relatively
large group F to enable the detection of multiple collisions, the superposition is done in F = GF(2)
and a value r in the order of the square of smax, the maximum number of reservations, is used to
make multiple collisions of an odd number of reservations rather unlikely.

Therefore the scheme requires smax
2 additional bits per smax sent messages.

The last multi-access protocol is a collision resolution protocol called superposed receiving [Pfit_89
sect. 3.1.2]: it is based on the observation that from knowledge of M1 ⊕…⊕ Mn and M1, …, Mn-1
the last character Mn can easily be derived. (More generally: All Mi can be computed from each set of
n linearly independent sums of M1, …, Mn.)

This is used for a recursively defined protocol: Let smax be the maximum number of collided
messages, e.g. smax = n, and {0,1,2,…,Mmax} ⊂ ZZ the set of all allowed message characters. The
alphabet F is chosen to be the ring of integers modulo m where m is greater than smax • Mmax. As
usual each character M ∈ F can be interpreted as an integer. A message consists of only two
characters: For a participant who has to send a message the first character is always 1 and the second
is his message character. For a nonsending participant both are always 0.

Now assume that a new round of the protocol starts and an a priori unknown number of
participants have decided to send a message. Let SP denote the set of all sending participants, ∑ the
sum of their characters Mi modulo m, and s := |SP|. Thus the first slot contains the pair (s, ∑). A
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number s ≥ 2 indicates a (digital) collision. To resolve it, each participant computes the average
message

MA := 
∑
s,

which is possible since the modulus m has been chosen so large that ∑ is also the sum of the
characters in ZZ. This average is used to deterministically divide the set SP into two disjoint subsets
SP1 and SP2: SP1 consists of all participants Pi ∈ SP with Mi ≤ MA , SP2 consists of all other
sending participants:

SP1 := { Pi ∈ SP | Mi ≤ MA  }

SP2 := { Pi ∈ SP | Mi > MA  }
For i = 1,2 define si and ∑i in analogy to s and ∑. All participants Pi ∈ SP1 immediately repeat their
messages (1,Mi) in the next slot, hence each user receives the pair (s1, ∑1) and can compute the pair
(s2, ∑2) = (s ⊕ -s1, ∑ ⊕ -∑1).

Given the rare case s2 = 0, the protocol terminates after the second slot: each participant Pi ∈ SP
has sent the same character Mi = MA. Otherwise, i.e. s2 ≠ 0, the sets SP1 and SP2 are both nonempty
and the collision resolution procedure is recursively applied to (si, ∑i), i = 1,2.

To resolve a collision of s messages the protocol deterministically needs at most s slots, which is
optimal. (For a performace evaluation of superposed sending cf. [Marc_88].)

Figure 4 gives an example for the resolution of a collision of s = 5 messages.

1 7

1 10

1 4

1 1

1 5

P1

P2

P3

P4

P5

MA = 5

5 27

1 4

1 5

1 1

3 10

MA = 3

1 4

1 5

2 9

MA = 4

1 7

1 10

2 17

MA = 8

1 10

1 10

MA = 10

1 1

1 1

MA = 1

1 4

1 4

MA = 4

1 5

1 5

MA = 5

1 7

1 7

MA = 7

Figure 4 Collision resolution using superposed receiving. The black boxes indicate really sent

messages, the hatched boxes are only computed. Using the tree structure all 5

messages can be computed from the 5 really sent messages.
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To allow the sending of long messages either the alphabet F could be made large enough to represent
a long message by a single character or superposed receiving could be used as a reservation technique
(reservation by superposed receiving): each participant willing to send a message chooses at random a
reservation message (1,RMj) and sends it in the next possible reservation slot. The collision of all s
reservation messages is resolved by superposed receiving, after which each Pi sorts the received
reservation characters RMj according to their numerical values (in fact, Pi receives the reservation
characters in their numerical order!). With high probability all RMj are different, therefore the order of
the RMj naturally defines an order of all reserving participants, according to which each Pj sends his
real message in the appropriate one of the next s slots. If some RMj are equal, they don't lead to any
reservation (i.e. although superposed receiving is a deterministic collision resolution scheme, the
resulting reservation scheme is not completely deterministic, but only successful with very high
probability.)

2.3 Some remarks on sender untraceability schemes

Given the very strong assumption of an unlimited attacker (i.e. there may be an arbitrary number of
attackers |A| < |P|, there are no computational restrictions) the fundamental restrictions of superposed
sending as far as performance and reliability are concerned are a consequence of its sender
untraceability: In order to make the physical behaviour of a participant meaningless it is necessary that
a participant Pi who is willing to send a character Mi

• does this in an encrypted way,
• each other participant Pj outputs a character, too, and
• the attacker is not able to learn anything about Mi before knowing all the outputs.
Because the attacker is assumed to be an insider it follows from the last fact that the result of such

a single sending step cannot contain more information than the last of the participant's output does.
Therefore any unconditional sender untraceability scheme realizes a multi-access channel and
superposed sending offers the best possible channel capacity as far as only a single round is
concerned.

To guarantee the unconditional sender untraceability, the global output of the realized multi-access
channel has to depend on each participant's output, therefore any unconditional sender untraceability
scheme can be untraceably disturbed by each participant.

As far as I know, superposed sending is the only unconditional sender untraceability scheme which
withstands an unlimited attacker.

There are two other untraceability schemes known from literature, the MIX-net [Chau_81] and the
concept of physical unobservability [Pfit_84]. Both can only withstand weaker attackers than
superposed sending. The first is based on the use of a public-key cryptosystem and the existence of a
number of network stations, called MIXes, from which at least one has to be trustworthy. The second
assumes that the attacker only controls a very small number of participants.

To reduce the tremendous amount of randomly chosen keys for superposed sending which have
to be exchanged by the participants, one can use keys which are generated by pseudorandom
bitgenerators (PRBG). If the used PRBG is cryptographically strong, i.e. if distinguishing the PRBG
from a true random source in random polynomial time is provably equivalent to solving a (hopefully)
hard problem [VaVa_85], tracing becomes equivalent to this hard problem, too, but the unconditional
sender untraceability is lost.
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In [BeGW_88, ChCD1_88] very general techniques for information theoretically secure fault tolerant
distributed computations are described. In general these techniques can be used for implementing a
sender and recipient untraceability scheme. Since they are based on the well known reliable broadcast
problem (cf. section 3.1) they can withstand only attackers with 3 • |A| < |P| and are therefore not
further considered here. Also, an untraceability scheme based on such a general technique would be
far more expensive than superposed sending together with any of the techniques described in section
3.

On the other hand these techniques ensure serviceability: If instead of a channel with collisions
like that of superposed sending a channel which e.g. transmits all submitted characters M1, …, Mn in
their numerical order is realized, it would be guaranteed that no participant can disrupt the sending of
the Mi. The input phase of such a network (i.e. the subprotocol by which all participants share their
secrets Mi among all others) can be made attacker and fault tolerant by standard techniques without
loss of untraceability. Hence most of the reliability problems of superposed sending (discussed in the
section 4) wouldn't be posed in such a network.

Because of the growing importance of public telecommunication networks it seems necessary to look
for efficient implementations of untraceability schemes resulting in networks without user
observability. For more details about the motivation and the more practical aspects of this task cf.
[Pfi1_85, PfWa_86, PfPW_88, Pfit_89].

3 Active attacks on untraceability

The power of an active attack is based on a very simple observation: for services using two-way
communication it is impossible to realize unconditional sender untraceability without unconditional
recipient untraceability and vice versa.

To see this, assume that one of the participants controlled by the attacker, say Pa, communicates
with some honest participant X and that X will answer a message M by sending a message M'. If the
attacker is able to identify the sender of M' he can identify the recipient of M and vice versa. If the
attacker doesn't control Pa the same is true for light traffic; then the attacker can identify both
communication partners.

In general if sending and receiving is correlated (which is usually the case) the attacker can always
learn something about recipients from identifying senders and vice versa.

If active attacks are possible, superposed sending doesn't guarantee recipient untraceability and
therefore it doesn't guarantee sender untraceability:

Let Ii (Ii
t) be the input character which participant Pi receives (in round t) and which should

always be equal to the global sum S (St).
Assume that the attacker is able to deliver an arbitrary character I*

i to each participant Pi instead of
the correct character Ii. Further assume that participant Pa, who is controlled by the attacker,
communicates with the honest participant X according to some protocol. Pa knows that X will always
answer to a received message M within a given time by sending a message M'.

If the attacker delivers message M consecutively only to a single participant and a meaningless
message to all others, he can always identify X by checking when he receives M' or not. Instead of
delivering M only to a single participant he can deliver it to a subset of the participants. By
successively partitioning the participants he can identify X in log(n) rounds, provided that the
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protocol between X and Pa consists of at least log(n) interactions (on the average log(n)
2  interactions

would suffice).

If it were guaranteed that in all rounds t=1,…,tmax each participant not controlled by the attacker
receives the same input character, then superposed sending would guarantee unconditional sender and
recipient untraceability in the presence of arbitrary active attacks. Such a network is called a DC+ -net.

For an a priori given number tmax of rounds this is the well known problem of reliable broadcast.
Instead of using a fixed tmax one can also try to limit tmax adaptively: if in round t two honest
participants receive different characters then tmax is set to t; this is called fail-stop broadcast here.

In the following, two different implementations of superposed sending are considered: the centralized
and the distributed  implementation. In a centralized implementation superposition of the local sums is
done by a central station, e.g. the centre of a star network, which delivers the global sum to all
participants. In a distributed implementation each participant receives the local sum of each other, e.g.
via a broadcast channel, and computes the global sum locally for himself.

In a centralized implementation based on a star network the attack described above is possible for
the centre without any manipulation of communication lines.

3.1 Reliable broadcast

Reliable broadcast is defined by the following two properties [PeSL_80]: in each round t
i. every two honest participants Pi and Pj receive the same character, i.e. Ii

t = Ij
t, and

ii. if the "sender" X is honest, then each honest participant receives the character sent by X.
In a centralized implementation only the network centre has the function of a "sender", in a distributed
implementation each participant.

Some types of networks, e.g. satellite networks, offer reliable broadcast without any additional
protocol, but because of their bandwidth limitations they are not very usual in two-way
telecommunication. Also the DC-network is meant to be usable with a variety of underlying
communication networks, e.g. rings, therefore a cryptographic solution should be preferred to a
physical one.

The problem of achieving reliable broadcast on a network which does not provide it automatically
is also known as the Byzantine Generals problem, its solution by protocols as Byzantine Agreement
[PeSL_80, LaSP_82].

It has been proved that information-theoretically secure protocols for reliable broadcast exist iff the
number of honest participants is greater than twice the number of dishonest participants, i.e.
|P| > 3•|A|, and the attacker is not able to prevent the communication between honest participants
[LaSP_82]. All protocols for information-theoretically secure reliable broadcast implicitly make use of
perfect authentication codes [GiMS_74, Sim3_88] and therefore require a large number of additional
secret keys exchanged by the participants. Based on the existence of secure signatures there are
reliable broadcast protocols for arbitrary numbers |A| < |P| [LaSP_82]. They are usually more efficient
than the information-theoretically secure solutions but cannot guarantee unconditional recipient
untraceability due to the impossibility of unconditionally secure digital signatures.

Because of its severe limitation |P| > 3•|A| reliable broadcast does not seem to be a useful technique
for the desired unconditional recipient untraceability and is therefore not further considered in section
3. We will return to it in section 4.4, when we have additional requirements on serviceability.
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Fail-stop broadcast combines both advantages: it can be implemented in a more efficient way than
reliable broadcast and it is unconditionally secure in spite of arbitrary attackers.

3.2 Fail-stop broadcast

The goal of fail-stop broadcast is to stop message transmission as soon as two honest participants
receive different input characters.

If such a difference is detected by an honest participant Pi the fail-stop can easily be performed: Pi
simply disturbs the superposed sending in the subsequent rounds by choosing his outputs randomly
from F instead of following eq. (2.1). Then the global sums of all subsequent rounds are independent
of the message characters.

In section 3.2.1 the most obvious but inefficient implementation of this idea by a comparison protocol
is discussed.

In section 3.2.2 fail-stop key generation schemes are described: they generate keys for superposed
sending dependent on the received input characters and ensure that two participants who have
received different input characters will use completely independent keys (at least with high
probability) and thus will stop message transmission.

It is shown that the most efficient key generation scheme (sect. 3.2.2.2) does not affect the
performance and reliability characteristics of pure superposed sending.

3.2.1 Comparison of input characters

To detect a difference the participants can explicitly compare their input characters by an additional
protocol: After each round of superposed sending each participant Pi sends his input character Ii to all
participants Pj with j > i. If an honest participant Pj receives an input character unequal to Ij from
another participant Pi or if he receives nothing from a Pi with i < j, he will disturb superposed
sending in all subsequent rounds.

Such test phases are well known from Byzantine Agreement protocols.

To make the tests dependable, the communication between Pi and Pj should be protected by a perfect
authentication scheme [GiMS_74, Sim3_88], i.e. a scheme which allows the attacker to successfully
forge a message with probability at most 1 / √|F|, if F is used as key space. An additional message
and a secret key are therefore necessary for each test.

The necessary number of tests can be determined according to the attacker's assumed power:
define G*  to be an undirected graph whose nodes are the participants. Two participants Pi and Pj are
directly connected in G*  iff Pi and Pj compare their input characters. In analogy to superposed
sending, the following lemma 3.1 holds:

Lemma 3.1 Let A be the subset of participants controlled by the attacker and assume
G*  \ (P × A) to be connected.

If two honest participants Pi and Pj receive different input characters Ii, Ij, then
there exists a pair of honest participants Pi' and Pj' who are directly connected in G*

and also receive different input characters.
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Hence either Pi' or Pj' detects the difference and disturbs superposed sending.

Proof.  Because of the connectivity of G*  \ (P × A) there exists a path (Pi = Pk1
,…,Pkm

 = Pj) with
Pkz

 ∉ A and (Pkz
,Pkz+1

) ∈ G*  \ (P × A). It is assumed that Ii ≠ Ij, hence there exists an index z such
that Ikz

 ≠ Ikz+1
. Choose (i', j') = (kz,kz+1).

Obviously the connectivity of G*  \ (P × A) is a necessary condition.
The scheme requires |G* | additional messages in each round, which is usually in the order of

O(n2). If G = G* , and if it is assumed that for each test message the authentication scheme requires a
key chosen from F, the number of privately exchanged keys is increased by a factor of two in
comparison with pure superposed sending.

In a physical broadcast environment the number of test messages can be reduced to O(n)
broadcasted messages by using a digital signature scheme [DiHe_76, GoMR_88] instead of an
authentication scheme. But this results in an only computationally secure scheme.

3.2.2 Message dependent key generation

3.2.2.1 Deterministic fail-stop key generation

A more efficient realization of fail-stop broadcast is obtained by combining the tasks of detection of
differences and stopping the network: if the keys Kij  and Kji  used for superposed sending depend
completely (but not exclusively) on the characters received by Pi and Pj, then a difference between Ii
and Ij will automatically disturb superposed sending, thereby stopping message transmission.

Define δ ij
t := Kij

t ⊕  -Kji
t and εij

t := Ii
t ⊕  -Ij

t for all i, j, t. A key generation scheme for
superposed sending is required which guarantees for all Pi and Pj directly connected in G:

SS Superposed sending: If for all rounds s = 1,…,t-1 the equation Ii
s = Ij

s holds, then the
keys Kij

t and Kji
t for round t are equal and randomly selected from F. More formally:

[∀ s ∈ {1,…,t-1}: εij
s = 0] ⇒  K ij

t ∈R F and δij
t = 0

Then superposed sending works as usual.
FS Fail-stop: If there exists an index s < t with Ii

s ≠ Ij
s, then the keys Kij

t and Kji
t for round t

are independently and randomly selected from F. More formally:

[∃ s ∈ {1,…,t-1}: εij
s ≠ 0] ⇒  K ij

t ∈R F and δij
t ∈R F

Superposed sending is disturbed by any such pair, i.e. the global sum is independent of
the sent message characters. Because of the connectivity of G \ (A × P) this realizes the
fail-stop property according to lemma 3.1 (with G=G*).

In the rest of section 3.2.2 an arbitrary but fixed key pair (Kij ,K ji ) with Pi ∉A and Pj ∉A  is
considered. Therefore indices i, j are often omitted.

The most powerful attacker is assumed: he is able to observe the values of Kij
t and Kji

t for each
round t directly and he can deliver arbitrary input characters Ii

t and Ij
t to Pi and Pj. Participants Pi and

Pj are assumed to by unsynchronized, hence the attacker can wait for Kij
t+1 before he delivers Ij

t to
Pj.

