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Abstract

The MQV protocol of Law, Menezes, Qu, Solinas and Vanstone is possibly the most efficient
of all known authenticated Diffie-Hellman protocols that use public-key authentication. In
addition to great performance, the protocol has been designed to achieve a remarkable list
of security properties. As a result MQV has been widely standardized, and has recently been
chosen by the NSA as the key exchange mechanism underlying “the next generation cryptography
to protect US government information”.

One question that has not been settled so far is whether the protocol can be proven secure
in a rigorous model of key-exchange security. In order to provide an answer to this question we
analyze the MQV protocol in the Canetti-Krawczyk model of key exchange. Unfortunately, we
show that MQV fails to a variety of attacks in this model that invalidate its basic security as
well as many of its stated security goals. On the basis of these findings, we present HMQV, a
carefully designed variant of MQV, that provides the same superb performance and functionality
of the original protocol but for which all the MQV’s security goals can be formally proved to
hold in the random oracle model under the computational Diffie-Hellman assumption.

We base the design and proof of HMQV on a new form of “challenge-response signatures”,
derived from the Schnorr identification scheme, that have the property that both the challenger
and signer can compute the same signature; the former by having chosen the challenge and the
latter by knowing the private signature key.

Revision. In http://eprint.iacr.org/2005/205, Menezes [32] describes some shortcomings
in our analysis that lead to the need for a prime-order verification of public DH values in the
protocol. Some of Menezes’s claims are correct and some other are not. We keep the originally
posted paper here but add a Preface section (preceding the introduction) that briefly explains
these findings and their implications to our results. In essence, the provability of HMQV and
its security superiority relative to MQV remain valid; even computation-wise, after adding the
verification steps where needed, HMQV is as efficient as (and in some cases even more efficient
than) MQV.

∗An extended abstract of this paper appears in Crypto’05.
†IBM T.J.Watson Research Center, PO Box 704, Yorktown Heights, NY 10598, USA. Email:

hugo@ee.technion.ac.il

1



2



Contents

1 Introduction 2
1.1 The MQV Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Stated Security Goals of the MQV Protocol . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Weaknesses of the MQV Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 The HMQV Protocol and its Proven Security . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Challenge-Response Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Security Model for Key-Exchange Protocols 9

3 From MQV to HMQV 12
3.1 Introduction to MQV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 The Insecurity of MQV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 The security of HMQV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Exponential Challenge-Response Signatures 19
4.1 Definition of the XCR Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Proof of Unforgeability for the XCR Signature Scheme . . . . . . . . . . . . . . . . . 22
4.3 Dual XCR Signatures (DCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Basic Security Analysis of the HMQV Protocol 28
5.1 Detailed Specification of the HMQV Protocol . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Proof of Security for the HMQV Protocol . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Specialized attack goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Infeasibility of Forging Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.3 Infeasibility of Key-Replication Attacks . . . . . . . . . . . . . . . . . . . . . 39

6 Further Security Properties of the HMQV Protocol 40
6.1 Resistance to KCI Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Perfect Forward Secrecy (PFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Reflection Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 HCR Signatures and Resilience to Leakage of DH Exponents 44
7.1 HCR Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Unforgeability of HCR signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3 HCR Signatures with Off-Line Computed Y . . . . . . . . . . . . . . . . . . . . . . . 52
7.4 Application to HMQV: Resilience to the Leakage of DH Exponents . . . . . . . . . . 53

8 The 3-message HMQV-C Protocol 55

9 One-Pass HMQV 57

3



10 Concluding Remarks 59

A Kaliski’s On-line UKS Attack Against MQV 62

4



Preface

Recently, Menezes [32] has claimed that contrary to what is stated in this paper the proven security
of HMQV depends on the execution of an explicit verification that DH public values belong to the
prime-order group G used by the protocol (below we refer to these tests as G-tests). Menezes’s
claim is not true for the core HMQV protocol as specified in Section 5.1 and proven in Sections
5 and 6. However, G-tests are needed when requiring that the protocol remain secure even when
ephemeral exponents are revealed (Section 7.1) and for the one-pass protocol of Section 9.

The reason that G-tests are not required for the basic security of HMQV is that, as stated in
this paper, the security of XCR signatures (Section 4), on which HMQV is based, holds even if
DH values are chosen by the attacker as arbitrary elements of a supergroup G′ that contains G.
In particular, Menezes’s claim that the proof of XCR signatures is flawed is incorrect. On the
other hand, he is correct in that the proof of HCR signatures (Lemma 27) implicitly assumes that
the challenge X lies in the subgroup G. As a consequence, when applying HCR signatures in the
context of HMQV one must require that public DH values (static and ephemeral) be tested for
membership in G. Specifically, this is needed for the case in which ephemeral DH exponents are
kept in the session state (and then vulnerable to state-reveal queries) as in Section 7 and for the
one-pass protocol of Section 9.

This all boils down to the following conclusions. When using the one-pass protocol one should
always perform G-tests. When running the 2-message or 3-message HMQV protocol one can
dispense completely with these tests but then the protocol may become insecure (this depends
on the order of the supergroup G′) if secret ephemeral exponents are revealed. Thus, if one wants
to ensure security in the presence of the disclosure of ephemeral exponents then G-tests need to be
required. This provides a clear performance-security trade-off: Perform G-tests and get a stronger
security assurance, or do not perform these tests but make sure to protect your ephemeral exponents
as well as your private key (such a protection is assumed, for example, for DSA-like signatures).

Finally, when compared to MQV, HMQV retains all the security advantages stated and proven
in this paper. HMQV is also superior to MQV in performance in cases that group membership
tests are not required and is otherwise of the same efficiency as MQV (in MQV an exponentiation
whose cost is equivalent to a G-test is always performed).

A personal perspective. I would like to thank Alfred Menezes for identifying the oversight in the
HCR proof and the need for group membership verification in the one-pass protocol. At the same
time, I must strongly disagree with the attempt in [32] to discredit the effort of the cryptographic
community dedicated to improving our understanding and design of protocols. True, we make
mistakes (and I do not justify my own); and proofs (even if correct) are never stronger than the
model and assumptions they are based on. But with all its imperfection, this form of analysis is
an essential tool for gaining confidence in the soundness of a cryptographic design. Moreover, as
clearly shown here, the proof process itself serves as a guide in choosing the right design elements.

At a time when we demand the best (almost perfect) security from basic encryption and hash
functions, and having witnessed the effects of initially-mild attacks, we can only hope that the
applied-cryptography community and its representing standard bodies will see formal analysis as a
requirement, and main source of confidence, when adopting protocols for wide use. These analyses
can (and must) be verified by the community at large (in contrast, ad-hoc designs do not even
provide the “luxury” of judging well-defined security properties). This is all the more significant
in the case of a protocol such as MQV which is not only intended for wide commercial use but also
to protect “classified or mission critical national security information” [36].
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1 Introduction

The classic Diffie-Hellman (DH) key-exchange protocol (see Figure 1) that marked the birth of
modern cryptography has since been one of the main pillars of both theory and practice of cryp-
tography. While the basic protocol as originally proposed is believed to be secure against an
eavesdropping-only attacker, the quest for an “authenticated Diffie-Hellman” protocol that resists
active, man-in-the-middle, attacks has resulted in innumerable ad-hoc proposals, many of which
have been broken or shown to suffer from serious weaknesses. Fortunately, with the development of
rigorous security models for key exchange in the last years, we are now in a much better position to
judge the security of these protocols as well as to develop designs that provably withstand realistic
active attacks.

Â Â , B̂ , X = gx
- B̂

B̂ , Â , Y = gy
�

Figure 1: The basic (unauthenticated) Diffie-Hellman protocol

In addition to the need for sound security, the many practical applications of key exchange have
driven designers to improve on the performance cost associated with authentication mechanisms,
especially those based on public key. One ambitious line of investigation, initiated by Matsumoto,
Takashima and Imai in 1986 [30], is to design DH protocols whose communication is identical to
the basic DH protocol (i.e., no explicit authentication added except for the possible transmission of
PK certificates), yet they are implicitly authenticated by the sole ability of the parties to compute
the resultant session key (i.e., rather than agreeing on the key gxy, the parties would agree on a key
that combines gx, gy with their public/private keys). Not only can this approach generate protocols
that are very efficient communication-wise, but the combination of authentication with the key
derivation procedure can potentially result in significant computational savings. For these reasons,
several of these “implicitly authenticated” protocols have been standardized by major national and
international security standards.

Of these protocols, the most famous, most efficient and most standardized is the MQV protocol
of Law, Menezes, Qu, Solinas and Vanstone [33, 29]. This protocol has been standardized by many
organizations, e.g. [2, 3, 20, 21, 35], and has recently been announced by the US National Security
Agency (NSA) as the key exchange mechanism underlying “the next generation cryptography to
protect US government information” (which includes the protection of “classified or mission critical
national security information”) [36]. Indeed, MQV appears to be a remarkable protocol that not
only is the most efficient and versatile authenticated DH protocol in existence, but it has also been
designed to satisfy an impressive array of security goals.

Yet, in spite of its attractiveness and success, MQV has so far eluded any formal analysis in
a well-defined model of key exchange. The present work was initially motivated by the desire to
provide such an analysis. Our findings, however, have been disappointing: we found that when
formally studied virtually none of the stated MQV goals can be shown to hold (specifically, we
carried this study in the computational key exchange model of Canetti and Krawczyk [11]). This
raises clear concerns about the security of the protocol and triggers a natural question: Do we have
a replacement for MQV with the same superb performance and versatility but for which the MQV
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security goals can be guaranteed in a well analyzed, provable way?
The main contribution of this paper is in identifying the various analytical shortcomings of the

MQV design and proposing a “hashed variant” of the protocol, which we call HMQV, that provides
the same (almost optimal) performance of MQV but also delivers, in a provable way, the original
security goals of MQV (and even more).

Note on groups and notation. All the protocols and operations discussed in this paper assume
a cyclic group G of prime order q generated by a generator g. We denote by |q| the bit length of
q (i.e., |q| = dlog2 qe), and use this quantity as an implicit security parameter. The parameters
G, g and q are assumed to be fixed and known in advance to the parties (this is usually the case
in practice, e.g., [19]; alternatively, one could include these values in certificates, etc.). We use the
multiplicative representation of group operations but our treatment is equally applicable to additive
(prime order) groups such as elliptic curves. In our protocols, public keys (denoted by upper case
letters) are elements in the group G, and the private keys (denoted by the corresponding lower
case letters) are elements in Zq. For example, to a public key A = ga corresponds a private key a.
The party having A as its public key will be denoted by Â (in general, the “hat notation” is used
to denote the identities of parties in the protocol, possibly including the party’s PK certificate).
All parties in the protocol are probabilistic polynomial-time machines, including the attacker. The
latter is denoted by M (where M stands for “malicious” or, paraphrasing the Alice and Bob
tradition, M may stand for “Malice” or “Mob”).

1.1 The MQV Protocol

Key Computation in the MQV and HMQV Protocols

Both protocols: Â and B̂ run a basic Diffie-Hellman exchange (Figure 1)

Â computes σÂ = (Y Be)x+da, B̂ computes σB̂ =
(
XAd

)y+eb

Both parties set K = H(σÂ) = H(σB̂)

MQV: d = X̄
def= 2`+ (X mod2`) e = Ȳ

def= 2`+ (Y mod2`) ` = |q|/2.

HMQV: d = H̄(X, B̂), e = H̄(Y, Â),

Figure 2: Computation of the session key K in each of the two protocols
(A = ga and B = gb are Â’s and B̂’s public keys, respectively.)

The communication in the MQV protocol is identical to the basic unauthenticated DH protocol
depicted in Figure 1 except that the identities Â, B̂ may include a public-key certificate. The
computation of the session key is shown in Figure 2 where: party Â possesses a long-term private
key a ∈ Zq and corresponding public key A = ga, B̂’s private/public key pair is (b, B = gb), and
the ephemeral DH values exchanged in the protocol are X = gx, Y = gy (x, y chosen by Â, B̂,
respectively). The computation of the session key also uses the values d = X̄ and e = Ȳ , where
X̄ =2`+ (X mod 2`) and Ȳ =2`+ (Y mod 2`) for ` = |q|/2. The computation of the session key by
Â (and similarly by B̂) involves the exponentiations X = gx, Be, and (Y Be)x+da. Note, however,
that e is of length |q|/2 and hence Be counts as “half exponentiation” (i.e. half the number of
modular multiplication relative to a regular exponentiation of g). Also, note that X = gx can
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be pre-computed. This sums up to an impressive performance: same communication as the basic
DH protocol and just half exponentiation more than the basic protocol, i.e. a mere 25% increase
in computation to achieve an authenticated exchange! This is significantly better than any of the
proven DH protocols that rely on digital signatures or public key encryption for authentication
(which involve more expensive operations and increased bandwidth), and is also the most efficient
of the implicitly-authenticated DH protocols (the closest are the “Unified Model” protocols [8, 23]
that require three full exponentiations and offer substantially less security features – see Section 1.6).

1.2 Stated Security Goals of the MQV Protocol

The designers of MQV clearly, albeit informally, stated the security goals behind the MQV design
(see [33, 29] and related publications). This includes the resistance to a variety of explicit attack
strategies such as guessing attacks, impersonation attacks, known-key attacks, key-compromise
impersonation (KCI) attacks, and the provision of perfect forward secrecy (PFS).

While resistance to guessing attacks and impersonation attacks are basic and obvious security
requirements, it is worth expanding on the meaning of the other attacks. They all represent
realizations of the same fundamental security principle: a good security system is not one that
denies the possibility of failures but rather one designed to confine the adverse effects of such
failures to the possible minimum.

