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Abstract 

Alice and Bob want to flip a coin by telephone. 
(They have just divorced, live in different cities, 
want to decide who gets the car.) Bob would not like 

to tell Alice HEADS and hear Alice (at the other end 
of the line) say "Here goes... I'm flipping the 
coin .... You lost!" 

Coin-flipping in the SPECIAL way done here has 
a serious purpose. Indeed, it should prove an 
INDISPENSABLE TOOL of the protocol designer. When- 
ever a protocol requires one of two adversaries, say 
Alice, to pick a sequence of bits at random, and 
whenever it serves Alice's interests best NOT to 
pick her sequence of bits at random, then coin- 
flipping (Bob flipping coins to Alice) as defined 
here achieves the desired goal: 

I. It GUARANTEES to Bob that Alice will pick her 
sequence of hits at random. Her bit is } if 
Bob flips heads to her, 0 otherwise. 

2. It GUARANTEES to Alice that Bob will not know 
WHAT sequence of bits he flipped to her. 

Coin-flipping has already proved useful in 
solving a number of problems once thought impossi- 
ble: mental poker, certified mail, and exchange of 
secrets. It will certainly prove a useful tool in 
solving ether problems as well. 

Introduction 

Flipping coins by telephone is EASY, as we show 
below, if one assumes the existence of a COMPLETELY 
SECURE one-way function. A (NORMALLY SECURE) 0RE-WAY 
FUNCTION is an efficiently computable function of 
some set into itself whose inverse cannot he com- 
puted efficiently except on a negligible fraction of 
values. A COMPLETELY SECURE 0RE-WAY FUNCTION has the 
additional property that from a knowledge of f(x), 
one cannot have more than a 50-50 chance to guess 
efficiently if x has some nontrivia! property, e.g., 
is even (lab : O) or odd (]sb = I). 

To flip coins, Alice and Bob should agree on a 
completely secure I-I one-way function f. Alice then 
selects an integer x unknown to Bob, computes f(x) 
and sends f(x) to Bob. Bob, who cannot determine 
some nontrivial property of x from f(x), tells Alice 
whether he thinks x is even or odd (this is where 
Bob flips a coin to Alice). At this point, Alice 
can tell if he guessed right or wrong. To convince 
Bob, she sends him x. 

Such completely secure one-way functions, how- 
ever, may not only be hard to discover, they may not 
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even exist. We show how a normally secure one-way 
function can be used to flip coins in a completely 
secure fashion. Our one-way function is 2-I, i.e., 
it raaps exactly two elements from its domain to each 
element of its range. A simple property, say even 
or oddness, will distinguish the two elements x,y 
that map to the same element f(x) = f(y). If Alice 
selects x and sends f(x) to Bob, he ABSOLUTELY CAN- 

NOT DETERMINE whether she selected the x or the y, x 
y, such that f(x) = f(y). He guesses whether she 

picked the even or odd number. His guess as told to 
Alice constitutes his coin flip to her. Since f is 
one-way, Alice cannot cheat, i.e., cannot tell him y 
if in fact she selected x. 

A coin-flipping protocol with the right proper- 
ties, of which the one presented here is an example, 

has numerous applications, eg., to the exchange of 
Isecret) keys [B'81], to the certified mail problem 
|BR '81] and to the solution of mental poker 
[SRA'78] WITHOUT commutative locks [MG'81]. The 
RIGHT PROPERTIES are: 

~. If either participant following protocol does 
not catch the other cheating, he or she can be 
sure that the coins each have exactly 50-50 
independent chance to come up heads (provable 
under the reasonable assumption that factoring 
is hard ~ . 

2. If either participant catches the other cheat- 
ing, he or she can prove it to a judge (this 
assumes that all messages are sent signed). 

3- After Bob flips coins to Alice, she knows which 
coins came up heads, which tails. He should 
have absolutely NO idea how they came up (not 
even a good guess). 

4. After the sequence of coin flips, Alice should 
be able to prove to Bob which coins came up 
heads, which tails. 

A COIiI-PI,IPP[}/C PROTOCOL WITH THESE PROPERTIES CAN 
BE USED [~ ANY PROTOCOL THAT REQUIRES ONE OF TWO 
ADVERSARIES, SAY ALICE, TO GENERATE AND USE A RANDOM 
NUMBER, x, WITHOUT REVEALING IT TO HER OPPO~[ENT, 
BOB. EVEN IF IT IS TO HER ADVANTAGE TO SELECT A PAR- 
TICULAR NONRANDOM x, SHE WILL NOT BE ABLE TO DO SO. 

