UNIVERSITAT KARLSRUHE

FAKULTAT FUR INFORMATIK

P.0O.Box 6980, D 7500 Karlsruhe 1, F. R. Germany

Unconditional Sender and Recipient Untraceability
in spite of Active Attacks — Some Remarks

Michael Waidner, Birgit Pfitzmann
Institut fir Rechnerentwurf und Fehlertoleranz

Interner Bericht 5/89
Marz 1989

Table of contents

ADSIrACT 1.
Unconditional sender untraceability...............ccooiiiiiiiiii e 2....
2.1 SUPErPOSEd SENAING ...t e ettt 2...
2.2 Efficient and anonymity preserving multi-access protocols................c.......... 5....
2.3 Some remarks on sender untraceability schemes..............ccocoiiiinin 8....
Active attacks on untraceability..........cccoeviiiiiiiiii 9...
3.1 Reliable broadCast........ccoiiiiiiiii 10...
3.2 Fail-Stop DroadCast..... ..o 11...
3.2.1 Comparison of input characters.ooeiiiiiiiii e 11
3.2.2 Message dependent key generation.............oviiueeieiiiiiiieeniiiieeanns 12
3.2.2.1 Deterministic fail-stop key generation.................cccoviunnn.. 12
3.2.2.2 Probabilistic fail-stop key generation..................ccoeeiinnn. 14
3.2.2.3 Combination of key generation and explicit tests................ 16....
3.2.2.3.1 Combination of deterministic key generation and
exXpliCittestSo 17
3.2.2.3.2 Combination of probabilistic key generation and
exXplicit testS. ... 18
3.3 Final remarks on fail-stop broadcast............ccoooiiiiiiiiiiiiiii 19....
Serviceability and untraceability..............oooiiiii 21...
4.1 Serviceability in spite of active attacks. ... 23.
4.2 The original protocol based on the assumption of reliable broadcast and how it can
DE MISUSEA e 23...
4.2.1 The original protocol by Chaum.............ccooiiiiiiiiiii e 24.
4.2.2 ThebasiCattaCkooiii 24..
4.2.3 Refinements of the original protocol and the remaining kamikaze form of
the old attacK.......cooooiiii 25...
4.2.4 Animproved kamikaze attack for the refined protocal....................... 25
4.2.5 Influence of the reservation technique on the quality of the pratocal....... 26
4.2.5.1 A better kamikaze attack specially for the bit map reservation
ProtOCOl. .. 26...
4.2.5.2 An attack on serviceability for the bit map reservation protocal. 27
4.2.5.3 Reservation map with large group........ccooeveiieeiiiiiinnnnnnnn, 27
4.2.5.4 Reservation by superposedreceiving.............cciiiiiinnnn. 28
4.3 The improved protocol based on the assumption of reliable broadcast............ 28
4.3.1 Outputs and output COMMItMENt.o, 30.
4.3.2 Reservation Phase.....ccoiiiiiiii i 31...
4.3.3 ANNOUNCEMENE PRaSE ... oottt e, 34..
4.3.4 Palaver PRase. 35..
4.3.5 Investigation of reservation and announcement phase.................... 35....
4.3.6 The sending phase and investigation of traps............cccoocvvvniennen. 36....
4.4 Removing the reliable broadcast assumption.............ccooiiiiiiiiiiiii e 37
4.4.1 Implementing reliable broadcast..............cooiiiiiiiiiii . 38...
4.4.1.1 Physically implemented reliable broadcast........................ 38
4.4.1.2 Reliable broadcast by Byzantine Agreement..................... 38
4.4.1.3 Using centres as representatives...........ccocvvvviiininnnnnn. 39....

What "guaranteeing serviceability while preserving untraceability" means40
Fail-stop Byzantine Agreement.............cccocevviiiiiiiiinnne 0 4000

A
e
W

4.4.3.1 A signature scheme whose forgery can be proved.............. 41
4.4.3.1.1 One-time SigNatures.c.cvvveiiiieeeeeeeeeiiannns 42
4.4.3.1.2 Cryptographically strong one-time signatures
whose forgery is provable................o.oonn 42..
4.4.3.1.3 Using iterated squares to improve efficiency....... 45..
4.4.3.2 The protocol of Dolev and Strong with an efficiency
improvement for our signature scheme............................ 47
4.4.3.3 A protocol for fail-stop Byzantine Agreement...................... 49
4.4.3.4 Using fail-stop Byzantine Agreement for untraceability and
SerVvICeabIlitY 51.
4.5 A protocol without commitment...........coooiiiiiiii 52....
4.5.1 Key-less cryptography and authentication........................cooeveenn.. 52
A 1 1o 3.
4.5.3 Reservation phase.......cooiiiiiii 53.....
4.5.4 ANNOUNCEMENE PRASE. .. oottt e 53.
4.5.5 Palaver phase.........cccooiiiiiiiiiii 54..
4.5.6 Investigation of reservation and announcement phase.................... 54.......
4.5.7 The sending phase and investigation of traps...........c..ccooeenvennnnnn. 55......
5 Adaptive Byzantine Agreement.........cc.vuiuiiiiiiei e eneen 56..

IS YU 01 0 = /P 58.....

1 Abstract

In Journal of Cryptology 1/1 (1988) 65-75 (= [Chau_88]) David Chaum describes a techniqut
DC-net, to send and receive messages anonymously over an arbitrary network. Section 2
short and slightly generalized description of the DC-net and describes some known reser
techniques.

In [Chau_88] the untraceability of senders and recipients of messages is proved to be uncond
but this proof implicitly assumesraliable broadcast network, i.e. each message broadcast by
honest participant is received by each other participant without alterations.

Since unconditional Byzantine Agreement (i.e. BA in spite of an attacker with unlimite
computational power who may control an arbitrary number of participants) is impossible, st
network cannot be realized by cryptographic means. Thus the assumption may be rather unrea

In section 3 it is shown how the sending of a specific participant X can be traced by an active a
who is able tomanipulate broadcast and controls the current communication partner of X.

A number of countermeasures, calfad-stop key generationschemes, are suggested and it
proved that each of them will realize the desired unconditional untraceability in spite of active att:

Section 4 discusses the problem of guaranteeing serviceability while preserving untraceability.
In [Chau_88 sect. 2.5] a protocol for solving this problem is suggested which again deper

the assumption of a reliable broadcast network. It is shown that the protocol is insecure (even

reliable broadcast assumption): the sender of one randomly selected message can always be ic
We give several solutions for the problem: Assuming for the attacker on untraceability ...

« ... reliable broadcast, we can guarantee computationally secure serviceability (sect. 4.3).

» ... reliable broadcast and that there is an honest majority of all participants, we can gua
serviceability on the same assumption (sect. 4.5).

« ... that the attacker is not able to prevent Byzantine Agreement, we can guarantee service
as secure as the Byzantine Agreement (sect. 4.4.1).

« ... that the attacker is not able to prevent the honest participants from communicating (wt

considerably less than reliable broadcast), we can guarantee computationally s
serviceability (sect. 4.4.3).
Please notice that the attacker on serviceability is usually weaker than the attacker on untrace
i.e. there are attackers which may disturb superposed sending without being able to trace mess

Our fourth solution is based on the problem of digital signatures whose forgery by an unexpe
powerful attacker is provable. We give a first such (one-time) signature scheme; the forge
signatures is equivalent to the factoring problem (sect. 4.4.3.1.2).
With such signaturese can realize
» Fail-stop Byzantine Agreementi.e. Byzantine agreement with signatures and the additio
property that as soon as the attacker is able to forge signatures all other participani
recognize this (4.4.3.3). This can be used for implemefdaihgtop broadcast

» Adaptive Byzantine Agreement i.e. Byzantine agreement which can be disturbed only by an
attacker who controls more than a third of all participantswho is able to forge signatures
(sect. 5).

Some parts of this report will be published in [Waid_89].

2 Unconditional sender untraceability

Section 2.1 describes the basic mechanisms of the DC-net, superposed sending and broadcast,
defines the notation used throughout this paper. Section 2.2 describes an example of an anonymi
preserving multi-access protocol for superposed sending, and in section 2.3 some general remarks
sender untraceability schemes are given.

2.1 Superposed sending

Assume that a number of participants want to exchange messages over an arbitrary communicatic
network. A computationally unlimited attacker, who is able to eavesdrop the communication betweer
any two of the participants (e.g. because he collaborates with the network operator) and controls &
arbitrary subset of the participants, tries to trace the messages exchanged between the participants
their senders and recipients.

If all messages are delivered to each participant, the attacker is not able to tnateedbd recipient
of a message. Therefore unconditionally reliable broadcast guarame®sditional recipient
untraceability .

It is important to notice that in this section as in [Chau_88] attackers are assumed to be unable t
manipulate the consistency of broadcast.

Sender untraceability is guaranteeddoperposed sendingwhich realizes aanonymous multi-
access channel:

Let P ={P, ..., B} be the set of all participants and let G be an undirected self-loop free graph
with P as nodes. Let (E) be a finite abelian group. The set F is calledatphabet

To be able to perform a single sending step, which is calledral, each pair of participants,P
Pj who are directly connected by an edge of G choose a jdsoka F randomly. Let Kjj := Kj;.
Participants Pand P keep their common key secret. The graph G is catigdyraph, the tuple K of
all keys is calledkey combination

Each participantjRethooses a message charactefrdin the alphabet F, outputs lhogal sum

0 := M, O Z sign(i-}) * K; 2.1)
{Pi,Pj} 0OG

1 Inthe following the term "X is randomly chosen from a set M" is abbreviated hyg¥1". This means that X is

a uniformly distributed random variable which is independent from "all other variables". What is meant by "all other
variables" should always be clear from the context.

and receives as input thebal sum
n

S :=JZ o] (2.2)

(Fig. 1). As usually the symbolic operatitheKj; is defined by +1ex := x and -1ex := -X.

Because each key is both added and subtracted exactly once, the sum in (2.2) is the sul
characters M If exactly one character;Mas been chosen unequal to 0, this character is success
delivered to all participants. Otherwise a (digital) collision occurs which has to be resolved by a |
access protocol, cf. section 2.2.

Figure 1 Example of a simple (and incomplete) key graph G. According to eq. (2.1)
According to lemma 2.1, each attacker A with |A| < 2 can be tolerated.

Superposed sending guaranteasonditional sender untraceability. Let A denote the subset of
participants controlled by the attacker. If the graph GX @ is connected, the attacker gets n
additional information about the charactershésides their sum.

Lemma 2.1 Superposed sendinglLet A be the subset of participants controlled by the attacl
and assume G\ (RA) to be connected. Let ¢Q..,0,) O F" be the output of a
single round.

Then for each vector (M...,M,)) O F" which is consistent with the attacker's
priori knowledge about the Mind which satisfies

Zoj :Z M (2.3)

there is the same number of key combinations which satisfy equation (2.1)
which are consistent with the attacker's a priori knowledge aboutjthe K

Hence the conditional probability for gM..,M,,) given the output (Q...,0y)
(i.e. the a posteriori probability) is equal to the conditional probability f
(M4,...,M) given only the sum in (2.3) (i.e. the a priori probability).

This is stated and proved in [Cha3_85, Chau_88] for F = GF(2) by a technique which can ea:
applied to any finite field. In [Pfit_89 sect. 2.5.3.1] and in the following, lemma 2.1 is proved

any finite abelian group F. (The general applicability of finite abelian groups was also mentioned in
[Pfil_85].)

Proof. Let M' := (M",...,M')) O F" be another vector which satisfies (2.3) and which is consistent
with the attacker's a priori knowledge about the M

To prove lemma 2.1, a finite sequenc@, ML, ... of vectors from Eis defined, which all satisfy
eq. (2.3) and which differ in only two components. Let dendteNMX,, ..., MK).

Let MO := (My,...,M;), hence M satisfies eq. (2.3). If K= M' then stop. Now assume
MKk # M".Since both M (by induction hypothesis) and M' satisfy eq. (2.3) there are at least two
different indices i, j with M; # M'; and M # M, and since both Kland M' are consistent with the
attacker's a priori knowledge, P [J A. Define

Mk+1i = Mli
MKk*L = Mk O MK O -My (2.4)
MKk+L = MK, for all hOfi,j}
Obviously M1 satisfies (2.3). After at most n-1 steps the sequence stops tithi¥1

Let KK be the set of all key combinations which satisfy (2.1) for the veckoad which are
consistent with the attacker's a priori knowledge. Between each baKkKl a bijection(pk is
defined. Hence |K = |[KK*1| for all k and therefore fik= |K"Y where M1 = M.

To definegX consider the equations (2.4). let= MK*L, 0 -MK;. Then ML = MK, O A and
MK+l = MK O -A,

Because of the connectivity of G \ ¢PA) there exists a path (B R,,...,P = B) with
P, DA and (R, P..) 0G\(PxA). LetKD KK. ThengX(K) is defined by changing the keys on
this path appropriately:

0 h=1,...,m-1: @) kg1 = Kicpkpyeq O A * Sign(-kns),

(d((K) Kn+1Kn = (pk(K) KnKn+1
and

O (f,9) O { (Kn, ks (ke k) | h=1,...,m-1) K(K)gg 1= Kyg
The construction ofX is depicted in figure 2.

Mkkl M kk7
s o
Pkl sz Pk3 Pk4 Pk5 Pk6 Pk7

O+A’O+A’O‘-AO+A’O +A’O‘TC>

Figure 2 Construction of (pk from a path with m = 7. The vertical arrows indicate the change of Mkkh,
h=1,7, the horizontal arrows the numerical order of the k;, the +A the change of Kkhkh+1:

th th+l
: — O : = kp < kp41 and therefore <pk(K)|<hkh+1 = Ky B2

Obviously, the local outputs of th, h=1,...,7, are not changed by (ﬂ<

It can easily be checked thgf(K) satisfies (2.3). Becausgi(K) differs from K only in such keys
which are unknown to the attackef¥(K) is necessarily consistent with the attacker's a pric
knowledge. SinceX is simply a translation of the grouf the bijectivity ofgX is obvious[]

2.2 Efficient and anonymity preserving multi-access
protocols

To use the multi-access channel superposed sending offers it is necessary to regulate the part
access to the channel by an appropriate, i.e. efficient and anonymity preserving protocol. Fo
depth discussion of possible protocols cf. [Pfit_89 sect. 3.1.2].

In the following only three protocols are considered, slotted ALOHA, a bit map reserve
technique, and superposed receiving.

The first step for each multi-access protocol is to combine a fixed number ¢ of characters
messageEach message is transmitted in ¢ consecutive rounds, which are citied a

In the following, rounds are numbered from 1 to a maximum numbgr Parameteryi,y is
necessary only for technical reasons. Usually Id(|R)g t.€. the maximum number of transmittec
bits, can be assumed to be very large, e.g. ld(|fRl)2* 10%°. Even with a rather unrealistic
transmission rate of #Bbps this is sufficient for about 317 years of superposed sending.

The character and output of participantiPround t are named jMand G, respectively, the
global sum in round t is namedl S

The simplest protocol is the well known (slottéd)OHA [Chau_88, Tane_88 sect. 3.2]: |fias a
message to send he simply does so in the next slot. If another participant has decided to
message, too, a collision occurs, which is detected.After waiting a random number of slots, P
retransmits his message.

Obviously ALOHA preserves anonymity, but wastes the transmission capacity of the networ

To avoid collision of messages a simgdservation map technique can be used: a slot of r rounds, th
reservation frame, is used to reserve the following up to r slots [Pfil_85 sect. 2.2.2.2].

F is assumed to be the additive group of integers modulo a fixed integer m. For each mes:
plans to send he chooses an index k from {1,...,r} at random and outputs 1 as his k-th charac
the reservation frame. The resulting reservation message consists of three classes of chara
indicating an unreserved slot, 1, indicating a reserved slot, and {2,...,m-1}, indicating collisi
Since all message slots with corresponding reservation cha¥dchee of no use, they are skippec
i.e. the reservation frame is followed only by as much message slots as there are suci
reservations. Slots with reservation character =1 are used by that participant who has sent a
corresponding reservation round (fig. 3).

If m is choser® |P| this scheme avoids any collisions of messages.

o
(o) ol ol ol Hol Noll Hol Hol Nel
o|lo|lo|lo|r|FP|]O| PO
il el Nol Neol Noll Nol Nol ol o)
o|o|lo|lo|jl]o|r|]O]|] O] O
(o} ol Noll ol No)l Nol ol o) Nl

used used
by P byP4

[

— A _/
h'd '
reservation frame message frames
withr =5
Figure 3 Reservation map technique with 9 participants, a reservation frame of length r =5, and m =

4. The 1st, 2nd, and 5th slots would be unused and are therefore skipped.

A similar reservation technique is described in [Cha3_85, Chau_88]: instead of using a relatively
large group F to enable the detection of multiple collisions, the superposition is done in F = GF(2)
and a value r in the order of the squaregfs the maximum number of reservations, is used to
make multiple collisions of an odd number of reservations rather unlikely.

Therefore the scheme requirgges? additional bits pergax sent messages.

The last multi-access protocol is a collision resolution protocol calipdrposed receivingPfit_89
sect. 3.1.2]: it is based on the observation that from knowledgg af.MJ M, and M, ..., M1
the last character jcan easily be derived. (More generally: All &n be computed from each set of
n linearly independent sums ofjM.., M,,.)

This is used for a recursively defined protocol: Lgk.sbe the maximum number of collided
messages, €.0mgx = N, and {0,1,2,...,M,a,¢ U Z the set of albllowed message characters. The
alphabet F is chosen to be the ring of integers modulo m where m is greatgfthaMs, 5, AS
usual each character M F can be interpreted as an integer. A message consists of only two
characters: For a participant who has to send a message the first character i$ aiwlay® second
is his message character. For a nonsending participant both are @lways

Now assume that a new round of the protocol starts and an a priori unknown number of
participants have decided to send a message. Let SP denote the set of all sending pajtitigants,
sum of their characters jMnodulo m, and s := |SP|. Thus the first slot contains the pdip.(8,

number s= 2 indicates a (digital) collision. To resolve it, each participant computes the ave

message
Mp = %D

which is possible since the modulus m has been chosen so larde thatso the sum of the
characters iZ. This average is used to deterministically divide the set SP into two disjoint suk
SP; and SB: SP; consists of all participants; B SP with M < Mp, SR consists of all other
sending participants:

SPp={P0SP|M<Mj}

SP2::{PiD SP|M>MA}
Fori=1,2 definejsand} in analogy to s anll. All participants PL SP, immediately repeat their
messages (1,Min the next slot, hence each useaeives the pair (g, > 1) and carcompute the pair
(S, ¥2) = (sO -8, 3 O -3 7).

Given the rare case s 0, the protocol terminates after the second slot: each participarsm
has sent theame character M= M. Otherwise, i.e.£# 0, the sets SPand SB are both nonempty
and the collision resolution procedure is recursively applied,td;lsi = 1,2.

To resolve a collision of s messages the protocol deterministically needs at most s slots, w
optimal. (For a performace evaluation of superposed sending cf. [Marc_88].)

Figure 4 gives an example for the resolution of a collision of s =5 messages.

Pp |17 1|7 (|1]7
P, [1]10 1 /10 110
P3 [1]4 114 14 114
P, [1]1 1 1)1
Ps |15 115 15 1|5
5 |27
Ma =5
3 |10 2 |17
Ma =3 MA:S\QI\\\\\
1112109 1f{7]|1]10
Ma=1 Mpa=4 Ma=7 Ma=10
114 15
Ma=4 Mpa=5
Figure 4 Collision resolution using superposed receiving. The black boxes indicate really sent

messages, the hatched boxes are only computed. Using the tree structure all 5
messages can be computed from the 5 really sent messages.