In the case of known key attacks, one is concerned with the realistic possibility that some session-
specific information, such as a session key (or the ephemeral secrets that led to the computation of
that key), will leak to an attacker. This can happen in a variety of ways ranging from the simple
mishandling of information to a temporary break-in into a computer system or the malicious action
of an insider. In this case, one does not expect the exposed session to remain secure, but a well-
designed key-exchange protocol needs to guarantee that such a failure will only affect the specific
compromised session. Other sessions, by the same or other parties, should not be endangered by
this leakage. The resistance to known-key attacks enforces other basic security principles as well;
most importantly, that keys from different sessions should be fully “computationally independent”
(i.e., from learning one session key nothing can be implied about the value of other session keys).

The properties of PFS and KCI resistance are also concerned with limiting the effects of eventual
failures, in this case the disclosure of long-term keys. Clearly, the discovery by an attacker M of
the long-term authentication key of party Â allows M to impersonate Â and establish its own
sessions in the name of Â. A protocol is said to have PFS if session keys established (and deleted
from memory) before the compromise of the long-term key cannot be recovered (even with the use
of this key). In the case of KCI, the question is whether the knowledge of Â’s private key allows M
not only to impersonate Â to others but also to impersonate other, uncorrupted, parties to Â. A
protocol that prevents this form of “reverse impersonation” is said to resist KCI attacks. In other
words, in such a protocol the only way M can take advantage of the knowledge of Â’s private key
is by active impersonation of Â. Any session established by Â, without being actively controlled
by M, remains secure. Resistance to KCI attacks is a very significant security property that has
added much to the attractiveness of MQV as it is not offered by other implicitly-authenticated
protocols, such as the unified-model protocols of [8, 23] (see Section 1.6), that use the static DH
key gab for authentication (this key functions as a long-term shared key and hence cannot resist a
KCI attack).

Another important robustness consideration for any Diffie-Hellman protocol is its resistance to
the leakage of ephemeral secret DH exponents. While this property has not been addressed directly
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by the designers of MQV, we consider it a prime security concern and therefore carefully study it
in the context of HMQV (see Section 1.4).

Note: One assurance that MQV is not designed to provide is that a party completing a session
with (assumed) peer B̂ knows for certain that this peer computed the session key or even that the
peer was alive during this exchange. Such an assurance cannot be provided (at least not for the
responder) by any 2-message protocol. More importantly, while this may be a desirable operational
property in some applications (in which case the protocol needs to be augmented to three rounds
as we discuss later), it is not essential for securing communications as demonstrated in [11]. The
essential security property is that Â is guaranteed that if the assumed peer B̂ is uncorrupted then
B̂ is the only party that may possibly know K.

1.3 Weaknesses of the MQV Protocol

In spite of the ambitious security goals described above, it turns out that when casting these goals
in a well-defined formal setting as the one in [11], the MQV protocol falls short of delivering most
of its intended security. Here we summarize some of these findings. (See Section 3.2 for a detailed
presentation of MQV’s shortcomings.)

Group representation attacks. We first observe that MQV’s security is strongly susceptible to the
specific way the group elements are represented in the protocol. We show how some representations
render the protocol totally insecure. While ordinary group representations may not have such an
extreme effect on the security of the protocol, this result shows that any attempt at proving MQV
would need to involve restricted group representations. Moreover, the inherent weaknesses of the
protocol discussed below show that the protocol cannot be proven secure even for specific groups.

UKS attacks. We study the vulnerability of the protocol to “unknown key share” (UKS) attacks
which were also listed as a security consideration in MQV. A successful UKS attack [16] is one
in which two parties compute the same session key but have different views of who the peer to
the exchange was (this attack represents both an authentication failure as well as a vulnerability
to known-key attacks). Originally, it was thought that MQV (at least when the registrants of
public keys are required to prove “possession” of the corresponding private keys) was immune to
these attacks; later it was shown by Kaliski [24] that even with such proofs of possession MQV
fails to a UKS attack. Since then it has been believed that augmenting the protocol with a “key
confirmation” step (which adds a third message to the protocol) would solve the problem. Here
we show that this is not the case. Indeed, the 3-message variant of MQV is still vulnerable to this
form of attack if the attacker can learn ephemeral session-state information for sessions other than
the session being attacked.

Lack of PFS. MQV does not provide Perfect Forward Secrecy (PFS). This, however, is not just
a failure of MQV but it’s an inherent limitation of implicitly-authenticated 2-message protocols
based on public-key authentication (and which do not rely on a previously established shared state
between the parties). Indeed no such protocol can provide PFS. We present a generic attack against
any such protocol where an active attacker M causes the establishment of a session key K at party
Â with peer B̂ such that a later corruption of B̂ (even after K was erased) allows M to find K.

KCI attacks. Since MQV is susceptible to basic authentication attacks even when the private key of
the victim is not known to the attacker, then KCI resistance cannot be satisfied. Yet, it is interesting
to see explicit KCI attacks that take advantage of the knowledge of such private key. We show such
an attack against MQV in the case that the attacker has access to the ephemeral values σ from
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which the session key is computed. This serves to motivate two design principles in HMQV: (i) the
essential role of the hashing of σ for session key derivation (in MQV this hashing is recommended
but separated from the core specification of the protocol [29])1; and (ii) the care required in handling
ephemeral information (especially when an attacker may access such information).

Prime-order checks. Our description in Figure 2 omitted an element from the session-key compu-
tation in MQV: In case where the group G generated by g is a subgroup of a larger group G′ (which
is the case in typical mod p and elliptic curve groups), MQV specifies that the key be computed
as K = H(σ) for σ = (σÂ)h = (σB̂)h (σÂ and σB̂ are defined in Figure 2) where h denotes the
co-factor |G′|/|G|. This measure is used to ensure that the value σ belong to the group G, and
has been added to MQV as a safeguard against potential attacks resulting from the lack of explicit
authentication of the DH values, e.g., small-group attacks. We note, however, that this addition
is of no help against the vulnerabilities mentioned above (and as we will see is not needed to pro-
vide security in HMQV). Moreover, lacking a proof that the above counter-measure really works,
several standards defining MQV, as well as various descriptions of the protocol in the literature,
often specify (or at least recommend) that the parties to MQV explicitly check that the DH value
presented by the peer is of prime order q. This adds a costly extra exponentiation to each peer and
takes significantly from the almost-optimal performance of MQV. As we will see, HMQV “provably
dispenses” of the need for this costly check.

1.4 The HMQV Protocol and its Proven Security

Description of the HMQV Protocol. The HMQV protocol (“H” is for Hash) is a simple but
powerful variant of MQV. As in MQV, its communication is identical to the basic DH exchange
(Figure 1) with the possible addition of certificates. The computation of the session key, shown in
Figure 2, differs from MQV’s in the computation of the values d and e which involves the hashing
of the party’s own DH value and the peer’s identity. The output of this hash is ` = |q|/2 bits. In
addition, HMQV mandates the hashing of the values σÂ = σB̂ into k-bit keys where k is the length
of the desired session key. We denote the hash function with ` bits of output by H̄ and the one
with k bits by H. In practice the same hash function can be used with different output lengths.
(As a mnemonic, the bar in H̄ indicates that the output of the function is used as an exponent).

From this description one can see that HMQV preserves the outstanding performance of MQV
(both in terms of communication and computation). At the same time, HMQV overcomes all the
mentioned security shortcomings of MQV to the largest possible extent in a 2-message protocol. We
prove that in the random oracle model [5], and under the Computational Diffie-Hellman (CDH)
assumption [15], the protocol is secure in the Canetti-Krawczyk security model [11]. In particular,
this establishes the security of the protocol against impersonation attacks, known-key attacks, and
UKS attacks. We also prove the resistance of HMQV to KCI attacks (which we formally define)
under the same assumptions.

Furthermore, HMQV enjoys an additional performance advantage in that it provably dispenses
of the need for costly prime-order tests on the DH values transmitted in the protocol. Indeed, our
proof shows that the only way an attacker can benefit from the choice of rogue DH values is by
choosing these to be zero, and thus a simple non-zero check is all is required (hence, there is no
need for prime-order tests or for the co-factor h used in MQV).

1 The MQV paper is somewhat ambiguous about the need to hash σ (see the end of Sections 1 and 5 in [29]). In
particular, this hashing is not viewed as essential to the security of the protocol but as a possible safeguard against
potential weak bits in σ (which is not the source of weakness in this example, but rather the malleability of σ is.)
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Regarding forward secrecy, we said earlier that PFS cannot be achieved by any implicitly
authenticated 2-message protocol, including HMQV. Yet, the following limited forward secrecy
property holds for HMQV: any session key established without the active intervention of the attacker
(except for eavesdropping the communication) is guaranteed to be irrecoverable by the attacker once
the session key is erased from memory. This is the case even if the attacker knew the private keys
of both peers when the session was established.

For applications that require full PFS we present a 3-message variant of HMQV which adds a
third message and a MAC computation by each party (see Figure 7 in page 55) and guarantees full
PFS. This 3-message protocol, called HMQV-C, also provides “key confirmation” to both parties,
i.e., the assurance that the assumed peer indeed participated in the protocol and that it computed
the same session key. Another advantage of HMQV-C is that it can be proven secure in the
stronger universally composable (UC) KE security model of [13] which ensures the security of key-
exchange protocols when run concurrently with other applications. (HMQV satisfies the weaker
“relaxed UC” definition from [13].) We note that while HMQV-C requires an extra message, its
computational cost is essentially the same as HMQV as the MAC computation is negligible relative
to the exponentiation cost. On the other hand, [23] note that 2-message symmetric protocols such
as the basic HMQV allow for simultaneous initiation of a session by both Â and B̂, a desirable
property in some network settings.

Another variant of HMQV is a one-pass authenticated key-exchange protocol in which Â sends
a single message to B̂ after which both parties share a secret key. We show also this protocol to
be secure (under CDH and in the random oracle model) in a security model adapted from [11] to
one-pass protocols (the only difference is that we cannot prevent the adversarial replay of a message
from Â to B̂ and, of course, cannot provide PFS). In particular, this one-pass protocol provides
the functionality of public-key based deniable authentication as well as an authenticated CCA
encryption scheme (in the random oracle model) in a more efficient way than existing alternatives.

An important security consideration not discussed by the authors of MQV is the resilience of the
protocol to the disclosure of the secret exponent x corresponding to an ephemeral (session-specific)
DH value X = gx. This is a prime concern for any Diffie-Hellman protocol since many applications
will boost protocol performance by pre-computing ephemeral pairs (x,X = gx) for later use in the
protocol (this may apply to low-power devices as well as to high-volume servers). In this case,
however, these stored pairs are more vulnerable to leakage than long-term static secrets (the latter
may be stored in a hardware-protected area while the ephemeral pairs will be typically stored on
disk and hence more available to a temporary break or to a malicious user of the system). We
prove that HMQV’s security is preserved even in the presence of the leakage of ephemeral secret
DH exponents (see Section 1.6 for comparison to other work). For this property (and only for it)
we need to resort to two strong assumptions: Gap Diffie-Hellman [37] and Knowledge of Exponent
(KEA1) [14, 18, 4]; in return we get a guarantee that not even the session key computed using the
exposed exponent is compromised by this leakage.

We end by noting an important property of our analysis: all results in this paper hold under
a strong adversarial model in which the attacker is allowed to register arbitrary public key for all
corrupted parties (and at any time during the protocol). This may include a public key that is
identical, or related, to the public key of another (possibly uncorrupted) party; in particular, the
attacker may not know the private key corresponding to the public key it chose. In practical terms
this means that the security of our protocols does not depend on the certification authority requiring
registrants of public keys to prove knowledge of the corresponding private keys. This is important
since in many practical settings such “proofs of possession” are not required or performed by the
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CA (for contrast, see the comparison with [23] in Section 1.6).

1.5 Challenge-Response Signatures

The main technical tool that we develop in order to prove the security of HMQV is a new form
of interactive signatures that we call challenge-response signatures and which we implement on
the basis of a (new) variant of the Schnorr’s identification scheme. By applying the Fiat-Shamir
methodology to this scheme (and using the proof techniques of Pointcheval-Stern [38]) we obtain
challenge-response signatures, named XCR, that are secure in the random oracle model (under
the CDH assumption) and have the property that both verifier and signer can compute the same
signature, the former by knowing the challenge and the latter by knowing the private signature key.
The HMQV protocol uses these signatures in an essential way both for the purpose of authentication
(of the DH values and the peer identity) as well as for session-key computation. XCR signatures
(and their “dual version”, called DCR) provide for a natural interpretation of the ideas underlying
the MQV design and serve as the basis (technical and conceptual) to the design of HMQV.

In addition, XCR signatures may have applications beyond the HMQV protocol. They do
not provide the classical functionality of digital signatures since they are verifier-specific and non-
transferable (i.e., cannot be used for non-repudiation purposes). On the other hand, in interactive
settings they provide “deniable authentication”, an important property for some applications in-
cluding key exchange. Moreover, for such settings, hashed XCR signatures (denoted HCR) consti-
tute an attractive alternative to DSA signatures. As with DSA, HCR signatures can be implemented
over any dlog-based system, including elliptic curves. However, in contrast to DSA, their security is
not compromised by the disclosure of ephemeral information (recall that in DSA, the disclosure of
a single ephemeral exponent renders the signature scheme totally insecure by revealing the private
signing key).

