
i
Copyright © 2008 IEEE. All rights reserved.

The XTS-AES Tweakable Block Cipher 1

An Extract from IEEE Std 1619-2007 2

Extracted from IEEE Std 1619-2007, published 18 April 2008. 3
 4
 5
 6
 7
 8
This special IEEE copyrighted PDF is being created to allow NIST to 9
submit IEEE Std 1619-2007 XTS-AES encryption algorithm for 10
consideration as an Approved Mode of Operation under NIST FIPS 11
140-2 This document is made available for public review only for a 12
period of ninety (90) days (June 5, 2008 through September 3, 2008). 13
Copying, cutting and pasting, and/or redistributing electronically or 14
otherwise of this document is strictly prohibited. 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
Copyright © 2008 by the Institute of Electrical and Electronics Engineers, Inc. 35
All rights reserved. 36
IEEE is a registered trademark in the U.S. Patent and Trademark Office, owned by the Institute of Electrical and Electronics 37
Engineers, Incorporated. 38
 39
 40
 41
 42
 43

ii
Copyright © 2008 IEEE. All rights reserved.

Introduction 1

This document was extracted from IEEE Std 1619-2007, IEEE Standard for Cryptographic Protection of 2
Data on Block-Oriented Storage Devices. This document contains description of the XTS-AES transform. 3
Please refer to the full standard documentation for other information, including motivation, key 4
export/import, and test vectors. 5
 6
XTS-AES is a tweakable block cipher designed for encryption of sector-based storage. XTS-AES acts on 7
data units of 128 bits or more and uses the AES block cipher as a subroutine. The key material for XTS-8
AES consists of a data encryption key (used by the AES block cipher) as well as a “tweak key” that is used 9
to incorporate the logical position of the data block into the encryption. XTS-AES is a concrete 10
instantiation of the class of tweakable block ciphers described in Rogaway [B10]a. The XTS-AES addresses 11
threats such as copy-and-paste attack, while allowing parallelization and pipelining in cipher 12
implementations. 13

Notice to users 14

Laws and regulations 15

Users of these documents should consult all applicable laws and regulations. Compliance with the 16
provisions of this standard does not imply compliance to any applicable regulatory requirements. 17
Implementers of the standard are responsible for observing or referring to the applicable regulatory 18
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in 19
compliance with applicable laws, and these documents may not be construed as doing so. 20

Copyrights 21

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and 22
private uses. These include both use, by reference, in laws and regulations, and use in private self-23
regulation, standardization, and the promotion of engineering practices and methods. By making this 24
document available for use and adoption by public authorities and private users, the IEEE does not waive 25
any rights in copyright to this document. 26

Updating of IEEE documents 27

Users of IEEE standards should be aware that these documents may be superseded at any time by the 28
issuance of new editions or may be amended from time to time through the issuance of amendments, 29
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition 30
of the document together with any amendments, corrigenda, or errata then in effect. In order to determine 31
whether a given document is the current edition and whether it has been amended through the 32
issuance of amendments, corrigenda, or errata, visit the IEEE Standards Association Web site at 33
http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously. 34
 35
For more information about the IEEE Standards Association or the IEEE standards development process, 36
visit the IEEE-SA Web site at http://standards.ieee.org. 37
 38
_________________ 39
a The numbers in brackets correspond to those of the bibliography in Annex A. 40

 41

http://ieeexplore.ieee.org/xpl/standards.jsp�
http://standards.ieee.org/�

iii
Copyright © 2008 IEEE. All rights reserved.

Errata 1

Errata, if any, for this and all other standards can be accessed at the following URL: 2
http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL 3
for errata periodically. 4

Interpretations 5

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/ 6
index.html. 7

Patents 8

Attention is called to the possibility that implementation of this IEEE Std 1619-2007 may require use of 9
subject matter covered by patent rights. By publication of this IEEE Std 1619-2007, no position is taken 10
with respect to the existence or validity of any patent rights in connection therewith. The IEEE is not 11
responsible for identifying Essential Patent Claims for which a license may be required, for conducting 12
inquiries into the legal validity or scope of Patents Claims or determining whether any licensing terms or 13
conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing 14
agreements are reasonable or non-discriminatory. Users of this IEEE Std 1619-2007 are expressly advised 15
that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely 16
their own responsibility. Further information may be obtained from the IEEE Standards Association. 17

Participants from IEEE Std 1619-2007 18

The Security in Storage Working Group operated under the following sponsorship: 19
 20

Sponsor: John L. Cole 21
Co-Sponsor: Curtis Anderson 22

 23
At the time this standard was submitted to the IEEE-SA Standards Board for approval, the Security in 24
Storage Working Group had the following officers: 25
 26

Matthew V. Ball, Chair 27
Eric A. Hibbard, Vice-chair 28
James P. Hughes, Past chair 29

Fabio Maino, Secretary 30
 31

At the time this standard was submitted to the IEEE-SA Standards Board for approval, the P1619 Task 32
Group had the following membership: 33

 34
Serge Plotkin, Task Group Chair and Technical Editor 35

 36
37 Gideon Avida 37

Matthew V. Ball 38
David L. Black 39
Russel S. Dietz 40
Robert C. Elliott 41
Hal Finney 42
John Geldman 43
Robert W. Griffin 44
Cyril Guyot 45

Shai Halevi 46
Laszlo Hars 47
Larry D. Hofer 48
Walter A. Hubis 49
James P. Hughes 50
Glen Jaquette 51
Curt Kolovson 52
Robert A. Lockhart 53
Fabio R. Maino 54

Charlie Martin 55
David A. McGrew 56
Dalit Naor 57
Landon Curt Noll 58
Jim Norton 59
Scott Painter 60
David B. Sheehy 61
Robert N. Snively 62
Douglas L. Whiting 63

 64

http://standards.ieee.org/reading/ieee/updates/errata/index.html�
http://standards.ieee.org/reading/ieee/interp/�index.html�
http://standards.ieee.org/reading/ieee/interp/�index.html�

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

iv
 Copyright © 2008 IEEE. All rights reserved.