BOB FORCES ALICE TO CHOOSE x AT RANDOM BY FLIPPING 
COINS TO HER. 

THE RESULTING SEQUENCE OF BITS IS COMPLETELY UNKNOWN 
TO BOB AND, PROVIDED BOB FOLLOWS PROTOCOL, COM- 
PLETELY RANDOM. ALICE USES THE SEQUENCE AS THE 
REQUIRED RANDOM NUMBER, x. LATER, SHE PROVES TO BOB 
THAT HE FLIPPED THE SEQUENCE x TO HER, THUS ASSURING 

HIM IT WAS CHOSEN AT RANDOM. 
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In addition to the above properties, the coin- 
flipping protocol presented here has the following 
useful properties: 

I. Each participant KNOWS at each step along the 
way if the other cheated. He or she does not 
require later proof (e.g., after Alice has 
revealed the result of the coin-flips to Bob) 
to determine this. The court is needed only to 
provide justice, to give independent proof of 
wrong (or right) doing, or to force an adver- 
sary to complete the protocol. 

2. Bob can use his publlc-key, n, provided it is 
constructed correctly, to flip coins. 

3. Bob does not have to create new primes for each 
coin-flip. Each coin-flip only requires compu- 
tation time of the order the time required to 
compute a Jacobi symbol, (x/n), for 0 < x < n 
and n = a 1SO-digit number. The Jacobi symbol, 
(x/n), can be computed quickly, in the same 
order of time required to compute the greatest 
common divisor, gcd (x,y). 

ASSUMPTIONS: 

I. Factorization: We assume that no procedure can 
efficiently factor a number n that is a product 
of two large primes, except for a negligible 
fraction of such numbers n. In 1980 technology, 
this means that a product of two 80-digit 
primes cannot be factored in reasonable time 
(not even 5 years) using the most advanced 
available technology (1000 CRAY-I's working in 
parallel) on any but a negligible fraction (one 
in Avogadro's number) of such numbers. A 
coin-flipping pTotocol based on the intracta- 
bility of the discrete logarithm rather than 
factorization appears in iBM'S1]. 

2. Random Number Generation: We assume that Bob 
and Alice each have their own true random 
number generators. The coin-flipping protocol 
shows hot the random m nber generators enable 
Bob to generate and flip random bits to Alice. 

Signatures: Some of the messages in the proto- 
col below are required to be signed. We assume 
the existence of a secure signature scheme of 
the sort first suggested by Diffie and Hellman 
in 1976 [DH'79], and as implemented by Rivest, 
Shamir, and Adleman [RSA'78] and Rabin [R'79]. 
Signed messages are placed in quotes and ter- 
minated with the signer's name. It is expected 
that each participant knows (from the protocol) 
if the message he or she receives is supposed 
to be signed and refuses to continue the 
exchange unless the received message IS prop- 
erly signed. 

3. 

THE JACOBI SYMBOL: 

The Jaeobi symbol (x/n) is defined for odd positive 
integers n and arbitrary (positive and negative) 
integers x. It has values O, +I, or -I. As pointed 
out earlier, the computation of (x/n) is similar to 
the computation of ~cd(x~n) and takes the same order 
of time to compute [A'78J. An algorithm for comput- 
ing (x/n) can easily be constructed from the follow- 
ing of its properties: 

x, xl, x2, ... are arbitrary (positive or negative) 
integers, n, nl, n2, ... are positive odd integers: 

1. ( x / n )  = o i f  gcd ( ~ , n )  / I 
2.  (I/n) = 1 
3.  ( ( x l * x 2 ) / n )  = ( x l / n ) * ( x 2 / n )  
4. (xl(n1*n2)) = (xlnl)W(x/n2) 
5. (xl/n) = (x2/n) if xl = x2 mod n 
6. (-I/n) = +I if n = I mod 4 

-I if n = 3 rood 4 
7. (2/n) = +I if n = I or 7 mod 8 

-I if n = 3 or 5 rood 8 
8 .  ( n t l n 2 )  = ( n 2 / n l )  i f  gcd ( n l , n 2 )  = 1 

and [nl or n2 = 1 mod 4 ]  
- ( n 2 / n l )  i f  ged ( n l , n 2 )  = 1 

and [nl and n2 = 3 mod 4] 

EXAMPLE: (23/59) = -(59/23) = -(13/23) = 
-(23/13) = -(10/13) = 
-(2/13)*(5/13) = (5/13) = (13/5) = 
(315) = (513) = (213) ~ -I. 

THE GROUP Zn* 

For n a positive integer greater than I, define Zn* 
to be the group of positive integers less than n 
that are relatively prime to n, the group operation 
being multiplication mod n. 