To allow the sending of long messages either the alphabet F could be made large enough to repres:
a long message by a single character or superposed receiving could be used as a reservation techni
(reservation by superposed receiving each participant willing to send a message chooses at random a
reservation message (1,RMnd sends it in the next possible reservation slot. The collision of all s
reservation messages is resolved by superposed receiving, after which sadb the received
reservation characters Riccording to their numerical values (in fagtyéteives the reservation
characters in their numerical order!). With high probability all;Rk different, therefore the order of

the RM naturally defines an order of all reserving participants, according to which esehd8 his

real message in the appropriate one of the next s slots. If somar&®qual, they don't lead to any
reservation (i.e. although superposed receiving is a deterministic collision resolution scheme, the
resulting reservation scheme is not completely deterministic, but only successful with very high
probability.)

2.3 Some remarks on sender untraceability schemes

Given the very strong assumption of an unlimited attacker (i.e. there may be an arbitrary number o
attackers |A| < |P|, there are no computational restrictions) the fundamental restrictions of superpost
sending as far as performance and reliability are concerned are a consequence of its send
untraceability: In order to make the physical behaviour of a participant meaningless it is necessary th:
a participant Pwho is willing to send a character, M

» does this in an encrypted way,

* each other participan Butputs a character, too, and

 the attacker is not able to learn anything aboubéfore knowing all the outputs.

Because the attacker is assumed to be an insider it follows from the last fact that the result of suc
a single sending step cannot contain more information than the last of the participant's output doe:
Therefore any unconditional sender untraceability scheme realizes a multi-access channel an
superposed sending offers the best possible channel capacity as far as only a single round
concerned.

To guarantee the unconditional sender untraceability, the global output of the realized multi-acces
channel has to depend on each participant's output, therefore any unconditional sender untraceabili
scheme can be untraceably disturbg@ach participant.

As far as | know, superposed sending is the antpnditional sender untraceability scheme which
withstands an unlimited attacker.

There are two other untraceability schemes known from literature, the MIX-net [Chau_81] and the
concept of physical unobservability [Pfit_84]. Both can only withstand weaker attackers than
superposed sending. The first is based on the use of a public-key cryptosystem and the existence o
number of network stations, called MiIXes, from which at least one has to be trustworthy. The secont
assumes that the attacker only controls a very small number of participants.

To reduce the tremendous amount of randomly chosen keys for superposed sending which han
to be exchanged by the participants, one can use keys which are generated by pseudorandc
bitgenerators (PRBG). If the used PRBG is cryptographically strong, i.e. if distinguishing the PRBG
from a true random source in random polynomial time is provably equivalent to solving a (hopefully)
hard problem [VaVa_85], tracing becomes equivalent to this hard problem, too, ntdhditional
sender untraceability is lost.

In [BeGW_88, ChCD1_88] very general techniques for information theoretically secure fault tols
distributed computations are described. In general these techniques can be used for impleme
sender and recipient untraceability scheme. Since they are based on the well known reliable br:
problem (cf. section 3.1) they can withstand only attackers with 3 « |A| < |P| and are therefo
further considered here. Also, an untraceability scheme based on such a general technique w
far more expensive than superposed sending together with any of the techniques described in
3.

On the other hand these technigues ensure serviceability: If instead of a channel with coll
like that of superposed sending a channel which e.g. traraistgomitted charactersM..., M, in
their numerical order is realized, it would be guaranteed that no participant can disrupt the sen
the M. The input phase of such a network (i.e. the subprotocol by which all participants share
secrets Mamong all others) can be made attacker and fault tolerant by standard techniques v
loss of untraceability. Hence most of the reliability problems of superposed sending (discussed
section 4) wouldn't be posed in such a network.

Because of the growing importance of public telecommunication networks it seems necessary
for efficient implementations of untraceability schemes resulting in networks without 1
observability. For more details about the motivation and the more practical aspects of this te
[Pfi1_85, PfwWa_86, PfPW_88, Pfit_89].

3 Active attacks on untraceability

The power of aractive attack is based on a very simple observation: for services using two-
communication it is impossible to realize unconditional sender untraceability without unconditi
recipient untraceability and vice versa.

To see this, assume that one of the participants controlled by the attackey,ayrRunicates
with some honest participant X and that X will answer a message M by sending a message M'
attacker is able to identify treender of M' he can identify theecipient of M and vice versa. If the
attacker doesn't control;Rhe same is true for light traffic; then the attacker can identify bc
communication partners.

In general if sending and receiving is correlated (which is usually the case) the attacker can i
learn something about recipients from identifying senders and vice versa.

If active attacks are possible, superposed sending doesn't guarantee recipient untraceabil
therefore it doesn't guarantee sender untraceability:

Let I, (I;%) be the input character which participantr&eives (in round t) and which shoulc
always be equal to the global sum §.(S

Assume that the attacker is able to deliver an arbitrary chargdteeach participant;hstead of
the correct charactey. IFurther assume that participanf, ®ho is controlled by the attacker,
communicates with the honest participant X according to some protgémlio®s that X will always
answer to a received message M within a given time by sending a message M'.

If the attacker delivers message M consecutively only to a single participant and a meani
message to all others, he can always identify X by checking when he receives M' or not. Inst
delivering M only to a single participant he can deliver it to a subset of the participants
successively partitioning the participants he can identify X in log(n) rounds, provided tha

- 10 -

protocol between X and,Ronsists of at least log(n) interactions (on the avé?%@éinteractions
would suffice).

If it were guaranteed that in all rounds t=1,.. 415 €ach participant not controlled by the attacker
receives the same input character, then superposed sending would guarantee unconditional sender
recipient untraceability in the presence of arbitrary active attacks. Such a network is Délfechat.

For an a priori given numbefj, of rounds this is the well known problemrefiable broadcast
Instead of using a fixed,kx one can also try to limit{;x adaptively: if in round t two honest
participants receive different characters thgp ts set to t; this is callefdil-stop broadcasthere.

In the following, two different implementations of superposed sending are considereshttiaézed
and thdlistributed implementation. In a centralized implementation superposition of the local sums is
done by a central station, e.g. the centre of a star network, which delivers the global sum to al
participants. In a distributed implementation each participant receives the local sum of each other, e.(
via a broadcast channel, and computes the global sum locally for himself.

In a centralized implementation based on a star network the attack described above is possible fi
the centre without any manipulation of communication lines.

3.1 Reliable broadcast

Reliable broadcast is defined by the following two properties [PeSL_80]: in each round t

i every two honest participants &hd P receive the same character, i-,b.=lljt, and

il if the "sender" X is honest, then each honest participant receives the character sent by X.
In a centralized implementation only the network centre has the function of a "sender”, in a distributec
implementation each participant.

Some types of networks, e.g. satellite networks, offer reliable broadcast without any additional
protocol, but because of their bandwidth limitations they are not very usual in two-way
telecommunication. Also the DC-network is meant to be usable with a variety of underlying
communication networks, e.g. rings, therefore a cryptographic solution should be preferred to ¢
physical one.

The problem of achieving reliable broadcast on a network which does not provide it automatically
is also known as the Byzantine Generals problem, its solution by proto&yzaagine Agreement
[PeSL_80, LaSP_82].

It has been proved thatformation-theoretically secure protocols for reliable broadcast exist iff the
number of honest participants is greater than twice the number of dishonest participants, i.e
|[P] > 3¢|A|, and the attacker is not able to prevent the communication between honest participan
[LaSP_82]. All protocols for information-theoretically secure reliable broadcast implicitly make use of
perfect authentication codes [GIMS_74, Sim3_88] and therefore require a large number of additiona
secret keys exchanged by the participants. Based on the existence of secure signatures there
reliable broadcast protocols for arbitrary numbers |A| < |P| [LaSP_82]. They are usually more efficien
than the information-theoretically secure solutions but cannot guarantee unconditional recipient
untraceability due to the impossibility of unconditionally secure digital signatures.

Because of its severe limitation |P| > 3¢|A| reliable broadcast does not seem to be a useful techniq
for the desired unconditional recipient untraceability and is therefore not further considered in sectior
3. We will return to it in section 4.4, when we have additional requirements on serviceability.

- 11 -

Fail-stop broadcast combines both advantages: it can be implemented in a more efficient we
reliable broadcast and it is unconditionally secure in spite of arbitrary attackers.

3.2 Fail-stop broadcast

The goal of fail-stop broadcast is to stop message transmission as soon as two honest part
receive different input characters.

If such a difference is detected by an honest participaheRail-stop can easily be performeg: F
simply disturbs the superposed sending in the subsequent rounds by choosing his outputs ra
from F instead of following eq. (2.1). Then the global sums of all subsequent rounds are indept
of the message characters.

In section 3.2.1 the most obvious but inefficient implementation of this idea by a comparison pr¢
is discussed.

In section 3.2.2 fail-stop key generation schemes are described: they generate keys for sup:
sending dependent on the received input characters and ensure that two participants wh
received different input characters will use completely independent keys (at least with
probability) and thus will stop message transmission.

It is shown that the most efficient key generation scheme (sect. 3.2.2.2) does not affe
performance and reliability characteristics of pure superposed sending.

3.2.1 Comparison of input characters

To detect a difference the participants can explicitly compare their input characters by an add
protocol: After each round of superposed sending each participsend? his input characteta all
participants Pwith j > i. If an honest participan IPeceives an input character unequal; tsdm
another participant ;Por if he receives nothing from g ®ith i < j, he will disturb superposed
sending in all subsequent rounds.

Such test phases are well known from Byzantine Agreement protocols.

To make the tests dependable, the communication between I’ should be protected by a perfec
authentication scheme [GIMS_74, Sim3_88], i.e. a scheme which allows the attacker to succe
forge a message with probability at mostVl|Ff|, if F is used as key space. An additional messe
and a secret key are therefore necessary for each test.

The necessary number of tests can be determined according to the attacker's assumed
define G to be an undirected graph whose nodes are the participants. Two particianttsyrre
directly connected in Giff Pi and i compare their input characters. In analogy to superpos
sending, the following Iemma 3.1 hoIds

Lemma 3.1 Let A be the subset of participants controlled by the attacker and ass
G"\ (Px A) to be connected.
If two honest participants;nd R receive different input characteysl), then
there exists a pair of honest parUupantsaﬁd R who are directly connected in G
and also receive different input characters.

- 12 -

Hence either Por B detects the difference and disturbs superposed sending.

Proof. Because of the connect|V|ty of &(Px A) there exists a path (R Repre Py = R) with
P, DA and (a P,y) 0 G\ (Px A). Itis assumed thaf # 1j, hence there exists an index z such
that N P Thdose @', i) = (kky4+p).01

Obviously the connectivity of G\ (Px A) is a necessary condition.

The scheme requires ‘|[Gadditional messages in each round, which is usually in the order of
O(M). If G = G', and if it is assumed that for each test message the authentication scheme requires
key chosen from F, the number of privately exchanged keys is increased by a factor of two in
comparison with pure superposed sending.

In a physical broadcast environment the number of test messages can be reduced to O(l
broadcasted messages by using a digital signature scheme [DiHe_76, GoMR_88] instead of a
authentication scheme. But this results in an only computationally secure scheme.

3.2.2 Message dependent key generation

3.2.2.1 Deterministic fail-stop key generation

A more efficient realization of fail-stop broadcast is obtained by combining the tasks of detection of
differences and stopping the network: if the keysakd K; used for superposed sending depend
completely (but not exclusively) on the characters received agdPp, then a difference between |
and | will automatically disturb superposed sending, thereby stopping message transmission.
Define &' := Kii' O -K;it andeit := it O -l for all i, j, t. A key generation scheme for
superposed sending is required which guarantees fqradH; directly connected in G:
SS Superposed sending: If for all rounds s = 1,...,t- 1 the equatigfi # I;° holds, then the
keys KJ and Iglt for round t areequal and randomly selected from F. More formally:
[OsO{1,....t-1}: ;= 0]0 K;'Og Fandy;'=0
Then superposed sending works as usual.
FS Fail-stop: If there exists an index s < t witfi # I;5, then the keys ¢ and K;! for round t
areindependently and randomly selected from F. More formally:
[OsO {1,...t-1}: g;®# 010 K;'Og Fandg;' Og F
Superposed sending is disturbed by any such pair, i.e. the global sum is independent o
the sent message characters. Because of the connectivity of &R)(#is realizes the
fail-stop property according to lemma 3.1 (with G¥G

In the rest of section 3.2.2 an arbitrary but fixed key pajf,K) with B UA and B UA is
considered. Therefore indices i, j are often omitted.

The most powerful attacker is assumed: he is able to observe the valqjésanﬁl I’(glt for each
round t directly and he can deliver arbitrary input characfessd]t to B and R. Participants Pand
Pj are assumed to by unsynchronized, hence the attacker can Wqﬁ*ﬂ)bﬁfore he dellvers]tlto
PJ-.
Let (F,+,) be a finite field and lefa, ..., M and B, 12, ..., Bmax! pe two sequences whose
elements are randomly selected from F and privately exchanquabgi R. Define fort = 1,... hax

— 13 -

t-1

Kijtizd"'zl bt_k‘ |ik
i (3.1)
t-1
Kjit::é‘FZ bt_k° |jk
Lemma 3.2 The key generation scheme defined by equation (3.1) satisfies the two condi

SS and FS formulated above.
Proof. Since &0k F, and sincg := K;;' - & is independent of'aK;;' Or F.
Assumeg;;®>= 0 for all s < t. Then obvious@gjt = 0 and condition SS is satisfied.

Now assume that s is the first round wéfff # 0. For simplicity lete" := ;" andd" := &;". The
differenceY are formed according to the following system of linear equations:

oY = 0 for u=1,...,s

.0 o D D
|j D.'js es ...

1H t2€t3” H %;sl%

SinceeS # 0, the matrix is regular and deflnes a bijective mapping. Sincé! alklF, alld" are
uniformly and independently distributed in F. The independence of;dll KK;;' and&s*L... &
follows from the independence of afl,a.,d and3s*L ... 5. []

The additional expenditure of this key generation scheme is given by

+ the 2+, - 1 privately exchanged key$ &' for each pair P R directly connected in G

(instead of only 5% for pure superposed sending),

» the storage of all{,-1 received input characters, and

* the (t-1) field additions and multiplications for computing the key for round t.
From the last fact it follows that the scheme requires an averaé%a—bfield additions and
multiplications per round. Hence the scheme seems not to be very practical.

Given the assumption that there is no additional communication betweead B about their
current states the schemeopimal with respect to the number of exchanged keys and additio
storage requirements.

Lemma 3.3 The key generation scheme defined by equation (3.1) is optimal with respect t
number of exchanged keys and additional storage requirements, i.e. eacl
generation scheme whideterministically satisfies conditions SS and FS require
at least
 the storage of allfo«- 1 received input characters and
* 2¢thax- 1 privately exchanged keys.

- 14 —

Proof. The first limit is obvious: the scheme has to distinguish between all possible sequences o
tmax INPUt characters, hence all input characters have to be stored.

For proving the second limit let Z be the secret key share(‘gi ayc; and u(ged for generating the

keys Kit, Kil, t = 1,... hnax Lt H(R), H(1), HK; D), H(K; & mad), H(k; @ mad) "Hz) be the

entropy of the random vaEiZabIes, + (5L, 0tmaxy, o= (L gtmay) K (=K,

Kjj max) = (Kij2,....Kj'ma9), Kj; e = (Kji2,....K;i'm29, and Z, respectively [Gall_68, sect. 2].
By applying standard rules of information theory

2, 2, 2, 2,
H(Kileij(tmax)Kji(tmax) | Iilj) < H(ZKileij(tr‘nax)Kji(tmax | lilj)

2, 2,
= H(Z | I|IJ) + H(Kileij(tmax)K“(tma)a | ZIIIJ)
Since Z is chosen independently from the attacker's input charactersij(Z H(Z), and since the
keys are completely determined by Z apd| H(Kileij(MK Z3l;) = 0.
Hence it follows
2, 2,

H(Z) = H(Kileij(tmax)Kji(tmax) | Iilj)
Since only a lower bound is proved, it can be assumed that the attacker qﬂmﬁldiﬁerently.
Then the keys |J<1, and Kjt, Kji®fort, s = 2,... fhax are independently chosen, i.e.

2, 2, 2, 2,

H(Kileij(tma>9Kji(tmax | Iilj) - H(Kileij(tmaQKji(tma>a)

= H(K” 1) + H(K” (Z’tmax)) + H(KJI(Z’tmaX))
Hence

H(Z) > H(KIJ l) + H(KIJ (2,tmax)) + H(KJI(Z,tmaX))
i.e. Z must consist of at least 1 #4t1) + (tnaxl) =2 * thax- 1 keys[]

3.2.2.2 Probabilistic fail-stop key generation

To get a more efficient key generation scheme it seems necessary to switch to a probabilistic versic
of FS: For a given fail-stop mechanism let Rydie the attackerfgrobability of success The attacker

is successful if in spite of choosing # I;° for a s < {5« there exists an index t, s <ty,y, such

that the global sum!@nd the message character§ M1,...,n, arenot independent.

For each dJIN define
FS If two honest participants receive two different input characters in round t they will disturb
superposed sending for the following d rounds.
The maximum number d for which 8 satisfied is a random variable with probability distribution
Prob(d).

Let &, &, ..., dMaX p3, ¥, ..., BMaX e pe randomly and privately selected elements of the finite
field F. Let B = b* = 0 and let KO = K;;®= 0 and {° = I = 0. Then define for t = 1,.. b

Kjt:=d+ 0Kt +ee |t 32

Kjit = d + bt . Kjit'l +ee. lt'l

— 15 -

Lemma 3.4 The key generation scheme defined by equation (3.2) satisfies condition SS
maximum number d for which % satisfied is a geometrically distributed randor
variable:

1 1 .01

Prob(d) =IF (1 _Ifl)

The attacker's probability of success is

Proly < 1- (1 -llFPtmaX

Proof. Since &0 F, and sincg := K;;'- & is independent of'aK;;' Or F.
Assumeg;;®>= 0 for all s < t. Then obvious@gjt = 0 and condition SS is satisfied.

Now assume that s is the first round wéifi # 0. For simplicity leg" := g;¥ andd" := &;".

In the next round@s*1= e +£S. Sinced” = 0 for all v< s the attacker has no information about tf
actual value of e before round s+1. By assumpfeh0, hence>*Lis uniformly distributed in F.

Now consider the rounds s + u + 1 witked.. If 35*U= 0, thendS*U*1= e «gS*U From round
s+1 the attacker knows the value of e, hed#¢&+1is not independently distributed in F.3f"U# 0,
then &Stu+l = ps*utle 5S*U 4 @ egS*U Since B*U*lis uniformly distributed in FpS*tu*lis
uniformly distributed, too, and sinc&€®'*1is only used in that round$*u*1is independent of all
otherd's.