Let (F,+,•) be a finite field and let a1, a2, …, atmax and b1, b2, …, btmax-1 be two sequences whose
elements are randomly selected from F and privately exchanged by Pi and Pj. Define for t = 1,…,tmax
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K ij
t := at + ∑

k=1

t-1
  

b t - k  •  I i
k

   

(3.1)

K ji
t := at + ∑

k=1

t-1
  

b t - k  •  I j
k

   

Lemma 3.2 The key generation scheme defined by equation (3.1) satisfies the two conditions
SS and FS formulated above.

Proof.  Since at ∈R F, and since ∑ := Kij
t - at is independent of at, Kij

t ∈R F.

Assume εij
s = 0 for all s < t. Then obviously δij

t = 0 and condition SS is satisfied.

Now assume that s is the first round with εij
s ≠ 0. For simplicity let εu := εij

u and δu := δij
u. The

differences δu are formed according to the following system of linear equations:

δu = 0  for u=1,…,s

 




 


δs+1

δs+2

…

δt-1

δt

 =  

 




 


εs 0 … 0 0

εs+1 εs … 0 0
… … … … …

εt-2 εt-3… εs 0

εt-1 εt-2… εs+1εs

 •  

 



 

b1

b2

…

bt-s-1

bt-s

Since εs ≠ 0, the matrix is regular and defines a bijective mapping. Since all bu ∈R F, all δu are
uniformly and independently distributed in F. The independence of all Kij

1,…,Kij
t and δs+1,…,δt

follows from the independence of all a1,…,at and δs+1,…,δt.

The additional expenditure of this key generation scheme is given by
• the 2•tmax - 1 privately exchanged keys at, bt for each pair Pi, Pj directly connected in G

(instead of only tmax for pure superposed sending),
• the storage of all tmax-1 received input characters, and
• the (t-1) field additions and multiplications for computing the key for round t.

From the last fact it follows that the scheme requires an average of 
tmax

2
 field additions and

multiplications per round. Hence the scheme seems not to be very practical.
Given the assumption that there is no additional communication between Pi and Pj about their

current states the scheme is optimal with respect to the number of exchanged keys and additional
storage requirements.

Lemma 3.3 The key generation scheme defined by equation (3.1) is optimal with respect to the
number of exchanged keys and additional storage requirements, i.e. each key
generation scheme which deterministically satisfies conditions SS and FS requires
at least
• the storage of all tmax - 1 received input characters and
• 2•tmax - 1 privately exchanged keys.
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Proof.  The first limit is obvious: the scheme has to distinguish between all possible sequences of
tmax input characters, hence all input characters have to be stored.

For proving the second limit let Z be the secret key shared by Pi and Pj and used for generating the
keys Kij

t, Kji
t, t = 1,…,tmax. Let H(Ii), H(Ij), H(Kij

1), H(Kij
(2,tmax)), H(Kji

(2,tmax)), H(Z) be the
entropy of the random variables Ii  = (Ii

1,…,I i
tmax), Ij  = (Ij

1,…,I j
tmax), Kij

1 (=Kji
1) ,

K ij
(2,tmax) = (Kij

2,…,Kij
tmax), Kji

(2,tmax) = (Kji
2,…,Kji

tmax), and Z, respectively [Gall_68, sect. 2].
By applying standard rules of information theory

H(K ij
1K ij

(2,tmax)K ji
(2,tmax) | IiI j) ≤ H(ZKij

1K ij
(2,tmax)K ji

(2,tmax) | IiI j)

= H(Z | IiI j) + H(Kij
1K ij

(2,tmax)K ji
(2,tmax) |  ZIiI j)

Since Z is chosen independently from the attacker's input characters H(Z | IiIj) = H(Z), and since the
keys are completely determined by Z and Ii, Ij, H(Kij

1Kij
(2,tmax)Kji

(2,tmax) |  ZIiIj) = 0.
Hence it follows

H(Z) ≥ H(Kij
1K ij

(2,tmax)K ji
(2,tmax) | IiI j)

Since only a lower bound is proved, it can be assumed that the attacker chooses Ii
1 and Ij

1 differently.
Then the keys Kij

1, and Kij
t, Kji

s for t, s = 2,…,tmax are independently chosen, i.e.

H(K ij
1K ij

(2,tmax)K ji
(2,tmax) | IiI j) = H(Kij

1K ij
(2,tmax)K ji

(2,tmax))

= H(Kij
1) + H(Kij

(2,tmax)) + H(Kji
(2,tmax))

Hence

H(Z) ≥ H(Kij
1) + H(Kij

(2,tmax)) + H(Kji
(2,tmax))

i.e. Z must consist of at least 1 + (tmax-1) + (tmax-1) = 2 • tmax - 1 keys.

3.2.2.2 Probabilistic fail-stop key generation

To get a more efficient key generation scheme it seems necessary to switch to a probabilistic version
of FS: For a given fail-stop mechanism let ProbA be the attacker's probability of success. The attacker
is successful if in spite of choosing Ii

s ≠ Ij
s for a s < tmax there exists an index t, s < t ≤ tmax, such

that the global sum St and the message characters Mi
t, i=1,…,n, are not independent.

For each d ∈IN define
FSd If two honest participants receive two different input characters in round t they will disturb

superposed sending for the following d rounds.
The maximum number d for which FSd is satisfied is a random variable with probability distribution
Prob(d).

Let a1, a2, …, atmax, b3, b4, …, btmax, e be randomly and privately selected elements of the finite
field F. Let b1 = b2 = 0 and let Kij

0 = Kji
0 = 0 and Ii

0 = Ij
0 = 0. Then define for t = 1,…,tmax

K ij
t := at + bt • Kij

t-1 + e • Ii
t-1

(3.2)

K ji
t := at + bt • Kji

t-1 + e • Ij
t-1
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Lemma 3.4 The key generation scheme defined by equation (3.2) satisfies condition SS. The
maximum number d for which FSd is satisfied is a geometrically distributed random
variable:

Prob(d) = 
1
|F| • ( 1 - 

1
|F| )

d-1

The attacker's probability of success is

ProbA ≤ 1 - (1 - 
1
|F|)

tmax

Proof.  Since at ∈R F, and since ∑ := Kij
t - at is independent of at, Kij

t ∈R F.

Assume εij
s = 0 for all s < t. Then obviously δij

t = 0 and condition SS is satisfied.

Now assume that s is the first round with εij
s ≠ 0. For simplicity let εv := εij

v and δv := δij
v.

In the next round δs+1 = e • εs. Since δv = 0 for all v ≤ s the attacker has no information about the
actual value of e before round s+1. By assumption εs ≠ 0, hence δs+1 is uniformly distributed in F.

Now consider the rounds s + u + 1 with u ≥ 1. If δs+u = 0, then δs+u+1 = e • εs+u. From round
s+1 the attacker knows the value of e, hence δs+u+1 is not independently distributed in F. If δs+u ≠ 0,
then δs+u+1 = bs+u+1 • δs+u + e • εs+u. Since bs+u+1 is uniformly distributed in F, δs+u+1 is
uniformly distributed, too, and since bs+u+1 is only used in that round, δs+u+1 is independent of all
other δ's.

Therefore the actual value of d is given by the least value d ≥ 1 for which δs+d = 0. Since δs+1 is
uniformly distributed,

Prob(δs+1 ≠ 0) = 1 - 
1
|F|

and since for δs+d ≠ 0, δs+d+1 is uniformly distributed,

Prob(δs+d+1 ≠ 0 | δs+d ≠ 0) = 1 - 
1
|F|

From this it follows

Prob(d) = 
1
|F| • ( 1 - 

1
|F| )

d-1

The independence of all Kij
1,…,Kij

t and δs+1,…,δd follows from the independence of all a1,…,at

and δs+1,…,δd.

The probability of success is simply the probability that s + d ≤ tmax:
ProbA = Prob(d ≤ tmax - s)

Since s ≥ 0,

ProbA ≤ Prob(d ≤ tmax) = 1 - Prob(d > tmax) = 1 - (1 - 
1
|F|)

tmax

Since d is geometrically distributed the average value of d is |F| [Triv_82 p. 579]. Hence |F| must be
chosen considerably larger than tmax.

Corollary. Assume the key generation scheme of eq. (3.2). Then

ProbA ≤ 1 - (1
4
)
tmax / |F|
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Proof.  From lemma 3.4 it follows

ProbA ≤ 1 - (1-
1
|F|)

tmax = 1 - (1-
1
|F|)

|F| • tmax / |F|

The sequence (1 - 1
x
)
x
 increases monotonously. Since |F| ≥ 2

ProbA ≤ 1 - (1
4
)
tmax / |F|

Obviously with a decreasing value of tmax / |F| the probability ProbA vanishes. From the corollary it
follows for each 0 ≤ L < 1

tmax
|F|

 ≤ 1
2
 • ld( 1

1-L
)  ⇒   ProbA  ≤ L

E.g. for L = 10-9

tmax
|F|

 ≤ 7 • 10-10

is sufficient, which is satisfied e.g. by |F| = 2108 and tmax = 1023. These values allow the
transmission of

tmax • ld(|F|) = 1023 • 108 bit ≈ 1025 bit
For a transmission speed of 1015 bit/s (which is far beyond today's technology) this would be
sufficient for about 317 years.

The key generation of eq. (3.2) requires as many privately exchanged keys as the scheme defined by
eq. (3.1), i.e. 2•tmax -1.

To evaluate eq. (3.2) for round t it is only necessary to store the last key, Kij
t-1 (in contrast to the

last t-1 keys for eq. (3.1)) and to perform 2 field additions and multiplications. In contrast to the
scheme of eq. (3.1), only large fields are suitable.

3.2.2.3 Combination of key generation and explicit tests

If the multi-access protocol guarantees that for some slots only one participant is allowed to choose a
nonzero message, this participant can test the network:

Assume that superposed sending is stopped after a broadcast inconsistency by one of the key
generation schemes described above, i.e. the global sums are randomly distributed. Then each
participant Pi who is allowed to use a slot exclusively and sends a message randomly selected from Fc

will receive a wrong message with probability 1 - |F|-c. Thus he detects the disturbance with the same
probability and can explicitly stop superposed sending by choosing his following output characters
randomly from F instead of according to eq. (2.1).

If it is guaranteed that each participant sends a test message within a fixed number s of slots and if
there are at least two honest participants, this makes it unnecessary to consider more than the last
(s-1) • c input characters for key generation: after s-1 slots superposed sending will be explicitly
disturbed with high probability by some honest participant who received a disturbed test message
instead of that one he sent.

The required fairness of the multi-access protocol can deterministically be satisfied by superposed
receiving and in a probabilistic sense e.g. by reservation by superposed receiving (sect. 2.1). If e.g.
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each participant reserves exactly one test message and at most one real message in each reservation
phase, each participant tests the network within s = 4 • n slots.

Obviously this fairness can only be guaranteed if all participants behave fair, i.e. each unfair (and
therefore dishonest) participant can prevent some honest participants from successfully doing their
required reservation. Therefore each honest participant who cannot send a message within s slots
should disturb superposed sending.

The additional rules don't help the attacker: Assume that an honest participant Pi detects a disturbance,
i.e. Ii

t ≠ Mi
t, and stops sending. Nevertheless the attacker is not able to observe the sending of Pi.

If the disturbance detected by Pi was a consequence of a previous broadcast inconsistency the
sending was stopped anyway, thus there is nothing to show. Otherwise and if all honest participants
receive the same input character, the unobservability of Pi follows from lemma 2.1, and if the attacker
manipulates the broadcast property for round t, the sending is stopped by the key generation scheme
anyway, independent of Pi's test.

The proper modifications of the key generation schemes will be discussed in the following two
sections.

The advantages and disadvantages of the combination are the same in both schemes:
• For key generation the parameter tmax is replaced by (s-1)•c, which decreases the number of

additional secret keys from tmax to (s-1)•c, and for deterministic key generation the computation
complexity from O(tmax

2) to O(s2•c2) operations and from O(tmax) to O(s•c) required storage.
• Some honest participants may be forced to send meaningless test messages, thus the throughput

of the DC-net is decreased. The number of additional test messages depends on the participants'
sending rates.

3.2.2.3.1 Combination of deterministic key generation and
explicit tests

Assume that the deterministic scheme of eq. (3.1) is used in combination with explicit tests.
If round u is the first disturbed round, the attacker has no information about the privately

exchanged keys bv, v = 1,…,u. After round u + (s-1) • c the DC+-net will be disturbed with high
probability by at least one honest participant who has detected the disturbance. Hence instead of
tmax - 1 additional keys at most (s-1) • c are really necessary:

K ij
t := at + ∑

k=t-(s-1)•c

t-1
  

b t - k  •  I i
k

   

(3.3)

K ji
t := at + ∑

k=t-(s-1)•c

t-1
  

b t - k  •  I j
k    
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Lemma 3.5 The key generation scheme defined by equation (3.3) satisfies condition SS.
Together with the additional rules for testing and disturbing it ensures the fail-stop
property in a probabilistic sense: Let h be the number of honest participants, h ≥ 2.
Then

ProbA  ≤ 
1

|F|c•(h-1)

Proof.  Since at ∈R F, and since ∑ := Kij
t - at is independent of at, Kij

t is uniformly distributed in
F. Assume εij

u = 0 for all u < t. Then obviously δij
t = 0 and condition SS is satisfied.

Now assume that u is the first round with εij
u ≠ 0. According to lemma 3.3 (with tmax = (s-1)•c-1)

the global sums of the following (s-1)•c-1 rounds are all randomly chosen from F. Since it is
assumed that during the s slots each participant tests the network, the only chance of the attacker is
that during the first s-1 slots none of the at least h-1 honest participants detects the disturbance. The
probability that a single test doesn't detect a disturbance is |F|-c, hence the attacker's probability is less
than |F|-c•(h-1). 

The scheme requires only (s-1) • c additional keys instead of the tmax-1 of the key generation scheme
of section 3.2.2.1.

The number of field operations per round is in the order of (s-1) • c - 1. To avoid unnecessarily
expensive field computations, F = GF(2) should be chosen, therefore with h ≥ 2, ProbA ≤ 1 / 2c.

Since each of the n participants should send a message within s slots, s should be in the order of
n. Then the scheme requires O(n•c) operations. For F=GF(2) and therefore c ≈ -log(ProbA)  this is
equal to O(n • -log(ProbA)).

3.2.2.3.2 Combination of probabilistic key generation and
explicit tests

Assume that the probabilistic scheme of eq. (3.2) is used in combination with explicit tests.
By the same argumentation as above it follows that instead of tmax - 1 additional keys at most

(s-1) • c are really necessary, i.e. it is possible to use the (s-1) • c keys b0, …, b(s-1)•c-1 cyclically:

Let a1, …, atmax, e, b0, …, b(s-1)•c-1 be randomly chosen keys. Then

Kij
t := at + bt mod (s-1)•c • Kij

t-1 + e • Ii
t-1

(3.4)

Kji
t := at + bt mod (s-1)•c • Kji

t-1 + e • Ij
t-1

Lemma 3.6 The key generation scheme defined by equation (3.4) satisfies condition
SS.Together with the additional rules for testing and disturbing it ensures the fail-
stop property in a probabilistic sense:

ProbA ≤ 1 - (1 - 
1
|F|)

(s-1)•c

Proof.  The first part is proved as in lemma 3.4. The worst case for the second part, i.e. the best
case for an attacker, is that from all testing participants only the last two are honest. Then the attacker
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is successless iff the actual value of d (defined as for eq. (3.2)) is greater than (s-2) • c, and the test
detects the disturbance. Hence

ProbA ≤ 1 - ∑
j=1

c-1

 (Prob(d=(s-2)•c+j) • (1 - 1
|F|j

)) - Prob(d ≥ (s-1)•c) • (1 - 
1

|F|c
)

≤ 1 - Prob(d ≥ (s-1)•c) • (1 - 
1

|F|c
)

= 1 - (1 - 
1
|F|)

(s-1)•c-1 • (1 - 
1

|F|c
)

≤ 1 - (1 - 
1
|F|)

(s-1)•c

Again only large fields F (e.g. ld(|F|) ≈ 150) are suitable.

3.3 Final remarks on fail-stop broadcast

Superposed sending together with one of the discussed fail-stop key generation schemes (sect. 3.2.2)
guarantees the desired unconditional sender and recipient untraceability.