This “Extract of IEEE Std 1619-2007” was edited by Serge Plotkin (past vice-chair), Shai Halevi, and 1
Dalit Naor. 2
 3
Special thanks to Douglas L. Whiting, Brian Gladman, and Robert C. Elliott. 4
 5
IEEE Std 1619-2007 Balloters 6
 7
The following members of the balloting committee voted on this standard. Balloters may have voted for 8
approval, disapproval, or abstention. 9
 10
Curtis C. Anderson 11
Danilo Antonelli 12
Gideon Avida 13
Matthew V. Ball 14
Brian A. Berg 15
Massimo Cardaci 16
Juan C. Carreon 17
Keith Chow 18
John L. Cole 19
Roger Cummings 20
Geoffrey Darnton 21
Russell S. Dietz 22
Carlo Donati 23
Robert C. Elliott 24
Yaacov Fenster 25
John Geldman 26

Robert W. Griffin 27
Randall Groves 28
Laszlo Hars 29
Eric A. Hibbard 30
Werner Hoelzl 31
Larry D. Hofer 32
Stuart Holoman 33
Walter A. Hubis 34
Raj Jain 35
Piotr Karocki 36
Kenneth Lang 37
Daniel G. Levesque 38
Robert A. Lockhart 39
Fabio R. Maino 40
Edward McCall 41
 42

Michael Newman 43
Charles K. Ngethe 44
Landon Curt Noll 45
Serge Plotkin 46
Ulrich Pohl 47
Jose Puthenkulam 48
Michael D. Rush 49
Randall M. Safier 50
Stephen Schwarm 51
David B. Sheehy 52
Robert N. Snively 53
Thomas Starai 54
Walter Struppler 55
John Vergis 56
Oren Yuen 57
Paolo Zangher58

 59
60

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

v
Copyright © 2008 IEEE. All rights reserved.

CONTENTS 1
 2

1. Overview .. 1 3

1.1 Scope ... 1 4
1.2 Purpose .. 1 5
1.3 Related work.. 1 6

2. Normative references.. 1 7

3. Definitions .. 2 8

3.1 Acronyms and abbreviations ... 2 9

4. Special terms .. 2 10

4.1 Numerical values ... 2 11
4.2 Letter symbols ... 3 12
4.3 Special definitions ... 3 13

5. XTS-AES transform ... 3 14

5.1 Data units and tweaks .. 3 15
5.2 Multiplication by a primitive element α .. 4 16
5.3 XTS-AES encryption procedure.. 4 17
5.4 XTS-AES decryption procedure.. 6 18

6. Using XTS-AES-128 and XTS-AES-256 for encryption of storage .. 8 19

Annex A (informative) Bibliography ... 10 20

Annex C (informative) Pseudocode for XTS-AES-128 and XTS-AES-256 encryption 11 21

C.1 Encryption of a data unit with a size that is a multiple of 16 bytes... 11 22
C.2 Encryption of a data unit with a size that is not a multiple of 16 bytes... 12 23

Annex D (informative) Rationale and design choices .. 13 24

D.1 Purpose ... 13 25
D.2 Transparent encryption ... 13 26
D.3 Wide vs. narrow block tweakable encryption... 14 27
D.4 XEX construction ... 15 28
D.5 Sector-size that is not a multiple of 128 bits ... 18 29
D.6 Miscellaneous ... 18 30

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

1
Copyright © 2008 IEEE. All rights reserved.

IEEE Std 1619-2007 1
 2
IMPORTANT NOTICE: This standard is not intended to assure safety, security, health, or 3
environmental protection in all circumstances. Implementers of the standard are responsible for 4
determining appropriate safety, security, environmental, and health practices or regulatory 5
requirements. 6
This IEEE document is made available for use subject to important notices and legal disclaimers. These 7
notices and disclaimers appear in all publications containing this document and may be found under the 8
heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.” 9
They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/ 10
disclaimer.html. 11
 12

1. Overview 13

1.1 Scope 14

This standard specifies elements of an architecture for cryptographic protection of data on block-oriented 15
storage devices, describing the methods, algorithms, and modes of data protection to be used. 16

1.2 Purpose 17

This standard defines specific elements of an architecture for cryptographically protecting data stored in 18
constant length blocks. Specification of such a mechanism provides an additional and improved tool for 19
implementation of secure and interoperable protection of data residing in storage. 20

1.3 Related work 21

The formal definition of the security goal of a tweakable block-cipher can be attributed to Liskov, Rivest, 22
and Wagner [B5]1, where they also show how tweakable ciphers can be built from standard block ciphers. 23
An earlier work by Schroeppel suggested the idea of a tweakable block-cipher, by designing a cipher that 24
natively incorporates a tweak (see Schroeppel [B11]). 25

2. Normative references 26

The following referenced documents are indispensable for the application of this document (i.e., they must 27
be understood and used, so each referenced document is cited in text and its relationship to this document is 28
explained). For dated references, only the edition cited applies. For undated references, the latest edition of 29
the referenced document (including any amendments or corrigenda) applies. 30

NIST FIPS-197, Federal Information Processing Standard (FIPS) for the Advanced Encryption Standard 31
(AES).2 32

 33

 34

1 The numbers in brackets correspond to those of the bibliography in Annex A.
2 FIPS publications are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22661,
USA. FIPS-197 is also available on-line from http://csrc.nist.gov/publications/fips/index.

http://standards.ieee.org/IPR/�disclaimer.html�
http://standards.ieee.org/IPR/�disclaimer.html�

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

2
Copyright © 2008 IEEE. All rights reserved.

3. Definitions 1

For the purposes of this standard, the following terms and definitions apply. The Authoritative Dictionary 2
of IEEE Standards Terms, Seventh Edition [B4] should be referenced for terms not defined in this clause. 3
 4
key scope: Data encrypted by a particular key, divided into equal-sized data units. The key scope is 5
identified by three non-negative integers: tweak value corresponding to the first data unit, the data unit size, 6
and the length of the data. 7
NOTE—See 4.3.1.3 8

tweak value: The 128-bit value used to represent the logical position of the data being encrypted or 9
decrypted with XTS-AES. 10

3.1 Acronyms and abbreviations 11

AES advanced encryption standard 12
Base64 encoding according to IETF RFC 3548 [B12] 13
DTD document type definition 14
FIPS Federal Information Processing Standard 15
GF Galois field (see Menezes et. al. [B6]) 16
LBA logical block address 17
XML extensible markup language 18
XTS XEX encryption mode with tweak and ciphertext stealing 19

4. Special terms 20

4.1 Numerical values 21

Decimal and binary numbers are used within this document. For clarity, decimal numbers are generally 22
used to represent counts and binary numbers are used to describe bit patterns. 23

Decimal numbers are represented in their usual 0, 1, 2, ... format. Binary numbers are represented by a 24
string of one or more bits followed by the subscript 2. Thus the decimal number 26 may also be represented 25
as 000110102. Hexadecimal numbers are represented by a string of one or more hexadecimal characters 26
followed by a subscript 16. 27

3 Notes in text, tables, and figures are given for information only, and do not contain requirements needed to implement the standard.