Therefore the actual value of d is given by the least vaiié ébr whichds*d= 0. Since>**1is
uniformly distributed,

Prob@s*1£0) =1 -“1:|

and since fopS*dz 0, 35*4*1js uniformly distributed,

Prob@™*d*1z 0 35%4% 0) = 1 4,
From this it follows
1 1 .d1
Prob(d) = (1 -Ifl)

The independence of allj,...,K; and&5*1,... 5% follows from the independence of ah,a.,d
and3s*1,... &4,

The probability of success is simply the probability that st ga,
Proly = Prob(ds tyax- S)
Since = 0,

Proly, < Prob(d< ty,,) = 1 - Prob(d >/t = 1 - (1 _llFPtmaX
]

Since d is geometrically distributed the average value of d is |F| [Triv_82 p. 579]. Hence |F| m
chosen considerably larger thgpt

Corollary. Assume the key generation scheme of eq. (3.2). Then
Proly <1 - (%)tmaxl IFl

— 16 -

Proof. From lemma 3.4 it follows
PI’ODA <1- (1_“]£Ptmax: 1 - (l]l];PlFl * thax! IFI

The sequence (1%))(increases monotonously. Since3R
Pro <1 - é)tmaxl IFl

[

Obviously with a decreasing value qfi/ |F| the probability Prgbvanishes. From the corollary it
follows foreach &L <1

tmax <

1 1
IF| _é.ld(ﬁ) U PI’O[‘.A <L

E.g. for L = 10°
X< 7+ 1010
s
is sufficient, which is satisfied e.g. by |F| 298 and t,,, = 10?3. These values allow the
transmission of

tmax® Id(IF]) = 183+ 108 bit= 10%° bit
For a transmission speed of1Bbit/s (which is far beyond today's technology) this would be
sufficient for about 317 years.

The key generation of eq. (3.2) requires as many privately exchanged keys as the scheme defined
eq. (3.1), i.e. 2ghax -1.

To evaluate eq. (3.2) for round t it is only necessary to store the Iasti}%éy(ill’(contrast to the
last t-1 keys for eqg. (3.1)) and to perform 2 field additions and multiplications. In contrast to the
scheme of eq. (3.1), only large fields are suitable.

3.2.2.3 Combination of key generation and explicit tests

If the multi-access protocol guarantees that for some slots only one participant is allowed to choose
nonzero message, this participant can test the network:

Assume that superposed sending is stopped after a broadcast inconsistency by one of the ki
generation schemes described above, i.e. the global sums are randomly distributed. Then ea:
participant Pwho is allowed to use a slot exclusively and sends a message randomly selectéd from F
will receive a wrong message with probability 1 <°|Afhus he detects the disturbance with the same
probability and can explicitly stop superposed sending by choosing his following output characters
randomly from F instead of according to eq. (2.1).

If it is guaranteed that each participant sends a test message within a fixed number s of slots and
there are at least two honest participants, this makes it unnecessary to consider more than the [
(s-1) c input characters for key generation: after s-1 slots superposed sending will be explicitly
disturbed with high probability by some honest participant who received a disturbed test messag
instead of that one he sent.

The required fairness of the multi-access protocol can deterministically be satisfied by superpose
receiving and in a probabilistic sense e.g. by reservation by superposed receiving (sect. 2.1). If e.(

- 17 -

each participant reserves exactly one test message and at most one real message in each re
phase, each participant tests the network within s = 4 « n slots.

Obviously this fairness can only be guaranteed if all participants behave fair, i.e. each unfai
therefore dishonest) participant can prevent some honest participants from successfully doin
required reservation. Therefore each honest participant who cannot send a message within
should disturb superposed sending.

The additional rules don't help the attacker: Assume that an honest particigetecEs a disturbance,
i.e. '# M;!, and stops sending. Nevertheless the attacker is not able to observe the sending o

If the disturbance detected by Was a consequence of a previous broadcast inconsistency
sending was stopped anyway, thus there is nothing to show. Otherwise and if all honest partic
receive the same input character, the unobservabilityfofl&ws from lemma 2.1, and if the attackel
manipulates the broadcast property for round t, the sending is stopped by the key generation :
anyway, independent of'®test.

The proper modifications of the key generation schemes will be discussed in the followinc

sections.

The advantages and disadvantages of the combination are the same in both schemes:

» For key generation the parametgp} is replaced by (s-1)ec, which decreases the number
additional secret keys from,x to (s-1)sc, and for deterministic key generation the computati
complexity from O(t,5,2) to O(£c?) operations and from Q) to O(s«c) required storage.

* Some honest participants may be forced to send meaningless test messages, thus the tht
of the DC-net is decreased. The number of additional test messages depends on the parti
sending rates.

3.2.2.3.1 Combination of deterministic key generation and
explicit tests

Assume that the deterministic scheme of eq. (3.1) is used in combination with explicit tests.

If round u is the first disturbed round, the attacker has no information about the privi
exchanged keysVbv = 1,...,u. After round u + (s-1) * ¢ the D@et will be disturbed with high
probability by at least one honest participant who has detected the disturbance. Hence ins
tmax- 1 additional keys at most (s-1) « c are really necessary:

t-1
KijtZ:d+ bt-kK e |ik
k=t-(s-1)sc
(3.3)
t-1
Kit:=d+ btk e |k

ji
k=t-(s-1)ec

— 18 -

Lemma 3.5 The key generation scheme defined by equation (3.3) satisfies condition SS.
Together with the additional rules for testing and disturbing it ensures the fail-stop
property in a probabilistic sense: Let h be the number of honest participarts, h
Then

Proof. Since &0r F, and sincé := K;;' - & is independent of'aK;;! is uniformly distributed in
F. Assumeg;“ = O for all u <t. Then obviousl@;l-t = 0 and condition SS is satisfied.

Now assume that u is the first round wetfy # 0. According to lemma 3.3 (withyby = (s-1)+c-1)

the global sums of the following (s-1)sc-1 rounds are all randomly chosen from F. Since it is
assumed that during the s slots each participant tests the network, the only chance of the attacker
that during the first s-1 slots none of the at least h-1 honest participants detects the disturbance. Tl
probability that a single test doesn't detect a disturbancefjhfice the attacker's probability is less
than |FF("-1),]

The scheme requires only (s-1) « ¢ additional keys instead gf,i& ©f the key generation scheme
of section 3.2.2.1.

The number of field operations per round is in the order of (s-1) * ¢ - 1. To avoid unnecessarily
expensive field computations, F = GF(2) should be chosen, therefore whProh, <1/ Z.

Since each of the n participants should send a message within s slots, s should be in the order
n. Then the scheme requires O(nec) operations. For F=GF(2) and therefdag(Proly) this is
equal to O(n « -log(Prgd).

3.2.2.3.2 Combination of probabilistic key generation and
explicit tests

Assume that the probabilistic scheme of eq. (3.2) is used in combination with explicit tests.
By the same argumentation as above it follows that instegag,@f tl additional keys at most
(s-1) » c are really necessary, i.e. it is possible to use the (s-1) » Fkeys tS1)*¢L cyclically:

Letdl, ..., dMaX e 19, ..., #5161 pe randomly chosen keys. Then

Kijt = g + g mod (s-1)-c, Kijt—l +ee lt-l
(3.4)
Kjit = g + g mod (s-1)c, Kjit—l +Eee !t-l

Lemma 3.6 The key generation scheme defined by equation (3.4) satisfies condition
SS.Together with the additional rules for testing and disturbing it ensures the fail-
stop property in a probabilistic sense:

Proby < 1 - (L -léP(s'l)'C

Proof. The first part is proved as in lemma 3.4. The worst case for the second patrt, i.e. the bes

case for an attacker, is that from all testing participants only the last two are honest. Then the attack

— 19 —

Is successless iff the actual value of d (defined as for eq. (3.2)) is greater than (s-2) * c, and"
detects the disturbance. Hence

Proty <1 - Z (Prob(d=(s-2)+c+j) * (1 ﬁ)) - Prob(d (s-1)ec) » (L-I;r)

< 1 - Prob(c (s-1)+c) * ¢ - =

|IFf
1 1
= - -— (S'l)‘C-l. -
(R e
1, (s-1)e
<1-(1 -ﬁ@ 1)-c
[]
Again only large fields F (e.g. Id(|F})150) are suitable.
3.3 Final remarks on fail-stop broadcast

Superposed sending together with one of the discussed fail-stop key generation schemes (sec
guarantees the desired unconditional sender and recipient untraceability.

If one tries to transform this nice theoretical result into a real communication network, a |
practical problems must be solved, but none of them becomes really harder if fail-stop broad
used in addition to normal superposed sending.

For this consider the performance of superposed sending measured by

» the number of exchanged keys per transmitted message,

e jts communication complexity,

* its computational complexity,

e and the reliability of the scheme.

combination with explicit test
no yes
o . SRR
s (3.2.2.1)\\\\\ (3.2.2.3.1
c E \ . . >
S| E High computational complexi 2
T |2 "y =
{UN\\\\\ %
5 S
o [B.222) (3.2.2.3.2 3
> +— D
2 %) Constant number of 4 fiel 7 %%
8 | operations and 1 stored ki & /
o per round and key, 3
2 [no additional messages //m /

Figure 5 Comparison of fail-stop key generation schemes.

- 20 -

Thenumber of additional keysis increased by at most a factor of two, which was shown to be the
optimal value for deterministic key generation schemes without explicit tests. In theory this seems tc
be acceptable, and in practice one will mostly choose pseudorandomly generated keys anyway (at
by this will loose the unconditional untraceability).

Communication complexity (Fig. 5) None of the pure key generation schemes (sect. 3.2.2.1,
3.2.2.2) requires the sending of additional messages.

If combinations of key generation and explicit tests (sect. 3.2.2.3) are used, some hones
participants may be forced to send meaningless test messages. The number of additional te
messages depends on the participants' sending and testing rates. If real messages are end-to-
encrypted they appear to be randomly selected ffgmeF they can be used instead of explicit test
messages.

Computational complexity (Fig. 5) The key generation requires some additional time and memory
for each exchanged key. For that reason the schemes with deterministic key generation (sect. 3.2.2
3.2.2.3.1) seem to be less practical, but if one uses one of the schemes with probabilistic ke
generation (sect. 3.2.2.2, 3.2.2.3.2), the computation requires only the storage of the last key ar
two field additions and multiplications per round and exchanged key.

All schemes except that of sect. 3.2.2.1 realize pnbpabilistic untraceability, i.e. there is a
small probability that an attacker will successfully transmit different messages to different
participants. But all four schemes don't rely on any unproved assumptions.

For probabilistic key generation (sect. 3.2.2.2, 3.2.2.3.2) only large fields F are suitable, but this
is no hard restriction:

e Usually the cardinality |F|of the set of all transmission units "message" will be relatively

large. It doesn't matter whether one uses a small field and a large c or a large field and a sme
C.

* The reservation map technique described in [Pfil_85 sect. 2.2.2.2] and (reservation by)
superposed receiving (sect. 2.2) require a large cyclic group, @jyway. It is important to
notice that the group (B) used for superposed sending need not be the additive (or
multiplicative) group of the finite field (F,+,¢) used for key generation. E.g. one can use the
field F = GF(2") for key generation and, by interpreting the elements of @F42 binary
encoded integers, the additive group of integers modUllo2superposed sending.

Thetransmission delayintroduced by key generation could be decreased by parallelizing the key
generation for different rounds, which can be done in two ways.

One can use k > 1 Denets, say D&, ..., DC"_4, in a time division technique, i.e. in round t
the DC-net DC'; 104 kIS Used. To preserve the untraceability each interaction between participants
should be completely performed using only a singl¢ &, i.e. each participant should answer a
message only by that Dehet by which he has received the message.

The other possibility is to use only one DB@et, but to make the keys for round t not dependent
on the directly preceding rounds t-i, i = 1, 2, ...,t-1, but on the rounds t-i, i = k, k+1,..., t-1 for a
k > 1. To preserve the untraceability each participant has to wait at least k-1 rounds before he answe
to a received character.

Naturally the fail-stop property decreases t@kability of the network, since every inconsistent

broadcast will immediately stop the network independent of whether it was caused by an attacker or
physical fault. But most of transient faults in a network can be tolerated by usual data link protocols
[Tane_88 sect. 4], and if a permanent fault occurs (e.qg. if a participant's station is damaged or a

- 21 -

links between two participants are cut) superposed sending is disturbed and the network is s
anyway. Therefore reliability is not essentially reduced by the discussed fail-stop schemes.

Hence, the pure probabilistic key generation scheme (sect. 3.2.2.2) with an appropriately large
seems to be the most practical choice.

The problem of combining untraceability asetviceability in spite of active attacks is discussed in tr
following section 4.

4 Serviceability and untraceability

Up to now, we have a network which guarantees unconditional untraceability. We showed th
serviceability is not greatly reduced compared with the original DC-net. Nevertheless, withou
further measures, the serviceability is not good, so there is reason to discuss whether it
improved without giving up the unconditional untraceability. This has also been done in [Chal
section 2.5] very briefly, but the protocol proposed there contains a weakness, which we
remove, and needs a lot of refinements anyway. Also it relies on the assumption of reliable broi
like the original DC-net, but in contrast to superposed sending alone and theeB@nd we will
discuss how realistic this assumption is or can be made.

There are two possible causes for disturbance of superposed sending: faults and active
Although we mainly discuss active attacks, some remarks on fault tolerance are in order.

1. There is no well defined difference between dishonest participants and participants v
stations are faulty. Hence for practical reasons the first simple disturbances of a station ¢
always be viewed as a fault, whereas every notorious disturber should be viewed
attacker and ultimately be eliminated from the™®@t. (One can try to make this difference
bit clearer by introducing mutually trusted devices: e.g. if the device looks like having |
smashed with a hammer, probably the participant is an attacker, whereas if the device
intact from outside, an unintentional fault would be assumed.)

2. As an active attacker can simulate or cause physical faults, measures against active atta
help against faults. Nevertheless (because usually a faulty station or a faulty part ¢
network behaves stupidly) it should always be checked whether a network can be made
efficient if faults are first excluded by easier measures than those necessary against
attacks.

3. Fault tolerance mechanisms cannot be implemented without considering a potential
attacker: Otherwise they might offer the attacker a possibility for disturbing thienBiGr for
tracing honest participants, e.g. by claiming that those were faulty.

For point 3. one can distinguish two classes of fault tolerance measures and corresponding fau

The first class consists of measures which can be implemented in a way transparent fdrtie¢ D
and therefore don't affect the untraceability (i.e. these faults are "under" superposed sendin(
DC*-net is considered as a layered system). Examples for this class are

- 22 -

» error detection codes and appropriate data link protocols [Tane_88 sect. 4], which can be use
to tolerate transient transmission faults, and
» fault masking techniques [AnLe_81] to tolerate most faults of the stations.

The second class consists of measures to tolerate those faults which could not be eliminated by tl
first class and therefore affect superposed sending directly: e.g. a station
» accepts an incorrectly transmitted value as input and therefore, according to the fail-stop key
generation scheme, computes incorrect keys for all following rounds, or
* is not able to compute the outputs properly, or
* is not able to submit the outputs for the global superposition, e.g. because all links between i
and the other stations are permanently cut.
All these faults have the same result: the'Br@t is permanently disturbed. To recover the'B@t
from such failures it is necessary to detect faults, to localize disturbing stations (which are
nevertheless perhaps owned by honest participants), and to do some error recovery.

For some kinds of faults of the second class, all known techniques to tolerate them assume that tt
faulty station is eliminated from the Dhet until it is repaired or replaced. Therefore the set P of all
active participants will be dynamically defined and it is important to ensure that

» the connectivity of G \ (F A), i.e. the presumption of lemmata 2.1 and 3.1, is always

satisfied, and

» the set of all honest participants P \ A must always be large enough to satisfiitiee

notion of anonymity.
If a faulty station is not eliminated from the D®et it may behave arbitrarily. Therefore such faulty
stations should be viewed as attacking, i.e. A consists of all attacking particgrahes all
participants whose station is faulty but not eliminated.

The untraceability of the DGnet should not be decreased. Unfortunately the fault tolerance
techigues using elimination and reintegration of stations require the knowledge of which participants
stations are faulty and which others are repaired and will be reintegrated in the next round. Thit
knowledge allows some new attacks similar to those described in section 3: If the attacker sends
message M and doesn't get the expected answer from his anonymous partner X he can argue tha
was one of those participants whose stations have become faulty in one of the last rounds
Furthermore if M is the first message of a protocol the attacker can repeat M periodically. If at some
time he gets an answer he can argue that X was one of the last reintegrated participants.

This attack cannot be detected since the attacker behaves like an honest participant, and it cou
only be prevented if this kind of faults were not tolerated, i.e. if the entire network is stopped until all
faulty stations are repaired.

For the following (and in practice) it is assumed that this lack of untraceability is acceptable.

For concrete fault tolerance measures see [EcNi_89, Nied_87, MaPf_87, Pfil_85 sect. 3.2, Pfit_8
sect. 5.4]. In the following, only active attackers are further considered.

- 23 —

4.1 Serviceability in spite of active attacks

Without any precaution each faulty or dishonest participacau untraceably and enduringly disturt
superposed sending by choosing @ F instead of according to eq. (2.1), the fail-stop ke
generation, and the multi-access protocol, etc.

In contrast to faults, active attackers cannot be localized in a special localization phase
disturbance has been detected, because during such a phase a clever attacker would certa
disturbing. Also the localization must not take place for a disturbed slot, if someone else mighi
legitimately tried to send a message in it, because that could lead to the tracing of this message

Therefore in [Chau_88 sect. 2.5] a protocol for laying "traps” and prosecuting attackers wh
caught in them is suggested. The protocol (like the original DC-net) depends on the assumptis
reliable broadcast network.

In section 4.2 the protocol is repeated and it is shown that it is insecure (even under this r
broadcast assumption): by a kamikaze attack the sender of a randomly selected message can ¢
identified. In section 4.3 the protocol is improved in a way which preserves the untraceability
the reliable broadcast assumption.

In section 4.4 it is shown that without the reliable broadcast assumption the protocol of s¢
4.3 can be used for successful attacks on the untraceability. Then the possibility of serviceab
spite of really unconditional untraceability is discussed and a (not very efficient) protocol devel
which achieves this. In section 4.5 a protocol is described which guarantees serviceabilit
untraceability based on the reliable broadcast assumption and the assumption that there is ar
majority of participants.

4.2 The original protocol based on the assumption of
reliable broadcast and how it can be misused

Throughout section 4.2 and 4.3, the existence of a reliable broadcast network is assumed,
assume that the attacker is not able to manipulate the consistency of broadcast. Thus the untra
is not really unconditional. We also assume that this network allows each participant to determi
origin of each published message unambiguously.

The term'P; publishes message X' means thatBends x to all other participants using the reliab
broadcast network.

The problems discussed in section 3 are not posed any longer on this assumption, thus the
need for fail-stop key generation. As mentioned in section 3.1, the assumption is not very re:
see section 4.4.

As far as serviceability is concerned, the attacker is assumed to be computationally limited.

It is important to notice that independent of any assumption on possible attacks on serviceabill
untraceability the attacker is restricted only by the assumption of reliable broadcast. So, in a «
sense, there ateo different attackers to consider simultaneously!

- 24 —

4.2.1 The original protocol by Chaum

The original protocol [Chau_88] assumes that the reservation map techique with GF(2) as group (ct
section 2.1) is used, and that each participparedrves exactly one slot in each reservation phase.
Before each reservation phase he decides whether to use this slot for sending a real message or
sending drap, i.e. a meaningless message whose only purpose is to be disturbed by an attacker. If h
decides to send a trap and he has chosen index k for the reservation, he announces this by publish
an encrypted version of the messabase the slot reserved by index k for sending atrap y" . This
message will be called "trap proof" in the following.