If one tries to transform this nice theoretical result into a real communication network, a lot of
practical problems must be solved, but none of them becomes really harder if fail-stop broadcast is
used in addition to normal superposed sending.

For this consider the performance of superposed sending measured by
• the number of exchanged keys per transmitted message,
• its communication complexity,
• its computational complexity,
• and the reliability of the scheme.
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The number of additional keys is increased by at most a factor of two, which was shown to be the
optimal value for deterministic key generation schemes without explicit tests. In theory this seems to
be acceptable, and in practice one will mostly choose pseudorandomly generated keys anyway (and
by this will loose the unconditional untraceability).

Communication complexity (Fig. 5).  None of the pure key generation schemes (sect. 3.2.2.1,
3.2.2.2) requires the sending of additional messages.

If combinations of key generation and explicit tests (sect. 3.2.2.3) are used, some honest
participants may be forced to send meaningless test messages. The number of additional test
messages depends on the participants' sending and testing rates. If real messages are end-to-end
encrypted they appear to be randomly selected from Fc, i.e. they can be used instead of explicit test
messages.

Computational complexity  (Fig. 5).  The key generation requires some additional time and memory
for each exchanged key. For that reason the schemes with deterministic key generation (sect. 3.2.2.1,
3.2.2.3.1) seem to be less practical, but if one uses one of the schemes with probabilistic key
generation (sect. 3.2.2.2, 3.2.2.3.2), the computation requires only the storage of the last key and
two field additions and multiplications per round and exchanged key.

All schemes except that of sect. 3.2.2.1 realize only probabilistic untraceability, i.e. there is a
small probability that an attacker will successfully transmit different messages to different
participants. But all four schemes don't rely on any unproved assumptions.

For probabilistic key generation (sect. 3.2.2.2, 3.2.2.3.2) only large fields F are suitable, but this
is no hard restriction:

• Usually the cardinality |F|c of the set of all transmission units "message" will be relatively
large. It doesn't matter whether one uses a small field and a large c or a large field and a small
c.

• The reservation map technique described in [Pfi1_85 sect. 2.2.2.2] and (reservation by)
superposed receiving (sect. 2.2) require a large cyclic group (F,⊕), anyway. It is important to
notice that the group (F,⊕) used for superposed sending need not be the additive (or
multiplicative) group of the finite field (F,+,•) used for key generation. E.g. one can use the
field F = GF(2m) for key generation and, by interpreting the elements of GF(2m) as binary
encoded integers, the additive group of integers modulo 2m for superposed sending.

The transmission delay introduced by key generation could be decreased by parallelizing the key
generation for different rounds, which can be done in two ways.

One can use k > 1 DC+-nets, say DC+0, …, DC+
k-1, in a time division technique, i.e. in round t

the DC+-net DC+
t mod k is used. To preserve the untraceability each interaction between participants

should be completely performed using only a single DC+-net, i.e. each participant should answer a
message only by that DC+-net by which he has received the message.

The other possibility is to use only one DC+-net, but to make the keys for round t not dependent
on the directly preceding rounds t-i, i = 1, 2, …,t-1, but on the rounds t-i, i = k, k+1,…, t-1 for a
k > 1. To preserve the untraceability each participant has to wait at least k-1 rounds before he answers
to a received character.

Naturally the fail-stop property decreases the reliability  of the network, since every inconsistent
broadcast will immediately stop the network independent of whether it was caused by an attacker or a
physical fault. But most of transient faults in a network can be tolerated by usual data link protocols
[Tane_88 sect. 4], and if a permanent fault occurs (e.g. if a participant's station is damaged or all
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links between two participants are cut) superposed sending is disturbed and the network is stopped
anyway. Therefore reliability is not essentially reduced by the discussed fail-stop schemes.

Hence, the pure probabilistic key generation scheme (sect. 3.2.2.2) with an appropriately large field F
seems to be the most practical choice.

The problem of combining untraceability and serviceability in spite of active attacks is discussed in the
following section 4.

4 Serviceability and untraceability

Up to now, we have a network which guarantees unconditional untraceability. We showed that the
serviceability is not greatly reduced compared with the original DC-net. Nevertheless, without any
further measures, the serviceability is not good, so there is reason to discuss whether it can be
improved without giving up the unconditional untraceability. This has also been done in [Chau_88,
section 2.5] very briefly, but the protocol proposed there contains a weakness, which we will
remove, and needs a lot of refinements anyway. Also it relies on the assumption of reliable broadcast,
like the original DC-net, but in contrast to superposed sending alone and the DC+-net, and we will
discuss how realistic this assumption is or can be made.

There are two possible causes for disturbance of superposed sending: faults and active attacks.
Although we mainly discuss active attacks, some remarks on fault tolerance are in order.

1. There is no well defined difference between dishonest participants and participants whose
stations are faulty. Hence for practical reasons the first simple disturbances of a station should
always be viewed as a fault, whereas every notorious disturber should be viewed as an
attacker and ultimately be eliminated from the DC+-net. (One can try to make this difference a
bit clearer by introducing mutually trusted devices: e.g. if the device looks like having been
smashed with a hammer, probably the participant is an attacker, whereas if the device looks
intact from outside, an unintentional fault would be assumed.)

2. As an active attacker can simulate or cause physical faults, measures against active attacks also
help against faults. Nevertheless (because usually a faulty station or a faulty part of the
network behaves stupidly) it should always be checked whether a network can be made more
efficient if faults are first excluded by easier measures than those necessary against active
attacks.

3. Fault tolerance mechanisms cannot be implemented without considering a potential active
attacker: Otherwise they might offer the attacker a possibility for disturbing the DC+-net or for
tracing honest participants, e.g. by claiming that those were faulty.

For point 3. one can distinguish two classes of fault tolerance measures and corresponding faults:

The first class consists of measures which can be implemented in a way transparent for the DC+-net
and therefore don't affect the untraceability (i.e. these faults are "under" superposed sending if the
DC+-net is considered as a layered system). Examples for this class are
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• error detection codes and appropriate data link protocols [Tane_88 sect. 4], which can be used
to tolerate transient transmission faults, and

• fault masking techniques [AnLe_81] to tolerate most faults of the stations.

The second class consists of measures to tolerate those faults which could not be eliminated by the
first class and therefore affect superposed sending directly: e.g. a station

• accepts an incorrectly transmitted value as input and therefore, according to the fail-stop key
generation scheme, computes incorrect keys for all following rounds, or

• is not able to compute the outputs properly, or
• is not able to submit the outputs for the global superposition, e.g. because all links between it

and the other stations are permanently cut.
All these faults have the same result: the DC+-net is permanently disturbed. To recover the DC+-net
from such failures it is necessary to detect faults, to localize disturbing stations (which are
nevertheless perhaps owned by honest participants), and to do some error recovery.

For some kinds of faults of the second class, all known techniques to tolerate them assume that the
faulty station is eliminated from the DC+-net until it is repaired or replaced. Therefore the set P of all
active participants will be dynamically defined and it is important to ensure that

• the connectivity of G \ (P × A), i.e. the presumption of lemmata 2.1 and 3.1, is always
satisfied, and

• the set of all honest participants P \ A must always be large enough to satisfy the intuitive
notion of anonymity.

If a faulty station is not eliminated from the DC+-net it may behave arbitrarily. Therefore such faulty
stations should be viewed as attacking, i.e. A consists of all attacking participants and of all
participants whose station is faulty but not eliminated.

The untraceability of the DC+-net should not be decreased. Unfortunately the fault tolerance
techiques using elimination and reintegration of stations require the knowledge of which participants'
stations are faulty and which others are repaired and will be reintegrated in the next round. This
knowledge allows some new attacks similar to those described in section 3: If the attacker sends a
message M and doesn't get the expected answer from his anonymous partner X he can argue that X
was one of those participants whose stations have become faulty in one of the last rounds.
Furthermore if M is the first message of a protocol the attacker can repeat M periodically. If at some
time he gets an answer he can argue that X was one of the last reintegrated participants.

This attack cannot be detected since the attacker behaves like an honest participant, and it could
only be prevented if this kind of faults were not tolerated, i.e. if the entire network is stopped until all
faulty stations are repaired.

For the following (and in practice) it is assumed that this lack of untraceability is acceptable.

For concrete fault tolerance measures see [EcNi_89, Nied_87, MaPf_87, Pfi1_85 sect. 3.2, Pfit_89
sect. 5.4]. In the following, only active attackers are further considered.
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4.1 Serviceability in spite of active attacks

Without any precaution each faulty or dishonest participant Pi can untraceably and enduringly disturb
superposed sending by choosing Oi ∈R F instead of according to eq. (2.1), the fail-stop key
generation, and the multi-access protocol, etc.

In contrast to faults, active attackers cannot be localized in a special localization phase after a
disturbance has been detected, because during such a phase a clever attacker would certainly stop
disturbing. Also the localization must not take place for a disturbed slot, if someone else might have
legitimately tried to send a message in it, because that could lead to the tracing of this message.

Therefore in [Chau_88 sect. 2.5] a protocol for laying "traps" and prosecuting attackers who get
caught in them is suggested. The protocol (like the original DC-net) depends on the assumption of a
reliable broadcast network.

In section 4.2 the protocol is repeated and it is shown that it is insecure (even under this reliable
broadcast assumption): by a kamikaze attack the sender of a randomly selected message can always be
identified. In section 4.3 the protocol is improved in a way which preserves the untraceability under
the reliable broadcast assumption.

In section 4.4 it is shown that without the reliable broadcast assumption the protocol of section
4.3 can be used for successful attacks on the untraceability. Then the possibility of serviceability in
spite of really unconditional untraceability is discussed and a (not very efficient) protocol developed
which achieves this. In section 4.5 a protocol is described which guarantees serviceability and
untraceability based on the reliable broadcast assumption and the assumption that there is an honest
majority of participants.

4.2 The original protocol based on the assumption of
reliable broadcast and how it can be misused

Throughout section 4.2 and 4.3, the existence of a reliable broadcast network is assumed, i.e. we
assume that the attacker is not able to manipulate the consistency of broadcast. Thus the untraceability
is not really unconditional. We also assume that this network allows each participant to determine the
origin of each published message unambiguously.

The term "Pi publishes message x" means that Pi sends x to all other participants using the reliable
broadcast network.

The problems discussed in section 3 are not posed any longer on this assumption, thus there is no
need for fail-stop key generation. As mentioned in section 3.1, the assumption is not very realistic,
see section 4.4.

As far as serviceability is concerned, the attacker is assumed to be computationally limited.

It is important to notice that independent of any assumption on possible attacks on serviceability, for
untraceability the attacker is restricted only by the assumption of reliable broadcast. So, in a certain
sense, there are two different attackers to consider simultaneously!
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4.2.1 The original protocol by Chaum

The original protocol [Chau_88] assumes that the reservation map techique with GF(2) as group (cf.
section 2.1) is used, and that each participant Pi reserves exactly one slot in each reservation phase.
Before each reservation phase he decides whether to use this slot for sending a real message or for
sending a trap , i.e. a meaningless message whose only purpose is to be disturbed by an attacker. If he
decides to send a trap and he has chosen index k for the reservation, he announces this by publishing
an encrypted version of the message "I use the slot reserved by index k for sending a trap y" . This
message will be called "trap proof" in the following.

Each participant commits to his output for slot x before publishing it. This prevents attacking
participants from choosing their outputs depending on the other participants' outputs.

If the trap of Pi is disturbed, Pi publishes the trap announcement in clear together with the used
encryption key (and for probabilistic encryption the coin tosses used for encryption).

Then the attacker is prosecuted:
Each honest participant Pj publishes his message characters Mj

t and all keys Kjk
t used for rounds

t of the slot xk which corresponded to index k. From these all publicly known outputs Oj
t can be

checked, hence at least one attacking participant Pa can be detected: either he has correctly published
his really used, but not allowed value Ma

t ≠ 0, or he has modified at least one key Kaj
t for an honest

participant Pj, which will be detected from Kaj
t ≠Kja

t.
This procedure of publishing and comparing the secrets of a round t will be called "investigation

of round t".
Notoriously attacking participants will be eliminated from the DC-net, and if only a notoriously

incorrect key pair is found, this key pair will be eliminated from the key graph. The latter will finally
result in a DC-net with partitioned key graph: one partition of the key graph consists of all attacking,
the other of all attacked participants.

4.2.2 The basic attack

Unfortunately the trap-protocol has a serious weakness: Even a computationally limited attacker is
able to forge a trap proof for an arbitrary slot not reserved by him a priori.

For this, the attacker publishes the required encrypted message "I use the slot reserved by index k
for sending a trap y", but without reserving that slot, i.e. he chooses another index than k for sending
his 1. Now he hopes that some other participant will use index k. This will happen with probability
≈1/n, if the frame length is r≈n2, as proposed, and as there are n reservations in this frame.

If it does not happen, he gives up for this time and waits for the next reservation frame. So far,
the attack cannot be noticed, so the attacker can keep trying arbitrarily long. On an average, he will
have to wait n/2 reservation frames for success, which is acceptable for him.

If indeed another participant uses index k, the attacker sends the trap message y in the slot xk
corresponding to index k, as announced. Note that the attacker can read the message y* sent by the
legitimate user of slot xk in spite of the superposed y.

Then he publishes his trap proof for slot xk and thus causes the deanonymization of the legitimate
user of slot xk. If this legitimate user has also published a trap proof for slot xk it is obvious that one
of the two proof publishers was an attacker, but it cannot be distinguished which one. Otherwise all
participants publish their secret keys used for slot xk, and the legitimate user will be identified by the
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prosecution protocol. On the one hand he has thus been traced as the sender of message y*, on the
other he is unjustly punished as attacker.

4.2.3 Refinements of the original protocol and the
remaining kamikaze form of the old attack

The attack can be made more complicated and more dangerous for the attacker by adding some rules
to the prosecution protocol, which try to unmask the attacker by the fact that he has not reserved the
slot. (So far, in the case that y* was no trap, there was no risk at all for the attacker.) Of course this
means that round k of the reservation frame must be investigated.

Then the attacker will loose a key, but this is not sufficient for untraceability based on the reliable
broadcast assumption: Even if only all secrets of the reservation round k, not of slot xk, are
published, the attacker can still identify the sender of message y*, because the attacker publishes his
trap proof after y* has been sent, and the sender is the only person except for the attacker who claims
to have reserved slot xk.

The probability that this happens can be decreased if not all secrets are published at once, i.e. one
tries to identify the attacker before the legitimate user has to publish his secrets. Thus the participant
who published the trap proof should always be the first to publish all his secrets, and all published
secrets should be discussed immediately. I.e. before any other secret is published, the partners with
whom the keys are shared must publish whether they agree to the published values. The investigation
should be terminated as soon as the first incorrectness or disagreement about a key has been detected.

If the attacker is only one participant, the other participants are now secure. But this cannot be
assumed. For the case that there are several participants colluding as attacker, call the one who
published the trap proof Pa. Since Pa has not reserved slot xk, the prosecution protocol forces him to
publish the wrong message character for the reservation round. The error made by this must be
corrected by changing a secret key exchanged with another participant, and as the keys are
immediately discussed, this must be an allied attacker, say Pb. If the real sender has to publish his
secrets of the reservation round before Pb, he will be identified. Otherwise Pb will be assumed to an
attacker and will at least loose a key from the key graph, or Pb can look for a third allied attacker Pc
who has not yet published the key Kcb

t and can change that key, etc. The attack is called "kamikaze"
now, because in any case the attacker will at least loose a key each time he attacks.

4.2.4 An improved kamikaze attack for the refined protocol

As the attacker is now sure to loose a key each time he attacks, he might find it unsatisfactory not to
be able to choose the message which he is going to trace. Therefore he could change his tactics and
not send y in slot xk, i.e. choose all his message characters as 0. Then if y* is a trap he runs no risk,
and if it is an uninteresting message he can also save his key for future use. Even if secrets of the
message slot are published after an inconsistency in the reservation round has been detected, this does
not lead to complete unmasking of the attacker, as he can again change the keys, preferably the same
he changed in the reservation round.
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4.2.5 Influence of the reservation technique on the quality
of the protocol

Similar protocols and attacks are conceivable for various reservation techniques, not only for the bit-
map one. In this section an additional weakness of the protocol is discussed, which can be removed if
another reservation technique is used, and it is checked that the original attack is not avoided if the
other reservation techniques of section 2.2 are used.

4.2.5.1 A better kamikaze attack specially for the bit map
reservation protocol

An additional weakness of the original protocol is that the reservation map techique with GF(2) as
group does not allow to decide deterministically whether only one participant has reserved a slot
(although this is the case as long as there is no active attack, because in the original protocol it is
checked that there are exactly n reservations in each frame).