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

3
Copyright © 2008 IEEE. All rights reserved.

4.2 Letter symbols 1

The following symbols are used in equations and figures: 2

⊕ Bit-wise exclusive-OR operation 3

⊗ Modular multiplication of two polynomials over the binary field GF(2), modulo 4
x128 + x7 + x2 + x + 1, where GF stands for Galois Field (see Menezes et. al. [B6]) 5

α A primitive element of GF(2128) that corresponds to polynomial x (i.e., 0000…0102), 6
where GF stands for Galois Field (see Menezes et. al. [B6]) 7

• Assignment of a value to a variable 8

| Concatenation (e.g., if K1 = 0012 and K2 = 1010102, then K1|K2 = 0011010102) 9

// Start of a comment. Comment ends at end of line 10

⎣x⎦ Floor of x (e.g., ⎣7/3⎦ = 2) 11

4.3 Special definitions 12

4.3.1 Data unit: Within IEEE Std 1619, 128 or more bits of data within a key scope. The first data unit in 13
a key scope starts with the first bit of the key scope; each subsequent data unit starts with the bit after the 14
end of the previous data unit. Data units within a key scope are of equal sizes. A data unit does not 15
necessarily correspond to a physical or logical block on the storage device. 16

5. XTS-AES transform 17

5.1 Data units and tweaks 18

This standard applies to encryption of a data stream divided into consecutive equal-size data units, where 19
the data stream refers to the information that has to be encrypted and stored on the storage device. 20
Information that is not to be encrypted is considered to be outside of the data stream. 21
 22
The data unit size shall be at least 128 bits. Data unit should be divided into 128-bit blocks. Last part of the 23
data unit might be shorter than 128 bits. The number of 128-bit blocks in the data unit shall not exceed 24
2128 – 2. The number of 128-bit blocks should not exceed 220.4 Each data unit is assigned a tweak value that 25
is a non-negative integer. The tweak values are assigned consecutively, starting from an arbitrary non-26
negative integer. When encrypting a tweak value using AES, the tweak is first converted into a little-endian 27
byte array. For example, tweak value 123456789a16 corresponds to byte array 9a16,7816,5616,3416,1216. 28
 29
The mapping between the data unit and the transfer, placement, and composition of data on the storage 30
device is beyond the scope of this standard. Devices compliant with this standard should include 31
documentation describing this mapping. In particular, a single data unit does not necessarily correspond to 32
a single logical block on the storage device. For example, several logical blocks might correspond to a 33
single data unit. Data stream, as used in this standard, does not necessarily refer to all of the bits sent to be 34

4 Previous two sentences are not contradicting each other. First sentence states the hard limit, while the second one strongly suggests
to keep the value below the second, significantly lower limit.

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

4
Copyright © 2008 IEEE. All rights reserved.

stored in the storage device. For example, if only part of a logical block is encrypted, only the encrypted 1
bytes are viewed as the data stream, i.e., input to the encryption algorithm in this standard. 2

5.2 Multiplication by a primitive element α 3

The encryption procedure (see 5.3) and decryption procedure (see 5.4) use multiplication of a 16-byte value 4
(the result of AES encryption or decryption) by j-th power of α, a primitive element of GF(2128). The input 5
value is first converted into a byte array a0[k], k = 0,1,...,15. In particular, the 16-byte result of AES 6
encryption or decryption is treated as a byte array, where a0[0] is the first byte of the AES block. 7
 8
This multiplication is defined by the following procedure: 9
 10
Input: j is the power of α 11

byte array a0[k], k = 0,1,...,15 12
Output: byte array aj[k], k = 0,1,...,15 13
 14
The output array is defined recursively by the following formulas where i is iterated from 0 to j: 15

 16
ai+1[0] ← (2 (ai[0] mod 128)) ⊕ (135 ⎣ai[15]/128⎦) 17
ai+1[k] ← (2 (ai[k] mod 128)) ⊕ ⎣ai[k–1]/128⎦, k = 1,2,…,15 18
 19
NOTE—Conceptually, the operation is a left shift of each byte by one bit with carry propagating from one byte to the 20
next one. Also, if the 15th (last) byte shift results in a carry, a special value (decimal 135) is xor-ed into the first byte. 21
This value is derived from the modulus of the Galois Field (polynomial x128 + x7 + x2 + x + 1). See Annex C for an 22
alternative way to implement the multiplication by αj. 23
 24

5.3 XTS-AES encryption procedure 25

5.3.1 XTS-AES-blockEnc procedure, encryption of a single 128-bit block 26

The XTS-AES encryption procedure for a single 128-bit block is modeled with Equation (1). 27

C ← XTS-AES-blockEnc(Key, P, i, j) (1) 28
 29
where 30

Key is the 256 or 512 bit XTS-AES key 31
P is a block of 128 bits (i.e., the plaintext) 32
i is the value of the 128-bit tweak (see 5.1) 33
j is the sequential number of the 128-bit block inside the data unit 34
C is the block of 128 bits of ciphertext resulting from the operation 35

The key is parsed as a concatenation of two fields of equal size called Key1 and Key2 such that: 36
Key = Key1 | Key2. 37

The ciphertext shall then be computed by the following or an equivalent sequence of steps (see Figure 1): 38
1) T ← AES-enc(Key2 , i) ⊗ αj 39
2) PP ← P ⊕ T 40
3) CC ← AES-enc(Key1 , PP) 41
4) C ← CC ⊕ T 42

 43
AES-enc(K,P) is the procedure of encrypting plaintext P using AES algorithm with key K, according to 44
FIPS-197. The multiplication and computation of power in step 1) is executed in GF(2128), where α is the 45
primitive element defined in 4.2 (see 5.2). 46

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

5
Copyright © 2008 IEEE. All rights reserved.

 1

 2
 3

Figure 1 — Diagram of XTS-AES blockEnc procedure 4

5.3.2 XTS-AES encryption of a data unit 5

The XTS-AES encryption procedure for a data unit of plaintext of 128 or more bits is modeled with 6
Equation (2). 7

C ← XTS-AES-Enc (Key, P, i) (2) 8
where 9

Key is the 256 or 512 bit XTS-AES key 10
P is the plaintext 11
i is the value of the 128-bit tweak (see 5.1) 12
C is the ciphertext resulting from the operation, of the same bit-size as P 13

The plaintext data unit is first partitioned into m + 1 blocks, as follows: 14

 P = P0 |… |Pm−1|Pm 15
where m is the largest integer such that 128m is no more than the bit-size of P, the first m blocks P0,…, 16
Pm−1 are each exactly 128 bits long, and the last block Pm is between 0 and 127 bits long (Pm could be 17
empty, i.e., 0 bits long). The key is parsed as a concatenation of two fields of equal size called Key1 and 18
Key2 such that: Key = Key1 | Key2. The ciphertext C is then computed by the following or an equivalent 19
sequence of steps: 20

1) for q ← 0 to m-2 do 21
a) Cq ← XTS-AES-blockEnc(Key, Pq, i, q) 22

2) b ← bit-size of Pm 23
3) if b = 0 then do 24

a) Cm–1 ← XTS–AES-blockEnc(Key, Pm–1, i, m–1) 25
b) Cm ← empty 26

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

6
Copyright © 2008 IEEE. All rights reserved.

4) else do 1
a) CC ← XTS-AES-blockEnc(Key, Pm–1, i, m–1) 2
b) Cm ← first b bits of CC 3
c) CP ← last (128–b) bits of CC 4
d) PP ← Pm | CP 5
e) Cm–1 ← XTS-AES-blockEnc(Key, PP, i, m) 6