1.6 Related Work.

Implicitly-authenticated DH protocols were first studied in the work of Matsumoto, Takashima and
Imai [30] in 1986. Since then this line of research generated many protocols, many of which suffer
from various weaknesses. See [9, 34, 7, 8] for some surveys which also include the discussion of
desirable security goals for these protocols as well as some of the shortcomings of specific proposals.
Two works that study such protocols in a formal model are those of Blake-Wilson et al [8] and
Jeong et al [23]. They both treat very similar protocols referred to in the literature as the “unified
model”. In these protocols, parties Â and B̂ use their public keys ga, gb to generate a shared key
gab that they then use to authenticate a DH exchange (c.f., [26]).

The variant studied in [8] is shown to be open to interleaving and known-key attacks and hence
insecure (unfortunately, this variant has been widely standardized [2, 3, 20]). One main flaw of this
protocol is that it does not explicitly authenticate (or includes under the key derivation hashing)
the ephemeral DH values exchanged by the parties. [23] studies the version in which the DH values
are included under the key derivation and shows this protocol to be secure in the random oracle
model. However, the protocol does not provide resistance to KCI and is open to a UKS attack if
the CA does not enforce a proof-of-posession check at time of certificate issuance.2 Lack of KCI is

2In [23], this protocol is also claimed to enjoy perfect forward secrecy (PFS), but what they actually show is a
weaker and non-standard notion (see Section 6.2) where PFS holds only for sessions created without active inter-
vention by the attacker. As we pointed out, lack of (full) PFS is an inherent limitation of any 2-message implicitly-
authenticated DH exchange, including the 2-message protocols from [23].
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one aspect of a more substantial drawback of these protocols, namely, the use of the keys gab as
long-term shared keys between the parties; these keys become particularly vulnerable when cached
for efficiency.

In contrast, HMQV is a significantly stronger protocol which, in particular, does not use gab as
a long-term key, does not require (even for efficiency) to cache this value, and even if the value of
gab is ever learned by the attacker it is of no help for impersonating either Â or B̂, or for learning
anything about their session keys. On top of all its security advantages (which hold without relying
on proofs of possession performed by CAs or prime-order tests performed by the parties), HMQV
is more efficient than the unified model protocols that take 3 exponentiations per-party.

Finally, we mention the works of Shoup [41] and Jeong et al [23] that present 2-message authen-
ticated DH exchanges with explicit authentication (via signatures and MAC, respectively) that they
show to satisfy the security definitions from [41, 6] in the standard (non-random-oracle) model. In
these protocols, however, it is sufficient for the attacker to learn a single ephemeral exponent x of
a DH value gx exchanged between parties Â and B̂ to be able to impersonate Â to B̂ indefinitely,
and without ever having to learn Â’s or B̂’s private keys. This is a serious security weakness which
violates the basic principle that the disclosure of ephemeral session-specific information should not
compromise other sessions. The reason that these protocols could be proven secure in [41, 23] is
that the models of key exchange security considered in these works do not allow the attacker to find
any session-specific information beyond the session key itself. The above vulnerability, however,
indicates that such models are insufficient to capture some realistic attack scenarios. In contrast,
the model of [11], used as the basis for our analysis, captures such attacks via state-reveal queries
(see Section 2).

See also Section 3.1 for some more detail on the protocols discussed above, and the concluding
remarks in Section 10 for additional comparison to other work.

Organization The paper is organized in the following sections: Section 2 provides a succinct
description of the model of secure key-exchange protocols [11] on which all of our analysis work
is based (this includes much of the security terminology used in subsequent sections). Section 3
provides background on the MQV protocol as needed for understanding its design, demonstrating
its security shortcomings, and motivating the design of HMQV. The presentation in this section is
informal and technically “light”. Section 4 introduces XCR and DCR signatures which form the
basis for our analysis of HMQV (and may be of independent interest), and proves their security
(in the random oracle model under the CDH assumption). Section 5 proves the security of HMQV
in the formal model of [11] by showing how a successful attacker can be converted into an efficient
forger against XCR signatures. Section 6 discusses, defines and proves additional security properties
of HMQV not covered by the basic model of [11]. Section 7 is dedicated to analyze the resistance
of HMQV to the leakage of ephemeral DH exponents for which it introduces and analyzes “hashed
XCR signatures (HCR)”. Section 8 presents the 3-message HMQV-C protocol and its added security
features. Section 9 presents the one-pass HMQV protocol and its security properties. We end the
paper with concluding remarks in Section 10.

2 Security Model for Key-Exchange Protocols

This section presents an abridged description of the Canetti-Krawczyk security model for key-
exchange protocols [11] on which all the analysis work in this paper is based. The reader familiar
with this model can skip this section. On the other hand, please consult [11] for complete details.
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A key-exchange (KE) protocol is run in a network of interconnected parties where each party
can be activated to run an instance of the protocol called a session. Within a session a party can
be activated to initiate the session or to respond to an incoming message. As a result of these
activations, and according to the specification of the protocol, the party creates and maintains a
session state, generates outgoing messages, and eventually completes the session by outputting a
session key and erasing the session state. A session may also be aborted without generating a session
key. A KE session is associated with its holder or owner (the party at which the session exists), a
peer (the party with which the session key is intended to be established), and a session identifier. We
will simplify the presentation here by making two assumptions (consistent with the model of [11]):
(i) the activation of a session at a party always specifies the name of the intended peer (this is called
the “pre-specified peer model” in [12]); and (ii) the session identifier is a quadruple (Â, B̂, Out, In)
where Â is the identity of the holder of the session, B̂ the peer, Out the outgoing messages in the
session, and In the incoming messages. In particular, in the case of MQV and HMQV this results
in an identifier of the form (Â, B̂,X, Y ) where X is the outgoing DH value and Y the incoming DH
value to the session. The peer that sends the first message in a session is called the initiator and
the other the responder. We usually denote the peers to a session by Â and B̂; either one may act
as initiator or responder. The session (B̂, Â, Y,X) (if it exists) is said to be matching to the session
(Â, B̂,X, Y ). As we’ll see, matching sessions play a fundamental role in the definition of security.

In addition, we assume that each party owns a long-term pair of private and public keys, and
that other parties can verify the authentic binding between an identity and a public key. For
concreteness, we will assume that this binding assurance is provided by a certification authority
(CA) which is only trusted to correctly verify the identity of the registrant of a public key before
issuing the certificate that binds this identity and the public key. No other actions by the CA are
required or assumed; in particular, we make no assumption on whether the CA requires a proof-of-
possession of the private key from a registrant of a public key, and we do not assume any specific
checks on the value of a public key. In particular, a corrupted party can choose (at any point during
the protocol) to register any public key of its choice, including public keys equal or related to keys
of other parties in the system. In this paper, a public key will always be a static Diffie-Hellman
value and the private key its secret exponent.

Attacker Model. The attacker is modeled to capture realistic attack capabilities in open net-
works, including the control of communication links and the access to some of the secret information
used or generated in the protocol. The basic principle is that since security breaches happen in prac-
tice (e.g., via break-ins, mishandling of information, insider attacks, cryptanalysis), a well-designed
protocol needs to confine the damage of such breaches to a minimum. In particular, the leakage of
session-specific ephemeral secret information should have no adverse effect on the security of any
other non-matching sessions.

The attacker, denoted M, is an active “man-in-the-middle” adversary with full control of the
communication links between parties. M can intercept and modify messages sent over these links,
it can delay or prevent their delivery, inject its own messages, interleave messages from different
sessions, etc. (Formally, it is M to whom parties hand their outgoing messages for delivery.) M
also schedules all session activations and session-message delivery. In addition, in order to model
potential disclosure of secret information, the attacker is allowed access to secret information via
session exposure attacks (a.k.a. known-key attacks) of three types: state-reveal queries, session-
key queries, and party corruption. A state-reveal query is directed at a single session while still
incomplete (i.e., before outputting the session key) and its result is that the attacker learns the
session state for that particular session (which may include, for example, the secret exponent of

10



an ephemeral DH value but not the long-term private key used across all sessions at the party).
A session-key query can be performed against an individual session after completion and the result
is that the attacker learns the corresponding session-key key either via usage of the Finally, party
corruption means that the attacker learns all information in the memory of that party (including the
long-term private key of the party as well all session states and session keys stored at the party); in
addition, from the moment a party is corrupted all its actions may be controlled by the attacker.
Indeed, note that the knowledge of the private key allows the attacker to impersonate the party at
will3.

Sessions against which any one of the above attacks is performed (including sessions compro-
mised via party corruption) are called exposed. In addition, a session is also called exposed if
the matching session has been exposed (since matching sessions output the same session key, the
compromise of one inevitably implies the compromise of the other).

The security of session keys generated in unexposed sessions is captured via the inability of
the attacker M to distinguish the session key of a test session, chosen by M among all complete
sessions in the protocol, from a random value. When M chooses the test session it is provided with
a value v which is chosen as follows: a random bit b is tossed, if b = 0 then v is the real value of
the session key, otherwise v is a random value chosen under the same distribution of session-keys
produced by the protocol but independent of the value of the real session key. After receiving v
the attacker may continue with the regular actions against the protocol; at the end of its run M
outputs a bit b′. The attacker succeeds in its distinguishing attack if (1) the test session is not
exposed, and (2) the probability that b = b′ is significantly larger than 1/2.

Definition 1 [11] A polynomial-time attacker with the above capabilities is called a KE-attacker.
A key-exchange protocol π is called secure if for all KE-attackers M running against π it holds:

1. If two uncorrupted parties complete matching sessions in a run of protocol π under attacker
M then, except for a negligible probability, the session key output in these sessions is the
same.

2. M succeeds (in its test-session distinguishing attack) with probability not more that 1/2 plus
a negligible fraction.

This definition captures the essential security properties of a KE protocol; in particular, [11]
show that a KE protocol that is secure in the above sense is sufficient for the most important
application of KE protocols, namely, the establishment of secure communication channels between
two parties.

An important property of key-exchange protocols not captured in the above definition is perfect
forward secrecy (PFS) [34], namely, the assurance that once a session key is erased from its holders
memory then the key cannot be learned by the attacker even if the parties are subsequently cor-
rupted. Formally, this is captured in [11] via the notion of session-key expiration (which represents
the erasure of a session key from memory). A key-exchange protocol is said to be secure with PFS
if the above definition holds even when the attacker is allowed to corrupt a peer to the test session
after the test-session key expired at that peer.

Additional specific security properties for key-exchange protocols (such as resistance to key-
compromise impersonation attacks) are discussed and defined in Sections 3.2 and 6, respectively

3The separation between state-reveal and session-key queries from party corruption considers the realistic possi-
bility that private keys be better protected than ephemeral session-specific information.
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3 From MQV to HMQV

The MQV protocol was proposed ten years ago and much has been written about it in the literature
and in the many standards that adopted it. Yet, relatively little rationale has been given for the
specific design choices in the protocol. On the other hand, the authors of MQV [33, 29] have been
very explicit about the specific security goals they set for the protocol. In Section 3.1 we attempt
to provide some motivation for the MQV design and its underlying ideas (as we understand them).
Then, in Section 3.2, we list the stated security goals of MQV and show that the protocol falls
short of fulfilling these goals. Finally, in Section 3.3 we show how the lessons learned from the
MQV design are applied to the design of HMQV. In particular, while the basic (elegant!) ideas
from MQV, as well as the superb performance of the protocol, have been preserved in HMQV, we
show how the latter enjoys a much more robust design that provably delivers the security goals
envisioned for, but unattained by, the MQV protocol. This whole section is presented informally
for the benefit of the non-specialist, leaving the formal treatment and rigorous analysis for later
sections.

3.1 Introduction to MQV

A first challenge in designing a 2-message key-exchange protocol is to prevent a successful attack
based on the replay of the first protocol message. This is problematic since the first message
cannot include any form of a session-specific “freshness guarantee” (such as a nonce or a fresh
DH value) contributed by the responder. A solution to this problem is to provide freshness via
the computation of the session key. Consider, for example, the following 2-message Diffie-Hellman
protocol authenticated using digital signatures and adapted from the ISO protocol [22].

Â
Â , B̂ , gx , sigÂ(gx, B̂)

- B̂

B̂ , Â , gy , sigB̂(gy, gx, Â)
�

Note that while the inclusion of gx under the signature of B̂ provides freshness to the authentication
by B̂ this safeguard does not exist in Â’s message. Yet, the session key, gxy is guaranteed to be
fresh (and independent from other session keys) as it is randomized by the fresh y. However, also
note that the security of the protocol breaks if the attacker is able to find a single pair (x, gx) used
by Â in a session with B̂ (in which case the attacker also learns sigÂ(gx, B̂) from watching the
protocol). This allows the attacker to impersonate Â to B̂ indefinitely (using the same message
and its knowledge of x) and without ever having to learn Â’s long-term private signature key!
This is a serious vulnerability that violates the basic principle that the disclosure of ephemeral
session-specific information (e.g., the pair (x, gx)) should not compromise other sessions. This is
particularly serious considering that many applications will compute the pairs (x, gx) off-line and
keep them in less protected storage than the long-term signature key.
Note: As pointed out in Section 1.6, Shoup [41] presents a proof for the above protocol in a security model
that does not allow the attacker to find any session-specific information beyond the session key itself. The
above vulnerability, however, indicates that such a model is insufficient to capture some realistic attack
scenarios. In contrast, the model from [11] used here does capture such attacks via state-reveal queries (see
Section 2) and, in particular, allows us to prove that such attacks are not possible against HMQV.