Assume two colluding attackers Pa and Pb. First they publish two trap proofs for two indices k
and k' of a reservation frame. (If the reservation frame to which a trap proof belongs cannot be seen
from the encrypted version, they can even publish many more.)

Now both of them try to reserve the slots corresponding to the trap proofs, i.e. output a 1 in
rounds k and k' of the reservation frame. Additionally, they choose the two indices ka and kb to
reserve one slot for each of them. This behaviour cannot be distinguished from the correct one. In
fact, if they have a key in common, they need not even agree on this behaviour in advance: they can
just both lie about their keys in rounds k and k' later. In this last case, they cannot even be discovered
if the reservation phase is investigated for some other reason.

Again, if nobody uses an index for which they published a trap proof, they just wait and repeat
the attack.

If some time an innocent user is caught in one of the traps, say for index k and corresponding to
slot xk, both Pa and Pb use this slot too, i.e. they send messages ya and yb. Note that they can still see
the message y* of the legitimate user. One of them then publishes the trap proof. Now both of them
and the legitimate user show that they reserved this slot, so there is no inconsistency at all in round k
of the reservation frame, nor in slot xk. The only way to punish the attackers is by showing that they
reserved more than one slot.

As both will claim that they didn't, it seems necessary that each participant publishes which slot he
had reserved, and that the reservations for the remaining two slots are investigated to find an
inconsistency.

Thus the attackers have not only traced one message, but all messages corresponding to one
reservation frame.

This attack cannot be avoided by saying a priori that in such a situation two of the three participants
who reserved the slot must be attackers, so one could remove all the keys these three share.

First, this would allow a simple kamikaze attack (although with little chance of success), where
the attacker reserves two slots too much and hopes that three other reservations will collide; then those
honest participants would loose keys.
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Secondly, this new attack is not even kamikaze for an attacker who can break the commitment
scheme (although success is still rare): The attacker could reserve three slots only in such situations
where he has already found out that three others will collide. This situation is possible, as the attacker
on untraceability is not computationally limited, at least if a commitment scheme is used in which the
indistinguishability of trap and non-trap announcements is only computationally secure. (This is
called "secure for the verifier" in [BrCC_88], and otherwise there is no reason against using such a
scheme.) Then the resulting situation is indistinguishable from the one in which all participants who
had no collision are honest and two of the three who suffered the collision are attackers; thus the real
attackers cannot be punished.

It should be noted that if there were a practical application in which the possibility of successful
kamikaze attacks could be tolerated and thus the original protocol with the refinements of 4.2.3 used
(instead of a more secure, but slightly less efficient one), it is essential that reservation frames with
less than n ones are not used. Otherwise collisions of three messages, one of them a trap, could occur
by chance or an attacker could try to force them without being detected.

4.2.5.2 An attack on serviceability for the bit map reservation
protocol

A completely different attack can be successful against serviceability: If there are several colluding
attackers, in each reservation frame two of them can choose the same index, so that the reservation
must be repeated. This could have happened by chance, so there is no good reason to punish them. If
there are only a few attackers, so that the same pairs of participants collide very often, one would
nevertheless have to punish them after a while, as then the probability that honest participants are
punished can be made negligibly small. If there are many attackers (there can be up to n-2), the
borderline between allowed collisions and collisions considered as attack would have to be carefully
chosen.

4.2.5.3 Reservation map with large group

The same protocol and attacks as those described in 4.2.1 - 4.2.4 are possible when a larger group is
used for reservation map (see section 2.2).

The attack of 4.2.5.1 is avoided if m ≥ n (n was the number of participants, m the modulus).
If m ≥ n, reservation frames in which a few reservations collided can be used without allowing the

attacks mentioned at the end of 4.2.5.1, as an honest user is always sure whether there was a
collision with his own reservation or not. Therefore, also the attack of 4.2.5.2 would no longer be
possible, i.e. the attackers (the computationally limited kind assumed for serviceability) could only
force collisions among themselves, and those would not harm anybody else.

As the length r of the reservation frames can be chosen shorter than for m = 2, the time the
attacker must wait before success is a bit shorter than for m = 2, but this does not matter much.
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4.2.5.4 Reservation by superposed receiving

Still the protocols and attacks of 4.2.1, 4.2.2 are possible in principle. Nevertheless the situation is
much better, as the probability that an honest user chooses the same reservation message RM as an
attacker decreases exponentially in the length of the reservation messages, whereas the length of the
reservation frames increases only linearly. Therefore the probability of success for the attacker can be
made arbitrarily small.

The refinement of 4.2.3 is not possible, at least not without tracing more messages than the
attacked one, as some of the reservation messages are never sent alone, but only computed from sums
with others.

This can be changed if during the reservation those reservation messages which could be
computed from others are nevertheless at the end repeated explicitly by their senders. The reservation
phase stays deterministic, and its length increases by less than the factor two.

The attacks of 4.2.5.1 and 4.2.5.2 can be avoided just like in 4.2.5.3.

4.3 The improved protocol based on the assumption of
reliable broadcast

The following protocol can be seen as an extension of that of [Chau_88 sect. 2.5]. Especially the idea
of laying traps is kept up, but the trap announcements are linked with the traps in a better way. Also
we refine several other parts of the protocol, which would be needed for the original protocol too
(e.g. the "palaver phase"). Before the single parts are considered, we give an overview:

Assume a reservation protocol by which n' of all n participants have successfully reserved a slot.
Each participant Pi who has reserved a slot xi sends an encrypted announcement in slot xi, and in slot
n'+xi he sends a trap  or a non-trap, i.e. a real message, according to his announcement.

Thus trap announcements and traps are unambiguously linked by their slot numbers, i.e. the
attacker cannot forge a trap-proof a priori for a slot which will be used by another participant. If
announcements are unequivocal, i.e. if there is no message which announces both, a trap and a non-
trap, the attacker cannot misuse non-trap announcements for initiating the prosecution protocol.

Hence the problem of the original protocol is not posed here.

Call the three phases of the protocol reservation phase, announcement phase, and sending phase,
respectively.
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Figure 6 Phases of the improved protocol.

As in the original protocol, the participants' reservation and announcement behaviour is assumed to
be independent of their real sending wishes, so that the first two phases may be investigated. Once the
sending phase has been entered, the reservation and announcement phases may no longer be
investigated. So the reservation and announcement phases and the sending phase must be separated
by a non-anonymous palaver phase, in which each participant who has detected a disturbance during
the first two phases can prevent all others from entering the sending phase. In such a case it is
possible to investigate the first two phases completely without decreasing untraceability. Otherwise,
i.e. if the sending phase is entered, the first two phases will never be investigated. Disturbances
during the sending phase are investigated only if the corresponding trap proof is given.

The structure of the protocol is depicted in fig. 6. It is described in full detail in the following
sections.

As in section 4.2, the restrictions on the attacker are:
• for the basic version of our protocol

• for untraceability: the reliable broadcast assumption
• for serviceability: the reliable broadcast assumption and a computational restriction,

• in an alternative version
• for untraceability and serviceability: the reliable broadcast assumption and 3 • |A| < |P|

(As discussed in section 4.3.1.2, if 3 • |A| < |P| holds, a much weaker assumption about the
underlying network implies the existence of reliable broadcast.

Another protocol which assumes the attacker to be restricted by the reliable broadcast assumption
and 2 • |A| + 1 < |P| for untraceability and serviceability is described in section 4.5.)

We will describe both versions in parallel and call the first one the version with computationally
secure serviceability, the latter the version with information-theoretically secure serviceability.

One has to bear in mind that if an attacker succeeds in having an honest participant regarded as
attacker and thus eliminated from the network, this is an attack against untraceability. (One can argue
that this participant, not being able to send any longer, is perfectly untraceable. But at least the
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remaining honest participants are less untraceable than before.) Therefore in the version with
computationally secure serviceability, for this kind of attack the attacker is only restricted by the
reliable broadcast assumption. Of course, the same holds for the elimination of a key between two
honest participants.

As in section 4.2, the term "Pi publishes message x" means that Pi sends x to all other participants
using the reliable broadcast network. By assumption each participant can unambiguously determine
the origin of each published message.

4.3.1 Outputs and output commitment

All outputs are published on the assumed reliable broadcast network. In all following situations the
number of outputs needed from each participant is known a priori. So we can assume that it has also
been decided a priori when each participant has to publish which output (synchronism has to be
assumed anyway).

As in the original protocol, for some slots it is necessary to prevent the attacker from choosing his
local outputs depending on the other participant's local outputs, i.e. each participant has to commit to
his local output Oi

t for several rounds before knowing the other participants' outputs for any of these
rounds.

Otherwise assume that the attacker is the first one who gets all local outputs, i.e. who can compute
the correct global sum. Then he would be able to disturb the reservation phase by producing
collisions, and during the sending phase he could disturb all obviously sensitive messages, e.g. all
messages which are addressed to himself.

This output commitment can be done …

• For computationally secure serviceability by a computationally secure commitment scheme
[BrCC_88]. Each participant distributes his commitment to all participants in a first phase. In a
second phase the commitments are opened, by this distributing the outputs Oi

t.
(To improve efficiency, Pi can use a single commitment for all Oi

t of one slot together.
Also the xi

t for reservation rounds could be shown only on demand, e.g. if a collision has
occurred. But this is not possible for the sending phase, as then usually only the sender of a
message would know about a disturbance and would thus identify himself by asking.)

One can also use a one-way function ƒ, as described in [Chau_88 sect. 2.5]. The value ƒ(Oi
t)

is used as commitment for Oi
t ∈ F. Of course it must be ensured that F is large enough to

avoid that someone compares all values f(x) with a commitment, or enough rounds must be
grouped together for commitment.

Naturally this is still no real commitment scheme as defined in [BrCC_88]: if the attacker
can guess a special x, he can test whether a participant has committed to x. But in our case, for
most f, this should not help him because of the superposed keys: even if the attacker suspects
the message which might come out as global sum St and controls all participants except for
two, Pi and Pj, who have a key in common, he is not able to test all |F| possible combinations
of Oi

t and Oj
t.

But there are efficient and insecure implementations of this scheme: Assume ƒ is an
exponentiation function of GF(p), p a large prime, and F = ZZ/(p-1)ZZ. Inverting ƒ is the well
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known discrete logarithm problem [Odly_85, CoOS_86, LoWi_88, Pera_86]. Then the
product of all output commitments is equal to the commitment to the sum of all outputs, i.e. to
the global sum. Thus if the attacker is the last one to publish his commitment, he can check in
advance whether the global sum will be equal to an expected sensitive message.

This implementation may be secure if the attacker is not able to expect messages, e.g.
because each character contains a large random part. Then the function may be useful in the
case that the reliable broadcast assumption is implemented by Byzantine agreement: instead of
immediately agreeing on everything, the participants agree only on the product of all
commitments and the sum of all outputs. Only if product and sum are incompatible, or if the
slot is investigated afterwards, they agree on all commitments and outputs afterwards.

• For information-theoretically secure serviceability the schemes of [BeGW_88, ChCD1_88]
can be used for implementing simultaneous broadcast  as defined in [CGMA_85].

They guarantee untraceability only under the assumption 3 • |A| < |P|, too, as more
attackers can give the wrong impression that an honest participant did not fulfil his
commitment and must be eliminated. It's therefore clear that this version of our protocol
cannot guarantee untraceability without the assumption 3•|A| < |P|. (The same problem occurs
in section 4.3.3).

• physically, as also mentioned in [Chau_88], e.g. if all outputs occur simultaneously on
differnt frequencies of a network. One must bear in mind that this means not only that the
participants simultaneously output one bit each, but that all participants output all bits of a slot
at the same time.

Note that for computationally secure serviceability an attacker who can break the output commitment
scheme does not endanger the untraceability, only the serviceability. Thus there is no special need to
choose a commitment scheme which is unconditionally secure for the prover or the verifier (cf.
[BrCC_88]): If the attacker (as prover) can open commitments in two ways, he is not bound to his
own commitments. If (as verifier) he can decrypt the commitments of other participants, he can
choose his own commitments depending on theirs, if he has to publish his last. In both cases this is
just the original problem of serviceability.

A participant who does not output anything when he has to, or whose output does not match his
commitment, is considered as an attacker and eliminated from the network. Because of the reliable
broadcast assumption, this cannot happen to him if he is honest. Also the other participants can decide
about elimination locally, and all honest participants will get the same result.

4.3.2 Reservation phase

Recommended reservation behaviour: To be able to investigate the first two phases without loss of
untraceability (before entering the sending phase), it is necessary that during the first two phases no
participant uses any sensitive information. Therefore the reservation behaviour in the first two phases
must be independent of the participants' real sending wishes, i.e. some participants will reserve
message slots without using them, and some other participants will not be allowed to send all
messages they wish.



– 32 –

In [Chau_88] it is suggested that each participant reserves one slot in each reservation phase. To
satisfy the independency requirement completely, the ratio of traps and non-traps used by Pi must be
fixed too. Obviously, instead of only one message, each Pi can reserve a fixed number of traps and of
non-traps.

Allowed reservation behaviour: It must be clear in which situations a reservation phase is
investigated, and when a participant is considered as attacker.

The easiest way to fix the allowed behaviour is to force each participant to reserve a fixed number of
slots each time. In the following we assume that this number is 1.

With respect to untraceability, one could also have replaced the fixed numbers by fixed reservation
rates. This is not advisable with respect to serviceability, as it would allow attackers to send more
messages on an average than honest participants, because in each single reservation phase this could
not be proved.

It must also be regulated what happens to reservation collisions.
All reservation techniques described in section 2.2 are probabilistic, i.e. for each of them it can

happen to two (honest) participants to reserve the same slot: For reservation map techniques they may
choose the same index, for reservation by superposed receiving they may choose RMi = RMj.

So a collision cannot be considered as attack. To prevent the attacker from disturbing the
reservation phase by causing such collisions with honest participants, the reservation phase must be
protected by output commitment (sect. 4.3.1). For reservation map techniques, one should protect a
complete reservation frame together (protecting each round alone gives the attacker a slightly better
chance to disturb the last rounds and is usually less efficient). For reservation by superposed
receiving the slots of a reservation frame can of course not be protected together (because they depend
on each other). One could be tempted to protect only the first slot, because this first one determines all
following reservation slots. But of course this holds only if all participants are honest. Attackers who
share keys only have to decide upon the sum of their reservation messages in the first slot, because
they can make up for any internal difference later by claiming they had other keys.

Output commitment does not prevent attackers from causing collisions among themselves, like in
4.2.2.5. To avoid the problem of setting a limit for the number of allowed collisions, which always
leaves a chance that an honest participant is considered as attacker and eliminated, one should not
consider these as attack either. As they cannot be prevented either, this means that they must be
accepted, i.e. a reservation phase is not investigated just because of collisions. (Thus these attackers
only harm themselves.)

Reservation frames with an impossible result (i.e. one which could not have occurred among honest
participants) are investigated. Globally, the allowed results are

• for the reservation map technique with m ≥ n: the sum of the messages of all rounds is n (in
ZZ)

• for the bit-map reservation protocol: the number of reservations is n-2•k for some k ∈ IN0
• for superposed receiving: there is a collision of n messages initially, and the numbers and sizes

of the messages in the following rounds fit.
Additionally, each participant can make tests depending on his knowledge about his own reservation:

• For the reservation map technique with m ≥ n he knows that there cannot be a zero where his
own reservation should be.
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• For reservation by superposed receiving he knows that he must receive his own reservation
message.

The local test for the reservation map technique is not necessary, as an attacker who cannot break the
output commitment scheme and tries to cause this situation will with great probability not hit a
reservation and then be caught by the global test.

Also, during superposed receiving the sizes of the messages need not be checked; it suffices to
check that the protocol can be carried through, ends after n rounds (or earlier, if there are collisions),
and that each participant checks that he received his own reservation message.

During the palaver phase, each honest participant who saw that one of the tests does not hold will
vote for investigating the first two phases.

All tests are secure for the tester, i.e. if they indicate a fault, the investigation (cf. 4.3.5) will find
a protocol deviation. Thus if the investigation doesn't find any incorrectness, the tester can be
assumed to be an attacker.

Problems with the bit-map reservation protocol: If one keeps the idea that for unconditional
untraceability there may not even be a very little chance that an honest participant is regarded as
attacker and eliminated, the bit-map reservation protocol should not be used:

 As discussed above, a reservation phase is not investigated just because of collisions. Especially
if the bit-map reservation protocol is used, this implies that undetected collisions of an uneven number
of messages can occur. These will usually result in a disturbance during the announcement phase. It
can be seen from section 4.3.3 that in this protocol (in contrast to the original one, cf. the end of
4.2.5.1) this does not harm untraceability.