5) C ← C0|… |Cm–1|Cm 7
 8
An illustration of encrypting the last two blocks Pm–1Pm in the case that Pm is a partial block (b > 0) is 9
provided in Figure 2. 10

 11
Figure 2 —XTS-AES encryption of last two blocks when last block is 1 to 127 bits 12

5.4 XTS-AES decryption procedure 13

5.4.1 XTS-AES-blockDec procedure, decryption of a single 128-bit block 14

The XTS-AES decryption procedure of a single 128-bit block is modeled with Equation (3). 15

P ← XTS-AES-blockDec(Key, C, i, j) (3) 16

where 17
Key is the 256 or 512-bit XTS-AES key 18
C the 128-bit block of ciphertext 19
i is the value of the 128-bit tweak (see 5.1) 20
j is the sequential number of the 128-bit block inside the data unit 21
P is the 128-bit block of plaintext resulting from the operation 22

The key is parsed as a concatenation of two fields of equal size called Key1 and Key2 such that: 23
Key = Key1 | Key2. The plaintext shall then be computed by the following or an equivalent sequence of steps 24
(see Figure 3): 25

1) T ← AES-enc(Key2 , i) ⊗ αj 26
2) CC ← C ⊕ T 27
3) PP ← AES-dec(Key1 , CC) 28
4) P ← PP ⊕ T 29

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

7
Copyright © 2008 IEEE. All rights reserved.

 1
AES-dec(K,C) is the procedure of decrypting ciphertext C using AES algorithm with key K, according to 2
FIPS-197. The multiplication and computation of power in step 1) is executed in GF(2128), where α is the 3
primitive element defined in 4.2 (see 5.2). 4
 5

 6
 7

Figure 3 —Diagram of XTS-AES blockDec procedure 8
 9

5.4.2 XTS-AES decryption of a data unit 10

The XTS-AES decryption procedure for a data unit ciphertext of 128 or more bits is modeled with 11
Equation (4). 12

P ← XTS-AES-Dec(Key, C, i) (4) 13
where 14

Key is the 256 or 512-bit XTS-AES key 15
C is the ciphertext corresponding to the data unit 16
i is the value of the 128-bit tweak (see 5.1) 17
P is the plaintext data unit resulting from the operation, of the same bit-size as C 18

The ciphertext is first partitioned into m + 1 blocks as follows: 19
 C = C0 |… |Cm−1|Cm 20
where m is the largest integer such that 128m is no more than the bit-size of C, the first m blocks C0,…, 21
Cm−1 are each exactly 128 bits long, and the last block Cm is between 0 and 127 bits long (Cm could be 22
empty, i.e., 0 bits long). The key is parsed as a concatenation of two fields of equal size called Key1 and 23
Key2 such that: Key = Key1 | Key2. The plaintext P is then computed by the following or an equivalent 24
sequence of steps: 25

1) for q ← 0 to m-2 do 26
a) Pq ← XTS-AES-blockDec(Key, Cq, i, q) 27

2) b ← bit-size of Cm 28

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

8
Copyright © 2008 IEEE. All rights reserved.

3) if b = 0 then do 1
b) Pm-1 ← XTS-AES-blockDec(Key, Cm-1, i, m-1) 2
c) Pm ← empty 3

4) else do 4
d) PP ← XTS-AES-blockDec(Key, Cm-1, i, m) 5
e) Pm ← first b bits of PP 6
f) CP ← last (128-b) bits of PP 7
g) CC ← Cm | CP 8
h) Pm-1 ← XTS-AES-blockDec(Key, CC, i, m-1) 9

5) P ← P0 |… |Pm-1|Pm 10
 11
The decryption of the last two blocks Cm–1Cm in the case that Cm is a partial block (b > 0) is illustrated in 12
Figure 4. 13

 14
Figure 4 —XTS-AES decryption of last two blocks when last block is 1 to 127 bits 15

6. Using XTS-AES-128 and XTS-AES-256 for encryption of storage 16

The encryption and decryption procedures described in 5.3 and 5.4 use AES as the basic building block. If 17
the XTS-AES key consists of 256 bits, the procedures use 128-bit AES; if the XTS-AES key consists of 18
512 bits, the procedures use 256-bit AES. For completeness, the first mode shall be referred to as XTS-19
AES-128 and the second as XTS-AES-256. To be compliant with the standard, the implementation shall 20
support at least one of the above modes. 21
 22
Key scope defines the range of data encrypted with a single XTS-AES key. The key scope is represented by 23
the following three values: 24
 25

a) Value of the tweak associated with the first data unit in the sequence of data units encrypted by 26
this key 27

b) The size in bits of each data unit 28
c) The number of units to be encrypted/decrypted under the control of this key. 29

 30
An implementation compliant with this standard may or may not support multiple data unit sizes. 31
 32

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

9
Copyright © 2008 IEEE. All rights reserved.

In an application of this standard to sector-level encryption of a disk, the data unit typically corresponds to 1
a logical block, the key scope typically includes a range of consecutive logical blocks on the disk, and the 2
tweak value associated with the first data unit in the scope typically corresponds to the Logical Block 3
Address (LBA) associated with the first logical block in the range. 4
 5
An XTS-AES key shall not be associated with more than one key scope. 6
 7
NOTE—The reason for the previous restriction is that encrypting more than one block with the same key and the same 8
index introduces security vulnerabilities that might potentially be used in an attack on the system. In particular, key 9
reuse enables trivial cut-and-paste attacks. 10
 11

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

10
Copyright © 2008 IEEE. All rights reserved.

Annex A 1

(informative) 2

Bibliography 3

[B1] Halevi, S. and Rogaway, P., “A tweakable enciphering mode.” In Advances in Cryptology—4
CRYPTO ’03. Lecture Notes in Computer Science, vol. 2729, pp 482–499. Springer-Verlag, 2003. 5

[B2] Halevi, S. and Rogaway, P., A parallelizable enciphering mode. The RSA conference—6
Cryptographer’s track, RSA-CT ’04. Lecture Notes in Computer Science, vol. 2964, pp 292–304. Springer-7
Verlag, 2004. 8

[B3] Halevi, S., “EME*: extending EME to handle arbitrary-length messages with associated data,” 9
INDOCRYPT 2004, Lecture Notes in Computer Science, vol. 3348, pp 315–327. Springer-Verlag, 2004. 10

[B4] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition. 11

[B5] Liskov, M., Rivest, R., and Wagner, D., Tweakable block ciphers. In Advances in Cryptology—12
CRYPTO ’02. Lecture Notes in Computer Science, vol 2442, pp 31–46. Springer-Verlag, 2002. 13

[B6] Menezes, A., Oorshot, P., and Vanstone, S., Handbook of Applied Cryptography, CRC Press, 1997. 14