So how can we still design a 2-message protocol such that the authentication in the first message
can not be replayed? One solution, put forth in 1986 by Matsumoto, Takashima and Imai [30],

12



is to dispense of the explicit authentication of the DH values and instead provide authentication
via the derivation of the session key, namely, by computing this key as a function of the session-
specific ephemeral DH values exchanged in the protocol and the long-term private/public keys of
the parties (in this setting public keys are static DH keys). In this way, one preserves the original
two messages of the basic DH protocol (Figure 1) while thwarting man-in-the-middle attacks via
the authenticated key derivation.

A simple instantiation of this idea is to let any pair of parties, Â, B̂, use their respective public
keys ga, gb in order to compute a shared key gab which can then be combined with the ephemeral
DH key gxy for computing the session key. This approach has been termed the “unified model”
in the literature and an insecure instantiation of it (in which the session key is computed as the
hash of gab and gxy) has been extensively standardized [2, 3, 20]. As shown in [8] this protocol falls
to known-key and interleaving attacks. A more secure version would also include the ephemeral
DH values gx, gy under the hash. [23] shows this variant to be secure in the random oracle model
provided the CA requires each certificate requester to prove knowledge of the corresponding private
key. Clearly, the protocol cannot withstand KCI attacks (see Section 1.2) since knowledge of the
private key a of Â allows the attacker to impersonate any party to Â. This weakness is inevitable
when using gab as a long-term pairwise shared key. Hence, to provide security against KCI attacks
(and other forms of secrecy compromise), as well as to avoid the need to trust the CA with proof
of possession protocols, we need to depart from the gab keys.

What we are looking for is a way to mix the values A = ga, B = gb, X = gx, Y = gy in the
key derivation procedure in such a way that as long as the attacker M does not know both a and
x, or both b and y, then M cannot compute the session key. A natural solution is to compute
the session key K = g(x+a)(y+b) (which Â and B̂ compute as (Y B)x+a and (XA)y+b, respectively).
In this case, if an attacker learns x but not a, it cannot compute K. Yet, the protocol is still
insecure as the following simple attack shows. M chooses a value x∗ ∈R Zq, computes X∗ = gx∗/A,
and sends X∗ to B̂ as the initial message from Â. B̂ sends Y = gy and computes the session key
K = (X∗A)y+b. Unfortunately, also M can compute K as (BY )x∗ . Note that if we augment the
computation of K to K = g(x+da)(y+eb) for constant d, e the attack is still possible. Moreover, the
attack works even if we compute the session key as H(K) for any publicly computable function H
(even an ideally random function). On the other hand, if we let d, e vary with X, Y (e.g., in a way
that the attacker cannot control e and Y , or d and X, separately) the above simple attack may not
work. This idea leads to the the design of MQV where d and e are set to X̄ and Ȳ , respectively
(recall that X̄ =2`+ (X mod2`) and Ȳ =2`+ (Y mod2`) for ` = |q|/2).

But, is this solution secure? We investigates this question next.

3.2 The Insecurity of MQV

As said before, the designers of MQV clearly, albeit informally, stated the security goals behind
the MQV design (see [33, 29] and related publications). Here we examine to what extent the MQV
protocol achieves these goals in the context of the key-exchange model described in Section 2. We
show that some of the most essential security properties, such as resistance to impersonation and
known-key attacks, are not satisfied in general by the protocol. We present explicit attacks against
most of the properties intended for MQV (in each attack M succeeds in computing the session key
corresponding to an unexposed test session). This stands in strong contrast to HMQV where all
these properties are strictly satisfied (see Section 3.3). The presentation here is informal yet some
familiarity with the terminology from Section 2 is recommended.
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Before going into the specific goals of MQV, let us point to one property that MQV is not
intended to provide, namely, the assurance to a party completing a session that the peer to the
exchange has established the corresponding session key or even that the peer was “alive” at the time
of the exchange. Moreover, no 2-message protocol, HMQV included, can provide such assurance
(at least not for the responder). However, note that such assurance, while desirable in some
applications, is not part of the core requirements from a secure key-exchange protocol and, in
particular, not ensured by the definition of security from Section 2. What the latter definition
ensures is that if a honest party Â established a session key K with an uncorrupted peer B̂ then
the only party other than Â that may possibly know the key is B̂. This suffices, in particular, to
ensure the security of the most important application of key-exchange protocols, namely, secure
channels [11]. We expand more on these issues in Section 8 where this property will be added to
the protocol at the cost of an extra message.

Resistance to basic impersonation attacks. A minimal requirement for a secure key-exchange
protocol is that the attacker, not knowing the private key of a party Â, should not be able to
impersonate Â. This minimal requirement, however, cannot be proven to hold in MQV, at least
without resorting to specific assumptions on the representation of group elements. To see this
consider any group G (of prime order q) and choose a representation of the elements of G such that
the |q|/2 least significant bits of the representation are fixed. In this case, the MQV’s session key
becomes K = H(σ) where σ = g(x+da)(y+eb) and d = X̄ and e = Ȳ are fixed constants. As shown
in Section 3.1, in this case the protocol is open to trivial impersonation attacks (the attack is also
possible with non-fixed but low-entropy values d and e). In particular, this shows that no analysis
of MQV over general prime-order groups can prove the protocol to be secure. Even if one restricts
the groups over which an analysis is carried, the following weaknesses of MQV remain.

Resistance to UKS attacks. An unknown-key share (UKS) attack (also known by the more
informative terms “source-substitution” [34] or “identity misbinding” [27] attacks) is a particular
form of impersonation attack in which the attacker M interferes with the session establishment
between two honest parties Â and B̂ such that at the end of the attack both parties compute the
same session key K (which M may not learn), yet while Â is convinced that the key is shared with
B̂, B̂ believes that the peer to the session has been M (here M can be any corrupted party). This
attack, first discovered by Diffie, van Oorschot and Wiener [34], has since become a basic attack
under which key-exchange protocols are validated. One can easily see that the MQV protocol is
trivially vulnerable to such an attack if M can register the public key of an honest party Â under
its own (i.e., M’s) identity. It was suggested, however, that the protocol could resist UKS attacks
if one disallowed the registration of arbitrary public keys by the attacker; in particular, if the
certification authority required a proof of possession by the registrant of a public key (i.e., a proof
of knowledge of the corresponding private key). This belief turned out to be wrong as demonstrated
by a clever attack due to Kaliski [24] showing that a UKS attack against MQV can be carried by
M using a public key for which M knows the corresponding private key (in this attack M chooses
its public and private keys after seeing Â’s initial DH value X). A short description of the attack
can be found in Appendix A.

For detailed discussions of different aspects of UKS attacks (including its practical consequences)
see [16, 24] and many other works in the area. Here we point to one consequence of the attack
when seen in light of the model from Section 2. Since the attack forces the same session key, K, to
be computed in two non-matching sessions, (Â, B̂,X, Y ) and (B̂,M, Y,X), then the attacker can
choose the former as its test session and win the distinguishing game (in other words, the protocol
falls to a known-key attack). Interestingly, since the publication of Kaliski’s attack it has been

14



believed that one way to solve this weakness of MQV was to move to a 3-message protocol in which
MQV is augmented with a “key confirmation” step. Specifically, the protocol is augmented with a
MAC value macKm(B̂, Â, Y,X) sent in the second message (from B̂ to Â) as well as with a third
message in which Â sends macKm(Â, B̂,X, Y ) (here Km is derived from σ = σA = σB while the
session key is set to another value derived from σ and “computationally independent” from Km).
The idea is that now the above UKS attack fails since B̂ will send macKm(B̂,M, Y,X) while Â
expects macKm(B̂, Â, Y,X). This, however, is not the case since the attacker can still break the
secrecy of the session (Â, B̂,X, Y ). For this, M breaks into the session (B̂,M, Y,X) at B̂, before
B̂ sends out the second message, and finds the value of Km; now M can compute the MAC value
macKm(B̂, Â, Y,X) which will convince Â that she was talking to B̂. Here again the attacker can
choose the unexposed test session (Â, B̂,X, Y ) and win the distinguishing game.

Perfect Forward Secrecy (PFS) Informally, a key-exchange protocol is said to have the PFS
property if the leakage of the long-term key of a party does not compromise the security of session
keys established by that party and erased from memory before the leakage occurred. (See Sec-
tion 2 for a formal definition.) This is another important security property that ensures damage
confinement in the case of secrecy leakages, and a main motivation for the use of Diffie-Hellman
key-exchange protocols. PFS has also been an explicit design goal for MQV. However, MQV does
not achieve it. To see this consider two uncorrupted parties Â, B̂. The attacker M chooses x ∈R Zq

and sends X = gx to B̂ pretending it to be an initial message for a session coming from Â. Then,
B̂, acting as responder, chooses y ∈R Zq, sends Y = gy (supposedly to Â) and completes the session
with key K = H((XAX̄)y+Ȳ b). (Note that the matching session will not be established at Â who
did not choose the value X.) Once the session key expires at B̂, and is removed from memory, the
attacker corrupts Â and finds the private key a. It now can compute the key K as H((Y BȲ )x+X̄a)
contradicting the PFS property.

We note that this form of attack can be carried against any 2-message key-exchange protocol
(including HMQV) authenticated via public keys and with no secure shared state previously es-
tablished between the parties. What can be achieved in a 2-message protocol is a weaker form of
forward secrecy in which sessions created without the active involvement of the attacker cannot
be recovered after the key expired. While weaker than full PFS this is still an important security
feature that we prove to hold in the case of HMQV.

Resistance to Key-Compromise Impersonation (KCI) attacks. Consider the case in
which M has learned the private key a of a party Â. Obviously, M can now impersonate Â to
any other party. But even in this situation it is desirable to prevent M from impersonating other
(uncorrupted) parties to Â. This property, referred to as resistance to KCI attacks, provides the
assurance that sessions established by Â while not being actively controlled by M remain secure
even if her private key is learned by M. This feature has been stated as one of the explicit
goals of MQV (in particular, one that differentiates MQV from other implicitly-authenticated KE
protocols). In the case of MQV the property states that if Â establishes a session s = (Â, B̂,X, Y )
where X was chosen by Â (such that M does not know x) and B̂ is an uncorrupted party then the
session s must be secure (i.e., M cannot distinguish its session key from random without exposing s
or its matching session). Since MQV is susceptible to attacks even when the attacker does not know
one of the parties’ private key then, strictly speaking, it cannot achieve KCI resistance (for a formal
treatment of KCI see Section 6). Yet, it is interesting to examine direct KCI attacks against the
protocol. We show such an attack in the case that M has access to the values σÂ or σB̂ (remember
that the session key is obtained by hashing these values). This demonstrates two important design
and specification issues arising from our analysis: (i) The essential contribution of the hashing of
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the σ values to the security of the protocol (see footnote 1); and (ii) The sensitivity of the protocol
to the disclosure of ephemeral state information (e.g., if the computation of σ, which involves the
party’s private key, is performed in a secure module, then this module should output H(σ) rather
than σ itself).

Let Â be a party for whom M knows the private key a, and B̂ be an uncorrupted party.
Assume that Â initiates a session with B̂ sending the DH value X (truly chosen by Â not by M).
M intercepts the message and sends it to B̂ but this time with the sender being a party Â′ 6= Â
for which M knows the private key a′ (Â′ can be M itself or any corrupted party). When B̂
responds to Â′ with a DH value Y , M forwards this message to Â. In this case, Â and B̂ compute
σÂ = (Y BȲ )x+X̄a and σB̂ = (XA′X̄)y+Ȳ b, respectively. Now, if M learns the value σB̂ it can
use its knowledge of a and a′ to compute σÂ = σB̂ · (Y BȲ )X̄(a−a′), and from it the session key of
session (Â, B̂,X, Y ). In other words, the knowledge of a allows M to break the unexposed session
(Â, B̂,X, Y ) (this session is unexposed since the exposed session (B̂, Â′, Y,X) is non-matching)
even though M does not know x and B̂ is uncorrupted. This represents a successful KCI attack
against MQV. Furthermore, the same attack (which, as said, depends on the ability of the attacker
to learn the value of σ) is possible even against the stronger 3-message variant of MQV with key
confirmation.

Prime-order testing and exponentiation performance. One potential problem identified
by the MQV designers is that since the DH values are not explicitly authenticated by the protocol
then it could be possible for an attacker to replace these values. An example of such potential
vulnerability is the so called “small group attack” in which the attacker replaces the legitimate
DH values of the parties with elements of small order and thus forces the same low-entropy key at
both ends. Due to these potential attacks, “implicitly-authenticated” protocols, such as MQV, are
often specified to check that the peer’s DH value is of the expected prime order q. Unfortunately,
this verification adds an exponentiation to the protocol, a drawback particularly noticeable in
MQV whose main attractiveness is the virtually optimal performance. To remedy this situation,
the MQV designers specified that when the group G is a subgroup of a larger subgroup G′, the
session key K be computed as H(σ) where σ = σh

Â
= σh

B̂
and h is the cofactor value |G′|/|G|.

This strategy has two benefits: forcing σ to be in the subgroup G (regardless of whether the DH
values were in G or not) and saving the extra exponentiation (the exponentiation to h is for free
as it can be combined with the other exponentiations in the protocol). While this specification
of MQV certainly ensures that the key is in G, it is not clear whether it solves other potential
vulnerabilities. For this reason the standards implementing MQV, as well as various descriptions of
the MQV protocol in the literature, often specify (or at least recommend) the performance of the
extra exponentiation needed to test that the peer’s DH is of prime order q (an operation usually
referred to as “ephemeral public key validation”).