Each participant commits to his output for slot x before publishing it. This prevents attacking
participants from choosing their outputs depending on the other participants' outputs.

If the trap of Ris disturbed, Ppublishes the trap announcement in clear together with the used
encryption key (and for probabilistic encryption the coin tosses used for encryption).

Then the attacker @ osecuted:

Each honest participant publishes his message characte[%aMd all keys Iﬁ(t used for rounds
t of the slot x which corresponded to index k. From these all publicly known outglﬁm@ be
checked, hence at least one attacking participgofu? be detected: either he has correctly published
his really used, but not allowed valugM 0, or he has modified at least one kegf Kor an honest
participant |, which will be detected from Af ;tKjat.

This procedure of publishing and comparing the secrets of a round t will be callesti gation
of round t".

Notoriously attacking participants will be eliminated from the DC-net, and if only a notoriously
incorrect key pair is found, this key pair will be eliminated from the key graph. The latter will finally
result in a DC-net with partitioned key graph: one partition of the key graph consists of all attacking,
the other of all attacked participants.

4.2.2 The basic attack

Unfortunately the trap-protocol has a serisuskness. Even a computationally limited attacker is
able to forge a trap proof for an arbitrary slot not reserved by him a priori.

For this, the attacker publishes the required encrypted meYaagdhe slot reserved by index k
for sending atrap y", but without reserving that slot, i.e. he chooses another index than k for sending
his 1. Now he hopes that some other participant will use index k. This will happen with probability
=1/n, if the frame length is=n?, as proposed, and as there are n reservations in this frame.

If it does not happen, he gives up for this time and waits for the next reservation frame. So far
the attack cannot be noticed, so the attacker can keep trying arbitrarily long. On an average, he wi
have to wait n/2 reservation frames for success, which is acceptable for him.

If indeed another participant uses index k, the attacker sends the trap message y in the slot >
corresponding to index k, as announced. Note that the attacker can read the message y* sent by f
legitimate user of slotxin spite of the superposed y.

Then he publishes his trap proof for slptand thus causes the deanonymization of the legitimate
user of slot k. If this legitimate user has also published a trap proof for glbti obvious that one
of the two proof publishers was an attacker, but it cannot be distinguished which one. Otherwise al
participants publish their secret keys used for slpamd the legitimate user will be identified by the

— 25 —

prosecution protocol. On the one hand he has thus been traced as the sender of message y
other he is unjustly punished as attacker.

4.2.3 Refinements of the original protocol and the
remaining kamikaze form of the old attack

The attack can be made more complicated and more dangerous for the attacker by adding sor
to the prosecution protocol, which try to unmask the attacker by the fact that he has not resen
slot. (So far, in the case that y* was no trap, there was no risk at all for the attacker.) Of cour:
means that round k of the reservation frame must be investigated.

Then the attacker will loose a key, but this is not sufficient for untraceability based on the re
broadcast assumption: Even if only all secrets of the reservation round k, not of,séwe x
published, the attacker can still identify the sender of message y*, because the attacker publis
trap proof after y* has been sent, and the sender is the only person except for the attacker whc
to have reserved slof.x

The probability that this happens can be decreased if not all secrets are published at once,
tries to identify the attacker before the legitimate user has to publish his secrets. Thus the pari
who published the trap proof should always be the first to publish all his secrets, and all pub
secrets should be discussed immediately. l.e. before any other secret is published, the partn
whom the keys are shared must publish whether they agree to the published values. The inves
should be terminated as soon as the first incorrectness or disagreement about a key has been «

If the attacker is only one participant, the other participants are now secure. But this cani
assumed. For the case that there are several participants colluding as attacker, call the o
published the trap proof,PSince R has not reserved slog,Xhe prosecution protocol forces him tc
publish the wrong message character for the reservation round. The error made by this r
corrected by changing a secret key exchanged with another participant, and as the ke
immediately discussed, this must be an allied attacker, ;gdf the real sender has to publish hi:
secrets of the reservation round befogetfe will be identified. Otherwise Rvill be assumed to an
attacker and will at least loose a key from the key graphy, oaf?look for a third allied attackeg P
who has not yet published the keyKand can change that key, etc. The attack is called "kamika
now, because in any case the attacker will at least loose a key each time he attacks.

4.2.4 An improved kamikaze attack for the refined protocol

As the attacker is now sure to loose a key each time he attacks, he might find it unsatisfactory
be able to choose the message which he is going to trace. Therefore he could change his tac
not send y in slot i.e. choose all his message characters as 0. Then if y* is a trap he runs nc
and if it is an uninteresting message he can also save his key for future use. Even if secret:
message slot are published after an inconsistency in the reservation round has been detected,
not lead to complete unmasking of the attacker, as he can again change the keys, preferably tl
he changed in the reservation round.

— 26 —

4.2.5 Influence of the reservation technique on the quality
of the protocol

Similar protocols and attacks are conceivable for various reservation techniques, not only for the bit
map one. In this section an additional weakness of the protocol is discussed, which can be removed
another reservation technique is used, and it is checked that the original attack is not avoided if th
other reservation techniques of section 2.2 are used.

4.2.5.1 A better kamikaze attack specially for the bit map
reservation protocol

An additional weakness of the original protocol is that the reservation map techique with GF(2) as
group does not allow to decide deterministically whether only one participant has reserved a slo
(although this is the case as long as there is no active attack, because in the original protocol it
checked that there are exactly n reservations in each frame).

Assume two colluding attackerg Bnd R. First they publish two trap proofs for two indices k
and k' of a reservation frame. (If the reservation frame to which a trap proof belongs cannot be see
from the encrypted version, they can even publish many more.)

Now both of them try to reserve the slots corresponding to the trap proofs, i.e. output a 1 in
rounds k and k' of the reservation frame. Additionally, they choose the two indie@sl i to
reserve one slot for each of them. This behaviour cannot be distinguished from the correct one. |
fact, if they have a key in common, they need not even agree on this behaviour in advance: they ce
just both lie about their keys in rounds k and k' later. In this last case, they cannot even be discovere
if the reservation phase is investigated for some other reason.

Again, if nobody uses an index for which they published a trap proof, they just wait and repeat
the attack.

If some time an innocent user is caught in one of the traps, say for index k and corresponding t
slot %, both B and R use this slot too, i.e. they send messagesg y,. Note that they can still see
the message y* of the legitimate user. One of them then publishes the trap proof. Now both of ther
and the legitimate user show that they reserved this slot, so there is no inconsistency at all in round
of the reservation frame, nor in slgt X'he only way to punish the attackers is by showing that they
reserved more than one slot.

As both will claim that they didn't, it seems necessary that each participant publishes which slot he
had reserved, and that the reservations for the remaining two slots are investigated to find a
inconsistency.

Thus the attackers have not only traced one message, but all messages corresponding to o
reservation frame.

This attack cannot be avoided by saying a priori that in such a situation two of the three participant:
who reserved the slot must be attackers, so one could remove all the keys these three share.

First, this would allow a simple kamikaze attack (although with little chance of success), where
the attacker reserves two slots too much and hopes that three other reservations will collide; then tho
honest participants would loose keys.

— 27 —

Secondly, this new attack is not even kamikaze for an attacker who can break the comm
scheme (although success is still rare): The attacker could reserve three slots only in such sit
where he has already found out that three others will collide. This situation is possible, as the a
on untraceability is not computationally limited, at least if a commitment scheme is used in whic
indistinguishability of trap and non-trap announcements is only computationally secure. (Tl
called "secure for the verifier" in [BrCC_88], and otherwise there is no reason against using ¢
scheme.) Then the resulting situation is indistinguishable from the one in which all participants
had no collision are honest and two of the three who suffered the collision are attackers; thus t
attackers cannot be punished.

It should be noted that if there were a practical application in which the possibility of succe
kamikaze attacks could be tolerated and thus the original protocol with the refinements of 4.2..
(instead of a more secure, but slightly less efficient one), it is essential that reservation frame
less than n ones are not used. Otherwise collisions of three messages, one of them a trap, cot
by chance or an attacker could try to force them without being detected.

4.2.5.2 An attack on serviceability for the bit map reservation
protocol

A completely different attack can be successful against serviceability: If there are several coll
attackers, in each reservation frame two of them can choose the same index, so that the res
must be repeated. This could have happened by chance, so there is no good reason to punish
there are only a few attackers, so that the same pairs of participants collide very often, one
nevertheless have to punish them after a while, as then the probability that honest participa
punished can be made negligibly small. If there are many attackers (there can be up to n-
borderline between allowed collisions and collisions considered as attack would have to be ca
chosen.

4.2.5.3 Reservation map with large group

The same protocol and attacks as those described in 4.2.1 - 4.2.4 are possible when a larger
used for reservation map (see section 2.2).

The attack of 4.2.5.1 is avoided if2m (n was the number of participants, m the modulus).

If m > n, reservation frames in which a few reservations collided can be used without allowin
attacks mentioned at the end of 4.2.5.1, as an honest user is always sure whether there
collision with his own reservation or not. Therefore, also the attack of 4.2.5.2 would no long
possible, i.e. the attackers (the computationally limited kind assumed for serviceability) could
force collisions among themselves, and those would not harm anybody else.

As the length r of the reservation frames can be chosen shorter than for m = 2, the tin
attacker must wait before success is a bit shorter than for m = 2, but this does not matter much

- 28 —

4.2.5.4 Reservation by superposed receiving

Still the protocols and attacks of 4.2.1, 4.2.2 are possible in principle. Nevertheless the situation i
much better, as the probability that an honest user chooses the same reservation message RM as
attacker decreases exponentially in the length of the reservation messages, whereas the length of -
reservation frames increases only linearly. Therefore the probability of success for the attacker can t
made arbitrarily small.

The refinement of 4.2.3 is not possible, at least not without tracing more messages than th
attacked one, as some of the reservation messages are never sent alone, but only computed from st
with others.

This can be changed if during the reservation those reservation messages which could b
computed from others are nevertheless at the end repeated explicitly by their senders. The reservati
phase stays deterministic, and its length increases by less than the factor two.

The attacks of 4.2.5.1 and 4.2.5.2 can be avoided just like in 4.2.5.3.

4.3 The improved protocol based on the assumption of
reliable broadcast

The following protocol can be seen as an extension of that of [Chau_88 sect. 2.5]. Especially the ide
of laying traps is kept up, but the trap announcements are linked with the traps in a better way. Als
we refine several other parts of the protocol, which would be needed for the original protocol too
(e.g. the "palaver phase"). Before the single parts are considered, we give an overview:

Assume a reservation protocol by which n' of all n participants have successfully reserved a slot
Each participant Pwho has reserved a slgtsends an encrypt@hnouncementin slot %, and in slot
n'+x he sends &ap or anon-trap, i.e. a real message, according to his announcement.

Thus trap announcements and traps are unambiguously linked by their slot numbers, i.e. th
attacker cannot forge a trap-proof a priori for a slot which will be used by another participant. If
announcements are unequivocal, i.e. if there is no message which announces both, a trap and a n
trap, the attacker cannot misuse non-trap announcements for initiating the prosecution protocol.

Hence the problem of the original protocol is not posed here.

Call the three phases of the protoeservation phaseannouncement phasegandsending phase
respectively.

— 29 —

sending phase

either
or
reservation phase trap / non-trap nonanonymous
announcement phase palaver phase 00
whether to start
the sending
hase . co mplete
P investigation of the
first two phases
Figure 6 Phases of the improved protocol.

As in the original protocol, the participants' reservation and announcement behaviour is assul
be independent of their real sending wishes, so that the first two phases may be investigated. C
sending phase has been entered, the reservation and announcement phases may no I
investigated. So the reservation and announcement phases and the sending phase must be :
by a non-anonymouysalaver phase in which each participant who has detected a disturbance du
the first two phases can prevent all others from entering the sending phase. In such a ca
possible to investigate the first two phases completely without decreasing untraceability. Othe
I.e. if the sending phase is entered, the first two phases will never be investigated. Disturk
during the sending phase are investigated only if the corresponding trap proof is given.

The structure of the protocol is depicted in fig. 6. It is described in full detail in the follow
sections.

As in section 4.2, the restrictions on the attacker are:
» for the basic version of our protocol
» for untraceability: the reliable broadcast assumption
» for serviceability: the reliable broadcast assumption and a computational restriction
* in an alternative version
» for untraceability and serviceability: the reliable broadcast assumption and 3 ¢ |A| <
(As discussed in section 4.3.1.2, if 3 « |A| < |P| holds, a much weaker assumption abo
underlying network implies the existence of reliable broadcast.
Another protocol which assumes the attacker to be restricted by the reliable broadcast assu
and 2 ¢ |A| + 1 < |P| for untraceability and serviceability is described in section 4.5.)

We will describe both versions in parallel and call the first one the versiorcamiputationally
secure serviceability the latter the version withformation-theoretically secure serviceability

One has to bear in mind that if an attacker succeeds in having an honest participant rega
attacker and thus eliminated from the network, this is an attack against untraceability. (One car
that this participant, not being able to send any longer, is perfectly untraceable. But at lee

— 30 -

remaining honest participants are less untraceable than before.) Therefore in the version witl
computationally secure serviceability, for this kind of attack the attacker is only restricted by the
reliable broadcast assumption. Of course, the same holds for the elimination of a key between tw
honest participants.

As in section 4.2, the terh®; publishes message X' means thatPsends x to all other participants
using the reliable broadcast network. By assumption each participant can unambiguously determin
the origin of each published message.

4.3.1 Outputs and output commitment

All outputs are published on the assumed reliable broadcast network. In all following situations the
number of outputs needed from each participant is known a priori. So we can assume that it has als
been decided a priori when each participant has to publish which output (synchronism has to b
assumed anyway).

As in the original protocol, for some slots it is necessary to prevent the attacker from choosing his
local outputs depending on the other participant's local outputs, i.e. each participant has to commit t
his local output qi for several rounds before knowing the other participants' outputs for any of these
rounds.

Otherwise assume that the attacker is the first one who gets all local outputs, i.e. who can compu
the correct global sum. Then he would be able to disturb the reservation phase by producin
collisions, and during the sending phase he could disturb all obviously sensitive messages, e.g. ¢
messages which are addressed to himself.

This output commitment can be done ...

» Forcomputationally secure serviceability by a computationally secure commitment scheme
[BrCC_88]. Each participant distributes his commitment to all participants in a first phase. In a
second phase the commitments are opened, by this distributing the oyltputs O

(To improve efficiency, Pcan use a single commitment for a|f 6f one slot together.
Also the x! for reservation rounds could be shown only on demand, e.qg. if a collision has
occurred. But this is not possible for the sending phase, as then usually only the sender of
message would know about a disturbance and would thus identify himself by asking.)

One can also use a one-way function f, as described in [Chau_88 sect. 2.5]. The yAlue f(O
is used as commitment for,'@1 F. Of course it must be ensured that F is large enough to
avoid that someone compares all values f(x) with a commitment, or enough rounds must be
grouped together for commitment.

Naturally this is still no real commitment scheme as defined in [BrCC_88]J: if the attacker
can guess a special x, he can test whether a participant has committed to x. But in our case, f
most f, this should not help him because of the superposed keys: even if the attacker suspec
the message which might come out as global stan® controls all participants except for
two, R and P, who have a key in common, he is not able to test all |F| possible combinations
of Ot and Q.

But there are efficient and insecure implementations of this scheme: Assume f is an
exponentiation function of GF(p), p a large prime, andZ/g,_1)z. Inverting f is the well

— 31 -

known discrete logarithm problem [Odly_85, CoOS_86, LoWi_88, Pera_86]. Then
product of all output commitments is equal to the commitment to the sum of all outputs, i
the global sum. Thus if the attacker is the last one to publish his commitment, he can ch
advance whether the global sum will be equal to an expected sensitive message.

This implementation may be secure if the attacker is not able to expect message
because each character contains a large random part. Then the function may be useft
case that the reliable broadcast assumption is implemented by Byzantine agreement: ins
immediately agreeing on everything, the participants agree only on the product c
commitments and the sum of all outputs. Only if product and sum are incompatible, or
slot is investigated afterwards, they agree on all commitments and outputs afterwards.

* Forinformation-theoretically secure serviceability the schemes of [BeGW_88, ChCD1 ¢
can be used for implementisgnultaneous broadcastas defined in [CGMA_85].

They guarantee untraceability only under the assumption 3 ¢ |A| < |P|, too, as
attackers can give the wrong impression that an honest participant did not fulfil
commitment and must be eliminated. It's therefore clear that this version of our pro
cannot guarantee untraceability without the assumption 3¢|A| < |P|. (The same problem
in section 4.3.3).

e physically, as also mentioned in [Chau_88], e.qg. if all outputs occur simultaneously
differnt frequencies of a network. One must bear in mind that this means not only the
participants simultaneously output one bit each, but that all participants output all bits of .
at the same time.

Note that for computationally secure serviceability an attacker who can break the output comm
scheme does not endanger the untraceability, only the serviceability. Thus there is no special
choose a commitment scheme which is unconditionally secure for the prover or the verifie
[BrCC_88])): If the attacker (as prover) can open commitments in two ways, he is not bound
own commitments. If (as verifier) he can decrypt the commitments of other participants, he
choose his own commitments depending on theirs, if he has to publish his last. In both cases
just the original problem of serviceability.

A participant who does not output anything when he has to, or whose output does not mat
commitment, is considered as an attacker and eliminated from the network. Because of the r
broadcast assumption, this cannot happen to him if he is honest. Also the other participants car
about elimination locally, and all honest participants will get the same result.

4.3.2 Reservation phase

Recommended reservation behaviourTo be able to investigate the first two phases without loss
untraceability (before entering the sending phase), it is necessary that during the first two phe
participant uses any sensitive information. Therefore the reservation behaviour in the first two [
must be independent of the participants' real sending wishes, i.e. some participants will re
message slots without using them, and some other participants will not be allowed to se
messages they wish.

- 32 -

In [Chau_88] it is suggested that each participant reserves one slot in each reservation phase. -
satisfy the independency requirement completely, the ratio of traps and non-traps used stybe

fixed too. Obviously, instead of only one message, eachrPreserve a fixed number of traps and of
non-traps.

Allowed reservation behaviour: It must be clear in which situations a reservation phase is
investigated, and when a participant is considered as attacker.

The easiest way to fix thetlowed behaviour is to force each participant to reserve a fixed number of
slots each time. In the following we assume that this number is 1.

With respect to untraceability, one could also have replaced the fixed numbers by fixed reservatiol
rates. This is not advisable with respect to serviceability, as it would allow attackers to send more
messages on an average than honest participants, because in each single reservation phase this c
not be proved.

It must also be regulated what happenseservation collisions.

All reservation techniques described in section 2.2 are probabilistic, i.e. for each of them it can
happen to two (honest) participants to reserve the same slot: For reservation map techniques they m
choose the same index, for reservation by superposed receiving they may chpeseNgM

So a collision cannot be considered as attack. To prevent the attacker from disturbing the
reservation phase by causing such collisions with honest participants, the reservation phase must
protected byoutput commitment (sect. 4.3.1). For reservation map techniques, one should protect a
complete reservation frame together (protecting each round alone gives the attacker a slightly bett
chance to disturb the last rounds and is usually less efficient). For reservation by superpose
receiving the slots of a reservation frame can of course not be protected together (because they depe
on each other). One could be tempted to protect only the first slot, because this first one determines :
following reservation slots. But of course this holds only if all participants are honest. Attackers who
share keys only have to decide upon the sum of their reservation messages in the first slot, becau
they can make up for any internal difference later by claiming they had other keys.