[B7] Meyer, C. H. and Matyas, S. M., Cryptography: a New Dimension in Computer Data Security. John 15
Wiley & Sons, 1982. 16

[B8] Naor, M. and Reingold, O., A pseudo-random encryption mode. Manuscript. Available online from 17
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/nr-mode.ps. 18

[B9] NIST Key Management Guidelines SP800-57. http://csrc.nist.gov/publications/nistpubs/ 19
800-57/SP800-57-Part1.pdf and http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part2.pdf 20

[B10] Rogaway, P., Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB 21
and PMAC. Advances in Cryptology—Asiacrypt 2004. Lecture Notes in Computer Science, vol. 3329, pp 22
16–31. Springer-Verlag, 2004. 23

[B11] Schroeppel, R., The Hasty Pudding Cipher. The first AES conference, NIST, 1998. 24
Available from http://www.cs.arizona.edu/~rcs/hpc. 25
(See http://csrc.nist.gov/CryptoToolkit/aes/round1/conf1/aes1conf.htm.) 26

[B12] The Base16, Base32, and Base64 Data Encodings. IETF Network Working Group, July 2003. 27
http://www.ietf.org/rfc/rfc3548.txt 28

[B13] XML Encryption Syntax and Processing. W3C. 29
http://www.w3.org/TR/xmlenc-core 30

[B14] XML Key Management Specification (XKMS). W3C. 31
http://www.w3.org/TR/xkms 32

 33

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

11
Copyright © 2008 IEEE. All rights reserved.

Annex C 1

(informative) 2

Pseudocode for XTS-AES-128 and XTS-AES-256 encryption 3

C.1 Encryption of a data unit with a size that is a multiple of 16 bytes 4

#define GF_128_FDBK 0x87 5
#define AES_BLK_BYTES 16 6
void XTS_EncryptSector 7
 (8
 AES_Key &k2, // key used for tweaking 9
 AES_Key &k1, // key used for "ECB" encryption 10
 u64b S, // data unit number (64 bits) 11
 uint N, // sector size, in bytes 12
 const u08b *pt, // plaintext sector input data 13
 u08b *ct // ciphertext sector output data 14
) 15
 { 16
 uint i,j; // local counters 17
 u08b T[AES_BLK_BYTES]; // tweak value 18
 u08b x[AES_BLK_BYTES]; // local work value 19
 u08b Cin,Cout; // "carry" bits for LFSR shifting 20
 21
 assert(N % AES_BLK_BYTES == 0); // data unit is multiple of 16 bytes 22
 23
 for (j=0;j<AES_BLK_BYTES;j++) 24
 { // convert sector number to tweak plaintext 25
 T[j] = (u08b) (S & 0xFF); 26
 S = S >> 8; // also note that T[] is padded with zeroes 27
 } 28
 29
 AES_ECB_Encrypt(k2,T); // encrypt the tweak 30
 31
 for (i=0;i<N;i+=AES_BLK_BYTES) // now encrypt the data unit, AES_BLK_BYTES at a time 32
 { 33
 // merge the tweak into the input block 34
 for (j=0;j<AES_BLK_BYTES;j++) 35
 x[j] = pt[i+j] ^ T[j]; 36
 37
 // encrypt one block 38
 AES_ECB_Encrypt(k1,x); 39
 40
 // merge the tweak into the output block 41
 for (j=0;j<AES_BLK_BYTES;j++) 42
 ct[i+j] = x[j] ^ T[j]; 43
 44
 // Multiply T by α 45
 Cin = 0; 46
 for (j=0;j<AES_BLK_BYTES;j++) 47
 { 48
 Cout = (T[j] >> 7) & 1; 49
 T[j] = ((T[j] << 1) + Cin) & 0xFF; 50
 Cin = Cout; 51
 } 52
 if (Cout) 53
 T[0] ^= GF_128_FDBK; 54
 } 55
 } 56
 57

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

12
Copyright © 2008 IEEE. All rights reserved.

C.2 Encryption of a data unit with a size that is not a multiple of 16 bytes 1

#define GF_128_FDBK 0x87 2
#define AES_BLK_BYTES 16 3
 4
void XTS_EncryptSector 5
 (6
 AES_Key &k2, // key used for generating sector "tweak" 7
 AES_Key &k1, // key used for "ECB" encryption 8
 u64b S, // sector number (64 bits) 9
 uint N, // sector size, in bytes 10
 const u08b *pt, // plaintext sector input data 11
 u08b *ct // ciphertext sector output data 12
) 13
 { 14
 uint i,j; // local counters 15
 u08b T[AES_BLK_BYTES]; // tweak value 16
 u08b x[AES_BLK_BYTES]; // local work value 17
 u08b Cin,Cout; // "carry" bits for LFSR shifting 18
 19
 assert(N >= AES_BLK_BYTES); // need at least a full AES block 20
 21
 for (j=0;j<AES_BLK_BYTES;j++) 22
 { // convert sector number to tweak plaintext 23
 T[j] = (u08b) (S & 0xFF); 24
 S = S >> 8; // also note that T[] is padded with zeroes 25
 } 26
 27
 AES_ECB_Encrypt(k2,T); // encrypt the tweak 28
 for (i=0;i+AES_BLK_BYTES <= N;i+=AES_BLK_BYTES) 29
 { // now encrypt the sector data 30
 // merge the tweak into the input block 31
 for (j=0;j<AES_BLK_BYTES;j++) 32
 x[j] = pt[i+j] ^ T[j]; 33
 34
 // encrypt one block 35
 AES_ECB_Encrypt(k1,x); 36
 37
 // merge the tweak into the output block 38
 for (j=0;j<AES_BLK_BYTES;j++) 39
 ct[i+j] = x[j] ^ T[j]; 40
 41
 // LFSR "shift" the tweak value for the next location 42
 Cin = 0; 43
 for (j=0;j<AES_BLK_BYTES;j++) 44
 { 45
 Cout = (T[j] >> 7) & 1; 46
 T[j] = ((T[j] << 1) + Cin) & 0xFF; 47
 Cin = Cout; 48
 } 49
 if (Cout) 50
 T[0] ^= GF_128_FDBK; 51
 } 52
 if (i < N) // is there a final partial block to handle? 53
 { 54
 for (j=0;i+j<N;j++) 55
 { 56
 x[j] = pt[i+j] ^ T[j]; // copy in the final plaintext bytes 57
 ct[i+j] = ct[i+j-AES_BLK_BYTES]; // and copy out the final ciphertext bytes 58
 } 59
 for (;j<AES_BLK_BYTES;j++) // "steal" ciphertext to complete the block 60
 x[j] = ct[i+j-AES_BLK_BYTES] ^ T[j]; 61
 // encrypt the final block 62
 AES_ECB_Encrypt(k1,x); 63
 64
 // merge the tweak into the output block 65
 for (j=0;j<AES_BLK_BYTES;j++) 66
 ct[i+j-AES_BLK_BYTES] = x[j] ^ T[j]; 67
 } 68
 } 69