We do not know if the cofactor exponentiation or an explicitly prime-order test add any real
benefit to MQV (in particular, these measures do not prevent any of the attacks shown above). On
the other hand, we prove that HMQV is secure without any one of these operations. This serves
to highlight the importance and benefits of an analysis-driven design which frees us from costly
precautionary defenses. (All is needed in HMQV is to check that the peer’s DH value is non-zero).

Validation of long-term public keys. Both the MQV paper and its standardized version
require that the long-term public keys of the parties be validated to be in the prime-order subgroup
G. In contrast to the validation of ephemeral DH values as discussed above, in this case the extra
computation incurred by this test is easily affordable if it is done by the certification authority at
the time of key registration. Yet, since not all CA’s will be configured to do such tests, it is better
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to minimize these extra requirements from CAs. Also in this case, we can prove that the HMQV
protocol does not need of such tests. Namely, a dishonest party can choose an element of order
other that q as its public key and yet be unable to cause harm to any honest party.

A more significant burden on the CA is to require the latter to check whether the the registrant
of a public key knows the corresponding private key. While technically this can be done via
zero-knowledge proofs of knowledge, in practice many CAs will not do these checks at all. While
originally believed that such “proof of possession” tests could benefit the MQV protocol, this was
questioned by Kaliski’s UKS attacks [24] (see the discussion above) that are not avoided by these
tests. Also here the analysis of HMQV shows that the security of the protocol does not rely on
proof-of-possession tests by the CA.

Resistance to disclosure of Diffie-Hellman exponents. As discussed in Section 3.1 an
important security requirement from Diffie-Hellman protocols is that the disclosure of the exponent
of an ephemeral DH value should not compromise the security of sessions in which that value was
not used. In particular, the lack of this property weakens the performance claim that the ephemeral
DH exponentiation can be done off-line (an extreme example of such a weakness are DSS signatures
where the disclosure of a single ephemeral exponent compromises the long-term signature secret
key). While this property has not been considered in the MQV publications, we do investigate it
in the setting of HMQV and prove it to hold there. We do not know to what extent it may be
satisfied by MQV when the session key is the result of hashing the value σ; without such hashing
the property is not achieved (we omit the details of such an attack).

3.3 The security of HMQV

In contrast to MQV, the HMQV protocol presented in this paper can be proven secure in the
Canetti-Krawczyk model outlined in Section 2. Moreover, we prove that all the additional security
goals of MQV are satisfied by HMQV (with the exception of PFS which cannot be fully achieved
by any 2-message protocol). Here we summarize all these properties of HMQV and point out to the
design mechanisms that resolve the above weaknesses of MQV. The presentation is still informal
and follows the description of properties from the previous subsection; full rigorous proofs are
presented in the rest of the paper.

Basic security of HMQV. We prove that HMQV, over any prime order group in which the CDH
assumption holds4, is secure in the sense of Definition 1 when the hash function is modeled as a
random oracle. While the proof of this result occupies the largest part of this paper, it is instructive
to consider two of the attacks on MQV discussed before as a way to motivate some of the elements
in the HMQV design. Specifically, consider the weakness of MQV to group representation and its
vulnerability to UKS attacks. Due to our general security proof for HMQV we know that both
weaknesses are avoided in HMQV. Specifically, these attacks are prevented via the replacement of
the values d = X̄ and e = Ȳ in MQV with d = H̄(X, B̂) and e = H̄(Y, Â). The randomization of X
and Y provided by the hashing prevents the weakness of MQV caused by relying on specific group
representations, while the identity under the hash binds the peer’s identity with the key derivation
thus preventing UKS (and other impersonation) attacks.

Resistance to KCI attacks. In Section 6 we formalize KCI attacks in the context of the CK
model and show that HMQV provides provable resistance to this attack. For this property we need
an additional design element in HMQV, namely, the hashing of σÂ and σB̂; without this hashing the

4See Section 4.2 for a formalization of the CDH assumption.
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following KCI attack is possible. Let Â be a party for which M knows the private key a, and B̂ be
an uncorrupted party. When Â initiates a session with B̂ sending a DH value X chosen by Â (and
whose exponent x the attacker M does not know), M replaces X with the DH value X2. Now B̂
computes KB̂ = σB̂ = (X2Ad)y+eb (with d = H̄(X, B̂), e = H̄(Y, Â)). M issues a session-key query
and learns KB̂. From this value, and using the knowledge of a, M computes (X2)y+eb, and by
taking a square root M obtains (X)y+eb. Now, using a, M computes KÂ = σÂ = (XAd′)y+eb (here
d′ = H̄(X2, B̂)). Therefore, by exposing the session (B̂, Â, Y,X2), the attacker is able to learn the
key of the non-matching session (Â, B̂,X, Y ). As said, this attack demonstrates the need to define
the session key of HMQV to be the hashing of the σ values rather than these values themselves.

Resilience to the disclosure of gab. The resistance to KCI implies an important characteristic
of HMQV that sets it apart from other implicitly-authenticated protocols such as the unified model
[8, 23] (see Section 3.1). In particular, in these protocols the value gab serves as a long-term shared
key between parties Â and B̂, and therefore its disclosure suffices for impersonating Â to B̂, and
viceversa. In the case of HMQV, and as a corollary of KCI resistance, the disclosure of gab does
not allow impersonation in any direction.

Perfect Forward Secrecy (PFS) As said before, no 2-message protocol (based on public key
authentication and without assuming a previous secure exchange between the parties) can provide
the PFS property. Thus, this inherent limitation holds for HMQV as well. Yet, HMQV enjoys
the highest form of forward secrecy a 2-message protocol can provide: Any session key established
by uncorrupted parties without active intervention by the attacker is guaranteed to remain secure
even if the parties to the exchange are corrupted after the session key was erased from the parties
memory. This property (which we call ‘weak PFS (wPFS)’ is formalized and proven in Section 6.
Also, as shown in Section 8 the 3-message variant of HMQV augmented with key confirmation
provides full PFS.

Prime-order testing and exponentiation performance. HMQV enjoys the best computa-
tional performance of any Diffie-Hellman based key exchange protocol authenticated with public
keys: 2.5 exponentiations per party. It does not necessitate of any further exponentiations such
as the testing for the prime order of the ephemeral DH values required in other protocols and in
various standard specifications of MQV. This is a prime example of the effect that a rigorous proof
can have on the performance of a protocol by minimizing the safeguards required in its design.
Indeed, our analysis of HMQV shows that the only property of the peer’s DH value that needs to
be verified is that this value is non-zero.

Validation of long-term public keys. Another advantage of the HMQV protocol is that it
frees the certification authority from any checks beyond the essential verification of the identity
of the registrant of a public key. In particular, the proven security of HMQV does not rely on a
registrant of a public key providing proof of possession of the private key to the CA (nor it requires
any other checks on the public key).

Resistance to disclosure of Diffie-Hellman exponents. The HMQV protocol can be proven
to withstand the leakage of ephemeral DH exponents. Moreover, not only the disclosure of an
exponent y of a DH value Y does not compromise sessions in which Y is not used, but even the
session in which Y is used is not compromised by the leakage of y (provided, of course, that the
private key of the party choosing Y is not known to the attacker). For proving this property (and
only for this property) we need to recourse to two stronger assumptions than CDH, namely, the
Gap Diffie-Hellman and Knowledge of Exponent assumptions (see Section 7 for the details).

On maximal resistance to exposure attacks. HMQV enjoys a remarkable resistance to
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disclosure of secret information. Consider a session (Â, B̂,X = gx, Y = gy); the computation of the
session key involves the four secret values a, b, x, y. Obviously the disclosure of both a and x, or
both b and y, allows the attacker to learn the session key. Remarkably, we prove that the disclosure
of any other pair of values in the set {a, b, x, y} is insufficient for the attacker to distinguish the
session key from randomness. This includes the cases in that the attacker learns both a and b (this
is the wPFS property discussed above), both x and y (this follows from the resilience of HMQV to
the leakage of ephemeral DH exponents – see Remark 7.1), both a and y, or both b and x (the last
two follow from the security of HMQV to KCI attacks). In addition, as we already said, Â and B̂’s
communication remains secure even if gab is learned by the attacker.

HMQV-C: 3-message with key confirmation. While the HMQV protocol provides a full
spectrum of basic and advanced security properties it fails to provide two properties that are
required or desirable in some applications: full PFS and confirmation from the peer that the
session key was computed. The lack of these two properties is unavoidable in HMQV and in any
2-message protocol (without prior communication between the parties). If these properties are to
be ensured one can extend HMQV to include a “key confirmation” step. This results in a 3-message
protocol (called HMQV-C and described and analyzed in Section 8) that inherits all the security
benefits of HMQV plus the above two properties. Another analytical advantage of HMQV-C is
that the security proofs for HMQV-C from this paper directly translate into the stronger notion of
“universally composable (UC)” security from [13]. See Section 8.

One-pass HMQV. A one-pass key exchange protocol consists of a single message sent from a
sender Â to a recipient B̂ from which both parties (using their private and public keys) derive
a unique key that only Â and B̂ may possibly know (as long as both parties and the session
are uncorrupted). More precisely, the requirements from the established key are the same as in
a regular key exchange protocol except for the possibility that the message received by B̂ is a
replay of an older message from Â. In Section 9 we formalize this notion and show how to build
such a protocol from HMQV. This is similar to one-pass MQV but with a proof of security. In
addition, this protocol can be used as a secure (in the random oracle model) authenticated CCA
encryption scheme which is well suited to store-and-forward applications and more efficient than
other alternatives.

The rest of the paper is devoted to formalizing and proving all of the above claims about the
security of HMQV. We start by introducing and analyzing a main technical tool in our proof: a
new type of challenge-response signatures based on the Schnorr identification scheme.

4 Exponential Challenge-Response Signatures

Here we introduce the Exponential Challenge-Response (XCR) Signature Scheme which is the main
building block used in the design and analysis of the HMQV protocol. As in a regular digital
signature scheme, in a challenge-response signature scheme a signer has a pair of private and public
keys used for generation and verification, respectively, of signatures. However, in contrast to regular
signatures, challenge-response signatures are inherently interactive and require the recipient (i.e.,
the verifier) of a signature to issue a challenge to the signer before the latter can generate the
signature on a given message. A secure challenge-response signature scheme needs to guarantee
that no one other than the legitimate signer be able to generate a signature that will convince
the challenger to accept it as valid (in particular, a signature is not only message-specific but also
challenge-specific). On the other hand, we are only interested to ensure verifiability of the signature
by the challenger, and thus we make no assumptions or requirements regarding the transferability,
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or verifiability by a third party, of the signature. Moreover, in the scheme described below the
party that chooses the challenge can always generate a signature, on any message, which is valid
with respect to that particular challenge. What is even more important for our application (and
differentiates our scheme from other interactive signatures) is the fact that the verifier can compute,
using the challenge, the same signature string as the signer.

While the above description may serve as a basis for a general definition of challenge-response
signatures, we omit here such a general treatment in favor of a more focused description of the
specific challenge-response signature used in this work. In particular, the definition of security is
simplified by tailoring it to this specific scheme.

As before, we use g to denote a generator of a group G of prime order q, and H̄ to denote a
hash function that outputs ` = |q|/2 bits.

4.1 Definition of the XCR Signature Scheme

Definition 2 The exponential challenge-response (XCR) signature scheme. The signer in a XCR
scheme, denoted by B̂, possesses a private key b ∈R Zq and a public key B = gb. A verifier (or
challenger), denoted Â, provides a message m for signature by B̂ together with a challenge X which
Â computes as X = gx for x ∈R Zq (x is chosen, and kept secret, by Â). The signature of B̂ on m

using challenge X is defined as a pair (Y, Xy+H̄(Y,m)b), where Y = gy and y ∈R Zq is chosen by B̂.
The verifier Â accepts a signature pair (Y, σ) as valid (for message m and with respect to challenge
X = gx) if and only if it holds that Y 6= 0 and (Y BH̄(Y,m))x = σ).
Notation: For a given message m, challenge X, and value Y we define XSIGB̂(Y, m,X) def= Xy+H̄(Y,m)b

(i.e., XSIGB̂ denotes the second element in an XCR signature pair).

Relation between XCR and Schnorr’s scheme. The main motivation for introducing the XCR
scheme comes from its use in our design and analysis of the HMQV protocol (Section 5). By now,
however, it may be illustrative to motivate this scheme via its relation to the Schnorr’s identification
scheme from which the XCR scheme is derived. We sketch this relation next. Schnorr’s (interactive)
identification scheme consists of a proof of knowledge of the discrete logarithm b for a given input
B = gb. Let B̂ denote the prover in this scheme (that possesses b) and Â the verifier (that is given
the input B). The basic Schnorr’s identification consists of three messages: (i) B̂ chooses y ∈R Zq

and sends Y = gy to Â; (ii) Â responds with a random value e ∈R Zq; and (iii) B̂ sends Â the value
s = y + eb. Â accepts if and only if gs = Y Be holds.
This protocol is a Arthur-Merlin zero-knowledge proof of knowledge (of b) for an honest verifier Â
(i.e., one that chooses e uniformly at random). Therefore, it can be transformed via the Fiat-Shamir
methodology into a signature scheme, namely sigB̂(m) = (Y, y+H̄(Y, m)b), that is provably secure
in the random oracle model [38].