Output commitment does not prevent attackers from causing collisions among themselves, like ir
4.2.2.5. To avoid the problem of setting a limit for the number of allowed collisions, which always
leaves a chance that an honest participant is considered as attacker and eliminated, one should |
consider these as attack either. As they cannot be prevented either, this means that they must
accepted, i.e. a reservation phase is not investigated just because of collisions. (Thus these attack
only harm themselves.)

Reservation frames with ampossible result (i.e. one which could not have occurred among honest
participants) are investigated. Globally, the allowed results are
» for the reservation map technique with>mm: the sum of the messages of all rounds is n (in
Z)
« for the bit-map reservation protocol: the number of reservations is n-2+k for sarig k
» for superposed receiving: there is a collision of n messages initially, and the numbers and size
of the messages in the following rounds fit.
Additionally, each participant can make tests depending on his knowledge about his own reservation:
* For the reservation map technique wittem he knows that there cannot be a zero where his
own reservation should be.

— 33 -

» For reservation by superposed receiving he knows that he must receive his own resetl
message.

The local test for the reservation map technique is not necessary, as an attacker who cannot b
output commitment scheme and tries to cause this situation will with great probability not
reservation and then be caught by the global test.

Also, during superposed receiving the sizes of the messages need not be checked; it suf
check that the protocol can be carried through, ends after n rounds (or earlier, if there are colli
and that each participant checks that he received his own reservation message.

During the palaver phase, each honest participant who saw that one of the tests does not h
vote for investigating the first two phases.

All tests are secure for the tester, i.e. if they indicate a fault, the investigation (cf. 4.3.5) will
a protocol deviation. Thus if the investigation doesn't find any incorrectness, the tester c
assumed to be an attacker.

Problems with the bit-map reservation protocol: If one keeps the idea that for unconditione
untraceability there may not even be a very little chance that an honest participant is regar
attacker and eliminated, the bit-map reservation protocol should not be used:

As discussed above, a reservation phase is not investigated just because of collisions. Es|
if the bit-map reservation protocol is used, this implies that undetected collisions of an uneven n
of messages can occur. These will usually result in a disturbance during the announcement p
can be seen from section 4.3.3 that in this protocol (in contrast to the original one, cf. the ¢
4.2.5.1) this does not harm untraceability.

Nevertheless it can be used to attack serviceability. There are two conceivable ways to impl
the announcement phase: either a disturbance of an announcement after a reservation frai
collisions is investigated or not. In the first case, at least three participants attacking togeth
always cause a collision of three of their reservations and thus invalidate the announcement
thus this implementation cannot be chosen. In the second case they can cause a collision of
their reservations and later claim that these two collided with one of an honest participant (this «
be distinguished); then they can disturb the announcement of this participant. For the protocol \
with computationally secure serviceability, this cannot be accepted at all, because for |A| > 2/3 «
attackers can disturb all announcements (always two attackers are needed to disturb on
participant). For the version with information-theoretically secure serviceability this could be acci
in principle, as 3 « |A| < |P| guarantees that the attackers cannot disturb all announcements in tt
but it seems not trivial to invent a palaver scheme which decides whether too many announce
have been disturbed without giving up the anonymity of those participants whose announce
were disturbed, and anyway the possibility of disturbing some of the announcements is undesir

Synchronization of the phases¥or each reservation technique described in section 2.2 e
participant can locally determine the length of each reservation phase (for the reservatiol
technigues it is even constant).

Also, each participant knows the number of successful reservations after the reservation
i.e. the number of slots of the following phases. Thus if the announcements and messages
fixed length, the exact durations of the following announcement and sending phase are deter
(This is necessary, or at least some other way by which each participant can locally and inforn
theoretically unambiguously determine where each announcement and each message ends.)

- 34 -

4.3.3 Announcement phase

Announcements are implemented by usig aommitment schemdBrCC_88J:

» Each participantjRcan commit to an encrypted announcement, i.e. to one of the values "trap"
and "non-trap", and can later "open" any encrypted announcement he has committed to, i.e. h
can give a trap proof which convinces each other particigaofttRe correct value "trap"” or
"non-trap". Hence it is not possible to open an encrypted announcement both as "trap" and a
"non-trap"”.

* No other participant is able to decrypt an encrypted announcement, i.e. there is no (efficient)
way to distinguish between encrypted "trap” announcements and encrypted "non-trap”
announcements.

In contrast to output commitment, the security of the bit commitment scheme used for the
announcements has impact not only on serviceability, but also on untraceability.

Information-theoretically secure serviceability: Information-theoretically secure announcements (called
multi-party blobs in [BrCC_88]) can be realized by applying the techniques of [BeGW _88,
ChCD1_88].

Since an unexpectedly numerous attacker (i.e. 2|R]) can open non-trap announcements as
trap announcements, this version of our protocol cannot guarantee unconditional untraceability. (Th
same problem occured in section 4.3.1.)

Computationally secure serviceability:Computationally secure bit commitment schemes can be
divided into two classes depending on which part of the definition is unconditionally realized.

The first class of commitment schemes perfectly conceals the difference between trap and non-tre
announcements (and is called secure fomptioser in [BrCC_88]). From this it follows that each
such announcement can be opened in two ways, to announce a trap and to announce a non-tr:
Hence the correctness of a given proof can only be computationally secure, i.e. a very powerfu
attacker would be able to publish a trap proof for an arbitrary sensitive message, and the
unconditional untraceability would be lost. (If the real sender publishes his non-trap proof, too, he is
still identified, but the attack is detected and therefore seems to be acceptable in practice: one c:
switch from the broken bit commitment scheme to another, still unbroken one, if there is any.)

The second class is the opposite of the first one (and is called secure farifiner in
[BrCC_88]): each announcement can be proved only in one way, i.e. a given trap proof is
unconditionally correct and it is guaranteed that no sensitive message will be traced by the prosecutic
protocol. But the indistinguishability of trap and non-trap announcements is only computationally
secure (and, at the moment, in the best case polynomially equivalent to some well known hart
problem, e.g. computing discrete logarithms [BrCC_88 sect. 6.2.2]). In practice it may be reassuring
that announcements have to withstand only for a relatively short time (until the corresponding slot of
the sending phase), but a very powerful attacker will be able to disturb non-traps only and thus will
not be identified by the prosecution protocol .

A commitment scheme of the second type can be implemented by a probabilistic encryption
scheme for encrypting the set {trap, non-trap}{GoM1_86]:

For appropriate sets X, Y let {trap, non-trap}x X - Y be a public encryption function
generated byjAor committing to the value M {trap, non-trap}. The first argument is the plain text,
the second provides the necessary "coin-tosses". Therpaifv(x)) is used as commitment, it is

— 35 —

opened by showing the pair (v, X). Since decryption is unique, each commitment can only be ¢
in one direction [BrCC_88 sect. 6.2.3].

It is not necessary to protect the sending of announcements by output commitment.

Each honest participant ®Whose announcement was disturbed will vote for investigating the first |
phases during the palaver phase. SindeP reserved the corresponding slot, he can prove his r
to use the slot during the investigation of the reservation phase (see 4.3.2 for the problems if 1
map reservation protocol would be used). Thus the test is secure for the tester.

4.3.4 Palaver phase

Since broadcast inconsistencies are excluded by assumption, the decision to start the sending
to investigate the first two phases poses no problem: After the announcement phase each pal
publishes a vote.

If at least one participant detects something wrong and votes for "investigation”, the firsi
phases will be completely investigated and the reservations become invalid. Otherwise the s
phase is entered.

For voting (like for other outputs), there can be a fixed order among the participants.
ensures that each participant gets a chance to vote, and that the origin of each vote is clear
somebody who disturbs serviceability by wrongly declaring reservation phases as invalid c
punished.

The votes should only consist of one bit each. If one wants that the participant who dete
disturbance tells more precisely what it was, this should be postponed to the beginning
investigation, as otherwise it would unnecessarily reduce efficiency in the faultless case.

4.3.5 Investigation of reservation and announcement phase

If any participants vote for investigation, each honest participapuBlishes all his message
characters M and secret keysiili{for all rounds t of the reservation and announcement phase.
local outputs ¢ are already known.

(For many cases the investigation can be shortened if the participant who detected a distu
describes it more precisely, but here we will not discuss this further. As far as only active attac
concerned, it is also of no great importance, as the guarantee for serviceability implies
investigations are necessary only a finite number of times, until all attackers or all their key
eliminated. If physical faults are considered, which occur more frequently, this can be different.)

From all these values each participant can locally check the behaviour of each other participe
can punish the attacker. Because of the reliability of the broadcast, and because the following
procedure is deterministic, all honest participants will get the same results.

Firstly, for all rounds t and participantg P the rules of superposed sending are checked, i.e. i
tested whether equation (2.1) is satisfied for the values published &ydRvhether |§t = Kjit for
each {R, B} U G, where lﬁt is published by ;?Kjit by F. Deviations from (2.1) prove j® A",
deviations from K' = K;;' prove "R O A or B O A",

— 36 —

In the first case jAs eliminated, i.e. each participant discards all keys exchanged wéhdPall
messages sent by Will be ignored in the future. In the second case the edgéifRs eliminated
from G. As in the original protocol, in case only one phiRd P is an attacker, this should not harm
the other one, as a key shared with an attacker is not secure anyway. (This is slightly idealizec
because in practice there might be different groups of attackers who don't work together).

The diagnosis "] A or B [J A" can be refined by applying signatures [Chau_88]: for this P
and R certify each key \f a priori by privately exchanging corresponding signatures. If round t is
investigated, together with ijII(they publish their partner's signature, and each participant who
cannot publish a valid signature is assumed to be an attacker. Obviously an unlimited attacker ca
forge signatures, thus it may happen that both participants can publish "valid" signatures; then onl
the key K; can be removed from G.

Secondly, the observance of the reservation protocol is tested.

Correct reservation is described by the reservation protocol itself and rules for the allowed
reservation behaviour stated in 4.3.2. As all the tests of 4.3.2 only check for results which are
impossible if the reservation protocol was correctly executed, one is sure to find an incorrectnes.
now, if one of those tests failed and no inconsistency was found when checking the rules of
superposed sending.

Thirdly, the announcement phase is tested. This is quite easy since a correctly executed reservati
protocol determines who was allowed to use which slot. (It is not necessary to open any
announcement, i.e. its value trap or non-trap.)

Each found incorrectness of a participanisRised as a proof for {'Bl A" and R is eliminated from
the net.

If no inconsistency is found, the participantwho has initiated the prosecution protocol is
viewed as attacking and eliminated from the network. This is correct, since all tests which allow to
vote for "investigate" during the palaver phase are secure for the tester (sect. 4.3.2, 4.3.3).

Since faults and simple active attacks are undistinguishable (cf. the beginning of section 4) in practic
it would be useful to give each attacker at least a second chance, i.e. one would first try tc
resynchronize or repair his station etc. Only key pairs which are inconsistent so often that
unintentional faults seem unlikely are eliminated from the key graph, and only notoriously attacking
participants are eliminated from the net.

4.3.6 The sending phase and investigation of traps

If no participant voted for "investigation" during the palaver phase, the sending phase is entered an
investigation of the first two phases becomes taboo (i.e. the secrets; of course the announcements ¢
be opened).

Sending: All slots of the sending phase are protected by output commitment (sect. 4.3.1). The
commitment must always been done for a complete slot in advance, not for single bits, as an attack
might be able to distinguish traps and sensitive messages after a certain number of bits, e.g. if the
are addressed to himself. Hence if an attacker is not able to break the commitment scheme and

— 37 -

distinguish trap and non-trap announcements, and if the ratio of traps to non-traps is ffixed tc
will disturb traps with probabilityt/(1+1).

Showing trap proofs: Slots are only checked if the corresponding trap proof is given, i.e. publis
an arbitrary (but for practical reasons limited) time after the trap was sent. Each participant mus
chance to publish trap proofs, so some of the bandwidth of the reliable broadcast channel n
reserved for him and this purpose. E.g. there can be trap-palaver phases like those of 4.3..
now and then; the trap proof itself can be given at the beginning of the following investigation.

Investigation: After a trap proof has been published, first the rules of superposed sending are ct
like in 4.3.5.

Secondly, one has to distinguish between the trapper and the attacker. (It is not clear tt
participant who published the trap proof is the trapper: The computationally unlimited attacker a
untraceability could otherwise decrypt the trap-proofs of other participants and publish them
Then the real trapper would be regarded as attacker and eliminated from the network.)

This can be done most easily if a trapper is forced to send nothing (i.e. zeros) in his owr
Then any participant who sent anything else is an attacker. This does not reduce serviceability k
of the output commitment.

For the reservation map technique, but not for reservation by superposed receiving
alternatively possible to investigate the corresponding reservation round. For reservatic
superposed receiving one can either use the variant mentioned in section 4.2.5.4, or ol
investigate the corresponding announcement slot instead, because if that was not investigated
announcement phase, it is clear that only the trapper sent in it. Only in the rare case tF
announcement consists of zeros only, this does not help (and this again could be prever
suitable coding). (The announcement could also be investigated for the reservation map technic
there it gives no additional information about the attacker.)

Again a participant who unjustly initiated the prosecution protocol (by publishing a trap proo
an undisturbed slot) is viewed as an attacker and eliminated from the net. As every disturbance
proved, this cannot be used to eliminate honest participants.

4.4 Removing the reliable broadcast assumption

Without the reliable broadcast assumption the trap and prosecution protocol described in se
cannot be applied without giving awaconditional untraceability:

An unlimited attacker could accuse an honest participay Prging his output and use the
prosecution protocol to oust Br at least to eliminate a key $hares with another perhaps hone:
participant from the key graph. Even an honest court (which can be viewed as a very
implementation of a perfectly reliable broadcast network) cannot distinguish between origina
forged messages afterwards.

Hence the unconditional untraceability would be lost. (As mentioned in 4.3, this is clear fo
case that two honest participants loose their common key. If an honest participant is elimi
altogether, one can argue that his untraceability is not lost, because he cannot send anythir
traced. But the untraceability of the remaining honest participants is clearly reduced.)

— 38 -

In the following some methods are discussed to combine untraceability and serviceability without the
reliable broadcast assumption.

In section 4.4.1 the reliable broadcast assumption is directly justified physically or by using
Byzantine Agreement protocols. Naturally the untraceability remains "conditional".

Section 4.4.2 suggests an informal definition for guaranteeing serviceability while preserving
untraceability, and section 4.4.3 describes how a scheme can be implemented which guarante:
"nearly" unconditional untraceability (i.e. untraceability if the attacker cannot prevent communication
betweentwo honest participants) and computationally secure serviceability.

4.4.1 Implementing reliable broadcast

4.4.1.1 Physically implemented reliable broadcast

Here we just mention some possibilities: we neither claim completeness nor really assess thel
security.

The easiest implementation of reliable broadcast is the acoustic implementation. It might be quite
sufficient for the original dining cryptographers (see [Chau_88]) sitting at their dinner table, if the
music in the restaurant is not too loud. For more general applications reliable acoustic broadcast ce
also be used in the form of a court. But, as already mentioned, in the protocols under consideratio
this court would not only be needed in the case of faults, but for every single output of each
participant. Thus this implementation seems rather unsatisfactory.

The more common physical implementations use electrical broadcast media. As we cannot expe
that each participant controls a satellite, ground radio could be the preferred implementation, bu
busses might do, if each participant can constantly physically check that the bus has not bee
partitioned.

The protocols also assumed that the origin of each message could be unambiguously determine
and that each participant got a chance to send. E.g. this could be achieved by a fixed division of th
bandwidth of the network (by frequency or time) and the use of an x-out-of-y-code, if one can
assume that a disturbance can only transform a 0 into a 1, not a 1 into a O (or any other code for th
purpose, like Berger codes [Prad_86]. But this doesn't work if the attacker can send about half a on
so that a 0 of the original sender will arrive as 0 at some participants and as 1 at some others.

4.4.1.2 Reliable broadcast by Byzantine Agreement

Reliable broadcast is usually realized by Byzantine Agreement protocols (cf. section 3.1).

The obvious method for publishing a message is to distribute it to all participants, who will then
agree on the message by using an appropriate Byzantine Agreement protocol. The attacker is restrict
either by 3 « |A| < |P| or by some computational limitations. Which of the two possible restrictions is
assumed must usually be decided a priori (we show a new protocol in which this is not necessary i
section 5.1).

For asurvey of lower bounds for reliable broadcast and known solutions see [Reis_87], an
efficient randomized protocol can be found in [FeMi_88].

— 39 —

The basic net is always assumed to be synchronous (mainly because otherwise it could
decided whether someone disturbed the protocol by not sending at all, or whether the messi
only not yet arrived).

It is also assumed that the attacker is unable to prevent the communication between
participants. The part that he cannot cut off the communication completely must be ree
physically. The part that messages which arrive are correct can be realized cryptographically, |
one is willing to accept that with very small probability the assumed attacker can neverthele
successful. Then one can use perfect authentication codes [GIMS_74, Sim3_88] (or nearly |
codes [WeCa_81)).

For the case that the attacker is computationally restricted, i.e. cannot forge signatures, one nr
tempted to try to improve efficiency by a central implementation. Then each participant would
his signed output only to one centre instead of to all participants, the centre would perfori
addition and distribute the results. In case of disturbances one would hope to be able to r
disputes between the centre and the participants by the signed values. The problem wi
implementation is that it cannot be decided whether a participant sent nothing at all or the !
suppressed it.

If the fail-stop key generation is used for superposed sending, each attempt of an unexpe
numerous or powerful attacker to prevent the reliable broadcast stops superposed sending and
the prosecution protocol. Thus the scheme guaraoteesditional untraceability as long as the
prosecution protocol is not initiated. Additionally the scheme guarantees unconditional untracei
as long as G \ A& P remains connected, but this condition cannot be verified by the ho
participants, i.e. the untraceability becomes "conditional" as soon as the first key is eliminatec
the key graph G.

4.4.1.3 Using centres as representatives

A weaker method for realizing reliable broadcast is to use a number of cenires, C,, as
representatives

It is assumed that each honest participant can reliably communicate with each centre. Tor
broadcast a message a participarsteds his message to all centrgsa@ich together guarantee tha
the message is distributed to all participants:

If the centres are able to reliably broadcast messages to all participants (e.g. by a satellite fi
centre), it suffices to assume that

» either each participant signs his messages, the attacker is not able to forge signatures

least one centre is honest, or

» that there is an honest majority of centres.
Otherwise the centres agree on the message receiveddmner by physical broadcast or Byzantin
Agreement) and each centre distributes the result of the agreement to the participants. Fr
received messages, each honest participant selects that one which was distributed by the ma
all centres. Then it suffices to assume that the centres are able to reach agreement and that tr
honest majority of all centres (which is necessary for information-theoretically secure Byza
Agreement anyway). This is similar to the techniques for Byzantine Agreement with les:
maximum number of tolerable attackers [DoSt_83].

— 40 -

If the untraceability is based on trustworthyness of the centres, it is sufficient that each participan
exchanges secret keys only with them [Chau_88 sect. 2.3].
One can consider to use the centres in other parts of the protocol, too.

4.4.2 What "guaranteeing serviceability while preserving
untraceability” means

Assume an implementation of the B@et which guarantees untraceability in spite of an attacker who
is limited by a predicatd ¢ , €.9. Ajntr = U (i.e. unconditional untraceability), o Ay = "A is not
able to break signatures".