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

13
Copyright © 2008 IEEE. All rights reserved.

Annex D 1

(informative) 2

Rationale and design choices 3

D.1 Purpose 4

This annex provides some background material regarding design choices that were made in XTS-AES and 5
the rationale behind these choices. 6

D.2 Transparent encryption 7

The starting point for this standard is a requirement that the transform be usable as transparent encryption. 8
That is, it should be possible to insert an encryption/decryption module into existing data paths without 9
having to change the data layout or message formats of other components on these data paths. In particular, 10
transparent encryption can be implemented to occur in the host, along the data path from host to storage 11
device, and inside the storage device, all without the need to modify the data transmission protocols or the 12
layout of the data on the media. In the context of encryption by sector-level storage devices, this 13
requirement translates into the following two constraints: 14

1) The transform must be length-preserving, namely the length of the ciphertext must equal that 15
of the plaintext. This means that the transform must be deterministic, and that it cannot store 16
an authentication tag along with the ciphertext. 17

2) The transform must be applicable to individual data-units (or sectors) independently of other 18
data-units and in arbitrary order. This means that no chaining between different data-units is 19
possible. This requirement stems from the need to support random access to the encrypted 20
data. For example, encryption mode that chains multiple data units requires reading of 21
several data units to decrypt a single unit. 22

 23
Two solutions that were rejected by the group as insecure were to use either counter (CTR) mode or cipher 24
block chaining (CBC) mode, deriving the IV from the sector number. 25
 26

⎯ Using CTR without authentication tags is trivially malleable, and an adversary with write access to 27
the encrypted media can flip any bit of the plaintext simply by flipping the corresponding 28
ciphertext bit. 29

⎯ For CBC, an adversary with read/write access to the encrypted disk can copy a ciphertext sector 30
from one position to another, and an application reading the sector off the new location will still 31
get the same plaintext sector (except perhaps the first 128 bits). For example, this means that an 32
adversary that is allowed to read a sector from the second position but not the first can find the 33
content of the sector in first position by manipulating the ciphertext. 34

⎯ For CBC, an adversary can flip any bit of the plaintext by flipping the corresponding ciphertext bit 35
of the previous block, with the side-effect of “randomizing” the previous block. 36

The XTS-AES transform was chosen because it offers better protection against ciphertext manipulations 37
and cut-and-paste attacks. It is important to realize, however, that regardless of the method used for 38
encryption, the constraints above imply some inherent limitations on the level of security that can be 39
achieved by such transform. As shown in the paragraphs that follow, these constraints imply that the best 40
achievable security is essentially what can be obtained by using ECB mode with a different key per block 41
(and using a cipher with wide blocks). 42

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

14
Copyright © 2008 IEEE. All rights reserved.

 1
Specifically, since there are no authentication tags, any ciphertext (original or modified by adversary) will 2
be decrypted as some plaintext and there is no built-in mechanism to detect alterations. The best that can be 3
done is to ensure that any alternation of the ciphertext will completely randomize the plaintext, and rely on 4
the application that uses this transform to include sufficient redundancy in its plaintext to detect and discard 5
such random plaintexts. 6
 7
Also, since this transform is deterministic, encrypting the plaintext twice with the same key and the same 8
position will yield the same ciphertext. Moreover, since there is no chaining, an adversary can “mix and 9
match” ciphertext units and get the same “mix and match” of their corresponding plaintext units. (Namely, 10
if C0C1…Cm is encryption of P0P1…Pm and C′0C′1…C′m is encryption of P′0P′1…P′m then C0C′1…Cm is 11
encryption of P0P′1…Pm.) 12
 13
The above “mix and match” weakness can be mitigated to some extent by using some context information 14
in the encryption and decryption processes. In the case of sector-level encryption, the only context 15
information that can be assumed to be available at both encryption and decryption is the (logical) position 16
of the current data unit (as seen by the encryption/decryption module).5 Incorporating the position 17
information into the encryption and decryption routines makes it possible to cryptographically hide the fact 18
that the same unit is written in two different places, and also prevents “mix and match” between different 19
positions. But as mentioned previously, even the best implementation of encryption by a sector-level 20
storage device leaves several vulnerabilities. Three of these vulnerabilities are illustrated as follows: 21
 22

⎯ Traffic analysis. Consider an adversary that is able to passively observe the communication 23
between the encrypting device and the disk. Since encryption is deterministic, this adversary is 24
able to observe when a certain sector is written back to disk with a different value than was 25
previously read from disk. This capability may help the adversary in mounting an attack based on 26
traffic analysis. 27

⎯ Replay. An adversary with read/write access to the encrypted disk can observe when a certain 28
sector changes on the disk and then reset it to any one of its previous values. (Notice that this 29
attack is not specific to transparent encryption; it may work even when using randomized 30
encryption with authentication tags.) 31

⎯ Randomizing a sector. Since there are no authentication tags, an adversary with write access to 32
the encrypted disk can write an arbitrary ciphertext to any sector, causing an application that reads 33
this sector to see a “random” plaintext instead of the value that was written to that sector. The 34
behavior of the application on such “random” plaintext may be beneficial to the adversary. 35

When using transparent encryption, one must therefore address these vulnerabilities by means outside the 36
scope of this standard. 37

D.3 Wide vs. narrow block tweakable encryption 38

In light of the previous discussion, the required interfaces of the transform are encryption and decryption 39
routines as shown in Equation (5): 40

C = Enc(K, P, i) and P = Dec(K, C, i) (5) 41

 42
where 43

plaintext P and ciphertext C have the same length (i.e., the length of a single sector) 44
K is the secret encryption key 45
i represents the position information 46

 47

5 On the other hand, parameters like “time of encryption” cannot be used as context information, since the decryption procedure
typically has no way of obtaining that information.