Nevertheless it can be used to attack serviceability. There are two conceivable ways to implement
the announcement phase: either a disturbance of an announcement after a reservation frame with
collisions is investigated or not. In the first case, at least three participants attacking together can
always cause a collision of three of their reservations and thus invalidate the announcement phase,
thus this implementation cannot be chosen. In the second case they can cause a collision of two of
their reservations and later claim that these two collided with one of an honest participant (this cannot
be distinguished); then they can disturb the announcement of this participant. For the protocol version
with computationally secure serviceability, this cannot be accepted at all, because for |A| > 2/3 • |P| the
attackers can disturb all announcements (always two attackers are needed to disturb one other
participant). For the version with information-theoretically secure serviceability this could be accepted
in principle, as 3 • |A| < |P| guarantees that the attackers cannot disturb all announcements in this way,
but it seems not trivial to invent a palaver scheme which decides whether too many announcements
have been disturbed without giving up the anonymity of those participants whose announcements
were disturbed, and anyway the possibility of disturbing some of the announcements is undesirable.

Synchronization of the phases: For each reservation technique described in section 2.2 each
participant can locally determine the length of each reservation phase (for the reservation map
techniques it is even constant).

Also, each participant knows the number of successful reservations after the reservation phase,
i.e. the number of slots of the following phases. Thus if the announcements and messages have a
fixed length, the exact durations of the following announcement and sending phase are determined.
(This is necessary, or at least some other way by which each participant can locally and information-
theoretically unambiguously determine where each announcement and each message ends.)
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4.3.3 Announcement phase

Announcements are implemented by using a bit commitment scheme [BrCC_88]:
• Each participant Pi can commit to an encrypted announcement, i.e. to one of the values "trap"

and "non-trap", and can later "open" any encrypted announcement he has committed to, i.e. he
can give a trap proof which convinces each other participant Pj of the correct value "trap" or
"non-trap". Hence it is not possible to open an encrypted announcement both as "trap" and as
"non-trap".

• No other participant is able to decrypt an encrypted announcement, i.e. there is no (efficient)
way to distinguish between encrypted "trap" announcements and encrypted "non-trap"
announcements.

In contrast to output commitment, the security of the bit commitment scheme used for the
announcements has impact not only on serviceability, but also on untraceability.

Information-theoretically secure serviceability: Information-theoretically secure announcements (called
multi-party blobs in [BrCC_88]) can be realized by applying the techniques of [BeGW_88,
ChCD1_88].

Since an unexpectedly numerous attacker (i.e. 3•|A| ≥ |P|) can open non-trap announcements as
trap announcements, this version of our protocol cannot guarantee unconditional untraceability. (The
same problem occured in section 4.3.1.)

Computationally secure serviceability: Computationally secure bit commitment schemes can be
divided into two classes depending on which part of the definition is unconditionally realized.

The first class of commitment schemes perfectly conceals the difference between trap and non-trap
announcements (and is called secure for the prover in [BrCC_88]). From this it follows that each
such announcement can be opened in two ways, to announce a trap and to announce a non-trap.
Hence the correctness of a given proof can only be computationally secure, i.e. a very powerful
attacker would be able to publish a trap proof for an arbitrary sensitive message, and the
unconditional untraceability would be lost. (If the real sender publishes his non-trap proof, too, he is
still identified, but the attack is detected and therefore seems to be acceptable in practice: one can
switch from the broken bit commitment scheme to another, still unbroken one, if there is any.)

The second class is the opposite of the first one (and is called secure for the verifier in
[BrCC_88]): each announcement can be proved only in one way, i.e. a given trap proof is
unconditionally correct and it is guaranteed that no sensitive message will be traced by the prosecution
protocol. But the indistinguishability of trap and non-trap announcements is only computationally
secure (and, at the moment, in the best case polynomially equivalent to some well known hard
problem, e.g. computing discrete logarithms [BrCC_88 sect. 6.2.2]). In practice it may be reassuring
that announcements have to withstand only for a relatively short time (until the corresponding slot of
the sending phase), but a very powerful attacker will be able to disturb non-traps only and thus will
not be identified by the prosecution protocol .

A commitment scheme of the second type can be implemented by a probabilistic encryption
scheme for encrypting the set {trap, non-trap}[GoM1_86]:

For appropriate sets X, Y let π: {trap, non-trap} × X → Y be a public encryption function
generated by Pi for committing to the value v ∈ {trap, non-trap}. The first argument is the plain text,
the second provides the necessary "coin-tosses". The pair (π, π(v,x)) is used as commitment, it is
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opened by showing the pair (v, x). Since decryption is unique, each commitment can only be opened
in one direction  [BrCC_88 sect. 6.2.3].

It is not necessary to protect the sending of announcements by output commitment.

Each honest participant Pi whose announcement was disturbed will vote for investigating the first two
phases during the palaver phase. Since Pi has reserved the corresponding slot, he can prove his right
to use the slot during the investigation of the reservation phase (see 4.3.2 for the problems if the bit-
map reservation protocol would be used). Thus the test is secure for the tester.

4.3.4 Palaver phase

Since broadcast inconsistencies are excluded by assumption, the decision to start the sending phase or
to investigate the first two phases poses no problem: After the announcement phase each participant
publishes a vote.

If at least one participant detects something wrong and votes for "investigation", the first two
phases will be completely investigated and the reservations become invalid. Otherwise the sending
phase is entered.

 For voting (like for other outputs), there can be a fixed order among the participants. This
ensures that each participant gets a chance to vote, and that the origin of each vote is clear, so that
somebody who disturbs serviceability by wrongly declaring reservation phases as invalid can be
punished.

The votes should only consist of one bit each. If one wants that the participant who detected a
disturbance tells more precisely what it was, this should be postponed to the beginning of the
investigation, as otherwise it would unnecessarily reduce efficiency in the faultless case.

4.3.5 Investigation of reservation and announcement phase

If any participants vote for investigation, each honest participant Pi publishes all his message
characters Mi

t and secret keys Kij
t for all rounds t of the reservation and announcement phase. The

local outputs Oi
t are already known.

(For many cases the investigation can be shortened if the participant who detected a disturbance
describes it more precisely, but here we will not discuss this further. As far as only active attacks are
concerned, it is also of no great importance, as the guarantee for serviceability implies that
investigations are necessary only a finite number of times, until all attackers or all their keys are
eliminated. If physical faults are considered, which occur more frequently, this can be different.)

From all these values each participant can locally check the behaviour of each other participant and
can punish the attacker. Because of the reliability of the broadcast, and because the following check
procedure is deterministic, all honest participants will get the same results.

Firstly, for all rounds t and participants Pi, Pj the rules of superposed sending are checked, i.e. it is
tested whether equation (2.1) is satisfied for the values published by Pi, and whether Kij

t = Kji
t for

each {Pi, Pj} ∈ G, where Kij
t is published by Pi, Kji

t by Pj. Deviations from (2.1) prove "Pi ∈ A",
deviations from Kij

t = Kji
t prove "Pi ∈ A or Pj ∈ A".
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In the first case Pi is eliminated, i.e. each participant discards all keys exchanged with Pi, and all
messages sent by Pi will be ignored in the future. In the second case the edge {Pi, Pj} is eliminated
from G. As in the original protocol, in case only one of Pi and Pj is an attacker, this should not harm
the other one, as a key shared with an attacker is not secure anyway. (This is slightly idealized,
because in practice there might be different groups of attackers who don't work together).

The diagnosis "Pi ∈ A or Pj ∈ A" can be refined by applying signatures [Chau_88]: for this Pi
and Pj certify each key Kij

t a priori by privately exchanging corresponding signatures. If round t is
investigated, together with Kij

t they publish their partner's signature, and each participant who
cannot publish a valid signature is assumed to be an attacker. Obviously an unlimited attacker can
forge signatures, thus it may happen that both participants can publish "valid" signatures; then only
the key Kij  can be removed from G.

Secondly, the observance of the reservation protocol is tested.
Correct reservation is described by the reservation protocol itself and rules for the allowed

reservation behaviour stated in 4.3.2. As all the tests of 4.3.2 only check for results which are
impossible if the reservation protocol was correctly executed, one is sure to find an incorrectness
now, if one of those tests failed and no inconsistency was found when checking the rules of
superposed sending.

Thirdly, the announcement phase is tested. This is quite easy since a correctly executed reservation
protocol determines who was allowed to use which slot. (It is not necessary to open any
announcement, i.e. its value trap or non-trap.)

Each found incorrectness of a participant Pi is used as a proof for "Pi ∈ A" and Pi is eliminated from
the net.

If no inconsistency is found, the participant Pi who has initiated the prosecution protocol is
viewed as attacking and eliminated from the network. This is correct, since all tests which allow to
vote for "investigate" during the palaver phase are secure for the tester (sect. 4.3.2, 4.3.3).

Since faults and simple active attacks are undistinguishable (cf. the beginning of section 4) in practice
it would be useful to give each attacker at least a second chance, i.e. one would first try to
resynchronize or repair his station etc. Only key pairs which are inconsistent so often that
unintentional faults seem unlikely are eliminated from the key graph, and only notoriously attacking
participants are eliminated from the net.

4.3.6 The sending phase and investigation of traps

If no participant voted for "investigation" during the palaver phase, the sending phase is entered and
investigation of the first two phases becomes taboo (i.e. the secrets; of course the announcements can
be opened).

Sending: All slots of the sending phase are protected by output commitment (sect. 4.3.1). The
commitment must always been done for a complete slot in advance, not for single bits, as an attacker
might be able to distinguish traps and sensitive messages after a certain number of bits, e.g. if they
are addressed to himself. Hence if an attacker is not able to break the commitment scheme and to
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distinguish trap and non-trap announcements, and if the ratio of traps to non-traps is fixed to µ, he
will disturb traps with probability µ/(1+µ).

Showing trap proofs: Slots are only checked if the corresponding trap proof is given, i.e. published
an arbitrary (but for practical reasons limited) time after the trap was sent. Each participant must get a
chance to publish trap proofs, so some of the bandwidth of the reliable broadcast channel must be
reserved for him and this purpose. E.g. there can be trap-palaver phases like those of 4.3.4 every
now and then; the trap proof itself can be given at the beginning of the following investigation.

Investigation: After a trap proof has been published, first the rules of superposed sending are checked
like in 4.3.5.

Secondly, one has to distinguish between the trapper and the attacker. (It is not clear that the
participant who published the trap proof is the trapper: The computationally unlimited attacker against
untraceability could otherwise decrypt the trap-proofs of other participants and publish them first.
Then the real trapper would be regarded as attacker and eliminated from the network.)

This can be done most easily if a trapper is forced to send nothing (i.e. zeros) in his own trap.
Then any participant who sent anything else is an attacker. This does not reduce serviceability because
of the output commitment.

For the reservation map technique, but not for reservation by superposed receiving, it is
alternatively possible to investigate the corresponding reservation round. For reservation by
superposed receiving one can either use the variant mentioned in section 4.2.5.4, or one can
investigate the corresponding announcement slot instead, because if that was not investigated after the
announcement phase, it is clear that only the trapper sent in it. Only in the rare case that the
announcement consists of zeros only, this does not help (and this again could be prevented by
suitable coding). (The announcement could also be investigated for the reservation map technique, but
there it gives no additional information about the attacker.)

Again a participant who unjustly initiated the prosecution protocol (by publishing a trap proof for
an undisturbed slot) is viewed as an attacker and eliminated from the net. As every disturbance can be
proved, this cannot be used to eliminate honest participants.

4.4 Removing the reliable broadcast assumption

Without the reliable broadcast assumption the trap and prosecution protocol described in sect. 4.3
cannot be applied without giving away unconditional untraceability:

An unlimited attacker could accuse an honest participant Pi by forging his output Oi
t and use the

prosecution protocol to oust Pi or at least to eliminate a key Pi shares with another perhaps honest
participant from the key graph. Even an honest court (which can be viewed as a very slow
implementation of a perfectly reliable broadcast network) cannot distinguish between original and
forged messages afterwards.

Hence the unconditional untraceability would be lost. (As mentioned in 4.3, this is clear for the
case that two honest participants loose their common key. If an honest participant is eliminated
altogether, one can argue that his untraceability is not lost, because he cannot send anything to be
traced. But the untraceability of the remaining honest participants is clearly reduced.)
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In the following some methods are discussed to combine untraceability and serviceability without the
reliable broadcast assumption.

In section 4.4.1 the reliable broadcast assumption is directly justified physically or by using
Byzantine Agreement protocols. Naturally the untraceability remains "conditional".

Section 4.4.2 suggests an informal definition for guaranteeing serviceability while preserving
untraceability, and section 4.4.3 describes how a scheme can be implemented which guarantees
"nearly" unconditional untraceability (i.e. untraceability if the attacker cannot prevent communication
betweentwo honest participants) and computationally secure serviceability.

4.4.1 Implementing reliable broadcast

4.4.1.1 Physically implemented reliable broadcast

Here we just mention some possibilities: we neither claim completeness nor really assess their
security.

The easiest implementation of reliable broadcast is the acoustic implementation. It might be quite
sufficient for the original dining cryptographers (see [Chau_88]) sitting at their dinner table, if the
music in the restaurant is not too loud. For more general applications reliable acoustic broadcast can
also be used in the form of a court. But, as already mentioned, in the protocols under consideration
this court would not only be needed in the case of faults, but for every single output of each
participant. Thus this implementation seems rather unsatisfactory.

  The more common physical implementations use electrical broadcast media. As we cannot expect
that each participant controls a satellite, ground radio could be the preferred implementation, but
busses might do, if each participant can constantly physically check that the bus has not been
partitioned.

The protocols also assumed that the origin of each message could be unambiguously determined
and that each participant got a chance to send. E.g. this could be achieved by a fixed division of the
bandwidth of the network (by frequency or time) and the use of an x-out-of-y-code, if one can
assume that a disturbance can only transform a 0 into a 1, not a 1 into a 0 (or any other code for this
purpose, like Berger codes [Prad_86]. But this doesn't work if the attacker can send about half a one,
so that a 0 of the original sender will arrive as 0 at some participants and as 1 at some others.

4.4.1.2 Reliable broadcast by Byzantine Agreement

Reliable broadcast is usually realized by Byzantine Agreement protocols (cf. section 3.1).
The obvious method for publishing a message is to distribute it to all participants, who will then

agree on the message by using an appropriate Byzantine Agreement protocol. The attacker is restricted
either by 3 • |A| < |P| or by some computational limitations. Which of the two possible restrictions is
assumed must usually be decided a priori (we show a new protocol in which this is not necessary in
section 5.1).

For asurvey of lower bounds for reliable broadcast and known solutions see [Reis_87], an
efficient randomized protocol can be found in [FeMi_88].
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The basic net is always assumed to be synchronous (mainly because otherwise it could not be
decided whether someone disturbed the protocol by not sending at all, or whether the message has
only not yet arrived).

It is also assumed that the attacker is unable to prevent the communication between honest
participants. The part that he cannot cut off the communication completely must be realized
physically. The part that messages which arrive are correct can be realized cryptographically, in case
one is willing to accept that with very small probability the assumed attacker can nevertheless be
successful. Then one can use perfect authentication codes [GiMS_74, Sim3_88] (or nearly perfect
codes [WeCa_81]).

For the case that the attacker is computationally restricted, i.e. cannot forge signatures, one might be
tempted to try to improve efficiency by a central implementation. Then each participant would send
his signed output only to one centre instead of to all participants, the centre would perform the
addition and distribute the results. In case of disturbances one would hope to be able to resolve
disputes between the centre and the participants by the signed values. The problem with this
implementation is that it cannot be decided whether a participant sent nothing at all or the centre
suppressed it.

If the fail-stop key generation is used for superposed sending, each attempt of an unexpectedly
numerous or powerful attacker to prevent the reliable broadcast stops superposed sending and initiates
the prosecution protocol. Thus the scheme guarantees unconditional untraceability as long as the
prosecution protocol is not initiated. Additionally the scheme guarantees unconditional untraceability
as long as G \ A × P remains connected, but this condition cannot be verified by the honest
participants, i.e. the untraceability becomes "conditional" as soon as the first key is eliminated from
the key graph G.

4.4.1.3 Using centres as representatives

A weaker method for realizing reliable broadcast is to use a number of centres C1, …, Cm as
representatives.