Then a protocol is said guarantee serviceabilityin spite of an attacker who is limited by an
assumptiorAgep, €quivalent to or weaker than,4\ if the following two conditions hold:

S1 Serviceability: If the attacker A satisfies A, then after a finite number of disruptions A
will loose at least one key from the key graph, and no pair of honest participants will loose
a common key.

S2 Preservation of untraceability: If the attacker satisfies g\ (thus A, t00) and if due to
the protocol two honest participants loose a common key from the key graph (or an hones
participant is eliminated altogether), each honest participant definitely stops superposed
sending.

The protocol of section 4.3 guarantees serviceability {pgA "reliable broadcast assumption” and
Aserv= Auntr U "the attacker is computationally restricted” Q= Ayntr I3 © |A] < |P].

The implementations described in section 4.4.1 assume one of the conditions for reachin¢
Byzantine Agreement for both untraceability and serviceability.

Condition S2 describesfail-stop property similar to that of section 3.2. One may therefore consider
condition S2 to be unnecessarily weak, since e.g. the protocol of section 4.3 satisfies the stronger ai
more natural condition

S If the attacker satisfies Q. two honest participants will never loose a common key from
the key graph (nor will an honest participant be eliminated altogether).

The reason why we have chosen S2 nevertheless is that satisfying S1 and S2 together seems easie
some cases, and that if,4, holds, but not A., Seviceability is not guaranteed anyway, thus
another reason for the honest participants to stop participating does not harm, and thatdfhoth A
and A,y hold, S2 is implied by S1 and S2 anyway.

4.4.3 Fail-stop Byzantine Agreement

In the following, an idea is presented which transforms each Byzantine Agreement protocol which
works with any kind of signatures (as far as we know, all computationally secure Byzantine
Agreement protocol fulfil this) for tolerating up to n-2 attackers into a protocol which

e guarantees agreement provided the attacker is not more powerful than assumed, and

- 41 -

» allows each honest participant whose signature was broken by an unexpectedly po\
attacker tqorove this to each other participant in an unconditional way.
This is achieved by a new signature scheme, which allows participants (with very high probabili
prove if their signatures are broken.

Hence soon after the first signature of an honest participant is broken all honest participar
stop their participation with the same very high probabiliy-étop Byzantine Agreemeny.

For guaranteeing the fail-stop property it is only necessary to assume the attacker to be un
prevent the communication between honest participants. This seems to be the weakest p
assumption and is therefore calteshrly unconditional.

Using fail-stop Byzantine Agreement in the protocol of 4.3 obviously satisfies condition
(section 4.4.2). Since our solution guarantees the fail-stop property in an unconditional way, we
combined nearly unconditional untraceability (with very high probability) and computatic
serviceability.

Unfortunately our solution is not very efficient (yet ?).

4.4.3.1 A signature scheme whose forgery can be proved

Before describing our scheme and its properties, some remarks about the principal possibili
such a signature scheme can be made:

* The probability of unprovable forgery can never be zero:

An honest user must be able to produce at least one signature for each message fi
message space. Thus if the (computationally unlimited) attacker who can break the s¢
finds just this signature, it cannot give the honest user additional information. So he ci
prove that the signature was broken (otherwise he could also deny the signature wh
himself would have produced, which cannot be tolerated).

* There must be more than one possible signature for each message, i.e. more than on
must be acceptable to the other participants (although perhaps the honest participant wi
be able to produce a single one). This must hold unconditionally.

This has just the same reason as the previous point: Only a signature the
computationally limited user could not have produced himself may allow him to prove that
not his. Thus such signatures must exist, and the computationally unlimited attacker mi
unable to distinguish them from the ones the honest participant can produce.

» Itis not possible to prevent a dishonest, computationally unlimited participant from den
his signatures, i.e. "proving" that they were broken, even though this is not true:

Having the same possibilities as if he were an attacker against himself, he can produ
signatures which he could not produce if he were computationally limited, and then he
prove that they are broken.

But in all our applications this is entirely right, as this situation means that there i
attacker who can break the signature scheme, and so one cannot further rely on
signatures anyway.

— 42 —

Thus one is looking for a signature scheme in which most forged signatures allow the suppose
signer to compute something that under the assumption of the signature scheme he could not ha
computed before.

The idea of our scheme is that the signatures consist of square roots, and forged signatures allc
to factor the modulus. Thus (in contrast to the Rabin scheme [Rabi_79]) the factorization of the
modulus cannot be known to the signer in advance. The scheme to which this lead us is very simile
to one-time-signatures. Therefore we start by shortly describing these.

4.4.3.1.1 One-time signatures

One-time signatures are an easy method for signing a limited number of bits using a one-way functio
f, attributed to Lamport in [DiHe_76, Merk_88]:
If at most k bits are to be signed, the signer chooses 2+k elements 1, 1o 2, 1 2., ok M1 k
and makes the sequence
f(r0,0), f(r,2), (10,2, f(r 2., fio s F(r1 1)
public. To sign the bit sequence (b.., b), he publishes

rbl’l, rb2'2, vy rbk,k

A slight improvement of the scheme is described in [Merk_88] (attributed to Winternitz there), but
nevertheless the scheme seems to be rather inefficient.

An efficient variation of the theme is described in [Merk_88], and in [BeMi_88] the idea is used to
construct cryptographically strong signature schemes using a strong trapdoor function generato
Both improvements cannot be used in the following.

4.4.3.1.2 Cryptographically strong one-time signatures
whose forgery is provable

Idea: As mentioned, the idea of our scheme is that signatures are square roots of known value
modulo composite numbers, because then knowing several signatures of one message, i.e. seve
square roots of the same values, gives a good probability that one can factor the modulus. Th
factorization of a modulus will thus serve as a proof that something is wrong.

Of course, for this proof to be convincing, the modulus cannot have been chosen by the signer. |
fact, the only easy situation in which this proof really proves to someone that someone else can fact«
(i.e. leaves no possibility that someone has only published a previously known factorization) is tha
the verifier of the proof has chosen the modulus himself.

For simplicity, we first describe the resulting scheme for just one signer and one verifier, and ther
generalize it to the situation in which all participants sign and verify each other's signatures.

Protocol for two parties: Assume two parties A, B, and call them Alice and Bob for convenience (and

according to tradition). Our goal is to construct a one-time signature scheme which allows Alice to
sign a k-bit-message for Bob. If someone else forges a signature of Alice, she is able to prove to Bo
that the signature scheme is broken. Additionally, even if Bob himself forges the signature, she cal
prove to a third party Vera that either the signature scheme is broken or Bob is among the attackers.

— 43 -

Let o be thesecurity parameter for factoring, i.e. that value for which it is assumed that factoring
product of two primes, each of lengil2, is not feasible for the attacker.

A second security parameter d, fleseurity parameter for the probability of unprovable forgery, is
chosen.

Basic protocol

[1] Bob chooses two large primes p, q each of leogghand sends the product m := pec
to Alice together with a proof that it is composite (e.g. a witness according to
probabilistic primality test of Rabin-Miller [Rabi_80]).

[2] Alice checks that m is in fact a composite number.
She randomly chooses 2¢d<k different elements

ro,1,1 -~ 0,2, "1,2,2 ---» "1,1,0

ok, - Toko k2 - Nkd
of Zyz all coprime to m, and makes their squares
Sh,x,y -~ ("b,x,y)2
modulo m public.

[3] To sign the bit sequencey(b..,) Alice publishes the corresponding roots
1,1, -+ Tog, 1,0

Moy, k,10 ==+ Ty k,d
[4] Bob verifies the received roots.

Explanation: Of course, squaring modulo m corresponds to the one-way-function of the original
time-signatures. Note that line x of the r-matrix serves to sign the x-th bit of the message; the le
of the r-matrix serves to sign zeros, the right half to sign ones; and the fact that there are d
roots for each bit instead of one increases the probability that a forgery enables Alice to factor ir

Now assume a forth party, Felix, the forger.

To forge a signature which Bob will accept in step [4], Felix has to compute at least d square
modulo m (because he must give a new signature for at least one bit). Computing square ro:
factoring are equivalent problems [Rabi_79, Woll_87], thus our basic protocol can be viewec
cryptographically strong authentication code based on the intractability assumption of factoring
proof that m is composite should not help in this, as every other participant could have found
himself. We put it into step [1] instead of [2] only to ensure that Alice cannot disturb the protoc:
claiming that she is very sorry not to find any witness. One can also trade expected efficien
certainty that a proof is found by using the algorithm of [AdHu_87] in step [2], or by letting Bob «
Alice a zero-knowledge proof between the two steps [GoM1_86].)

Since Bob knows the factorization of m he can tell it to Felix, enabling him to compute sc
roots of all g ; ; efficiently. But since all roots chosen by Alice are coprime to m, each quadr
residue published by Alice has two significantly different square roots (i.e. two roots r, r'
r # £r', see e.g. [Kran_86, Theorem 4.5]), and even Bob cannot suspect which one Alic
chosen. (This is why Alice had to check that m is not prime; if it has more than two factor:
probability is even better.)

— 44 —

Thus in any case if Felix has forged Alice's signature, i.e. he has changed at least d roots of the real
signed message, with probability not less than (%)t has chosen a significantly different root for
at least one of Alice's squares.

Call this root r' and call Alice's root r. Then Alice can factor m using r, r', since (r-r') <18’
(mod m). If Bob is honest, this proves to him that someone (Felix or Alice) can factor. Also it proves
to Vera that either someone can factor or Bob has wrongfully disclosed his factorization.

Thus we have proved the following lemma.

Lemma4.l Assume the basic protocol for two parties Alice and Bob described above.

I The problem of forging an authenticated message which Bob will accept in step [4]
is equivalent to the integer factoring problem.

ii. Each forged signature enables Alice to factor Bob's modulus m with probability not
less than

1
1--.
o
Proof. see abovd]

The scheme can naturally be extended to n pariies .FR,, each of whom wants to sign a k-bit-
message.

Basic protocol for n parties
[1] Each participant Rchooses two primes, g of lengtha/2 and makes their product
m; = peq; public together with a proof that; s composite.
[2] Each participantjRehecks that eachns in fact a composite number.
Then for each Pparticipant E’chooses 2+d<k values coprime tg like in the two-
party-protocol, i.e.
Ir(i’j)o,1,11 r(i’j)o,l,d r(i’j)l,l,:b r(i’j)l,l,d
r(i’j)o,k,r r(i’j)o,k,d r(i'j)l,k,l’ r(i’j)l,k,d
of Zimz all coprime to m and makes their squares
S(I’J)b,x,y = (r(I’J)b,x,y)2
modulo m public.
[3] To sign a specific k bit message nffakes the corresponding (n-1) « d « k square roots
public, i.e. for all #]:

r(i’j)bk,k,l’ r(i'j)bk,k,d
(this corresponds to one signature for everybody else in the two-party-protocol).
[4] Every R with i#j verifies the received (n-1)edek roots.

Each forged signature enablggd°factor the modulus of a special other participant with probability
(1 - 29. Thus with probability not less than (1991 she is able to publish a factqrgd each m
Thus we can supplement the basic protocol:

— 45 —

[5] Each honest participant who receives a signatures#rils it back to;P

[6] If P; receives a forged signature, she factors plf she can. Then she publishes on
non trivial factor of each pas proof that someone has forged a signature.

[7] Each honest participant who receives the factorizatiabl @hoduli accepts this as a

"proof of forgery" (more precisely: as proof that someone can break the signa
scheme, not that someone has forged anything). All signatures become invalid.

As for the basic protocol for two parties we get the following lemma:

Lemma 4.2 Assume the basic protocol for n parties described above.

i The problem of forging a signature which an honest participant will accept in :
[5] is equivalent to the integer factoring problem.

ii. Each forged signature enables the supposed sigtefdetor all moduli m i.e. to
form a "proof of forgery", with probability not less than

(1 -Zld)”'l.

Conversely, forging a "proof of forgery" is equivalent to factor all n public modu
iii. The signature of a k bit message comprises k ¢ (n-1)c lits.

Proof. see abovd_]

It is not obvious at this place why we emphasized the fact that participaatt®to see all moduli

factored before he accepts it as "proof of forgery". Of course, if he is honest, he is already su
the signature scheme is broken if he sees his gWaatered. The necessity that a proof of forgery
something that convinces all participants will become clear when the scheme is used within Byz
Agreement, because there this fact serves to ensure agreement upon whether the scheme we
or not.

The participants can also try to choose one m together instead of a|| #ethis would reduce the
length of the signatures and the number of exchanged squares by a factor of n. If one requires
the end of the choosing protocol each participant locally checks that a correct m has been chos
in step [2] of the above protocol), this does not reduce the probability that the supposed sign
forged signature can form a "proof of forgery". If the choosing protocol is suitably chosen, it st
hold that a computationally restricted attacker cannot influence the protocol such that he kno
factors of m a priori, thus if a correct m is found at all, forging signatures or a "proof of forg
should still be difficult. However, finding m can only be guaranteed for 2¢|A| < |P| [GMW_87].

4.4.3.1.3 Using iterated squares to improve efficiency

The main problem of the signature scheme of section 4.4.3.1.2 (protocol for n parties) is th
signing each single bit one has to prepare 2 ¢ (n-1) ¢ d squares and distribute them. In the fol
we try to improve this ratio by using iterated squares in two ways.

— 46 —

In [Merk_88] a method of Winternitz is mentioned to sign one out of k+1 different values using any
one-way-signature scheme and only two prepublished values: for this the signer chooses two value
r,ks_, and publishes{fr) and K(s) . To sign the value j, 9] < k, the signer makes publié(f) and
f(s).

As in this method the amount of computation (i.e. the number of applications of f) grows
exponentially with the length of the message signed in one piece, one can reduce the number of valu
to be distributed a priori only by a logarithmic factor.

To apply this to the scheme of 4.4.3.1.2, for each m define the function

fm(X) = X2 (mod m).
To be able to use this improvement we have to ensure that nobody can decide which of the tw
significantly different roots ofrﬁk(r) 5 fmk'l(r), thus we have to choose m specially:

Lemma For moduli m = peq with p =q =1 (mod 4),[a(Z/mZ)*, and k= 2, all square
roots of fmk(a) (i.e. all possible values forr#'l(a)) are quadratic residues.
The modulus m is appropriately chosen iff -1 has a square root modulo m.

Proof. Let QR(z) be the set of all quadratic residues modulo the integer z, armldm/ﬁgz)*. Let
b := fK2(a), thus £K(a) = 1"

Then fmk(a) has four distinct roots, namely the two rodts-b? and two other roots r, -r.

By Euler's criterion -10 QR(p) and -10 QR(q), thus -10 QR(m). Thus B and -I¥ are both
quadratic residues modulo p, g, m. Sineahd r are both roots of,f(a) modulo p, r = Bor
r = -b? (mod p), thus £ QR(p). The same holds for root -r and for modulus g.

Therefore all four roots ofn#((a) are quadratic residud_]

1st method: Thus to use Winternitz' method in the basic protocol, Bob has to choose an appropriate
modulus and to publish a root of (-1). Alice chooses arbitraty. iy, S,...,S coprime to m and
publishes the £X(r,), fmX(s,).

A precondition for this is that these moduli may not be much easier to factor than other products o
two large primes. Also it is presupposed that the root of -1 doesn't make factoring easier, but thi
could be changed by using a zero-knowledge-proof instead.

The generalization to the protocol for n parties is obvious.

2nd method: If the security assumption about this kind of modulus holds, for special applications of
the signature scheme (including our intended application in protocols for Byzantine agreement), ¢
similar, more valuable efficiency improvement is possible: Assume that time is partitioned into
phases, that the signer has to sign only a certain number of bits for each phase and that the
signatures becomes meaningless as soon as the current phase is finished.

Then it is possible to prepublish just 2+d values for signing bit position x in all k phases together,
namely the iﬁk(rb,x,y) for some chosernyk . In phase k' (k' = 1,...,k), for signing the value b for
bit x, the signer publishes the valugsF (1 ,)-

To avoid that the amount of computation to check signatures grows with the phase number, at th
end of each phase the signer can also publish the unused signatures.

Of course, the two methods can be combined.
In our applications, a phase will be one Byzantine agreement.

— 47 —

4.4.3.2 The protocol of Dolev and Strong with an efficiency
improvement for our signature scheme

In [DoSt_83] Dolev and Strong describe (and prove) a computationally secure protocol for Byze
Agreement, which is able to tolerate up to n-2 attackers and forces each honest participant to
most two different messages.

Each message of the protocol consists of the value the sender has broadcast and of at n
signatures. Let;&) denote the value v signed by &1d assume that fron(\9 the signed message v
can be extracted.

The protocol uses iterated signatures (Iih(ésg(_l(32(31(v))...))). This would be very
unpleasant for our inefficient signature scheme, as iterated signatures would grow exponentiall
the number of signers. Luckily, the iterated signatures can be implemensets loy signatures
instead. These grow only linearly with the number of signers.

Because of this change and because the protocol description given in [DoSt_83] is rathe
anyway, we present the proof of Dolev and Strong for our scheme:

For convenience let;fbe the sender. All messages of the protocol are sets of signatures, i.e. thi
of the typg sik(v), sk_l(v), sz(v), s,l(v) }. A message (set) is callednsistentif all signatures
contain the same value v and a signature of the sepdeafong them.

A participant Prelays a consistent message by adding his own signature to it and forwarding
all participants whose signatures do not yet appear in it.

Byzantine Agreement protocol for up to n-2 attackers (Dolev, Strong)
[1] The sender Psigns his value ¥ F and sends {$v)} to each other participant.

Fork =1,...,n-2:

[k+1] Let V; be the set of all consistent messagesaB received during the k-th phase an
which are signed by exactly k different participants, not including himself. Assu
that Vj i is totally ordered.

If P; has not relayed any messages during the previous phases aadly he
relays the first two messages in Mvith distinct values, or the first message, if al
messages injy, contain the same value.

If P; has relayed only one message during the previous phases containing a
V' during all previous phases angly# [, he relays the first message ip Mvhich
contains a value V', if there is one.

Once a participant has relayed two distinct values, he stops processing mes
for the protocol and at the end he will decide "sender fault".

[End] If P; has received exactly one value v during all phases together (in a consi
message with enough signatures), he decides to accept this value. Otherwi
decides "sender fault" and chooses the default value for v.

— 48 —

Lemma 4.3 [DoSt_83 Theorem 3] Provided signatures are unforgeable and the attacker is not
able to prevent the communication between honest participants, the Dolev/Strong
Protocol guarantees Byzantine Agreement within n-1 phases, i.e.
i after phase [n-1] (i.e. in step [End]) each honest participant chooses the same

value for v, and

ii. if Pqis honest, each honest participant chooses the value sent by P
Each participant relays at most two messages. The length of messages sent in phas
k is O(kesig) bit, where sig is the length of a single signature.

Proof. Firstassume the sendef B be honest. Then each honest participant receives the same
value {s;(v)} during phase [1], and this is the only value v which is signed,;byrRus after phase
[n-1] all honest participants decide to accept v.

Now assume that;Rs dishonest. If no honest participant receives any consistent message during
the n-1 phases, they all agree on "sender fault" in [End].

Now assume that an honest participgneBeives the consistent set

{ 5,0, 5,0 - 5,0, 5,0}
in phase [k]. First it will be shown that either each honest participant will decide "sender fault"
independent of v, or that after phase [n-1] each honest participant will have received v.

If k = n-1, then all other honest participant have already receie}l because otherwise they
would not have signed v.