Now consider the following 4-message variant of Schnorr’s protocol in which a first message from
Â to B̂ is added. In this first message Â sends to B̂ a value X = gx. Then the 3 messages from
Schnorr’s scheme follow, except that in message (iii) (the fourth message in the modified protocol)
rather than sending s = y + eb to Â, B̂ sends S = Xs. Â accepts if and only if S = (Y Be)x. It can
be shown that this protocol is a proof of the “ability” of B̂ to compute CDH(B,X) for any value
X ∈ G. Moreover, the protocol is zero-knowledge against a verifier Â that chooses e at random
(while X may be chosen arbitrarily). Now, note that applying the Fiat-Shamir transformation to
this protocol one obtains the challenge-response signature XCR.5 This also explains why we use

5Note that if in Schnorr’s protocol one chooses e in {0, 1}` (rather than from Zq) the protocol remains valid except
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the term “exponential” in naming the XCR scheme: it refers to the replacement of s = y + eb in
the Schnorr scheme with Xs in the last message of the protocol.

Next we establish our security requirement from the XCR scheme.

Definition 3 Security of the XCR signature scheme. We say that the XCR challenge-response
signature scheme is secure if no polynomial-time machine F can win the game in Figure 3 with
non-negligible probability.

Forger F in Definition 3

1. F is given values B,X0 where B,X0 ∈R G.

2. F is given access to a signing oracle B̂ (representing a signer B̂ with private key b and public
key B) which on query (X, m) outputs a pair (Y, XSIGB̂(Y, m,X)) where Y = gy, y ∈R Zq, is
chosen by B̂ afresh with each query.

3. F is allowed a polynomial number of queries to B̂ where the queries are chosen (possibly
adaptively) by F .

4. F halts with output “fail” or with a guess in the form of a triple (Y0,m0, σ).

F ’s guess is called a (successful) forgery if the following two conditions hold:

(a) The pair (Y0, σ) is a valid XCR signature of B̂ on message m0 with respect to challenge
X0 (i.e., Y0 6= 0 and σ = XSIGB̂(Y0,m0, X0); also note that the value of X0 is the one
received by F as input).

(b) The pair (Y0,m0) did not appear in any of the responses of B̂ to F ’s queries.

We say that F wins the game (or simply forges) if it outputs a successful forgery.

Figure 3: Forgery Game for XCR Signatures

Remarks on Definition 3.

1. Note that in order to be successful the forger has to use the input X0 in its forgery. This
captures the fact that XCR signatures are only unforgeable with respect to a challenge not
chosen by the attacker (indeed, a signature with a given challenge can be trivially computed
by the party choosing the challenge, i.e. the one that knows the dlog of the challenge).

2. According to our definition, if B̂ outputs a signature (Y, σ) on a message m wrt challenge
X, and the forger can find a signature (Y ′, σ′) for the same m wrt the same challenge X but
with Y ′ 6= Y , then we consider F successful (namely, finding a second signature for the same
message is considered a valid forgery). In some sense, we look at these signatures as signing
both m and Y . This property may not be essential in other applications of challenge-response
signatures but it is crucial for the application to HMQV security in this paper.

that the soundness is limited by 2−`. This is the basis for our choice of ` = |q|/2 as the output length of H̄(Y, m),
namely, a trade-off between efficiency and security. See Remark 4.2 for a more accurate discussion.
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3. We do not ask that F will always output good forgeries; it can output “fail” or even invalid
triples. The only requirement is that with non-negligible probability (over the distribution
of inputs to F , the choices by the random oracle H̄, the coins of F , and the coins of B̂) F
output a successful forgery.

4. Note that we only restricted Y0 to be non-zero. In particular, we require no check that Y0 be
of prime order q (only that it represents a non-zero element for which the group operation
is defined). This is an important aspect of XCR signatures. In particular, the requirement
to run a prime-order test would translate into an additional exponentiation for each party in
the HMQV protocol, thus degrading significantly the “almost optimal” performance of the
protocol.

4.2 Proof of Unforgeability for the XCR Signature Scheme

The security of XCR signatures (and of all other results in this paper) depends on the Computa-
tional Diffie-Hellman (CDH) Assumption that we define below. We first need the following remark
(or disclaimer) on our treatment of computational issues.

Remark 4.1 (Asymptotics.) The technical presentation of computational results in this paper
uses the probabilistic polynomial-time abstraction (leaving a detailed concrete security analysis for
further work). The implicit security parameter used throughout the paper is the quantity |q| (where
q denotes the order of the group G). As customary, we will use the term negligible to denote a
function on the security parameter that decreases faster than any inverse polynomial fraction while
non-negligible denotes a function on the security parameter that is lower bounded by an inverse
polynomial fraction. (Note that “negligible” and “non-negligible” are not the complement of each
other.) Here and in the sequel, our treatment of asymptotics is informal. For example, we state
claims in terms of single groups while a formal statement should consider infinite families of finite
groups. We believe that these details are relatively straightforward to fill in and thus we prefer to
sacrifice formal accuracy for easier understanding.

Definition 4 For two elements U = gu, V = gv in G we denote by CDHg(U, V ) the result of
applying the Diffie-Hellman computation (wrt to generator g) to U and V , i.e., CDHg(U, V ) = guv.
(For simplicity we will often omit the subscript g from the CDHg notation.) An algorithm is called
a CDH solver for G if it takes as input pairs of elements (U, V ) in G and a generator g of G and
outputs the Diffie-Hellman result CDHg(U, V ).
We say that the Computational Diffie-Hellman (CDH) assumption holds in the group G = 〈g〉 if for
all polynomial-time CDH solvers for G, the probability that on a pair (U, V ), for U, V ∈R G, the
solver computes the correct value CDHg(U, V ) is negligible (the probability taken over the random
coins of the solver and the choice of U, V independently at random in G).

The following theorem states the security of the XCR scheme in the random oracle model under
the CDH assumption; it constitutes the basis for the proof of security of protocol HMQV.

Theorem 5 Under the CDH assumption, the XCR signature scheme is secure (according to Defi-
nition 3) in the random oracle model.

Proof: Given an efficient and successful forger F against the XCR signature scheme (i.e., F wins
the forgery game from Definition 3 with non-negligible probability), we build an efficient solver C
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for the CDH problem, namely, C gets as input a pair of random elements U, V in G, and outputs the
value CDH(U, V ) with non-negligible probability. Unsuccessful runs of C may end with “fail” or
just the wrong value of CDH(U, V ). Using results by Maurer and Wolf [31] and Shoup [40] such a
“faulty CDH solver” can be transformed, using the self-reducibility properties of the CDH problem,
into an efficient algorithm that solves CDH for every input U, V with only negligible probability of
error.

Algorithm C is presented in Figure 4, and it follows a mostly standard argument for Fiat-Shamir
type signatures. The idea is that if F can succeed in forging a signature with a pair (Y0,m0) and a
given value H̄(Y0,m0) output by the function H̄, then F is likely to succeed also when H̄(Y0,m0)
is set to a different random value. Using this property, we construct C such that after running
F twice, C obtains (with non-negligible probability) two forgeries with the same pair (Y0,m0) but
different values of H̄(Y0,m0). Now, using these two forgeries C is able to compute CDH(U, V ).

Examining the specification of C in more detail, first note that in the run of F by C all queries
to the signer B̂ are answered by C without knowledge of the private key b, and without access to
an actual signing oracle for B̂. Instead all these answers are simulated by C in steps S1-S3. It
is easy to see that this is a perfect simulation of the XCR signature generation algorithm under
private key b except for the following deviation that happens with negligible probability: In step
S3 of the simulation, C does not complete the run of F if the value (Y, m) was queried earlier from
H̄. However, since the value Y , as generated by C, is distributed uniformly over G and chosen
independently of previous values in the protocol, then the probability that the point (Y, m) was
queried earlier from H̄ is at most Q/q where Q is an upper bound on the number of queries to H̄
that occur in a run of C.

Therefore, the probability of F outputting a successful forgery in the run under C is the same,
up to a negligible difference, as in a real run of F , and therefore non-negligible. In particular,
when such a successful forgery is output by F then conditions F1 and F2 checked by C necessarily
hold. Condition F3 also holds except for probability 2−`, i.e., the probability that F ’s forgery is
correct when it did not query H̄(Y0,m0). To see this, note that if one fixes the pair (Y0,m0) and
the challenge X0, then the signature produced with e = H̄(Y0,m0) is necessarily different than the
signature produced with e′ = H̄(Y0,m0) if e 6= e′ (mod q). Hence, the probability that F will guess
the right signature without querying H̄(Y0,m0) is at most as the probability of guessing the value
of H̄(Y0,m0), i.e., 2−`. Since conditions F1-F3 determine the run of the ”repeat experiment” then
in all we have that the simultaneous probability that F outputs a correct forgery in a run under C
AND that C executes the “repeat experiment” in that run is non-negligible.

Now, using the Forking Lemma6 from [38] we obtain that the probability that in the “repeat
experiment” F will output a correct forgery for the pair (Y0,m0) given that F did so in the first
run is non-negligible. Moreover, in such a case we are guaranteed that the forgeries in the first and
second runs use different values e, e′ of H̄(Y0,m0).

We now proceed to show that in the case that both the first run and the repeat experiment end
up with two valid forgeries for the same pair (Y0,m0), and e 6= e′ (which happens with probability
1 − 2−`), then the value W computed by C equals CDH(X0, B). Indeed, a simple computation

6We note that the formulation of the Forking Lemma in [38] is very general and fits exactly our application:
namely, it applies to signatures of the form (m, Y, H̄(Y, m), σ) derived via the Fiat-Shamir methodology, provided
that the signer is simulatable without knowledge of its private key (the use of the challenge X in our case does not
affect the validity of the Forking Lemma argument).
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Building a CDH solver C from an XCR forger F

Setup. Given a successful XCR-forger F we build an algorithm C to solve the CDH problem.
The inputs to C are random values U = gu, V = gv in G, and its goal is to compute CDH(U, V ) =
guv.
C’s actions. C sets B = V and X0 = U , and runs the forger F on input (B,X0) against a signer B̂
with public key B. C provides F with a random tape and provides random answers to the H̄ queries
generated in the run (if the same H̄ query is presented more than once C answers it with the same
response as in the first time).
Each time F queries B̂ for a signature on values (X, m) chosen by F , C answers the query for B̂ as
follows (note that C does not know b):

S1. Chooses s ∈R Zq, e ∈R {0, 1}`.

S2. Sets Y = gs/Be.

S3. Sets H̄(Y, m) = e (if H̄(Y,m) was defined by a previous query to H̄, C aborts its run and
outputs “fail”).

C responds to F ’s query with the signature pair (Y, Xs)

When F halts C checks whether the three following conditions hold:

F1. F output a guess (Y0,m0, σ), Y0 6= 0.

F2. The pair (Y0,m0) was not used as the (Y,m) pair in any of the signatures generated by B̂.

F3. The value H̄(Y0,m0) was queried from the random oracle H̄.

If the three conditions hold, then C proceeds to the “repeat experiment” below; in all other cases C
halts and outputs “fail”.
The repeat experiment. C runs F again for a second time under the same input (B,X0) and
using the same coins for both C and F . The difference between the two runs is in the way in which
C answers the H̄ queries during the second run. Specifically, all queries to H̄ performed before the
H̄(Y0,m0) query are answered identically as in the first run. The query H̄(Y0,m0), however, is
answered with a new independent value e′ ∈R {0, 1}`. Subsequent queries to H̄ are also answered
at random from {0, 1}`, independently of the responses provided in the first run.
Output. If at the end of the second run, F outputs a guess (Y0,m0, σ

′) (with same (Y0,m0) as in
the first run) and e 6= e′, then C computes the value W = (σ/σ′)(e−e′)−1

and outputs W as its guess
for CDH(U, V ); otherwise C outputs “fail”.

Figure 4: Proof of Theorem 5: Reduction from CDH to XCR forgeries

shows that, if Y0 6= 0 as necessary for a valid forgery, then writing X0 = gx0 we have:

W =
(

σ

σ′

) 1
e−e′

=
(

(Y Be)x0

(Y Be′)x0

) 1
e−e′

= (B(e−e′)x0)
1

e−e′ = Bx0 = CDH(X0, B).

Now, since X0 and B are, respectively, the inputs U and V provided to C, then we get that in this
case (which happens with non-negligible probability) C has successfully computed CDH(U, V ).

2

Remark 4.2 (Number of bits in H̄(Y, m)). Let ` be the number of bits in the output of
H̄(Y, m). Clearly, the smaller ` the more efficient the signature scheme is; on the other hand, a too
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small ` implies a bad security bound (since once the exponent H̄(Y, m) is predictable the signature
scheme is insecure). But how large a ` do we need for security purposes? Here we see that setting
` = 1

2 |q|, as we specified for XCR signatures (and for its application to the HMQV protocol),
provides the right performance-security trade-off. In order to assess the level of security that `
provides to the XCR signatures (and consequently to HMQV), we note that there are two places in
the above proof where this parameter ` enters the analysis. One is when bounding the probability
that the attacker could forge a signature with parameters (Y0,m0) without querying H̄ on this pair.
As we claimed the probability in this case is 2−` (or 1/

√
q using the fact that we defined ` = |q|/2).

The other use of ` is in the proof of the Forking Lemma by Pointcheval and Stern [38]. When
written in terms of XCR signatures Lemma 9 and Theorem 10 from [38] show that given a forger
against XCR signatures that works time T , performs Q queries to H̄ and forges with probability ε,
one can build a CDH solver that runs expected time cQ

ε T provided that ε ≥ c′Q
2` (c, c′ are constants).