It is assumed that each honest participant can reliably communicate with each centre. To reliably
broadcast a message a participant Pi sends his message to all centres Cj, which together guarantee that
the message is distributed to all participants:

If the centres are able to reliably broadcast messages to all participants (e.g. by a satellite for each
centre), it suffices to assume that

• either each participant signs his messages, the attacker is not able to forge signatures, and at
least one centre is honest, or

• that there is an honest majority of centres.
Otherwise the centres agree on the message received by Pi (either by physical broadcast or Byzantine
Agreement) and each centre distributes the result of the agreement to the participants. From all
received messages, each honest participant selects that one which was distributed by the majority of
all centres. Then it suffices to assume that the centres are able to reach agreement and that there is an
honest majority of all centres (which is necessary for information-theoretically secure Byzantine
Agreement anyway). This is similar to the techniques for Byzantine Agreement with less the
maximum number of tolerable attackers [DoSt_83].
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If the untraceability is based on trustworthyness of the centres, it is sufficient that each participant
exchanges secret keys only with them [Chau_88 sect. 2.3].

One can consider to use the centres in other parts of the protocol, too.

4.4.2 What "guaranteeing serviceability while preserving
untraceability" means

Assume an implementation of the DC+-net which guarantees untraceability in spite of an attacker who
is limited by a predicate Auntr  , e.g. Auntr =  ∅ (i.e. unconditional untraceability), or Auntr = "A is not
able to break signatures".

Then a protocol is said to guarantee serviceability in spite of an attacker who is limited by an
assumption Aserv equivalent to or weaker than Auntr if the following two conditions hold:

S1 Serviceability: If the attacker A satisfies Aserv then after a finite number of disruptions A
will loose at least one key from the key graph, and no pair of honest participants will loose
a common key.

S2 Preservation of untraceability: If the attacker satisfies Auntr (thus Aserv, too) and if due to
the protocol two honest participants loose a common key from the key graph (or an honest
participant is eliminated altogether), each honest participant definitely stops superposed
sending.

The protocol of section 4.3 guarantees serviceability for Auntr = "reliable broadcast assumption" and
Aserv = Auntr ∧ "the attacker is computationally restricted" or Aserv = Auntr ∧ 3 • |A| < |P|.

The implementations described in section 4.4.1 assume one of the conditions for reaching
Byzantine Agreement for both untraceability and serviceability.

Condition S2 describes a fail-stop property similar to that of section 3.2. One may therefore consider
condition S2 to be unnecessarily weak, since e.g. the protocol of section 4.3 satisfies the stronger and
more natural condition

S2* If the attacker satisfies Auntr, two honest participants will never loose a common key from
the key graph (nor will an honest participant be eliminated altogether).

The reason why we have chosen S2 nevertheless is that satisfying S1 and S2 together seems easier in
some cases, and that if Auntr holds, but not Aserv, seviceability is not guaranteed anyway, thus
another reason for the honest participants to stop participating does not harm, and that if both Aserv
and Auntr hold, S2*   is implied by S1 and S2 anyway.

4.4.3 Fail-stop Byzantine Agreement

In the following, an idea is presented which transforms each Byzantine Agreement protocol which
works with any kind of signatures (as far as we know, all computationally secure Byzantine
Agreement protocol fulfil this) for tolerating up to n-2 attackers into a protocol which

• guarantees agreement provided the attacker is not more powerful than assumed, and
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• allows each honest participant whose signature was broken by an unexpectedly powerful
attacker to prove this to each other participant in an unconditional way.

This is achieved by a new signature scheme, which allows participants (with very high probability) to
prove if their signatures are broken.

Hence soon after the first signature of an honest participant is broken all honest participants can
stop their participation with the same very high probability (fail-stop Byzantine Agreement).

For guaranteeing the fail-stop property it is only necessary to assume the attacker to be unable to
prevent the communication between honest participants. This seems to be the weakest possible
assumption and is therefore called nearly unconditional.

Using fail-stop Byzantine Agreement in the protocol of 4.3 obviously satisfies condition S2
(section 4.4.2). Since our solution guarantees the fail-stop property in an unconditional way, we have
combined nearly unconditional untraceability (with very high probability) and computational
serviceability.

Unfortunately our solution is not very efficient (yet ?).

4.4.3.1 A signature scheme whose forgery can be proved

Before describing our scheme and its properties, some remarks about the principal possibilities of
such a signature scheme can be made:

• The probability of unprovable forgery can never be zero:
An honest user must be able to produce at least one signature for each message from the

message space. Thus if the (computationally unlimited) attacker who can break the scheme
finds just this signature, it cannot give the honest user additional information. So he cannot
prove that the signature was broken (otherwise he could also deny the signature which he
himself would have produced, which cannot be tolerated).

• There must be more than one possible signature for each message, i.e. more than one value
must be acceptable to the other participants (although perhaps the honest participant will only
be able to produce a single one). This must hold unconditionally.

 This has just the same reason as the previous point: Only a signature that the
computationally limited user could not have produced himself may allow him to prove that it is
not his. Thus such signatures must exist, and the computationally unlimited attacker must be
unable to distinguish them from the ones the honest participant can produce.

• It is not possible to prevent a dishonest, computationally unlimited participant from denying
his signatures, i.e. "proving" that they were broken, even though this is not true:

Having the same possibilities as if he were an attacker against himself, he can produce the
signatures which he could not produce if he were computationally limited, and then he can
prove that they are broken.

But in all our applications this is entirely right, as this situation means that there is an
attacker who can break the signature scheme, and so one cannot further rely on these
signatures anyway.
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Thus one is looking for a signature scheme in which most forged signatures allow the supposed
signer to compute something that under the assumption of the signature scheme he could not have
computed before.

The idea of our scheme is that the signatures consist of square roots, and forged signatures allow
to factor the modulus. Thus (in contrast to the Rabin scheme [Rabi_79]) the factorization of the
modulus cannot be known to the signer in advance. The scheme to which this lead us is very similar
to one-time-signatures. Therefore we start by shortly describing these.

4.4.3.1.1 One-time signatures

One-time signatures are an easy method for signing a limited number of bits using a one-way function
f, attributed to Lamport in [DiHe_76, Merk_88]:

If at most k bits are to be signed, the signer chooses 2•k elements r0,1, r1,1, r0,2, r1,2,…, r0,k, r1,k
and makes the sequence

ƒ(r0,1), ƒ(r1,1), ƒ(r0,2), ƒ(r1,2),…, ƒ(r0,k), ƒ(r1,k)
public. To sign the bit sequence (b1, …, bk), he publishes

rb1,1, rb2,2, …, rbk,k

A slight improvement of the scheme is described in [Merk_88] (attributed to Winternitz there), but
nevertheless the scheme seems to be rather inefficient.

An efficient variation of the theme is described in [Merk_88], and in [BeMi_88] the idea is used to
construct cryptographically strong signature schemes using a strong trapdoor function generator.
Both improvements cannot be used in the following.

4.4.3.1.2 Cryptographically strong one-time signatures
whose forgery is provable

Idea: As mentioned, the idea of our scheme is that signatures are square roots of known values
modulo composite numbers, because then knowing several signatures of one message, i.e. several
square roots of the same values, gives a good probability that one can factor the modulus. The
factorization of a modulus will thus serve as a proof that something is wrong.

Of course, for this proof to be convincing, the modulus cannot have been chosen by the signer. In
fact, the only easy situation in which this proof really proves to someone that someone else can factor
(i.e. leaves no possibility that someone has only published a previously known factorization) is that
the verifier of the proof has chosen the modulus himself.

For simplicity, we first describe the resulting scheme for just one signer and one verifier, and then
generalize it to the situation in which all participants sign and verify each other's signatures.

Protocol for two parties: Assume two parties A, B, and call them Alice and Bob for convenience (and
according to tradition). Our goal is to construct a one-time signature scheme which allows Alice to
sign a k-bit-message for Bob. If someone else forges a signature of Alice, she is able to prove to Bob
that the signature scheme is broken. Additionally, even if Bob himself forges the signature, she can
prove to a third party Vera that either the signature scheme is broken or Bob is among the attackers.



– 43 –

Let σ be the security parameter for factoring, i.e. that value for which it is assumed that factoring a
product of two primes, each of length σ/2, is not feasible for the attacker.

A second security parameter d, the security parameter for the probability of unprovable forgery, is
chosen.

Basic protocol

[1] Bob chooses two large primes p, q each of length σ/2 and sends the product m := p•q
to Alice together with a proof that it is composite (e.g. a witness according to the
probabilistic primality test of Rabin-Miller [Rabi_80]).

[2] Alice checks that m is in fact a composite number.
She randomly chooses 2•d•k different elements

r0,1,1, …, r0,1,d, r1,1,1, …, r1,1,d,
……

r0,k,1, …, r0,k,d, r1,k,1, …, r1,k,d
of ZZ/mZZ all coprime to m, and makes their squares

sb,x,y := (rb,x,y)
2

modulo m public.

[3] To sign the bit sequence (b1, …, bk) Alice publishes the corresponding roots
rb1,1,1, …, rb1,1,d,

……
rbk,k,1, …, rbk,k,d

[4] Bob verifies the received roots.

Explanation: Of course, squaring modulo m corresponds to the one-way-function of the original one-
time-signatures. Note that line x of the r-matrix serves to sign the x-th bit of the message; the left half
of the r-matrix serves to sign zeros, the right half to sign ones; and the fact that there are d square
roots for each bit instead of one increases the probability that a forgery enables Alice to factor m.

Now assume a forth party, Felix, the forger.
To forge a signature which Bob will accept in step [4], Felix has to compute at least d square roots

modulo m (because he must give a new signature for at least one bit). Computing square roots and
factoring are equivalent problems [Rabi_79, Woll_87], thus our basic protocol can be viewed as a
cryptographically strong authentication code based on the intractability assumption of factoring. (The
proof that m is composite should not help in this, as every other participant could have found it for
himself. We put it into step [1] instead of [2] only to ensure that Alice cannot disturb the protocol by
claiming that she is very sorry not to find any witness. One can also trade expected efficiency for
certainty that a proof is found by using the algorithm of [AdHu_87] in step [2], or by letting Bob give
Alice a zero-knowledge proof between the two steps [GoM1_86].)

Since Bob knows the factorization of m he can tell it to Felix, enabling him to compute square
roots of all sb,i,j efficiently. But since all roots chosen by Alice are coprime to m, each quadratic
residue published by Alice has two significantly different square roots (i.e. two roots r, r' with
r ≠ ±r', see e.g. [Kran_86, Theorem 4.5]), and even Bob cannot suspect which one Alice has
chosen. (This is why Alice had to check that m is not prime; if it has more than two factors her
probability is even better.)
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Thus in any case if Felix has forged Alice's signature, i.e. he has changed at least d roots of the really
signed message, with probability not less than (1 - 2-d) he has chosen a significantly different root for
at least one of Alice's squares.

Call this root r' and call Alice's root r. Then Alice can factor m using r, r', since (r-r') • (r+r') = 0
(mod m). If Bob is honest, this proves to him that someone (Felix or Alice) can factor. Also it proves
to Vera that either someone can factor or Bob has wrongfully disclosed his factorization.

Thus we have proved the following lemma.

Lemma 4.1 Assume the basic protocol for two parties Alice and Bob described above.

i. The problem of forging an authenticated message which Bob will accept in step [4]
is equivalent to the integer factoring problem.

ii. Each forged signature enables Alice to factor Bob's modulus m with probability not
less than

1 - 
1
2d .

Proof.  see above.

The scheme can naturally be extended to n parties P1, …,Pn, each of whom wants to sign a k-bit-
message.

Basic protocol for n parties

[1] Each participant Pi chooses two primes pi, qi of length σ/2 and makes their product
mi := pi•qi public together with a proof that mi is composite.

[2] Each participant Pj checks that each mi is in fact a composite number.

Then for each Pi participant Pj chooses 2•d•k values coprime to mi like in the two-
party-protocol, i.e.

r(i,j)0,1,1, …, r(i,j)0,1,d, r
(i,j)

1,1,1, …, r(i,j)1,1,d,
……

r(i,j)0,k,1, …, r(i,j)0,k,d, r
(i,j)

1,k,1, …, r(i,j)1,k,d
of ZZ/miZZ

 all coprime to mi, and makes their squares
s(i,j)

b,x,y := (r(i,j)b,x,y)
2

modulo mi public.

[3] To sign a specific k bit message, Pj makes the corresponding (n-1) • d • k square roots
public, i.e. for all i≠j:

r(i,j)b1,1,1, …, r(i,j)b1,1,d,
……

r(i,j)bk,k,1, …, r(i,j)bk,k,d

(this corresponds to one signature for everybody else in the two-party-protocol).

[4] Every Pi with i≠j verifies the received (n-1)•d•k roots.

Each forged signature enables Pj to factor the modulus of a special other participant with probability
(1 - 2-d). Thus with probability not less than (1 - 2-d)n-1 she is able to publish a factor pi of each mi.
Thus we can supplement the basic protocol:
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[5] Each honest participant who receives a signature of Pj sends it back to Pj.

[6] If Pj receives a forged signature, she factors all mi if she can. Then she publishes one
non trivial factor of each mi as proof that someone has forged a signature.

[7] Each honest participant who receives the factorization of all moduli accepts this as a
"proof of forgery"  (more precisely: as proof that someone can break the signature
scheme, not that someone has forged anything). All signatures become invalid.

As for the basic protocol for two parties we get the following lemma:

Lemma 4.2 Assume the basic protocol for n parties described above.

i. The problem of forging a signature which an honest participant will accept in step
[5] is equivalent to the integer factoring problem.

ii. Each forged signature enables the supposed signer Pj to factor all moduli mi, i.e. to
form a "proof of forgery", with probability not less than

(1 - 
1
2d)

n-1
 .

Conversely, forging a "proof of forgery" is equivalent to factor all n public moduli.

iii. The signature of a k bit message comprises k • (n-1) • d • σ bits.

Proof.  see above.

It is not obvious at this place why we emphasized the fact that participant Pi waits to see all moduli
factored before he accepts it as "proof of forgery". Of course, if he is honest, he is already sure that
the signature scheme is broken if he sees his own mi factored. The necessity that a proof of forgery is
something that convinces all participants will become clear when the scheme is used within Byzantine
Agreement, because there this fact serves to ensure agreement upon whether the scheme was broken
or not.

The participants can also try to choose one m together instead of all the mi, as this would reduce the
length of the signatures and the number of exchanged squares by a factor of n. If one requires that at
the end of the choosing protocol each participant locally checks that a correct m has been chosen (like
in step [2] of the above protocol), this does not reduce the probability that the supposed signer of a
forged signature can form a  "proof of forgery". If the choosing protocol is suitably chosen, it should
hold that a computationally restricted attacker cannot influence the protocol such that he knows the
factors of m a priori, thus if a correct m is found at all, forging signatures or a  "proof of forgery"
should still be difficult. However, finding m can only be guaranteed for 2•|A| < |P| [GMW_87].

4.4.3.1.3 Using iterated squares to improve efficiency

The main problem of the signature scheme of section 4.4.3.1.2 (protocol for n parties) is that for
signing each single bit one has to prepare 2 • (n-1) • d squares and distribute them. In the following
we try to improve this ratio by using iterated squares in two ways.
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In [Merk_88] a method of Winternitz is mentioned to sign one out of k+1 different values using any
one-way-signature scheme and only two prepublished values: for this the signer chooses two values
r, s, and publishes ƒk(r) and ƒk(s) . To sign the value j, 0 ≤ j ≤ k, the signer makes public ƒj(r) and
ƒk-j(s).

As in this method the amount of computation (i.e. the number of applications of f) grows
exponentially with the length of the message signed in one piece, one can reduce the number of values
to be distributed a priori only by a logarithmic factor.

To apply this to the scheme of 4.4.3.1.2, for each m define the function

ƒm(x) := x2 (mod m).
To be able to use this improvement we have to ensure that nobody can decide which of the two
significantly different roots of ƒm

k(r) is ƒm
k-1(r), thus we have to choose m specially:

Lemma For moduli m = p•q with p = q = 1 (mod 4),  a ∈ (ZZ/mZZ)* , and k ≥ 2, all square
roots of ƒm

k(a) (i.e. all possible values for ƒm
k-1(a)) are quadratic residues.

The modulus m is appropriately chosen iff  -1 has a square root modulo m.

Proof.  Let QR(z) be the set of all quadratic residues modulo the integer z, and let a ∈ (ZZ/mZZ)* . Let
b := ƒm

k-2(a), thus ƒm
k(a) = b4.

Then ƒm
k(a) has four distinct roots, namely the two roots b2, -b2 and two other roots r, -r.