Assume k < n-1. If Prelays the set, each other honest participant will receive it in phase [k+1],
because it is still consistent and has one signature more. Thus assumeltesnR relay the set,
which may have two reasons:

15t P has relayed the same value in a previous round.

ond P, has already relayed two different messages.
In the first case each honest participant has already received v, and in the second each hone
participant decides "sender fault" independently of v.

Thus if an honest participant Ras received two values and thus decided "sender fault”, all others
have received them too, or they have decided "sender fault" anyway.

Consequently, if the honest Ras received exactly one value v, no other honest participant can
have received two. So, as they have received v, too, all decide to accept v.

Finally, if the honest Phas received no value v, then so has everybody else according to the
previous two paragraphs. Thus they agree on "sender f[_]it".

Each participant has to send at most two messages, and particularly he has to sign at most two valt
or 2 «0d(|F|)obit. If the signature scheme of section 4.4.3.1.2 is used, each participant has to choos
(n-1) ¢ 4 « d «dd(|F|Osquares.

Thus the scheme requires n < (n-1) « 4 €ld({F|)J o bits to be published in advance.

— 49 —

4.4.3.3 A protocol for fail-stop Byzantine Agreement

Assume that the Dolev/Strong protocol (sect. 4.4.3.2) together with the signature scheme of ¢
4.4.3.1.2 is used. (The same supplements and lemmata hold for each other Byzantine Agrt
protocol based on signatures which tolerates up to n-2 attackers.)

Then we geByzantine Agreementin which breaking can be provedby appending the following
two phases to the Dolev/Strong protocol:

1st supplement to the Byzantine Agreement protocol

[n] Each participant Psends all signatures received during the previous phases bac
their supposed signers, i.e. he sen(lg)ack to i

[n+1] If P; has received a forged signatuj@'$, he tries to use the forgery for factoring thi
public moduli m of all other participants. If he is successful, he sends t
factorizations of all m(including of his own R to all other participants.

[End] If Pj has not found or received the factorizations of all public moduihendecides as
in the original Dolev/Strong protocol. Otherwise he decides "signatures broken".

Lemma 4.4 Byzantine Agreement in which breaking can be proveddssume the supplemented
Dolev/Strong protocol implemented with the signature scheme of section 4.4.3
and assume |A| < n-1.

i If the attacker is not able to forge signatures (i.e. to factor the public moduli),
protocol finds the correct agreement after phase [n+1].

ii. If an honest participant decides to accept the value v after phase [n+1] (due 1
original decision rule given in section 4.4.3.2), then with probability at least

(1 _zid)n-l

v is the correct value (i.e. the sender's value if the sender was honest) and
other honest participant has either accepted value v, too, or has decided "sign
broken".

iii. If an honest participant decides "signatures broken", he can prove this to all «
participants after the protocol.

Each protocol which satisfies (i), (ii) and (iii) is callBgizantine Agreement in
which breaking can be proved

Proof. i. Since the attacker cannot forge signatures, the protocol works as the original Dolev/<
protocol, thus lemma 4.3 guarantees the agreement.

ii. Assume that the honest IRas accepted v after phase [n+1].

Contradicting lemma 4.4 assume that masthe correct value. Since the Dolev/Strong protoc
always finds the correct value provided signatures of honest participants are authentic, there r
at least one honest participant who has received a forged signature of an hdrest id phase [n]
Pj receives the forgery and in phase [n+1] he sends the factorization to all other participant:

— 50 -

probability (1-29)"-1. Hence in phase [n+1]; Peceives the factorization and decides "signatures
broken", which contradicts our assumption. Thukd® accepted the correct value v.

Since the same is true for all other honest participants, each other honest participant who has n
decided "signatures broken" has accepted the same value v.

iii. If an honest participant decides "signatures broken", he knows the factorizations of all public
moduli m and can show them to all other participants leLTr.

This protocol can be described as realizing Byzantine Agreement if the signatures are not broken, ar
crusader agreement [Dole_81] otherwise. Additionally those participants who know that something i<
wrong can prove it later.

Now assume that the almost secure protocol is repeated ad infinitum, i.e. that after the last phase
new phase [1] starts. Call each protocol executimmadcast For each broadcast it is predetermined
which participant acts as sender.

Then we add the following rule to the protocol:

2nd supplement to the Byzantine Agreement protocol
For each phase [k] add the following rule to the protocol:

[K] If in phase [k-1] Preceives the factorizations of all public modufifor the first time,
he immediately decides "signatures broken" &r following (and the current)
broadcasts and sends the factorizations to all other participants.

No participant who has decided "signatures broken" will ever send any further
messages.

This supplement guarantees that, if an honest participant decides "signatures broken" in phase [k
each other honest participant does so in phase [k+1].
Hence we have realizéail-stop Byzantine Agreement

Lemma 4.5 Fail-stop Byzantine Agreement. Assume that the Dolev/Strong protocol with the
first and second supplement and implemented with the signature scheme of sectior
4.4.3.1.2 is iterated ad infinitum, and assume |A| < n-1.

I If the attacker is not able to forge signatures (i.e. to factor the public moduli), the
protocol realizes reliable broadcast.

ii. If an attacker, who can forge signatures, disturbs the t-th broadcast during the
Dolev/Strong protocol, then with probability at least

6o

all honest participants decide "signatures broken" at the end of the t-th broadcast
and stop sending.

- 51 -

iii. If an attacker, who can forge signatures, disturbs the t-th broadcast during
supplement phases, each honest participant either decides "signatures broken’
end of the t-th broadcast or accepts the correct value at the end of the t-th bro:
and stops sending after phase [1] of the (t+1)st broadcast.

Proof. i. Follows from lemma 4.4(i).

ii. This case means that the attacker sends the forged signature of an honest particizardtier
honest participant. Thus with the stated probability, each of them receives the factorizationsrfror
phase [n+1] of the t-th broadcast, decides "signatures broken" and stops sending.

iii. In this case, the attacker either sends the factorizations to an honest participant directly in a |
for the first time, or a forged signature of an hongsdbM in phase k=n. If k < n+1, each hones
participant decides "signatures broken" at the latest in phase [n+1], and the (t+1)st broadcast
even begin. If k = n+1, the decisions according to the original Dolev/Strong protocol are correc
each honest participant receives the factorization at the latest in phase [1] of the (t+1)st b[_ladca

4.4.3.4 Using fail-stop Byzantine Agreement for
untraceability and serviceability

Together with the protocol of section 4.3 (i.e. used in all places where the reliable broadcast ne
was needed, fail-stop broadcast guarantees computationally secure serviceability while pres
nearly unconditional untraceability (i.e. the attacker on untraceability is only assumed to be une
prevent the communication between honest participants) in the sense of S2:

The only way how two honest participants can decide differently is that one has accepted a \
while the other has decided "signatures broken" (lemma 4.4 ii). But then all honest participant
phase of the next broadcast have accepted the correct value. Thus the attacker cannot learn v
an additional output Oof a participant who has not received any incorrect value. This cannot |
him additional information.

Unfortunately with our inefficient signature scheme fail-stop BA requires at least additi
O(n? « d «o « dd(|F[)) bits which must be published in advance (this is an upper bound if the se
method of section 4.4.3.1.3 is secure, as then after each agreement about alvatueafler a
constant number of signatures, the published values can be reused).

As this scheme is much less efficient than the schemes of section 3.2, in practice one coul
use the fail-stop broadcast of 3.2, and only if that is disturbed continually, one would change t
stop BA (by hand, as then one would have to distribute the squares first etc.).

Fail-stop Byzantine Agreement could also be used together with superposed sending to |
probabilistic fail-stop broadcast as defined in section 3, but the untraceability is only n
unconditional, and naturally the schemes of section 3.2 are much more efficient for this purpose

— 52 —

4.5 A protocol without commitment

In the protocols described so far, the assumptions that the attacker must be restricted by 3 « |A| < |P]
computationally limited for serviceability (in addition to the reliable broadcast assumption) were
needed for commitment.

In this section we describe a protocol without commitments, which only assumes reliable
broadcastand 2 « |A| + 1 <|P|.

Also there will be an exponentially small probability that an honest participant is considered as
attacker.

Serviceability will not be guaranteed in the sense of S1 in section 4.4.2, i.e. a clever attacker ca
undetectedly disturb in certain situations. But the network guarantees the honest participants a certa
bandwidth, with which they can send undisturbed.

The protocol has a similar phase structure as that of section 4.3, although the non-traps ar
distinguished from traps in another way.

Before describing the phases, we describe a more generally usable technique, which we will us
to allow two participants, who are anonymous towards each other, to communicate secretly an
reliably, although we have no computational restrictions.

4.5.1 Key-less cryptography and authentication

In 1983 Alpern and Schneider proposed a sch&mg;less cryptography which allows two
participants P, P to exchange a secret key over a public network without using any secret
information, provided that this network guarantees sender untraceability [AISc_83].

Using superposed sending together with a reservation technique, this idea can be implemented in
very efficient way [Bura_88, Pfit_89]: Assume that participapints to send something to
participant in round t. For this, one of them must have reserved round t and they must have agree:
on it.

Then in round t, Psends his message character}, feind ﬁ’sends a randomly chosen character
th URr F, which is called anasking character. From the global sum

st=mit O m;t
only R can recover characteriMsent by R Each other participant gets no information aboﬁt [V::
it is perfectly concealed.

Key-less authenticationcan be realized by a simple authentication ¢Bdea_88]: Let F = GF('b) be
a finite field with p# 2. Together with M B sends the check character

Mit+1 = (Mit)Z
Both characters are perfectly concealed by two masking characqérs\/qﬂil'l) Or F2. The only
chance of a manipulating attackey iB to choose and send a charactgF #10 and an appropriate
Mz*1. The manipulation is undetected if
(Mt O M2 = (MH2 0 Mg+l
Mat-'-1 - (Mat)2
2 M

- 53 —

Assume that the message charactqrt M uniformly distributed in F. Since the equatiot
unambiguously determines the secret charactértMa attacker's probability of successfully forgin
an authenticated characteftNZI] Mat is less than or equ% This is optimal, since it is equal to the
redundancy of the code and since the secret key used for authentication is chosen fromPthe
[GIMS_74].

4.5.2 Outputs

Like in section 4.3.1, all outputs are published on the assumed reliable broadcast network, ani
also been decided a priori when each participant has to publish which output.

As we have no scheme for output commitment under our assumptions, to prevent the ai
from disturbing selected messages, the participants must take turns in who is allowed to me
outputs last. To see that this helps, note that if the last participant is honest and shares at least
with another honest participant, the attacker has no information about the resulting global sum
time when he must choose his own output.

Of course, like for the commitments, usually the outputs of several rounds, e.g. of one slot
be grouped together for this purpose. Then the attacker cannot guess from the global sums of
rounds whether the resulting message will be worth disturbing.

The last participant could change at the beginning of each reservation frame. Then one is sl
the serviceability guaranteed by the following measures against random disturbances holds in
|P| - |A|] out of |P| executions of the protocol. This ratio is at least 2/n, but usually much better.

In the following, for serviceability we will only consider protocol executions in which an hon
participant outputs last. (This fact is of course not known to the other participants, but if they r
disturbed reservations or messages, it is guaranteed that they can only be disturbed a finite nu
times.)

4.5.3 Reservation phase

Except for the output commitment, the reservation phase is identical to that of section -
Wherever in section 4.3.2 several rounds were grouped together for output commitment, the
rounds are grouped together for output here. Also the tests whether reservation was undistur
the same and the reasons why they are secure for the tester (as nothing depended on the ass
that we dropped in section 4.5).

4.5.4 Announcement phase

For convenience, call the participant who reserved the corresponding slot X, because
anonymous.

This phase consisted mainly of commitments in the protocol of section 4.3. The known commi
schemes cannot be used on the assumptions of section 4.5. Luckily, a commitment is not

— 54 —

necessary for trap/non-trap announcements (because if X changes his mind about whether itis a tr
or not, this does not harm anybody else, as the others are not allowed to disturb it anyway).

So in this protocol, this phase is only used to provide X with means which later allow him, and
him alone, to declare whether it was a trap or a non-trap. (Thus the name of this phase, chosen
analogy to section 4.3, is a bit misleading this time, as in reality nothing is announced yet, not evel
necessarily decided).

For this purpose, each participansBnds a password;W X, which later allows X to prove his
authorization towards PTo ensure that only X receives the password, and that he receives the
correct one, key-less cryptography and key-less authentication (cf. 4.5.1) must be used, as X and
have no key in common for secret key cryptography or perfect authentication codes; othgrwise F
would know who X is.

As all R must send a password (even X himself, as otherwise he would be identifiedigdP
not be untraceable during this action. Thus there can be a fixed order among them for this purpose. |
has nothing to do with the order for outputs.)

Thus:

» A slot of the announcement phase consists of n mini-slots

* In the i-th mini-slot, P sends a randomly chosen password fdlowed by the check

character, and X superposes two randomly chosen masking characters.

If X does not receive a valid codeword in one of the mini-slots, he will vote for investigation in the
following palaver phase. As this can only happen if either the mini-slot was disturbedidmBt
send a valid codeword, and X has reserved the corresponding slot, this test is secure for the tester.

4.5.5 Palaver phase

After the announcement phase, there is the same non-anonymous palaver phase as in section 4.3.4

4.5.6 Investigation of reservation and announcement phase

As in section 4.3, no sensitive information was used so far. So if any participant votes for
investigation during the palaver phase, the reservation and announcement phase are complete
investigated.

Exactly as in section 4.3.5, first everybody publishes all his secrets, then the rules of superpose
sending and then the observance of the reservation protocol are checked, and deviations are punish

Then the announcement phase is tested. A correctly executed reservation protocol determines wil
was X for which slot and was thus allowed to superpose masking characters. Also it is clear a prior
which R has to send a password in which mini-slot. Thus each incorrectness can be attributed to
specific participant.

Again, if no inconsistency is found, the participaywvBo has initiated the prosecution protocol is
viewed as attacking and eliminated from the network. This is correct, since all tests which allow to
vote for "investigate" during the palaver phase are secure for the tester (sect. 4.5.3, 4.5.4).

— 55 —

4.5.7 The sending phase and investigation of traps

If no participant voted for "investigation" during the palaver phase, the sending phase is enterec

Sending: The only difference to simple superposed sending is that each participant must outy
outputs of one slot together (to replace the output commitment, see section 4.5.2).

Showing trap proofs: In this protocol, publishing the passwords which correspond to a given sl
considered as trap proof for that slot and the wish that it should be investigated.

Each participant must get a chance to publish trap proofs, so we assume that directly after
there are n mini-slots on the DC-net, which X can use to publish the n passwondh&if original
order. If X sent a non-trap or nobody was caught in his trap, he sends zeros in all these mini-si

Disturbances during the mini-slots for trap proofs:If X sends the passwords (not if he sends zero:
and is disturbed in one of the mini-slots, he can ask for an investigation of these mini-slots, be
he only sent a trap and is therefore willing to be identified. For this purpose, there is a
anonymous palaver phase after each group of mini-slots (i.e. one corresponding to each s
which each participant can vote for investigation of these mini-slots.

If the message was a non-trap, this does not lead to tracing of the sender, since he did not
mini-slots.

Investigation of mini-slots: During the investigation of the mini-slots, as usual first all secrets
published and the rules of superposed sending are checked. Then the rules for sending in tF
slots are checked:

If nobody, except possibly the participant who voted for the investigation, sent in the mini-¢
he is viewed as attacker. This cannot happen to the honest X, as he would only ask for invest
if there was a disturbance.

If more than one participant sent in a mini-slot, one must decide between the legal sender
the attacker. This cannot be done by investigating the corresponding reservation slot, as both :
might be attackers and the message a non-trap. Instead, the decision can be made accordit
passwords: If someone legally sent in a mini-slot, he must have published all the passwords. T
honest participant;Ran consider each other participapto did not send Wn the i-th minislot,
but sent anything in any mini-slot, as attacker. So he can give up the key they shared (
following rounds). Therefore with high probability (because he might guess the passwords
attacker will lose all keys he shared with honest participants, if he had any left.

Punishment: If a participant decides to give up a shared key, he publishes this using the re
broadcast network (there must be bandwidth reserved for this purpose). Thus the new key g
known to everybody.

Now we use the assumption 2 « |A| + 1 < |P|: As the key graph was fully connected
beginning, and as no pair of honest participants ever lose their key, any participant who has
least half his keys must be an attacker. Therefore the following addition to the usual punishm:
safe:

Any participant who has lost at least half his keys is excluded from the network altogither. (

Thus especially an attacker who disturbed the publication of passwords is excluded from the n
at once with high probability.

— 56 —

Decision about investigation of the trap itselfSlots should only be checked if the corresponding trap
proof is given. In our case, each participgntdh only decide whether he received his own password
W;. To come to a global view, after each successful mini-slot phase each participant non-
anonymously publishes whether he thinks that there will be an investigation.

An attacking participant;Ran claim that he did not receive his password and is thus not willing to
investigate. Then the investigation cannot be performed, as not all honest participants can distinguis
this situation from the other situations: E.g. if X is an attacker, different hopeshRome to
different decisions. Also, if X is honest, attackers can claim that they received their passwords whel
in fact they did not.

What can be done is that X, if he still shares keys with any of jthveh® are unwilling to
investigate, renounces these keys. As X was still anonymous wherhéne t8 declare whether they
would take part in an investigation, and each attacking participant who is still in the network has ai
least one key in common with an honest participant (becaus¥)df t{e will lose a key with
probability greater than 1/n.

(This is the reason why the passwords had to be published on the DC-network, not on the reliabl
broadcast network.)

Investigation of the trap: If all participants agree that the trap should be investigated, this is again done
by first publishing the secrets and checking the rules of superposed sending. Then one has 1
distinguish trapper and attackers. This is easy now: Either one can rely upon the order of the
participants (in the place of output commitment) and force trappers to send zeros only. Or the
reservation phase can be investigated. In contrast to 4.3.6, it is also clear that the participant wh
published the trap proof, i.e. the passwords, is the trapper.

If an attacker has guessed all passwords correctly (which can happen only with a probability
exponentially decreasing with the length of the passwords) and published them as trap-proof, th
legal sender is either identified by the prosecution protocol, or, if he refuses to investigate, the
attacker will recognize him by this.

5 Adaptive Byzantine Agreement

The signature scheme of section 4.4.3.1.2 can also be used for a Byzantine Agreement protocol
which one need not decide between the two restrictions on the attacker (computationally restricted or
* |A] < |P]) a priori. Instead it will always work if at least one of them is fulfilled.

The first idea is, of course, that one starts with a Byzantine Agreement protocol BA1 which works
with any kind of signatures, implemented with the signature scheme in which breaking can be
proved, and one has another Byzantine Agreement protocol BA2 which works for 3 « |A| < |P| as<
alternative.

Now, in contrast to section 4.4.3.3, one needs a definite moment when everybody knows
whether the signatures are assumed broken and BA2 used, or whether the results of BA1 are use
But in a suitable implementation this doubtful situation can only arise if the signatures are broken.
Thus luckily we can then (also in contrast to section 4.4.3.3, where we had to consider the unlimitiec
attacker against untraceability) assume that the attacker is restricted by 3 ¢ |A| < |P].

This motivates the following (simple, not most efficient) protocol:

— 57 -

Basic Adaptive Byzantine Agreement protocol

[a] Perform a Byzantine Agreement protocol BA1 with signatures, implemented with
one-time signature scheme of section 4.4.3.1.2, and the 1st supplement.