Now, since we know how to build CDH solvers that run time
√

q (e.g., Shanks algorithm) then the
above analysis tells us something significant only when cQ

ε T <<
√

q, in particular Q/ε <<
√

q.
From this and the condition ε ≥ c′Q/2` we get that we need Q/ε < min{√q, 2`}. Since this is
the only constraint on ` we see that choosing ` such that 2` >

√
q does not add to the security

of the scheme, and therefore setting ` = 1
2 |q| provides the best trade-off between security and

performance. (Note that the same length consideration applies to the parameter e in the modified
Schnorr’s identification scheme described following Definition 2). We also comment, independently
from the above considerations on `, that the above constraint Q < ε

√
q also guarantees that the

simulation error in step S3 of Figure 4 (which we showed in the proof of Theorem 5 to be at most
Q/q) is no more than 1/

√
q.

Remark 4.3 (Changing the order of interaction with B̂.) In our application of XCR sig-
natures to the analysis of the HMQV protocol we change the order of interaction between the
challenger Â and the signer B̂. In Definition 2, Â presents B̂ with the message m at the same time
that it provides the challenge X to B̂, thus allowing B̂ to immediately respond with the signature
pair (Y, XSIGB̂(Y, m,X)). In the modified version that we will consider, we have the following order
of interaction: (i) Â presents message m to B̂ and B̂ outputs Y , then (at some later point) (ii) Â
provides (Y, m,X) to B̂, and B̂ outputs XSIGB̂(Y, m,X). Now, we can modify the forging game of
Definition 3 to allow F ’s queries to B̂ to take this modified order. In particular, F can interleave
different interaction with B̂, namely, it can run several instances of step (i) before running the
corresponding steps (ii). This requires B̂ to keep state after step (i) with the values of Y , y and m.
When F later presents (Y, m,X) in step (ii), B̂ checks that it has the pair (Y, m) in its state and
if so it responds with XSIGB̂(Y, m,X) and erases (Y, m) from its state (if B̂ did not have the pair
(Y, m) in its state then it does not issue the signature). Note that this specification of B̂’s actions
ensures that B̂ will never use the same value of Y for two different signatures. It can be easily
verified that the above proof of security of XCR signatures remains valid for this modified order
(simply because the simulation of the choice of Y by B̂ does not require the knowledge of X, but
only the value of m needed to determine H̄(Y, m)).

Remark 4.4 (A non-interactive XCR variant.) XCR signatures can be made non-interactive,
but verifier-specific, by putting X = A, where A is a public key of the verifier. In this case the
signature will be a pair (Y, t) where t is a MAC tag computed on the signed message using a key
derived by hashing XSIGÂ(Y, “Â”, A). This provides for a very efficient non-interactive verifier-
specific deniable authentication mechanism (see Section 9). It does not provide for a universally-
verifiable non-repudiable signature.
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Remark 4.5 (HCR and DSS signatures.) We do not know whether XCR signatures remain
secure if the exponent y corresponding to a value Y used by B̂ in a signature is revealed to the forger
(note that in this case the simulation steps S1-S3 in Figure 4 do not work). On the other hand,
if one modifies the definition of XCR such that the XSIGB̂ component is replaced with a hash of
this value (note that the signature is still verifiable by the challenger) then one obtains a signature
scheme in which revealing y does not help the forger. More precisely, in Section 7 we study these
signatures, which we call HCR, in detail and show that under the Gap Diffie-Hellman and KEA1
assumptions they are unforgeable in the random oracle model even if y is revealed to the attacker.
As a result, HCR signatures provide for a more secure alternative to DSS signatures as they resolve
the main DSS vulnerability by which the disclosure of a single ephemeral exponent (i.e., k in the
component r = gk of a DSS signature) suffices to reveal the signature key. On the other hand,
HCR signatures are verifier-specific and require interaction (or the possession of a public key by
the verifier as in Remark 4.4), and do not provide for third-party verifiability (a property that may
be a bug or a feature of HCR depending on the application).

4.3 Dual XCR Signatures (DCR)

An important property of XCR signatures is that the challenger (having chosen the challenge) can
compute the signature by itself. Here we show how to take advantage of this property in order
to derive a related challenge-response signature scheme (which we call the “dual XCR scheme”,
or DCR for short) with the property that any two parties, Â, B̂, can interact with each other
with the dual roles of challenger and signer, and each produce a signature that no third party
can forge. Moreover, and this is what makes the scheme essential to the HMQV protocol, the
resultant signatures by Â and by B̂ have the same value. (More precisely, they have the same XSIG

component.)

Definition 6 The dual (exponential) challenge-response (DCR) signature scheme. Let Â, B̂ be two
parties with public keys A = ga, B = gb, respectively. Let m1,m2 be two messages. The dual
XCR signature (DCR for short) of Â and B̂ on messages m1,m2, respectively, is defined as a
triple of values: X, Y and DSIGÂ,B̂(m1,m2, X, Y ) def= g(x+da)(y+eb), where X = gx, Y = gy are

challenges chosen by Â and B̂, respectively, and the symbols d and e denote H̄(X, m1) and H̄(Y, m2),
respectively.

As said, a fundamental property of a DCR signature is that after exchanging the values X and
Y (with x and y chosen by Â and B̂, respectively), both Â and B̂ can compute (and verify) the
same signature DSIGÂ,B̂(m1,m2, X, Y ). This can be seen from the identities:

DSIGÂ,B̂(m1,m2, X, Y ) = g(x+da)(y+eb) = (Y Be)x+da = (XAd)y+eb

Moreover, as shown next the attacker cannot feasibly compute this signature.

The security of DCR signatures. Roughly speaking, a dual signature is an XCR signature
by Â on message m1, under challenge Y Be, and at the same time an XCR signature by B̂ on
message m2, under challenge XAd. More precisely, since the values d and e are determined during
the signature process (via the possibly adversarial choice of messages m1,m2), then we will say
that a DCR signature of B̂ is secure (with respect to A) if no efficient attacker can win, with non-
negligible probability, the game of Figure 3 with the following modifications. In step 2, the queries
to B̂ are of the form (X, m,m1) and the signature by B̂ is the pair (Y, XSIGB̂(Y, m,XAd)) where
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Y is chosen by B̂ and d = H̄(X, m1). A successful forgery is a quadruple (Y0,m0,m1, σ) where
σ = XSIGB̂(Y0,m0, X0A

d), Y0 6= 0, the pair (Y0,m0) satisfies the validity requirement (b) from
Figure 3, and m1 is an arbitrary message chosen by F . We say that the dual signature of B̂ is secure
if it is secure with respect to any value A = ga not chosen by the attacker.

Theorem 7 Let Â, B̂ be two parties with public keys A = ga, B = gb, respectively. Under the
CDH assumption, the DCR signature of B̂ with respect to A is secure even if the forger is given
the private key a of Â (but not the private key of B̂).

Proof: The same proof of unforgeability of XCR (Theorem 5) works here with a modified compu-
tation of W as specified below. First note that since the DCR signature of B̂ now involves the value
d = H̄(X0,m1), where m1 is a message that F may choose at will, then the value of m1 chosen by F
before the repeat experiment may differ from the value of m1 chosen during the repeat experiment.
In this case we get two different values, d, d′, used in the σ and σ′ signatures. Also, note that even
with a single value of d the specification of W in the proof of Theorem 5 would result in the value
(XAd)b rather than Xb (as required in order to solve the CDH problem on inputs U = X, V = B).
We deal with these two issues by redefining W as follows (here we use the fact that a, the private
key of Â, is known to C):

W =

(
σ/(Y Be)da

σ′/(Y Be′)d′a

) 1
e−e′

(1)

The rest of the proof remains unchanged. 2

Remark 4.6 The above Theorem assumes that the value b is not known while a is known (to the
attacker and to the CDH solver C). While this results in a strong assurance of security (namely, the
DCR signatures of B̂ are secure even if the private key of the peer, Â, is given to the attacker), it
also implicitly assumes that Â and B̂ are different entities or, more precisely, that A 6= B. Indeed,
when Â = B̂ both a and b are secret (they are the same value) and therefore the computation of
the CDH value W cannot be carried out as specified in the above proof using a. For the time being
we will assume A 6= B and use the above theorem. Only in Section 6.3 we will return to the issue
of A = B when dealing with reflection attacks against the HMQV protocol. There we will see that
we can extend the Theorem to the case A = B, at least with some restrictions on the forger F that
are satisfied in the HMQV setting.

HMQV in a nutshell. The HMQV protocol consists of an exchange between parties Â and B̂
of DH values X = gx and Y = gy that serve as challenges from which both parties compute the
dual XCR signature DSIGÂ,B̂(“Â”, “B̂”, X, Y ) = g(x+da)(y+eb). The session key is then derived by
hashing this value. In this way the signature itself need not be transmitted: it is the uniqueness
of the signature that ensures a common derived value for the session key, and it is the ability to
compute the key (equivalently, the signature) that provides for a proof that the exchange was carried
by the alleged parties Â and B̂. Moreover, since the messages m1,m2 on which the signature is
computed are the identities of the peers, both parties get assurance that the key they computed
is uniquely bound to the correct identities (this is essential to avoid some authentication failures
such as the UKS attacks). While the casting of the HMQV design in terms of DCR signatures is
the main conceptual contribution of our work, showing that this idea indeed works for proving the
security of the protocol turns out to be technically involved. The rest of the paper is devoted to
this proof.
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5 Basic Security Analysis of the HMQV Protocol

Using the terminology from the previous section, a session of the HMQV protocol between two
parties Â, B̂ consists of a basic Diffie-Hellman exchange of DH values X = gx and Y = gy (Figure 1)
with the session key computed as H(π) where π = DSIGÂ,B̂(m1 = B̂,m2 = Â,X, Y ). That is, π is

computed as the dual signature of Â and B̂ on each other’s identity. In the sequel, we denote the
above signature by the shorthand π(Â, B̂,X, Y ), namely,

π(Â, B̂,X, Y ) def= DSIGÂ,B̂(m1 = B̂,m2 = Â,X, Y ) = g(x+da)(y+eb)

where d = H̄(X, B̂), e = H̄(Y, Â), and A = ga, B = gb are the public keys of parties Â, B̂
respectively. Note that π(Â, B̂,X, Y ) = π(B̂, Â, Y,X).

In this section we prove that the HMQV protocol is secure in the Canetti-Krawczyk model
of key exchange [11] outlined in Section 2; additional security properties of HMQV are proven in
Section 6. We start with a full specification of the HMQV protocol, in accordance to the above
formal model of key exchange.

5.1 Detailed Specification of the HMQV Protocol

In our formal treatment we will refer to the HMQV protocol as protocol Π.
Protocol Π runs in a multi-party network where any of the parties can be invoked to run the

protocol. Each invocation of the protocol at a party creates a session (a local state containing
information related to this specific instance of the protocol), which may produce outgoing messages
and the output of a session key at completion. During a session, a party can be activated with
three types of activations presented next (in the following description Â denotes the identity of the
party being activated and B̂ the identity of of the intended peer to the session).

Session Activations

Initiate(Â, B̂): Â generates a value X = gx, x ∈R Zq, creates a local session of protocol Π which
she identifies as (the incomplete) session (Â, B̂,X), and outputs the value X as its outgoing
message.
The meaning of this activation is that Â has been activated as the initiator of a session with
B̂, and X is the message intended to be delivered to peer B̂ as part of this session. We call Â
the holder (or owner) of the session, B̂ the peer to the session, and X the outgoing (DH) value.

Respond(Â, B̂, Y ): Â checks that Y 6= 0, if so it generates a value X = gx, x ∈R Zq, outputs X,
and completes a session with identifier (Â, B̂,X, Y ) and session key H(π(Â, B̂,X, Y )).
Here Â is being activated as the responder in the session with peer B̂ and incoming value Y .
In this case, Â immediately completes its session (there are no further incoming messages).
Note that if the incoming value Y is zero Â ignores the activation.

Complete(Â, B̂,X, Y ): Â checks that Y 6= 0 and that she has an open session with identifier
(Â, B̂,X). If any of these conditions fails Â ignores the activation, otherwise she completes
the session with session id (Â, B̂,X, Y ) and the session key K = H(π(Â, B̂,X, Y )).
This represents the delivery of the second message in the protocol with the incoming value
Y , (allegedly) the response from peer B̂.
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Remark. In normal circumstances the above activations are decided by the application invoking
the protocol and by the incoming protocol messages. However, in our adversarial model we will
analyze the protocol assuming that protocol activations and their inputs are chosen by the attacker.
In particular, while the normal semantics of the Respond activation is that prior to this activation
B̂ was activated with an Initiate message with peer Â, and that B̂ output Y in that activation,
this does not actually have to be the case when the attacker M controls communications and the
scheduling of activations. Indeed, M can generate a Respond activation for A regardless of the
existence or not of an open session (B̂, Â, Y ) at B̂. The same holds for the Complete activation
where the value Y could have been generated by B̂ for this or other session, or simply never
generated by B̂.

Session state

For the time being we specify that the only values stored in a session state are the peer’s identity
B̂, the outgoing and incoming DH values X, Y , and the session key K.

In particular, neither the exponent (dlog) x of the outgoing DH value X nor π(Â, B̂,X, Y ) are
stored in the session state. In other words, the latter values are not accessible to the attacker in a
state-reveal query. Note that since our security model considers the long-term private key a to be
stored separately (and, supposedly, more securely) than the ephemeral state information, then the
computation of π(Â, B̂,X, Y ) that uses the private key must be carried in the same module that
stores this key (and therefore not part of the session state). Thus, only K = H(π(Â, B̂,X, Y )) is
to be output into the session state. On the other hand, forbidding the storage of the ephemeral
exponent x in the session state is too restrictive (especially considering that such exponents may
be chosen off-line to speed-up exponentiation) and therefore we will show in Section 7 (Lemma 29)
that this restriction is not needed (the reason we separate the analysis of this property is that it
relies on stronger assumptions).