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

15
Copyright © 2008 IEEE. All rights reserved.

The best security that one can hope for with such transform is that it looks to an adversary like a block 1
cipher with block size equal to the sector size, and with different and independent keys for different values 2
of i. Such a construct is called a “tweakable cipher” in the cryptographic literature. It was first defined 3
formally by Liskov et al. in [B5]. 4
 5
Several constructions that achieve these properties exist in the cryptographic literature (e.g., see Halevi et. 6
al. [B1], [B2], [B3], and a construction based on Naor et. al. [B8]). All these constructions, however, are 7
rather expensive, requiring buffering of at least one sector worth of intermediate results and at least two 8
passes over the entire sector.6 A cheaper alternative can be obtained by relaxing the requirement that the 9
transform looks like a cipher with a wide (e.g., sector-length) block-size. Instead, one can work with 10
narrow blocks of 128 bits, but still insist that different blocks (whether in the same or in different sectors) 11
look to an adversary like they were encrypted with different independent keys. 12
 13
Giving up the dependencies between different 128-bit blocks allows greater efficiency. The price for that, 14
however, is that the attacks described in D.2 are now possible with finer granularity. Namely, whereas the 15
adversary against a wide-block encryption scheme can do traffic analysis or replay with granularity of one 16
sector, the adversary against a narrow-block encryption scheme can work with granularity of 128-bit 17
blocks. Still, the consensus in the P1619 workgroup was that the added efficiency warrants this additional 18
risk. Since these risks exist even with wide-block encryption—albeit with a coarser granularity—one would 19
still need some other mechanisms for addressing them, and in many cases the same mechanisms can be 20
used also for addressing these risks in their fine-grained form. 21
 22

D.4 XEX construction 23

D.4.1 General XEX transform 24

 25
In [B10], Rogaway described a construction of a narrow-block tweakable cipher from a standard cipher 26
such as AES. That construction works as follows: the tweakable cipher uses two keys, K1 and K2, both 27
used as keys for the underlying cipher Enc(K, data)/Dec(K, data). Given a plaintext block P and the tweak 28
value, the tweak is parsed as a pair (s,t) (s can be thought of as the sector number and t as the block number 29
within the sector). The construction first computes a mask value T using Equation (6): 30
 31

T = Enc(K2, s) ⊗ αt (6) 32
 33
where 34

the multiplication is in GF(2n) (with n being the block-size of the underlying cipher) 35
α is a primitive element of GF(2n) 36

 37
Given plaintext P, ciphertext C is produced by Equation (7): 38
 39

C = Enc(K1, P ⊕ T) ⊕ T (7) 40
 41
Given ciphertext C, the plaintext P is produced Equation (8): 42
 43

P = Dec(K1, C ⊕ T) ⊕ T (8) 44
 45

6 At least some of this overhead appears to be inherent: Since these schemes insist on a block cipher with “wide block” (i.e., as wide
as an entire sector), then every bit of ciphertext must “strongly depend” on every bit of plaintext and vice versa. This means in
particular that no bit of output can be produced until all the input bits were processed by the block cipher.

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

16
Copyright © 2008 IEEE. All rights reserved.

D.4.2 Security of general XEX transform 1

The security analysis of generic XEX transform in Rogaway [B10] shows that this mode is secure as long 2
as the number of blocks that are encrypted under the same key is sufficiently smaller than the birthday 3
bound value of 2n/2, where n is the block size in bits of the underlying block cipher. Some attacks become 4
possible when the number of blocks approaches the 2n/2 value. 5
 6
The adversary analyzed in Rogaway [B10] can make arbitrary encryption and decryption queries to the 7
tweakable cipher, using arbitrary tweak values. These queries are answered either by the construction 8
above, or by a truly random collection of permutations and their inverses over {0,1}n (a different, 9
independent permutation for every value of the tweak), and the adversary’s goal is to determine which is 10
the case. Rogaway proved in [B10], Theorem 8 that an adversary that makes at most q such queries cannot 11
distinguish these two cases with advantage more than 4.5 q2/2n + ε over a random guess (where ε is an error 12
term that expresses the advantage of distinguishing the underlying cipher from a random permutation using 13
q queries and n is the block size in bits of the underlying block cipher). 14
 15
To explain the relevance of this analysis to the security of a real-world usage of the XTS-AES transform, 16
the first argument is that no realistic adversary would have more information than the adversary in the 17
attack model that is described in the analysis. This follows from the fact that adversary in Rogaway [B10] 18
is assumed to be able to choose all the plaintext and ciphertext that is fed to the construction. Since the 19
theorem (Rogaway [B10], Theorem 8) says that no adversary in that model can distinguish the construction 20
from a collection of random permutations, it follows that no realistic adversary can distinguish between 21
these cases with any significant advantage. This, in turn, means that an attack would be just as successful 22
against a collection of truly random permutations, one per each 128-bit block, as it would be against XEX. 23
 24
It follows that when analyzing the security of an application that uses the above scheme, one can think of 25
the encryption as if it was done using a collection of truly random 128-bit permutations. When faced with 26
such a collection of truly random permutations, the only information that the adversary has is the following: 27
 28

⎯ The same plaintext with the same tweak value will always be encrypted to the same ciphertext (cf. 29
the traffic analysis attack from above). 30

⎯ The same ciphertext with the same tweak value will always be decrypted to the same plaintext (cf. 31
the replay attack from above). 32

⎯ Any other ciphertext (plaintext) will be decrypted (encrypted) to a random value (cf. the 33
randomizing attack from above). 34

 35
In other words, the proof in Rogaway [B10] implies that except for the “error term” of 4.5 q2/2n + ε, the 36
only attacks that are possible against XEX are the ones that are inherent from the use of transparent 37
encryption with the granularity of n-bit blocks, where n is the block size in bits of the underlying cipher. 38
 39
Some attacks against XEX are possible when the number of blocks q approaches the birthday bound. For 40
example, consider a known-plaintext attack where the adversary sees q tuples of tweak, plaintext, and 41
ciphertext. For each such tuple [(si,ti), Pi, Ci], denote by Ti the mask value that is computed from the tweak 42
(si,ti). 43
 44
From the birthday bound it follows that when q approaches 2n/2, there is a non-negligible probability that 45
for some i,j there is a collision of the form shown in Equation (9): 46
 47

Pi ⊕ Ti = Pj ⊕ Tj. (9) 48
 49
In this case, it also holds that [see Equation (10)]: 50
 51

Ci ⊕ Ti = Enc(K1, Pi ⊕ Ti) = Enc(K1, Pj ⊕ Tj) = Cj ⊕ Tj. (10) 52
 53

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

17
Copyright © 2008 IEEE. All rights reserved.

Summing these two equalities implies 1
 2

Pi ⊕ Ci = Pj ⊕ Cj 3
 4
This can be used to distinguish XEX from a collection of truly random permutations. The adversary 5
computes for all i the sum Si = Pi ⊕ Ci and counts the number of pairs (i,j) for which Si = Sj. The argument 6
above implies that for any i,j, the probability that Si = Sj in ciphertext produced by XEX is roughly 7
2–n+2–n = 2–n+1, where the first term is due to collision between i and j and the second term is due to equality 8
Si = Sj without a collision. On the other hand, for truly random permutation the probability of Si = Sj is 9
exactly 2–n, and hence after observing roughly 2n/2 tuples [(si,ti), Pi, Ci] it is possible to distinguish 10
ciphertext produced by XEX from a random sequence with non-negligible probability. 11
 12
Given a collision between i and j as above, the following approach shows how the adversary can use his 13
ability to create legally encrypted data for position i and ability to modify ciphertext in position j to modify 14
the ciphertext at j so it will decrypt to an arbitrary adversary-controlled value. 15
 16
As above, the adversary begins by computing the sums Si = Ci ⊕ Pi and uses any equality Si = Sj as an 17
evidence of collision between i and j. Denote by [(si,ti), Pi, Ci], [(sj,tj), Pj, Cj] the corresponding tweak, 18
plaintext, and ciphertext values. 19
 20
For some Δ ≠ 0, the adversary encrypts a new value P ' i = Pi ⊕ Δ in position (si,ti), observes the 21
corresponding ciphertext C ' i, and replaces the ciphertext block Cj by: 22
 23