By Euler's criterion -1 ∈ QR(p) and -1 ∈ QR(q), thus -1 ∈ QR(m). Thus b2 and -b2 are both
quadratic residues modulo p, q, m. Since b2 and r are both roots of ƒm

k(a) modulo p, r = b2 or
r = -b2 (mod p), thus r ∈ QR(p). The same holds for root -r and for modulus q.

Therefore all four roots of ƒm
k(a) are quadratic residues.

1st method: Thus to use Winternitz' method in the basic protocol, Bob has to choose an appropriate
modulus and to publish a root of (-1). Alice chooses arbitrary r1,…,rd, s1,…,sd coprime to m and
publishes the ƒm

k(rx), ƒm
k(sx).

A precondition for this is that these moduli may not be much easier to factor than other products of
two large primes. Also it is presupposed that the root of -1 doesn't make factoring easier, but this
could be changed by using a zero-knowledge-proof instead.

The generalization to the protocol for n parties is obvious.

2nd method: If the security assumption about this kind of modulus holds, for special applications of
the signature scheme (including our intended application in protocols for Byzantine agreement), a
similar, more valuable efficiency improvement is possible: Assume that time is partitioned into
phases, that the signer has to sign only a certain number of bits for each phase and that these
signatures becomes meaningless as soon as the current phase is finished.

Then it is possible to prepublish just 2•d values for signing bit position x in all k phases together,
namely the ƒm

k(rb,x,y) for some chosen rb,x,y. In phase k' (k' = 1,…,k), for signing the value b for
bit x, the signer publishes the values ƒm

k-k'(rb,x,y).
To avoid that the amount of computation to check signatures grows with the phase number, at the

end of each phase the signer can also publish the unused signatures.

Of course, the two methods can be combined.
In our applications, a phase will be one Byzantine agreement.
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4.4.3.2 The protocol of Dolev and Strong with an efficiency
improvement for our signature scheme

In [DoSt_83] Dolev and Strong describe (and prove) a computationally secure protocol for Byzantine
Agreement, which is able to tolerate up to n-2 attackers and forces each honest participant to send at
most two different messages.

Each message of the protocol consists of the value the sender has broadcast and of at most n-1
signatures. Let si(v) denote the value v signed by Pi, and assume that from si(v) the signed message v
can be extracted.

The protocol uses iterated signatures (like sik
(sik-1

( … si2(si1
(v))…)) ). This would be very

unpleasant for our inefficient signature scheme, as iterated signatures would grow exponentially with
the number of signers. Luckily, the iterated signatures can be implemented by sets of signatures
instead. These grow only linearly with the number of signers.

Because of this change and because the protocol description given in [DoSt_83] is rather short
anyway, we present the proof of Dolev and Strong for our scheme:

For convenience let P1 be the sender. All messages of the protocol are sets of signatures, i.e. they are
of the type { sik

(v), sik-1
(v), …, si2(v), si1(v) }. A message (set) is called consistent if all signatures

contain the same value v and a signature of the sender P1 is among them.
A participant Pj relays a consistent message by adding his own signature to it and forwarding it to

all participants whose signatures do not yet appear in it.

Byzantine Agreement protocol for up to n-2 attackers (Dolev, Strong)
[1] The sender P1 signs his value v ∈ F and sends {s1(v)} to each other participant.

For k = 1,…,n-2:
[k+1] Let Vi,k be the set of all consistent messages Pi has received during the k-th phase and

which are signed by exactly k different participants, not including himself. Assume
that Vi,k is totally ordered.

If Pi has not relayed any messages during the previous phases and Vi,k ≠ ∅, he
relays the first two messages in Vi,k with distinct values, or the first message, if all
messages in Vi,k contain the same value.

If Pi has relayed only one message during the previous phases containing a value
v' during all previous phases and Vi,k ≠ ∅, he relays the first message in Vi,k which
contains a value v" ≠ v', if there is one.

Once a participant has relayed two distinct values, he stops processing messages
for the protocol and at the end he will decide "sender fault".

[End] If Pi has received exactly one value v during all phases together (in a consistent
message with enough signatures), he decides to accept this value. Otherwise he
decides "sender fault" and chooses the default value for v.
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Lemma 4.3 [DoSt_83 Theorem 3] Provided signatures are unforgeable and the attacker is not
able to prevent the communication between honest participants, the Dolev/Strong
Protocol guarantees Byzantine Agreement within n-1 phases, i.e.
i. after phase [n-1] (i.e. in step [End]) each honest participant chooses the same

value for v, and
ii. if P1 is honest, each honest participant chooses the value sent by P1.
Each participant relays at most two messages. The length of messages sent in phase
k is O(k•sig) bit, where sig is the length of a single signature.

Proof.  First assume the sender P1 to be honest. Then each honest participant receives the same
value {s1(v)} during phase [1], and this is the only value v which is signed by P1. Thus after phase
[n-1] all honest participants decide to accept v.

Now assume that P1 is dishonest. If no honest participant receives any consistent message during
the n-1 phases, they all agree on "sender fault" in [End].

Now assume that an honest participant Pi receives the consistent set

{  sik
(v), sik-1

(v), …, si2(v), si1(v) }
in phase [k]. First it will be shown that either each honest participant will decide "sender fault"
independent of v, or that after phase [n-1] each honest participant will have received v.

If k = n-1, then all other honest participant have already received s1(v), because otherwise they
would not have signed v.

Assume k < n-1. If Pi relays the set, each other honest participant will receive it in phase [k+1],
because it is still consistent and has one signature more. Thus assume that Pi doesn't relay the set,
which may have two reasons:

1st Pi has relayed the same value in a previous round.
2nd Pi has already relayed two different messages.

In the first case each honest participant has already received v, and in the second each honest
participant decides "sender fault" independently of v.

Thus if an honest participant Pi has received two values and thus decided "sender fault", all others
have received them too, or they have decided "sender fault" anyway.

Consequently, if the honest Pi has received exactly one value v, no other honest participant can
have received two. So, as they have received v, too, all decide to accept v.

Finally, if the honest Pi has received no value v, then so has everybody else according to the
previous two paragraphs. Thus they agree on "sender fault". 

Each participant has to send at most two messages, and particularly he has to sign at most two values
or 2 • ld(|F|) bit. If the signature scheme of section 4.4.3.1.2 is used, each participant has to choose
(n-1) • 4 • d • ld(|F|) squares.

Thus the scheme requires  n • (n-1) • 4 • d • ld(|F|) • σ bits to be published in advance.
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4.4.3.3 A protocol for fail-stop Byzantine Agreement

Assume that the Dolev/Strong protocol (sect. 4.4.3.2) together with the signature scheme  of section
4.4.3.1.2 is used. (The same supplements and lemmata hold for each other Byzantine Agreement
protocol based on signatures which tolerates up to n-2 attackers.)

Then we get Byzantine Agreement in which breaking can be proved by appending the following
two phases to the Dolev/Strong protocol:

1st supplement to the Byzantine Agreement protocol

[n] Each participant Pi sends all signatures received during the previous phases back to
their supposed signers, i.e. he sends sj(v') back to Pj.

[n+1] If Pi has received a forged signature si(v'), he tries to use the forgery for factoring the
public moduli mj  of all other participants. If he is successful, he sends the
factorizations of all mj (including of his own mi) to all other participants.

[End] If Pi has not found or received the factorizations of all public moduli mj, he decides as
in the original Dolev/Strong protocol. Otherwise he decides "signatures broken".

Lemma 4.4 Byzantine Agreement in which breaking can be proved. Assume the supplemented
Dolev/Strong protocol implemented with the signature scheme of section 4.4.3.1.2,
and assume |A| < n-1.

i. If the attacker is not able to forge signatures (i.e. to factor the public moduli), the
protocol finds the correct agreement after phase [n+1].

ii. If an honest participant decides to accept the value v after phase [n+1] (due to the
original decision rule given in section 4.4.3.2), then with probability at least

(1 - 
1
2d)

n-1

v is the correct value (i.e. the sender's value if the sender was honest) and each
other honest participant has either accepted value v, too, or has decided "signatures
broken".

iii. If an honest participant decides "signatures broken", he can prove this to all other
participants after the protocol.

Each protocol which satisfies (i),  (ii) and (iii) is called Byzantine Agreement in
which breaking can be proved.

Proof.  i. Since the attacker cannot forge signatures, the protocol works as the original Dolev/Strong
protocol, thus lemma 4.3 guarantees the agreement.

ii. Assume that the honest Pi has accepted v after phase [n+1].
Contradicting lemma 4.4 assume that v is not the correct value. Since the Dolev/Strong protocol

always finds the correct value provided signatures of honest participants are authentic, there must be
at least one honest participant who has received a forged signature of an honest Pj. Thus in phase [n]
Pj receives the forgery and in phase [n+1] he sends the factorization to all other participants with
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probability (1-2-d)n-1. Hence in phase [n+1] Pi receives the factorization and decides "signatures
broken", which contradicts our assumption. Thus Pi has accepted the correct value v.

Since the same is true for all other honest participants, each other honest participant who has not
decided "signatures broken" has accepted the same value v.

iii. If an honest participant decides "signatures broken", he knows the factorizations of all public
moduli mj and can show them to all other participants later. 

This protocol can be described as realizing Byzantine Agreement if the signatures are not broken, and
crusader agreement [Dole_81] otherwise. Additionally those participants who know that something is
wrong can prove it later.

Now assume that the almost secure protocol is repeated ad infinitum, i.e. that after the last phase a
new phase [1] starts. Call each protocol execution a broadcast. For each broadcast it is predetermined
which participant acts as sender.

Then we add the following rule to the protocol:

2nd supplement to the Byzantine Agreement protocol

For each phase [k] add the following rule to the protocol:

[k] If in phase [k-1] Pi receives the factorizations of all public moduli mj for the first time,
he immediately decides "signatures broken" for all following (and the current)
broadcasts and sends the factorizations to all other participants.

No participant who has decided "signatures broken" will ever send any further
messages.

This supplement guarantees that, if an honest participant decides "signatures broken" in phase [k],
each other honest participant does so in phase [k+1].

Hence we have realized fail-stop Byzantine Agreement.

Lemma 4.5 Fail-stop Byzantine Agreement.  Assume that the Dolev/Strong protocol with the
first and second supplement and implemented with the signature scheme of section
4.4.3.1.2 is iterated ad infinitum, and assume |A| < n-1.

i. If the attacker is not able to forge signatures (i.e. to factor the public moduli), the
protocol realizes reliable broadcast.

ii. If an attacker, who can forge signatures, disturbs the t-th broadcast during the
Dolev/Strong protocol, then with probability at least

(1 - 
1
2d)

n-1

all honest participants decide "signatures broken" at the end of the t-th broadcast
and stop sending.
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iii. If an attacker, who can forge signatures, disturbs the t-th broadcast during the
supplement phases, each honest participant either decides "signatures broken" at the
end of the t-th broadcast or accepts the correct value at the end of the t-th broadcast
and stops sending after phase [1] of the (t+1)st broadcast.

Proof.  i. Follows from lemma 4.4(i).

ii. This case means that the attacker sends the forged signature of an honest participant Pi to another
honest participant. Thus with the stated probability, each of them receives the factorizations from Pi in
phase [n+1] of the t-th broadcast, decides "signatures broken" and stops sending.

iii. In this case, the attacker either sends the factorizations to an honest participant directly in a phase k
for the first time, or a forged signature of an honest Pi to Pi in phase k=n. If k < n+1, each honest
participant decides "signatures broken" at the latest in phase [n+1], and the (t+1)st broadcast doesn't
even begin. If k = n+1, the decisions according to the original Dolev/Strong protocol are correct, and
each honest participant receives the factorization at the latest in phase [1] of the (t+1)st broadcast.

4.4.3.4 Using fail-stop Byzantine Agreement for
untraceability and serviceability

Together with the protocol of section 4.3 (i.e. used in all places where the reliable broadcast network
was needed, fail-stop broadcast guarantees computationally secure serviceability while preserving
nearly unconditional untraceability (i.e. the attacker on untraceability is only assumed to be unable to
prevent the communication between honest participants) in the sense of S2:

The only way how two honest participants can decide differently is that one has accepted a value v
while the other has decided "signatures broken" (lemma 4.4 ii). But then all honest participants will
stop after the first phase of the next broadcast (lemma 4.5 ii, iii), and those who perform the first
phase of the next broadcast have accepted the correct value. Thus the attacker cannot learn more than
an additional output Oi

t of a participant who has not received any incorrect value. This cannot give
him additional information.

Unfortunately with our inefficient signature scheme fail-stop BA requires at least additional
O(n2 • d • σ • ld(|F|)) bits which must be published in advance (this is an upper bound if the second
method of section 4.4.3.1.3 is secure, as then after each agreement about a value Oi

t, i.e. after a
constant number of signatures, the published values can be reused).

As this scheme is much less efficient than the schemes of section 3.2, in practice one could try to
use the fail-stop broadcast of 3.2, and only if that is disturbed continually, one would change to fail-
stop BA (by hand, as then one would have to distribute the squares first etc.).

Fail-stop Byzantine Agreement could also be used together with superposed sending to realize
probabilistic fail-stop broadcast as defined in section 3, but the untraceability is only nearly
unconditional, and naturally the schemes of section 3.2 are much more efficient for this purpose.
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4.5 A protocol without commitment

In the protocols described so far, the assumptions that the attacker must be restricted by 3 • |A| < |P| or
computationally limited for serviceability (in addition to the reliable broadcast assumption) were
needed for commitment.

In this section we describe a protocol without commitments, which only assumes reliable
broadcast and 2 • |A| + 1 < |P|.

Also there will be an exponentially small probability that an honest participant is considered as
attacker.

Serviceability will not be guaranteed in the sense of S1 in section 4.4.2, i.e. a clever attacker can
undetectedly disturb in certain situations. But the network guarantees the honest participants a certain
bandwidth, with which they can send undisturbed.

The protocol has a similar phase structure as that of section 4.3, although the non-traps are
distinguished from traps in another way.

Before describing the phases, we describe a more generally usable technique, which we will use
to allow two participants, who are anonymous towards each other, to communicate secretly and
reliably, although we have no computational restrictions.

4.5.1 Key-less cryptography and authentication

In 1983 Alpern and Schneider proposed a scheme, key-less cryptography, which allows two
participants Pi, Pj to exchange a secret key over a public network without using any secret
information, provided that this network guarantees sender untraceability [AlSc_83].

Using superposed sending together with a reservation technique, this idea can be implemented in a
very efficient way [Bura_88, Pfit_89]: Assume that participant Pi wants to send something to
participant Pj in round t. For this, one of them must have reserved round t and they must have agreed
on it.

Then in round t, Pi sends his message character Mi
t, and Pj sends a randomly chosen character

Mj
t ∈R F, which is called a masking character. From the global sum

St = Mi
t ⊕ Mj

t

only Pj can recover character Mi
t sent by Pi. Each other participant gets no information about Mi

t, i.e.
it is perfectly concealed.

Key-less authentication can be realized by a simple authentication code [Bura_88]: Let F = GF(pk) be
a finite field with p ≠ 2. Together with Mi

t, Pi sends the check character

Mi
t+1 := (Mi

t)2

Both characters are perfectly concealed by two masking characters (Mj
t, Mj

t+1) ∈R F2. The only
chance of a manipulating attacker Pa is to choose and send a character Ma

t ≠ 0 and an appropriate
Ma

t+1. The manipulation is undetected if

(Mi
t ⊕ Ma

t)2 = (Mi
t)2 ⊕ Ma

t+1

⇔ Mi
t = 

Ma
t+1 - (Ma

t)2

2 Ma
t
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Assume that the message character Mi
t is uniformly distributed in F. Since the equation

unambiguously determines the secret character Mi
t, the attacker's probability of successfully forging

an authenticated character Mi
t ⊕ Ma

t is less than or equal 
1
|F|. This is optimal, since it is equal to the

redundancy of the code and since the secret key used for authentication is chosen from the set F2

[GiMS_74].

4.5.2 Outputs

Like in section 4.3.1, all outputs are published on the assumed reliable broadcast network, and it has
also been decided a priori when each participant has to publish which output.

As we have no scheme for output commitment under our assumptions, to prevent the attacker
from disturbing selected messages, the participants must take turns in who is allowed to make his
outputs last. To see that this helps, note that if the last participant is honest and shares at least one key
with another honest participant, the attacker has no information about the resulting global sum at the
time when he must choose his own output.

Of course, like for the commitments, usually the outputs of several rounds, e.g. of one slot, must
be grouped together for this purpose. Then the attacker cannot guess from the global sums of the first
rounds whether the resulting message will be worth disturbing.