[B] Perform a Byzantine Agreement protocol BA2 without signatures.

Fori=1,...,n:

[y;] Participant Pbroadcasts a decision message$ing protocol BA2, namely either the

factorization of all moduli, if he had them in [End] of steg, [or the value "no". (In
each round of the protocol, a participant checks whether a value claimed to b
factorizations is correct. If not, he interprets it as "no".)

[End] If an honest participant; Ras decided that all;@re "no", he decides for the value he
received in stepof]. Otherwise he decides for the value receive@jn [

Lemma5.1 Adaptive Byzantine Agreement.If signatures are unforgeable or 3 « |A| < |P|, tt
adaptive Byzantine Agreement protocol guarantees Byzantine Agreement witl
predefined number of phasess. More precisely, with probability at least

(1 _21d)n-1

i in step [End] each honest participant chooses the same value for v, and
ii. if the sender Pis honest, each honest participant chooses the value ser
Py.

Proof. We distinguish three cases:

1st caseSignatures are unforgeable, i.e. nobody can factor all moduli.

Then stepd] finds the correct agreement (Lemma 4.4). It remains to be shown that each h
participant decides for this value in step [End]. This is obvious, because nobody is able tc
factorizations in any of the stepg][so all honest participants will agree on "no” in all of these ste|

2nd case:The attacker disturbs step]| i.e. he forges at least one signature of an honest particig
or sends all factorizations to at least one honest participant.

Then according to the assumption 3 ¢ |A| < |P| holds. Thug3tiepds the correct agreement. Sc
it suffices to show that all honest participants decide for the value receiy@d in [

Either an honest participant fas received all factorizations directly from the attacker. Or in ph:i
[n+1] of step fi] with probability at least (1-8)""1 at least one honest participantkPows all
factorizations. In both cases he broadcasts them; as $2ep {;]. Because of 3 « |A| < |P| the
broadcast of stepyj is correct, thus all honest participants receive thisSP in [End], they decide
for the value received irf].

3rd case:The attacker can forge signatures, but he does not use this ability disturt] s{@u{
perhaps he disturbs the steg$lpy sending around factorizations!).

Then according to the assumption 3 ¢ |A| < |P| holds. Thus the byzantine agreements of a
[yj] are correct, so all honest participants receive the same messag@hsrBfore either all of them
decide for §], or all of them for B] in [End].

— 58 —

Also because of 3 « |[A| < |P|, if they decide f)r fhe value they get is correct. As the attacker
has not disturbed step], by lemma 4.4.i, stef also found a correct agreement. So no matter
which decision the honest participants take in [End], it is corrd_].

There are some obvious efficiency improvements:

* To save messages, one can postpone Blem{l after the stepsyf] and only perform it if the
decision is that its result must be used. (The proof showed that there will be agreement amon
all honest participants upon this.)

» To improve the ratio between decision making and the original agreement protocols, one car
decide about the correctness of an arbitrary number of si¢pg@th one execution of the
steps Y;]. Of course, then participant hooses the factorizations asiChe had them at the
end of any of the stepal].

» To save phases, step] fan be executed in parallel with any of the other steps. Also all steps
[yj] can be executed in parallel. This leaves (n+Ij)/8phases.

One can save one more phase at the expense of more messages (namely phase [n+1] of 1
supplement): To this end, in phase [n] each participgaddhtionally sends all the square roots which
he prepared for his own signatures to all other participants. This does not disturb BA1, as that i
already finished. Then each participant can perform the factorizations on his own, which he would
otherwise get in phase [n+1]. Thus one ha& « rMphases.

This is also possible in section 4.4.3.3. Of course, then the signed value of the sender cannot t
later used as proof towards a third party, but this is not necessary in our applications.

6 Summary

The goal of this report was to investigate how a sender and recipient untraceability scheme based «
superposed sending (sect. 2.1) can be realized.

We have shown that untraceability can be realized in a neabnditional way, i.e. without making
any assumptions about the network or the attacker, by comisnpeyposed sendind[Chau_88]
and sect. 2) aniil-stop broadcast(sect. 3.2).
This improves the result of David Chaum who implicitly assumes the existence of a reliable
broadcast network.

Unfortunately the unconditional untraceability scheme doesn't guarseneieeability, i.e. each
dishonest participant can stop the network. Thus in section 4 we discussed how to guarante
serviceability in spite of untraceability.

The protocol for solving this problem suggested in [Chau_88] can be misused for an easy active
attack on untraceability (sect. 4.2), but its basic idea can be used for the secure solutions presented
sections 4.3-4.5.

The restrictions Aeryand Ajner ON the attackers against serviceability and untraceability, resp.,
which are necessary for the different protocols are summarized in figure 7.

— 59 —

Protocol Section Agery Auntr Untraceability
probabilistic
Superposed sending 2.1 A=0 reliable no
broadcast
Fail stop broadcast 3.2.2.1 A=0 [no
3.2.2.2 - 3.2.2.3 A=0 [] yes

Reliable broadcast

4.3
4.3
4.5

reliable broadcast assumption

(J comp. restr. N no
O3¢|A| < |P| O3¢|A| < |P| no
[02¢|Al+1 < |P|| O2¢|A|+1 < |P| yes

Byzantine agreement 4.4.1.2

4.4.1.2

attacker cannot prevent communication
between honest participants

[13¢|A| < |P| (Untraceability probabilistic if
authentication codes are necessary)

[JA comp. restricted | yes

Fail-stop agreement 4.4.3

attacker cannot prevent communication
between honest participants

[l comp. restr.| HN yes

Figure 7

Summary

Our solution described in section 4.4.3 is basethitstop Byzantine Agreement i.e. Byzantine

agreement with signatures and the additional property that as soon as the attacker is able 1
signatures all other participants will recognize this. This is realized by a provably secure (one

signature scheme whose forgery by an unexpectedly powerful attacker is provable.

The method can also be applied to readaptive Byzantine Agreementi.e. Byzantine agreement

which can be disturbed only by an attacker who controls more than a third of all partianoantso
is able to forge signatures (sect. 5).

Acknowledgements

We are pleased to thank Andreas Pfitzmann for a vast amount of tricky ideas and clever improv
of our schemes, and we are grateful to Birgit Baum, Manfred Bottger, Axel Burandt, and k
Echtle for lots of valuable suggestions and the German Science Foundation (DFG) for fin:

support.

— 60 -

References

AdHu_87 L. M. Adleman, M. A. Huang: Recognizing Primes In Random Polynomial Time; 19th Symposium on
Theory of Computing (STOC) 1987, ACM, New York 1987, 462-469.

AlSc_83 B. Alpern, F. B. Schneider: Key exchange Using 'Keyless Cryptography'; Information Processing Letters
Vol. 16, 26 February 1983, 79-81.

AnLe 81 T. Anderson, P. A. Lee: Fault Tolerance - Principles and Practice; Prentice Hall, Englewood Cliffs, New
Jersey, 1981.

BeGW_88 M. Ben-Or, S. Goldwasser, A. Wigderson: Completeness theorems for non-cryptographic fault-tolerant
distributed computation; 20th Symposium on Theory of Computing (STOC) 1988, ACM, New York
1988, 1-10.

BeMi_88 M. Bellare, S. Micali: How to sign given any trapdoor function; 20th Symposium on Theory of
Computing (STOC) 1988, ACM, New York 1988, 32-42.

BrCC_88 G. Brassard, D. Chaum, C. Crépeau: Minimum Disclosure Proofs of Knowledge; Journal of Computer
and System Sciences 37 (1988) 156-189.

Bura_88 A. Burandt: Informationstheoretisch unverkettbare Beglaubigung von Pseudonymen mit beliebigen
Signatursystemen; Studienarbeit am Institut fir Rechnerentwurf und Fehlertoleranz der Universitat
Karlsruhe, Mai 1988.

CGMA _85 B. Chor, S. Goldwasser, S. Micali, B. Awerbuch: Verifiable secret sharing and achieving simultaneity in
the presence of faults (extended abstract); 26th Symposium on Foundations of Computer Science (FOCS
1985, IEEE Computer Society, 1985, 383-395.

Cha3 85 D. Chaum: The Dining Cryptographers Problem. Unconditional Sender Anonymity; Draft, received May
13, 1985;.

Chau_81 D. Chaum: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms; Communications of
the ACM 24/2 (1981) 84-88.

Chau_88 D. Chaum: The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability;
Journal of Cryptology 1/1 (1988) 65-75.

ChCD1_88 D. Chaum, C. Crépeau, |. Damgard: Multiparty unconditional secure protocols; 20th Symposium on
Theory of Computing (STOC) 1988, ACM, New York 1988, 11-19.

CoOS_86 D. Coppersmith, A. M. Odlzyko, R. Schroeppel: Discrete Logarithms in GF(p); Algorithmica 1,
Springer-Verlag, Heidelberg, 1986, 1-15.

DiHe_76 W. Diffie, M. E. Hellman: New Directions in Cryptography; IEEE Transactions on Information Theory
22/6 (1976) 644-654.

Dole_81 D. Dolev: The Byzantine Generals Strike Again; Department of Computer Science, Stanford University,
Stanford, CA 94305, Report No. STAN-CS-81-846, March 1981; appeared in: Journal of Algorithms 3/1
(1982) 14-30.

DoSt_83 D. Dolev, H. Raymond Strong: Authenticated Algorithms for Byzantine Agreement; SIAM J. Compult.
12/4 (1983) 656-666.

EcNi_89 K. Echtle, A. Niedermaier: Eine senderanonyme fehlertolerante Kommunikationsstruktur; will be
presented at: 4th Int. GI/ITG/GMA Conf. Fault-Tolerant Computing-Systems Baden-Baden 1989; IFB,
Springer-Verlag, Berlin 1989.

FeMi_88 P. Feldman, S. Micali: Optimal algorithms for byzantine agreement; 20th Symposium on Theory of
Computing (STOC) 1988, ACM, New York 1988, 148-161.

Gall_68 R. G. Gallager: Information Theory and Reliable Communication; John Wiley & Sons., New York 1968.

GIMS_74 E. N. Gilbert, F. J. Mac Williams, N. J. A. Sloane: Codes which detect deception; The Bell System
Technical Journal BSTJ 53/3 (1974) 405-424.

GMW_87 0. Goldreich, S. Micali, A. Wigderson: How to play any mental game - or - a completeness theorem for
protocols with honest majority; 19th Symposium on Theory of Computing (STOC) 1987, ACM, New
York 1987, 218-229.

GoM1_86 O. Goldreich, S. Micali, A. Wigderson: Proofs that Yield Nothing But their Validity and a Methology of
Cryptographic Protocol Design; 27th Symposium on Foundations of Computer Science (FOCS) 1986,
IEEE Computer Society, 1986, 174-187.

GoMR_88 S. Goldwasser, S. Micali, R. L. Rivest: A Digital Signature Scheme Secure Against Adaptive Chosen-

Message Attacks; SIAM J. Comput. 17/2 (1988) 281-308.

Kran_86
LaSP_82
Lowi_88

MaPf_87

Marc_88

Merk_88

Nied_87

Odly 85
Pera_86
PeSL_80
Pfil_85

Pfit_84

Pfit_89
PfPW_88

PfWa_86

Prad 86

Rabi_79

Rabi_80

Reis_87

Sim3_88
Tane_88
Triv_82

VaVa_85

Waid_89

WeCa_81

Woll_87

— 61 -

E. Kranakis: Primality and Cryptography; Wiley-Teubner Series in Computer Science, B. G. Teul
Stuttgart 1986.

L. Lamport, R. Shostak, M. Pease: The Byzantine Generals Problem; ACM Transaction:
Programming Languages and Systems (TOPLAS) 4/3 (1982) 382-401.

D. L. Long, A. Wigderson: The discrete logarithm hides O(log n) bits; SIAM J. Comput. 17/2 (19
363-372.

A. Mann, A. Pfitzmann: Technischer Datenschutz und Fehlertoleranz in Kommunikationssyste
Kommunikation in Verteilten Systemen, GI/NTG-Fachtagung, Aachen 1987, IFB 130, Springer-Ve
Heidelberg 1987, 16-30; Uberarbeitung in: Datenschutz und Datensicherheit DuD /8 (1987) 393-405

E. Marchel: Leistungsbewertung von tUberlagerndem Empfangen bei Mehrfachzugriffsverfahren nr
Kollisionsauflésung; Diplomarbeit am Institut fir Rechnerentwurf und Fehlertoleranz, Univers
Karlsruhe, April 1988.

R. C. Merkle: A digital signature based on a conventional encryption function; Crypto '87, LNCS
Springer-Verlag, Berlin 1988, 369-378.

A. Niedermaier: Bewertung von Zuverlassigkeit und Senderanonymitat einer fehlertolera
Kommunikationsstruktur; Diplomarbeit am Institut fir Rechnerentwurf und Fehlertoleranz, Univer:
Karlsruhe, September 1987.

A. M. Odlyzko: Discrete logarithms in finite fields and their cryptographic significance; Eurocrypt '
LNCS 209, Springer-Verlag, Heidelberg 1985, 224-314.

R. Peralta: Simultaneous Security of Bits in the Discrete Log; Eurocrypt '85, LNCS 219, Sprin
Verlag, Heidelberg 1986, 62-72.

M. Pease, R. Shostak, L. Lamport: Reaching Agreement in the Presence of Faults; Journal of the
27/2 (1980) 228-234.

A. Pfitzmann: How to implement ISDNs without user observability - Some remarks; Fakultat
Informatik, Universitat Karlsruhe, Interner Bericht 14/85.

A. Pfitzmann: A switched/broadcast ISDN to decrease user observability; 1984 International Zi
Seminar on Digital Communications, Applications of Source Coding, Channel Coding and Sec
Coding, March 6-8, 1984, Zurich, Switzerland, Proceedings IEEE Catalog no. 84CH1998-4, 183-19

A. Pfitzmann: Diensteintegrierende Kommunikationsnetze mit Teilnehmer-tberprifbarem Datensc
Dissertation Universitéat Karlsruhe, Fakultéat fir Informatik, 1989.

A. Pfitzmann, B. Pfitzmann, M. Waidner: Datenschutz garantierende offene Kommunikationsni
Informatik-Spektrum 11/3 (1988) 118-142.

A. Pfitzmann, M. Waidner: Networks without user observability -- design options; Eurocrypt '85, LN
219, Springer-Verlag, Heidelberg 1986, 245-253; Uberarbeitung in: Computers & Security 6/2 (1
158-166.

D. K. Pradhan (ed.): Fault-tolerant Computing — Theory and Techniques; Prentice-Hall, Englewood
1986 (2 vol.).

M. O. Rabin: Digitalized Signatures and Public-Key Functions as Intractable as Factoriza
Massachusetts Institute of Technology, Laboratory for Computer Science, MIT/LCS /TR-212, Jar
1979.

M. O. Rabin: Probabilistic algorithm for primality testing; J. Number Theory 12 (1980) 128-138.

R. Reischuk: Konsistenz und Fehlertoleranz in Verteilten Systemen - Das Problem der Byzantini:
Generdéle; 17. Gl Jahrestagung, IFB 156, Springer-Verlag, Berlin 1987, 65-81.

G.J. Simmons: A Survey of Information Authentication; Proceedings of the IEEE 76/5 (1988) 603-6
A. S. Tanenbaum: Computer Networks; 2nd ed., Prentice-Hall, Englewood Cliffs 1988.

K. S. Trivedi: Probability and Statistics with Reliability, Queuing, and Computer Science Applicatic
Prentice-Hall, Englewood Cliffs 1982.

U. V. Vazirani, V. V. Vazirani: Efficient and Secure Pseudo-Random Number Generation (exter
abstract); Crypto '84, LNCS 196, Springer-Verlag, Berlin 1985, 193-202.

M. Waidner: Unconditional Sender and Recipient Untraceability in spite of Active Attacks; Univers
Karlsruhe 1989; will be published in the Proceedings of Eurocrypt '89, LNCS, Springer-Verlag, B
1989.

M. N. Wegman, J. L. Carter: New Hash Functions and Their Use in Authentication and Set Equ
Journal of Computer and System Sciences 22 (1981) 265-279.

H. Woll: Reductions among Number Theoretic Problems; Information and Computation (form
Information and Control) 72/3 (1987) 167-179.

- 62 —

— 63 -

Update 90.06.12 to:

Unconditional Sender and Recipient Untraceability
in spite of Active Attacks — Some Remarks

Interner Bericht 5/89, Universitat Karlsruhe, Fakultat fur Informatik, Marz 1989

Michael Waidner, Birgit Pfitzmann

Institut fur Rechnerentwurf und Fehlertoleranz, Universitat Karlsruhe
Postfach 6980, D-7500 Karlsruhe 1, F. R. Germany
Phone: ++49-721-608-4024, Fax: ++49-721-608-4290
E-mail (CSnet): VAIDNER@IRA.UKA.DE

1. We have found a much more efficient signature scheme whose forgery can be proved
meantime. (We now call such schemes in general "fail-stop signature schemes", the old s
"root signature scheme" and the new scheme "hiding signature scheme".) Thus reading tl
scheme (Section 4.4.3.1) and all following statements about efficiency is only of historical ve

For descriptions and proofs of the hiding signature scheme, see [Pfitl_89, WaPf:
BIPW_90, PfWa_90].

2. Minor improvements to adaptive Byzantine Agreement (Chapter 5) can be found in [PfWal
Another efficient and anonymity preserving multi-access protocol (cf. Section 2.2) has
published in [BoBo_89]. Alternatives to how to understand the basic trap-protocol by Ch
(Section 4.2.1), and resulting alternatives to the improved protocol (Section 4.3), are discus
[WaPfl_89]. (None is better than the one presented here, but some are about as good.)

3. The notation in the overview table (Figure 7) can easily be misunderstood:
"A = [0" means that there are no attackers. Thus it is a strong assumption.

II|:|II

alone means "true", or in other words " unconditional”. Thus it is the weakest pos
assumption.

4. Section 4.4.3.1.3 about efficiency improvements for the root signature scheme is wrong
lemma is correct, but both methods using it would need the stronger assumptions that all
roots of]ﬁnk(a) are not only quadratic residues, but iterated squares. This is not true for gene

Literature

BIPW_90 Gerrit Bleumer, Birgit Pfitzmann, Michael Waidner: A Remark on a Signature Scheme where Forger
be Proved; Abstracts of Eurocrypt '90, Arhus 1990.

BoBo 89 Jurjen Bos, Bert den Boer: Detection of Disrupters in the DC Protocol; Abstracts of Eurocrypt
Houthalen 1989.

Pfitl_89 Birgit Pfitzmann: Fur den Unterzeichner sichere digitale Signaturen und ihre Anwendung; Diploma
am Institut fur Rechnerentwurf und Fehlertoleranz der Universitat Karlsruhe 1989.

PfWa_90 Birgit Pfitzmann, Michael Waidner: Fail-stop Signatures and their Application to Byzantine Agreem
submitted for publication, Universitat Karlsruhe 1990.

PfWal 90 {Birgit Pfitzmann, Michael Waidner}. More Secure Variants of Byzantine Agreement; submitted
publication, Universitat Karlsruhe 1990.

WaPfl_89 Michael Waidner, Birgit Pfitzmann: The Dining Cryptographers in the Disco: Unconditional Sender

Recipient Untraceability with Computationally Secure Serviceability; complete version of an abs
presented at Eurocrypt '89; Universitat Karlsruhe 1989.