LEMMA 

Let n = pl el * • * pk sk , where k is an integer 
greater than I; p],...,pk are distinct odd primes; 
and el,...,ek are positive integers. Let a in Zn* be 
a quadratic residue (square of an integer) mod n. 

Then every solution in Zn* of x 2 = a mod n is of 
the form 

EQ I: x [~ (x|*v1*p2e2 * "'" * pkek) ! 

(x2*v2*plel ~ ... * pkek) ~ ... ~ (xk*vk*pl el 

• . . .  * p ( k - 1 ) e ( k - 1 ) ) ]  mod n, 

where vl is any integer such that (v1*p2 e2 * ... * 
pk ek) mod pl el = I [footnote lJ. v2,...,vk are 
defined similarly. 

PROOF 

See LeVeque [L'77], Theorems 3.21 & 5,2. 
iii 
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THEOREM 7 

If n is any odd positive integer, so n = pl el 
*...*pk ek is defined as in the statement of the 
lemma except that k = I is also permitted, then I, 
2, 3 are equivalent: 

I. there exist x,y in Zn* such that x 2 = y2 mod n 
and (x/n) / (y/n). 

2. pi ei = 3 mod 4 for some i. 

3. Let a in Zn* be a quadratic residue mod n. 
Then exactly half the roots in Zn* of the equa- 
tion a = x 2 mod n have Jacobi symbol (x/n) = +I 
(the other half have (x/n) = -I). 

PROOF 

[footnote I]: vl is easily generated by the Eu- 
clidean algorithm 2 which, when aoolied to the en- 
tries in gcd (pl el, p2e2 . ... ,~kek) = I, yields 
integers ul, vl such that u1*pl e] + v1*p2 e2 * ... 
• pk eK = I ) . 
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I => 2: Suppose to the contrary that pi ei = I 
mod 4 for all i. Let a in Zn* be any quadratic 
residue mod n. If k = I, then a = x 2 mod n has 
exactly two roots, x and -x [footnote 2]. These 
satisfy 

( x / n )  = (x/n)*(-I/n) since (-I/n) = 

+i when n = i mod 4 
= (-x/n). 

This contradicts I for k = I. 

If k > I, then by the lemma, x satisfies equa- 
tion I. Therefore, 
(x/p~e~) = (x1/p~el) 

(-xl/pl el) since (-I/pi el) = ÷I. 
Therefore, any two solutions x,y satisfy (x/pl el) 
(y/plel). Similarly, (x/p2 e2) = 

(y/p2e2),...,(x/pk ek) = (y/pkek). Therefore (x/n) = 
(y/u). This contradicts 9. 

2 => 3: Equation I gives all roots of a = x 2 
mod n. Let the root y be obtained from x by changing 
the sign of xi, where pi ei = 3 mod 4. Then (x/n) = 
( x / p ~ e ~ ) * . . . * ( x / p k  e k )  = _(y/plel)*...*(y/pk eK) 

-(y/n). 
3 => 1 : I m m e d i a t e .  

i [ i  

PUBL[CATION DATE OF n 

In the first message of the following protocol, Bob 
reveals a number n together with its PUBLICATION 
DATE defined to be the date on which it was first 
published. A statute of limitations prohibits 
either party from bringing the other to court, say, 
5 years after that publication date. This limita- 
tion is needed for several reasons: 

I. Bob cannot expect the prime factorization of 
his number n to remain hidden for more than 5 
years, and once it is out, Alice can fool the 
judge (but this problem can be avoided without 
a statute of limitations by having Alice sign 
an additional message below). 

2. It is unreasonable to demand that Alice and Bob 
keep their correspondence for longer than some 
fixed length of time (5 years). 

We assume that each of the parties is aware of this 
limitation and do not mention it further. 

THE PROTOCOL: BOB FLIPS COINS TO ALICE 

I. BOB SELECTS n [footnote 3]: 

[footnote 2]: By ~buse of notation, we assign to x 
a dual use as variable (in the equation a = x 2 mod 
n) and as constant (a particular solution of a = x 2 
mod n). 

[footnote 3]: A TRUSTED INTERMEDIARY may be used to 
select n. }{e must choose n at random according to 
the rules given Bob. If the intermediary is trusted 
by the entire world (trusted to select n according 
to the rules and not to give away the primes), then 
everyone can use n to flip coins to everyone else. 
It is not necessary for either Bob or Alice to know 
the prime factors of n in order for Bob to flip 
coins to Alice. In fact, Alice - or whoever is re- 
ceiving the flipped coin - should NOT know the prime 
factorization of n, else she can cheat Bob. 