C ' j = Cj ⊕ (Ci ⊕ C 'i). 24
 25
This new ciphertext block will be decrypted as P ' j = Pj ⊕ Δ. In other words, the adversary succeeded in 26
“flipping” specific bits in plaintext corresponding to location j. To see this, observe Equation (11): 27
 28

C ' j ⊕ Tj = Cj ⊕ (Ci ⊕ C ' i) ⊕ Tj (11) 29
= C ' i ⊕ (Ci ⊕ Cj) ⊕ Tj 30
= C ' i ⊕ (Ti ⊕ Tj) ⊕ Tj [follows from Equation (10)] 31
= C ' i ⊕ Ti 32

 33
Therefore: 34
 35

Dec(K1, C ' j ⊕ Tj) = Dec(K1, C ' i ⊕ Ti) 36
 37
which implies that: 38
 39

P ' j = Tj ⊕ Dec(K1, C ' j ⊕ Tj) 40
= Tj ⊕ Dec(K1, C ' i ⊕ Ti) [follows from Equation (11)] 41
= (Tj ⊕ Ti) ⊕ [Ti ⊕ Dec(K1, C ' i ⊕ Ti)] 42
= (Tj ⊕ Ti) ⊕ P ' i 43
= (Tj ⊕ Ti) ⊕ (Pi ⊕ Δ) 44
= ((Tj ⊕ Ti) ⊕ Pi) ⊕ Δ 45
= Pj ⊕ Δ. 46

 47

D.4.3 XTS-AES as a specific instantiation of general XEX 48

The XTS-AES-128 and XTS-AES-256 transforms described in this standard are concrete instantiations of 49
the XEX scheme with AES as the underlying block cipher, and thus using n = 128 as the block length. A 50
data unit sequence number (i.e., relative position) is used as a tweak in order to allow for copy or backup of 51
a key scope or partial key scope of data encrypted with XTS-AES-[128,256] without re-encryption. In 52
contrast to the generic XEX construction described in Rogaway [B10] that uses a single key, the XTS-53

The XTS-AES Tweakable Block Cipher
An Extract from IEEE Std 1619-2007

18
Copyright © 2008 IEEE. All rights reserved.

AES-128 and XTS-AES-256 modes in this standard use separate keys for tweaking and encryption 1
purposes. This separation is a specific example of separation of key usage by purpose and is considered a 2
good security design practice (see NIST Key Management Guidelines [B9], part 1, Section 5.2). 3
 4
The expression 4.5 q2/2n is small enough as long as q is not much more than 240. The proof from Rogaway 5
[B10] yields strong security guarantee as long as the same key is not used to encrypt much more than a 6
terabyte of data (which gives q = 236 blocks). For this case, no attack can succeed with probability better 7
than 2–53 (i.e., approximately one in eight quadrillion). 8
 9
This security guarantee deteriorates as more data is encrypted under the same key. For example, when 10
using the same key for a petabyte of data, attacks such as in D.4.2 have success probability of at most 11
approximately 2–37 (i.e., approximately eight in a trillion), and with exabyte, of data the success probability 12
is at most approximately 2–17 (i.e., approximately eight in a million). 13
 14
The decision on the maximum amount of data to be encrypted with a single key should take into account 15
the above calculations together with the practical implication of the described attack (e.g., ability of the 16
adversary to modify plaintext of a specific block, where the position of this block may not be under 17
adversary’s control). 18

D.5 Sector-size that is not a multiple of 128 bits 19

The generic XEX transform as described in Rogaway [B10] immediately implies a method for encrypting 20
sectors that consist of an integral number of 128-bit blocks: apply the transform individually to each 128-21
bit block, but use the block number in the sector as part of the tweak value when encrypting that block. 22
This method is applicable to the most common sector sizes (such as 512 bytes or 4096 bytes). However, it 23
does not directly apply to sector sizes that are not an integer multiple of 128-bit blocks (e.g., 520-byte 24
sectors). 25
 26
To encrypt a sector with a length that is not an integral number of 128-bit blocks, the standard uses the 27
“ciphertext-stealing” technique similar to the one used for ECB mode (see Meyer et. al. [B7], Figure 2-22). 28
Namely, both XTS-AES-128 and XTS-AES-256 encrypt all the full blocks except the last full block (with 29
different tweak values for each block), and then encrypt the last full block together with the remaining 30
partial block using two applications of the XTS-AES-blockEnc procedure described in 5.3.1 with two 31
different tweak values, as described in 5.3.2. 32

D.6 Miscellaneous 33

Following are general remarks about appropriate use of the XTS-AES transform: 34
 35

⎯ When analyzing the security of an application that uses this standard, one must consider the 36
methods that were used to generate the keys. As with every cryptographic algorithm, it is 37
important that the secret-key used for XTS-AES-[128,256] be chosen at random (or from a 38
“cryptographically strong” pseudo-random source). Indeed, all security guarantees (including the 39
security claims of the theorem from Rogaway [B10]) are null and void if the key is chosen from a 40
low entropy source. The issues of strong pseudo-randomness and key-generation are outside the 41
scope of this standard. For further information, see NIST Key Management Guidelines [B9]. 42

⎯ Use of a single cryptographic key for more than a few hundred terabytes of data opens possibility 43
of attacks, as described in D.4.3. The limitation on the size of data encrypted with a single key is 44
not unique to this standard. It comes directly from the fact that AES has a block size of 128 bits 45
and is not mitigated by using AES with a 256-bit key. 46

 47
 48
 49

	Title Page
	Special IEEE copyright
	Introduction
	Notice to users
	Laws and regulations
	Copyrights
	Updating of IEEE documents
	Errata
	Interpretations
	Patents

	Participants from IEEE Std 1619-2007
	CONTENTS
	IEEE Std 1619-2007
	IMPORTANT NOTICE
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Related work

	2. Normative references
	3. Definitions
	3.1 Acronyms and abbreviations

	4. Special terms
	4.1 Numerical values
	4.2 Letter symbols
	4.3 Special definitions

	5. XTS-AES transform
	5.1 Data units and tweaks
	5.2 Multiplication by a primitive element 
	5.3 XTS-AES encryption procedure
	5.4 XTS-AES decryption procedure

	6. Using XTS-AES-128 and XTS-AES-256 for encryption of storage
	Annex A (informative)Bibliography
	Annex C (informative)Pseudocode for XTS-AES-128 and XTS-AES-256 encryption
	Annex D (informative)Rationale and design choices