The last participant could change at the beginning of each reservation frame. Then one is sure that
the serviceability guaranteed by the following measures against random disturbances holds in at least
|P| - |A| out of |P| executions of the protocol. This ratio is at least 2/n, but usually much better.

In the following, for serviceability we will only consider protocol executions in which an honest
participant outputs last. (This fact is of course not known to the other participants, but if they repeat
disturbed reservations or messages, it is guaranteed that they can only be disturbed a finite number of
times.)

4.5.3 Reservation phase

Except for the output commitment, the reservation phase is identical to that of section 4.3.2.
Wherever in section 4.3.2 several rounds were grouped together for output commitment, the same
rounds are grouped together for output here. Also the tests whether reservation was undisturbed are
the same and the reasons why they are secure for the tester (as nothing depended on the assumptions
that we dropped in section 4.5).

4.5.4 Announcement phase

For convenience, call the participant who reserved the corresponding slot X, because he is
anonymous.

This phase consisted mainly of commitments in the protocol of section 4.3. The known commitment
schemes cannot be used on the assumptions of section 4.5. Luckily, a commitment is not really
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necessary for trap/non-trap announcements (because if X changes his mind about whether it is a trap
or not, this does not harm anybody else, as the others are not allowed to disturb it anyway).

So in this protocol, this phase is only used to provide X with means which later allow him, and
him alone, to declare whether it was a trap or a non-trap. (Thus the name of this phase, chosen in
analogy to section 4.3, is a bit misleading this time, as in reality nothing is announced yet, not even
necessarily decided).

For this purpose, each participant Pi sends a password Wi to X, which later allows X to prove his
authorization towards Pi. To ensure that only X receives the password, and that he receives the
correct one, key-less cryptography and key-less authentication (cf. 4.5.1) must be used, as X and Pi
have no key in common for secret key cryptography or perfect authentication codes; otherwise Pi
would know who X is.

As all Pi must send a password (even X himself, as otherwise he would be identified), Pi need
not be untraceable during this action. Thus there can be a fixed order among them for this purpose. (It
has nothing to do with the order for outputs.)

Thus:
• A slot of the announcement phase consists of n mini-slots
• In the i-th mini-slot, Pi sends a randomly chosen password Wi followed by the check

character, and X superposes two randomly chosen masking characters.

If X does not receive a valid codeword in one of the mini-slots, he will vote for investigation in the
following palaver phase. As this can only happen if either the mini-slot was disturbed or Pi did not
send a valid codeword, and X has reserved the corresponding slot, this test is secure for the tester.

4.5.5 Palaver phase

After the announcement phase, there is the same non-anonymous palaver phase as in section 4.3.4.

4.5.6 Investigation of reservation and announcement phase

As in section 4.3, no sensitive information was used so far. So if any participant votes for
investigation during the palaver phase, the reservation and announcement phase are completely
investigated.

Exactly as in section 4.3.5, first everybody publishes all his secrets, then the rules of superposed
sending and then the observance of the reservation protocol are checked, and deviations are punished.

Then the announcement phase is tested. A correctly executed reservation protocol determines who
was X for which slot and was thus allowed to superpose masking characters. Also it is clear a priori
which Pi has to send a password in which mini-slot. Thus each incorrectness can be attributed to a
specific participant.

Again, if no inconsistency is found, the participant Pi who has initiated the prosecution protocol is
viewed as attacking and eliminated from the network. This is correct, since all tests which allow to
vote for "investigate" during the palaver phase are secure for the tester (sect. 4.5.3, 4.5.4).
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4.5.7 The sending phase and investigation of traps

If no participant voted for "investigation" during the palaver phase, the sending phase is entered.

Sending: The only difference to simple superposed sending is that each participant must output all
outputs of one slot together (to replace the output commitment, see section 4.5.2).

Showing trap proofs: In this protocol, publishing the passwords which correspond to a given slot is
considered as trap proof for that slot and the wish that it should be investigated.

Each participant must get a chance to publish trap proofs, so we assume that directly after the slot
there are n mini-slots on the DC-net, which X can use to publish the n passwords Wi in their original
order. If X sent a non-trap or nobody was caught in his trap, he sends zeros in all these mini-slots.(

Disturbances during the mini-slots for trap proofs: If X sends the passwords (not if he sends zeros!)
and is disturbed in one of the mini-slots, he can ask for an investigation of these mini-slots, because
he only sent a trap and is therefore willing to be identified. For this purpose, there is a non-
anonymous palaver phase after each group of mini-slots (i.e. one corresponding to each slot), in
which each participant can vote for investigation of these mini-slots.

If the message was a non-trap, this does not lead to tracing of the sender, since he did not use the
mini-slots.

Investigation of mini-slots: During the investigation of the mini-slots, as usual first all secrets are
published and the rules of superposed sending are checked. Then the rules for sending in the mini-
slots are checked:

If nobody, except possibly the participant who voted for the investigation, sent in the mini-slots,
he is viewed as attacker. This cannot happen to the honest X, as he would only ask for investigation
if there was a disturbance.

If more than one participant sent in a mini-slot, one must decide between the legal sender X and
the attacker. This cannot be done by investigating the corresponding reservation slot, as both senders
might be attackers and the message a non-trap. Instead, the decision can be made according to the
passwords: If someone legally sent in a mini-slot, he must have published all the passwords. Thus an
honest participant Pi can consider each other participant Pj who did not send Wi in the i-th minislot,
but sent anything in any mini-slot, as attacker. So he can give up the key they shared (for all
following rounds). Therefore with high probability (because he might guess the passwords) this
attacker will lose all keys he shared with honest participants, if he had any left.

Punishment: If a participant decides to give up a shared key, he publishes this using the reliable
broadcast network (there must be bandwidth reserved for this purpose). Thus the new key graph is
known to everybody.

Now we use the assumption 2 • |A| + 1 < |P|: As the key graph was fully connected at the
beginning, and as no pair of honest participants ever lose their key, any participant who has lost at
least half his keys must be an attacker. Therefore the following addition to the usual punishments is
safe:

Any participant who has lost at least half his keys is excluded from the network altogether. (k)

Thus especially an attacker who disturbed the publication of passwords is excluded from the network
at once with high probability.
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Decision about investigation of the trap itself: Slots should only be checked if the corresponding trap
proof is given. In our case, each participant Pi can only decide whether he received his own password
W i. To come to a global view, after each successful mini-slot phase each participant non-
anonymously publishes whether he thinks that there will be an investigation.

An attacking participant Pi can claim that he did not receive his password and is thus not willing to
investigate. Then the investigation cannot be performed, as not all honest participants can distinguish
this situation from the other situations: E.g. if X is an attacker, different honest Pi can come to
different decisions. Also, if X is honest, attackers can claim that they received their passwords when
in fact they did not.

What can be done is that X, if he still shares keys with any of the Pi who are unwilling to
investigate, renounces these keys. As X was still anonymous when the Pi had to declare whether they
would take part in an investigation, and each attacking participant who is still in the network has at
least one key in common with an honest participant (because of (k)), he will lose a key with
probability greater than 1/n.

(This is the reason why the passwords had to be published on the DC-network, not on the reliable
broadcast network.)

Investigation of the trap: If all participants agree that the trap should be investigated, this is again done
by first publishing the secrets and checking the rules of superposed sending. Then one has to
distinguish trapper and attackers. This is easy now: Either one can rely upon the order of the
participants (in the place of output commitment) and force trappers to send zeros only. Or the
reservation phase can be investigated. In contrast to 4.3.6, it is also clear that the participant who
published the trap proof, i.e. the passwords, is the trapper.

If an attacker has guessed all passwords correctly (which can happen only with a probability
exponentially decreasing with the length of the passwords) and published them as trap-proof, the
legal sender is either identified by the prosecution protocol, or, if he refuses to investigate, the
attacker will recognize him by this.

5 Adaptive Byzantine Agreement

The signature scheme of section 4.4.3.1.2 can also be used for a Byzantine Agreement protocol in
which one need not decide between the two restrictions on the attacker (computationally restricted or 3
• |A| < |P|) a priori. Instead it will always work if at least one of them is fulfilled.

The first idea is, of course, that one starts with a Byzantine Agreement protocol BA1 which works
with any kind of signatures, implemented with the signature scheme in which breaking can be
proved, and one has another Byzantine Agreement protocol BA2 which works for 3 • |A| < |P| as
alternative.

Now, in contrast to section 4.4.3.3, one needs a definite moment when everybody knows
whether the signatures are assumed broken and BA2 used, or whether the results of BA1 are used.
But in a suitable implementation this doubtful situation can only arise if the signatures are broken.
Thus luckily we can then (also in contrast to section 4.4.3.3, where we had to consider the unlimitied
attacker against untraceability) assume that the attacker is restricted by 3 • |A| < |P|.

This motivates the following (simple, not most efficient) protocol:
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Basic Adaptive Byzantine Agreement protocol

[α] Perform a Byzantine Agreement protocol BA1 with signatures, implemented with the
one-time signature scheme of section 4.4.3.1.2, and the 1st supplement.

[β] Perform a Byzantine Agreement protocol BA2 without signatures.

For i = 1,…,n:

[γj] Participant Pi broadcasts a decision message Di using protocol BA2, namely either the
factorization of all moduli, if he had them in [End] of step [α], or the value "no". (In
each round of the protocol, a participant checks whether a value claimed to be the
factorizations is correct. If not, he interprets it as "no".)

[End] If an honest participant Pj has decided that all Di are "no", he decides for the value he
received in step [α]. Otherwise he decides for the value received in [β].

Lemma 5.1 Adaptive Byzantine Agreement. If signatures are unforgeable or 3 • |A| < |P|, the
adaptive Byzantine Agreement protocol guarantees Byzantine Agreement within a
predefined number of phasess. More precisely, with probability at least

(1 - 
1
2d)

n-1

i. in step [End] each honest participant chooses the same value for v, and
ii. if the sender P1 is honest, each honest participant chooses the value sent by

P1.

Proof. We distinguish three cases:

1st case: Signatures are unforgeable, i.e. nobody can factor all moduli.
Then step [α] finds the correct agreement (Lemma 4.4). It remains to be shown that each honest

participant decides for this value in step [End]. This is obvious, because nobody is able to send
factorizations in any of the steps [γj], so all honest participants will agree on "no" in all of these steps.

2nd case: The attacker disturbs step [α], i.e. he forges at least one signature of an honest participant
or sends all factorizations to at least one honest participant.

Then according to the assumption 3 • |A| < |P| holds. Thus step [β] finds the correct agreement. So
it suffices to show that all honest participants decide for the value received in [β].

Either an honest participant Pi has received all factorizations directly from the attacker. Or in phase
[n+1] of step [α] with probability at least (1-2-d)n-1 at least one honest participant Pi knows all
factorizations. In both cases he broadcasts them as Di in step [γj]. Because of 3 • |A| < |P| the
broadcast of step [γj] is correct, thus all honest participants receive this Di. So in [End], they decide
for the value received in [β].

3rd case: The attacker can forge signatures, but he does not use this ability disturb step [α]. (But
perhaps he disturbs the steps [γj] by sending around factorizations!).

Then according to the assumption 3 • |A| < |P| holds. Thus the byzantine agreements of all steps
[γj] are correct, so all honest participants receive the same messages Di. Therefore either all of them
decide for [α], or all of them for [β] in [End].
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Also because of 3 • |A| < |P|, if they decide for [β], the value they get is correct. As the attacker
has not disturbed step [α], by lemma 4.4.i, step [α] also found a correct agreement. So no matter
which decision the honest participants take in [End], it is correct.   

There are some obvious efficiency improvements:
• To save messages, one can postpone step [β] until after the steps [γj] and only perform it if the

decision is that its result must be used. (The proof showed that there will be agreement among
all honest participants upon this.)

• To improve the ratio between decision making and the original agreement protocols, one can
decide about the correctness of an arbitrary number of steps [α] with one execution of the
steps [γj]. Of course, then participant Pi chooses the factorizations as Di if he had them at the
end of any of the steps [α].

• To save phases, step [β] can be executed in parallel with any of the other steps. Also all steps
[γj] can be executed in parallel. This leaves (n+1) + n/3 phases.

One can save one more phase at the expense of more messages (namely phase [n+1] of the
supplement): To this end, in phase [n] each participant Pi additionally sends all the square roots which
he prepared for his own signatures to all other participants. This does not disturb BA1, as that is
already finished. Then each participant can perform the factorizations on his own, which he would
otherwise get in phase [n+1]. Thus one has  4/3 • n phases.

 This is also possible in section 4.4.3.3. Of course, then the signed value of the sender cannot be
later used as proof towards a third party, but this is not necessary in our applications.

6 Summary

The goal of this report was to investigate how a sender and recipient untraceability scheme based on
superposed sending (sect. 2.1) can be realized.

We have shown that untraceability can be realized in a really unconditional way, i.e. without making
any assumptions about the network or the attacker, by combining superposed sending ([Chau_88]
and sect. 2) and fail-stop broadcast (sect. 3.2).

This improves the result of David Chaum who implicitly assumes the existence of a reliable
broadcast network.

Unfortunately the unconditional untraceability scheme doesn't guarantee serviceability, i.e. each
dishonest participant can stop the network. Thus in section 4 we discussed how to guarantee
serviceability in spite of untraceability.

The protocol for solving this problem suggested in [Chau_88] can be misused for an easy active
attack on untraceability (sect. 4.2), but its basic idea can be used for the secure solutions presented in
sections 4.3-4.5.

The restrictions Aserv and Auntr on the attackers against serviceability and untraceability, resp.,
which are necessary for the different protocols are summarized in figure 7.
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Protocol Section Aserv Auntr Untraceability
probabilistic

Superposed sending 2.1 A = ∅ reliable no
broadcast

Fail stop broadcast 3.2.2.1 A = ∅ ∅ no

3.2.2.2 - 3.2.2.3 A = ∅ ∅ yes

r e l i a b l e  b r o a d c a s t  a s s u m p t i o n

4.3 ∧ comp. restr. ∧ ∅ no

Reliable broadcast 4.3 ∧ 3•|A| < |P| ∧ 3•|A| < |P| no

4.5 ∧ 2•|A|+1 < |P| ∧ 2•|A|+1 < |P| yes

attacker cannot prevent communication
between honest participants

Byzantine agreement 4.4.1.2 ∧ 3•|A| < |P| (Untraceability probabilistic if
authentication codes are necessary)

4.4.1.2 ∧ A comp. restricted yes

attacker cannot prevent communication
between honest participants

Fail-stop agreement 4.4.3 ∧ comp. restr. ∧ ∅ yes

Figure 7 Summary

Our solution described in section 4.4.3 is based on fail-stop Byzantine Agreement, i.e. Byzantine
agreement with signatures and the additional property that as soon as the attacker is able to forge
signatures all other participants will recognize this. This is realized by a provably secure (one-time)
signature scheme whose forgery by an unexpectedly powerful attacker is provable.

The method can also be applied to realize adaptive Byzantine Agreement, i.e. Byzantine agreement
which can be disturbed only by an attacker who controls more than a third of all participants and who
is able to forge signatures (sect. 5).
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1. We have found a much more efficient signature scheme whose forgery can be proved in the
meantime. (We now call such schemes in general "fail-stop signature schemes", the old scheme
"root signature scheme" and the new scheme "hiding signature scheme".) Thus reading the root
scheme (Section 4.4.3.1) and all following statements about efficiency is only of historical value.

For descriptions and proofs of the hiding signature scheme, see [Pfit1_89, WaPf1_89,
BlPW_90, PfWa_90].

2. Minor improvements to adaptive Byzantine Agreement (Chapter 5) can be found in [PfWa1_90].
Another efficient and anonymity preserving multi-access protocol (cf. Section 2.2) has been
published in [BoBo_89]. Alternatives to how to understand the basic trap-protocol by Chaum
(Section 4.2.1), and resulting alternatives to the improved protocol (Section 4.3), are discussed in
[WaPf1_89]. (None is better than the one presented here, but some are about as good.)

3. The notation in the overview table (Figure 7) can easily be misunderstood:
"A =  ∅" means that there are no attackers. Thus it is a strong assumption.
"∅" alone means "true", or in other words " unconditional". Thus it is the weakest possible

assumption.

4. Section 4.4.3.1.3 about efficiency improvements for the root signature scheme is wrong. The
lemma is correct, but both methods using it would need the stronger assumptions that all square
roots of ƒm

k(a) are not only quadratic residues, but iterated squares. This is not true for general p.
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