Bob selects a t  random two distinct (exactly) 80- 
digit primes pl, p2, both congruent to 3 mod 4; 
i.e., he repeatedly selects 80-digit numbers at ran- 
dom and tests each until he obtains two primes both 
congruent to 5 mod 4 [footnote 4]. He multiplies 
these together to get n = p1*p2. 

B => A: Bob sends Alice "My coin-flipping m~ber is 
n. Its publication date is May 27, ~980. - 
signed Bob." 

II. ALICE TESTS n: 

If Alice trusts that n is a 16e-digit product of two 
primes, both congruent to 3 mod 4, then this part of 
the protocol may be skipped. Otherwise, Alice 
checks that n has the following two properties 
[footnote 5]: 

a) Alice checks that n is a 160-digit number and 
that u = I mod 4. The latter implies that n is odd 
and (-I/n) = +I. 
b) Alice checks that for SOM~ x there is almost 
surely a y such that x 2 = y~ mod n and (x/n) 
(y/n), as follows: 

B => A: Bob selects 80 (distinct) numbers 
x1,...,x80 chosen at random from Zn* (it is 
in HIS interest to select these numbers at 
random). He sends xl 2 mod n,...,x802 mod n 
to Alice [footnote 6]. 

B => B: Alice sends Bob a sequence of 80 randomly 
chosen bits, bl,...,b80, where each bi = +I 
or -1 . 

B => A: Let xi 2 = yi 2 mod n where (xi/n) = +I, 
• (yi/n) = -I. (By Theorem I, two such roots 

must exist for every i.) Bob sends Alice a 
particular sequence of 80 numbers: for each 
i, from i = I to i = SO~ he sends Alice xi 
if bi = +I, or yi if bi = -I. 

This convinces Alice that condition J of Theorem I 
holds (it fails with probability I/280 < 
]/Avo~adro's number) [footnote 7]. 

From this point on, the number n has been 
tested and Alice does not have to retest it. 

[footnote 4]: PRIMALITY TEST Alice and Bob can test 
if an 80-digit number is prime using one of the ef- 
ficient algorithms for primality of Gary Miller 
[M'76], Strassen and Solovay [SS'77], or Rabin 
[R'80]. Approximately half of all the 80-digit 
primes are congruent to 3 mod 4. 

[footnote 5]: The two properties do not prove that 
n is a product of two distinct primes both congruent 
to 3 nod a (it might for example be a product of 
three distinct primes, two of the~ congruent to 3 
nod 4), but they suffice to prove that (with ex- 
tremely high probability) the protocol is 
trustworthy. 

[footnote 6]: Alice does not have to check if the 
numbers she receives are distinct or quadratic resi- 
dues mod n relatively prime to n. This check is au- 
tomatically part of the following B => A message. 

[footnote 7]: Alice has NOT proved that n is a pro- 
duct of just two primes - she has just "proved" that 
n satisfies statement I of Theorem I, which is all 
she needs to know. It will actually be in Bob's in- 
terest to make n a product of just two primes to 
prevent Alice from factoring n within the 5-year 
statute of limitations. 
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III. BOB PLIPS COINS TO ALICE: 

For this protocol to hold in court, messages 
exchanged in this part (as in I but not If) are 
signed before delivery. Alice checks that the pub- 
lication date is within an acceptable tolerance, 
e.g., within I year of the current date, else 
aborts. If she accepts the publication date, then 
Bob and Alice can flip 80 (or any number of) coins 
as follows: 

A => B: Alice selects 80 numbers xl,...,xSO in Zn* 
at random. She sends Bob "n, ~ublication 
date of n, xl 2 mod n,..., xSO L mod n - 
signed Alice." 

The purpose in sending n is for the court to know 
which of perhaps several transactions this is. 

This is a delicate point in the negotiations 
for Alice. The delicacy has to do with the publica- 
tion date. If Bob does not respond to the above 
message, he could nevertheless take Alice to court, 
saying he sent her his guess (+ I) and she didn't 
pursue the matter (he claims sue probably lost the 
coin-toss). With the judge's protocol given here, 
the court would then enforce completion of the pro- 
tocol. If Bob does not wish to continue, it would 
be a courtesy for him to tell her so in a signed 
message. The protocol could then stop here. It can 
stop here anyway provided Alice understands that she 
may be forced to continue the protocol in court. If 
this is inconvenient, she should take Bob to court 
and get a letter from the judge terminating this 
protocol. 

At this point, Bob should check that Alice sent 
him the correct n and the correct publication date 
(if not, he should ask her to stop fooling around). 
Bob cannot tell if (xi/n) = +I or -I since by 3 of 
Theorem I, xi 2 mod n has as many roots with (xi/n) = 
+I as it has with (xi/n) = -I (this is true even if 
Bob did not choose n to be a product of two primes). 

B => A: Bob sends Alice "n, xl 2 mod n,..., xSO 2 mod 
n, b1,...,beO .- sig~ed Bob" [footnote 8]. 

Alice should check that n, xl 2 mod n,..., x802 
mod n have not been altered (if so, she asks Bob to 
stop fooling around). Alice now determines her 
sequence of random bits: her ith random bit is ri = 
+I if Bob guessed right about xi; -I if he guessed 
wrong. 

At this point in the protocol, Alice knows what 
Bob flipped to her; Bob has absolutely no idea. 
Whenever she wants to prove to Bob what sequence 
rl,...,rSO of random bits was flipped to her, she 
sends the confirmation message: 

A => B: Alice sends xi,...,×80 to Bob. 

This message need nut be signed, but in that case 
Bob must make sure his factorization of n will not 
be given away during the next 5 years. If Alice DOES 
sign this message, then the statute of limitations 
need NOT apply. 

To guard against Alice cheating, Bob computes 
xl 2 mod n,..., x802 mod n and compares them with 
what Alice sent him: if they do not agree, then 
Alice cheated. If they do agree, he computes 
(xl/n),...,(xSO/n) and thereby determines rl,...,rSO 

[footnote ~]: The extra information, i.e., n, xl 2 
mod n,..., xSO 2 mod n, enables the courts to know 
which of perhaps several transactions this is. 

[footnote 9]. 
If Bob should need to flip more coins to Alice, 

the two can continue to use the same n, skipping 
parts I and II of the above protocol. 

END OF PROTOCOL 

THE JUDGE'S PROTOCOL 

An iron-clad judge's protocol is one that can be 
programmed and thereby save needless expense. In 
what follows, the judge should be viewed as a com- 

puter. 

In case of a dispute, the judge proceeds as 
follows: 

I. Subpoena all signed messages that have been 
exchanged. Check that the statute of limitations 
has not been exceeded (5 years past the publication 
date on the number n). If so, throw the case out of 
Court. 

2. If one of the participants, say Alice, produced 
a signed-by-Bob message that refers back to a previ- 
ously signed-by-Alice message (she sent Bob), then 
Bob must produce the message he received or be found 
guilty of cheating. 

5. Check that n is a 160-digit number that passes 
the test in II [footnote 10]. If not, Bob is found 
guilty of cheating. 

4. If no messages have provably been exchanged in 
Ill, i.e., neither party has produced a message of 
III signed by the ether, then give each of the par- 
ticipants a dated letter asserting that this proto- 
col is declared terminated. (even if Alice sent xl 2 
mod n to Bob, who decided not to pursue the matter 
and threw out her signed message). Otherwise, 
enforce completion of the protocol (if it has not 
already been completed) [footnote 11]. 

5. Check that the xl 2 mod n,... in the signed-by- 
Alice message received by Bob is the square mod n of 
the numbers xl,.., in the signed-by-Alice message 
later received by Bob. If not, Alice is found 
guilty of cheating. 

6. Determine the sequence of random bits that Bob 
flipped to Alice. Give each of the participants a 
(dated) paper asserting the court's findings (this 
is necessary because the case cannot be brought to 

[footnote 9]: Alice cannot cheat since, first, 
(xi/n) = (-xi/n) so Alice cannot change the Jacobi 
symbol of xi by changing the sign of xi, and second, 
Alice cannot compute yi such that yi ~ xi mod n and 
yi 2 = xi 2 mod n (under the assumption that she can- 
not factor n) since gcd (xi ~ yi) = pl or p2. 

[footnote 10]: The judge might, instead of testing 
n, subpoena the prime factors of n, check there are 
just two 80-digit primes congruent to 3 mod 4, else 
find Bob guilty of cheating. This requires, howev- 
er, that the judge be trusted not to divulge the 
primes, which Bob might be using in other transac- 

tions. 

[footnote 11]: This is necessary to guard against 
the possibility that Alice sent xl 2 mod n,... to 
Bob, that Bob responded with +I, -I,... and that 
Alice decided she did not like the result (she might 
argue that Bob never sent her the required bits). 
Or perhaps Alice liked the result, responded to Bob 
by sending him xl,.., and Bob decided he did not 
like the result (he might argue that Alice never 
sent him xl,...). 
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court again once the statute of limitations is 
exceeded not to mention the waste of duplicated 
proceedings). 

END OF PROTOCOL 
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