Session identifiers and matching sessions

The session identifiers (in the form of a quadruple (Â, B̂,X, Y ) for completed sessions) are significant
in that they bind together incoming and outgoing messages and the identities of peers. In particular,
a session with identifier (Â, B̂,X, Y ) means that the session is held by Â, that X was the (unique)
outgoing value generated by Â for this session, and that the session was activated at Â with peer
B̂ and incoming value Y .

With the above notation we obtain that if (Â, B̂,X, Y ) is a complete session at Â then its
matching session (if it exists) is unique, its owner is B̂ and its session-id is (B̂, Â, Y,X).

5.2 Proof of Security for the HMQV Protocol

We are now ready to prove the basic security of the HMQV protocol. See Section 6 for an analysis
of additional security properties of the protocol.

Theorem 8 Under the CDH assumption, the HMQV protocol Π, with its hash function modeled as
a random oracle, is a secure key-exchange protocol (without PFS) in the Canetti-Krawczyk model.
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The PFS property (which holds in a weak form in HMQV) is further discussed and analyzed in
Section 6 and Section 8.

The proof of the above theorem follows from the definition of secure key-exchange protocols
outlined in Section 2 and the following two lemmas.

Lemma 9 If two parties Â, B̂ complete matching sessions, then their session keys are the same.

Lemma 10 Under the CDH assumption, there is no feasible adversary that succeeds in distinguish-
ing the session key of an unexposed session with non-negligible probability.

Lemma 9 follows immediately from the definition of matching sessions. That is, if Â completes
session (A,B, X, Y ) and B̂ completes the matching session (B̂, Â, Y,X) then Â computes its session
key as H(π(Â, B̂,X, Y )) while B̂ computes the same value as H(π(B̂, Â, Y,X)).

The proof of Lemma 10 is far more involved and occupies the rest of this section. It consists of
showing that given a successful KE-attacker M against protocol Π (i.e., M runs in polynomial-time
and succeeds with non-negligible probability in the distinguishing game of Definition 1) one can
build a successful forger against the dual signature DCR. Combining this with Theorem 7 we get
the existence of an efficient CDH solver in contradiction to the CDH assumption.

In this section, we develop the proof of HMQV for the case that the attacker chooses test
sessions in which the peers are different entities (in particular, with different public keys). Later in
Section 6.3 we complete the proof by showing the security of the protocol when both peers are the
same (in particular, this proves the resistance of HMQV to reflection attacks).

Terminology. By the session signature of a session (Â, B̂,X, Y ) in Π we refer to the signature
π(Â, B̂,X, Y ). When (Â, B̂,X, Y ) is the test session we refer to its session signature as the test
signature. We usually denote the identifier of the test session as the quadruple (Â, B̂,X0, Y0).

5.2.1 Specialized attack goals

We start by observing that since the session key corresponding to the test session (Â, B̂,X0, Y0)
is computed as H(v), where v is the value of the test signature π(Â, B̂,X0, Y0), then the KE-
attacker M has only two possible strategies to distinguish H(v) from random (remember that we
are modeling H as a random function):

Forging attack. At some point in its run M queries the function H on the value π(Â, B̂,X0, Y0).
Clearly, this is possible only if M succeeds in computing (or learning) the test signature
π(Â, B̂,X0, Y0).

Key-replication attack. M succeeds in forcing the establishment of a session (other than the
test session or its matching session) that has the same key as the test session. In this case M
can learn the test-session key by simply querying the session with the same key, and without
having to learn the value of the test signature.

Therefore, in the sequel, instead of considering the regular distinguishing goal of a KE-attacker we
will consider an attacker whose goal is to succeed (with non-negligible probability) in one of the
above two attacks. We will show that if such an efficient attacker exists against Π then there also
exists an efficient forger against the DCR scheme in contradiction (via Theorem 7) to the assumed
infeasibility of CDH.
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For simplicity of analysis we will consider the above two forms of attacks separately. We start
by considering an attacker that wins the forging attack (Section 5.2.2) and then move to analyze
key-replication attacks (Section 5.2.3).

5.2.2 Infeasibility of Forging Attacks

Let M be a forging attacker against Π. Namely, M interacts with protocol Π as a KE-attacker
but does not run a distinguishing test. Instead, M ends its run either with a “fail” output or with
a pair (sid, v) where sid is a session identifier and v a guess for the session signature of session sid.
We call M successful if it outputs, with non-negligible probability, a correct guess for the session
signature of an unexposed session. The session for which M outputs a guess will be called the test
session, and we refer to the corresponding session signature as the test signature.

Consider a successful run of M, and let (Â, B̂,X0, Y0) denote the test session for which M out-
puts a correct guess for the test signature π(Â, B̂,X0, Y0). By the convention on session identifiers,
we know that the test session (Â, B̂,X0, Y0) is held by Â (either as initiator or responder), Â was
activated in this session with peer identity B̂, X0 was the value output by Â in the session, and Y0

was the incoming value to this session. The generation of the value Y0, delivered to Â by M, can
fall under one of the following four cases:

C1. Y0 was never output by B̂ as its outgoing value in any of the sessions activated at B̂, or B̂
did output Y0 as its outgoing value for some session s but it never computed the session key
of s (e.g., B̂ was activated as the initiator of s but was never activated with the Complete
message to the session).

C2. Y0 was generated by B̂ in a session matching the test session, i.e., in session (B̂, Â, Y0, X0).

C3. Y0 was generated at B̂ during a session (B̂, Â∗, Y0, X
∗) with Â∗ 6= Â (and arbitrary X∗).

C4. Y0 was generated at B̂ during session (B̂, Â∗, Y0, X
∗) with Â∗ = Â but X∗ 6= X0.

Since we assume that M succeeds in its forgery attack with non-negligible probability then there
is at least one of the above cases that happens with non-negligible probability in the successful runs
of M. Now, for each of the cases C1-C4 we build a forger F against the DCR scheme with the
following property: if M succeeds with non-negligible probability in case Ci then the forger F built
for case Ci succeeds with non-negligible probability in forging DCR signatures.

Important. The forgers that we build below interact with the signer B̂ in the modified order of
interaction as specified in Remark 4.3.

5.2.2.1 Forger F for Cases C1-C3

We start by presenting a first forger F that works in cases C1, C2 and C3. Namely, given an
attacker M that guesses the test signature with non-negligible probability in one of these three
cases, F will use M (as a subroutine) in order to forge DCR signatures also with non-negligible
probability. In the description of F we will assume that whenever a session (other than the test
session or its matching session) is exposed, the attacker M receives the session signature value and
not just the session key. This simplifies our presentation but also shows a stronger result, namely,
that in cases C1-C3 this extra information provided to M does not help in wining a forgery attack.
The forger F that we construct is modeled after Definition 3 and Figure 3 with the modifications
stated in Remark 4.3.
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F actions are as follows:

1. The input to F consists of values X0, B ∈R G and an oracle B̂ for DCR signatures under
public key B. (That is, B̂ is the signer, B its public key, and X0 is the challenge under which
F is trying to forge B̂’s signature.) F ’s output consists of a (not necessarily correct) forgery
against B̂’s DCR signatures, or a “fail” symbol. In addition, F may abort its run without
output (technically, this is equivalent to outputting “fail” but we differentiate between these
two cases for the purpose of the analysis of F).

2. F builds a virtual setting for the run of protocol Π under attacker M, with n parties
P1, P2, . . . , Pn in which each party is activated at most m times (n and m are polynomi-
als in the security parameter).

3. F chooses i, j ∈R {1, . . . , n}, i 6= j,7 and t ∈R {1, . . . ,m}, and sets the public key of party
Pj to be B. With these choices F is trying to guess which session will be chosen by M as
the test session, and who the peers to the session will be. F ’s guess will be correct if M
ends choosing as the test session the t-th session activated at party Pi (either as initiator or
responder) and with Pj as the peer to that session. Since Pj is given the public key B, we will
refer to Pj as B̂ and to Pi as Â. Also, we will refer to the t-th session at Pi as the g-session
(‘g’ for guess, namely, the session guessed by F as the test session to be chosen by M).

4. F chooses private and public keys for each of the n parties in the protocol, except for Pj for
whom the public key was set to B (and whose private key b is unknown to F). We note that
while F sets all these keys initially, the attacker is allowed to later choose new, arbitrary,
public keys for corrupted parties.

5. F proceeds to run the protocol Π under the control of M who schedules all session activa-
tions as well as session exposures and party corruptions. With the exception of B̂ (whose
behavior we explain below) all actions of uncorrupted parties are performed by F who has
full information about their private keys and internal states. Any message produced by an
uncorrupted party is handed by F to M.

6. When a session is activated at party B̂ (whose private key b F does not know) then F uses
its signing oracle (which we will also refer to as B̂) to determine the actions of party B̂ in the
protocol. Specifically, when M activates a session at B̂, either as responder or initiator, with
peer identity P̂ and incoming value X, then F feeds the signer B̂ with P̂ as the message to
be signed and P as the public key (of P̂ ) with respect to which the dual signature of B̂ is to
be generated. In response, F gets a value Y from the signer B̂. F then hands M the value
Y as the outgoing value from party B̂. (Note that F does not request the full signature from
B̂ at this point; this will be done only in case that a state-reveal or session-key query is later
performed by M on the session).

7. When M issues a state-reveal or session-key query to a session, F responds to it with the
value of the corresponding session signature (if already determined). If the queried session
is one held by B̂ then F queries the session signature from B̂ (by presenting to the signing
oracle the triple (Y, peer-id, X) corresponding to the queried session – see Remark 4.3), and
returns the value of the signature to M.

7We deal with the case i = j, i.e., reflection attacks, in Section 6.3.
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8. Upon corruption of a party (other than B̂) by M, F provides M with the private key of the
party and any state information for current sessions and unexpired session keys at the party
(specifically, F provides M with the session signatures corresponding to these sessions, not
just the session keys). From the moment of corruption all actions of a corrupted party are
decided by M (including the possible “registration” of a new public key for the party).

9. When M activates the t-th session at Â (i.e., the g-session), if the peer in the activation is
not B̂ then F aborts. Else, F provides M with the value X0 (from F ’s input) as the outgoing
value of Â in that session (this is done regardless of whether Â was activated as initiator or
responder).

10. In addition in any of the following cases F aborts its run:

(a) M halts with a test session different than the g-session.

(b) M corrupts either Â or B̂. (Later, we will see that we can actually let M learn Â’s
private key, but for the moment it is simpler to assume that Â is never corrupted.)

(c) M exposes the g-session via a state-reveal or session-key query.

(d) M exposes the session matching to the g-session (if such session exists) via a state-reveal
or session-key query.

11. If M halts with the g-session as its test session (in this case the test session has identifier
(Â, B̂,X0, Y0) for some value Y0) and with a guess π̃0 for the test signature, then F outputs
the triple (Â, Y0, π̃0) as a forgery of B̂’s DCR signature on message m = Â (and challenge
X0). Else, if M outputs “fail” (i.e., no test session chosen) then F outputs “fail” as well.

Lemma 11 Assume that M has a non-negligible probability to correctly guess the test signature
when either of cases C1-C3 holds, then the above forger F succeeds in forging B̂’s DCR signatures
with non-negligible probability.

The lemma is proved through Claims 12 and 13.

Claim 12 Let M be a forging attacker against protocol Π which succeeds with non-negligible prob-
ability when at least one of cases C1-C3 holds. Then there is a non-negligible probability that a
run of M under F succeeds (i.e., ends with a correct guess for the value of the unexposed test
signature).

Proof: By fixing a set of random coins for the attacker M and for each of the parties in protocol
Π, together with a fixing of the random functions H̄ and H, we obtain a deterministic execution
of protocol Π. In particular, these fixed values fully determine the actions and view of M in that
execution. In the sequel we refer to such a fixed execution as a run of M. In the case that M is
run by F (as specified in the above description of F), then it is F that provides all of the random
coins to M and to the protocol parties except for party B̂. The latter has its own random coins
as represented by the random coins used by the signing oracle B̂. These sets of random coins
determine a run of M under F that may be different than the run of M with the same coins in a
real execution of the protocol.

We say that a run of M under F is perfect if it is identical to the run of the real M under the
same coins set by F and by oracle B̂. We claim that any run of M under F in which F does not
abort is perfect. Indeed, one can see that the simulation of the run of M by F is perfect up to the
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point that F aborts (and thus a run in which F does not abort is perfect). To see this, consider
first the simulation by F of actions related to uncorrupted players other than B̂. For these players
F has full information and thus it runs all their actions (session activations, session exposures and
party corruptions) exactly as in a real interaction with M. One possible deviation happens when
M activates the g-session at Â: in this case rather than choosing an outgoing value X = gx for the
session, F uses X0, received in F ’s input, as the outgoing value. However since X0 ∈R G then it
has the identical distribution of a real X; moreover, since as long as F does not abort the g-session
is not queried, then F does not need to take any action that would require the knowledge of the
logarithm of X0.

It remains to consider the simulation by F of party B̂ for whom F does not know the private
key b, and therefore only runs it by using the signing oracle as a black box. Note, first that F does
not need to provide b to the attacker since a corruption of B̂ triggers an abort by F . Therefore,
F only needs to simulate B̂’s actions related to session activations and session exposures. However
these two forms of actions are perfectly simulated by F using the signing oracle B̂. The resultant
actions correspond exactly to the behavior of a real player B̂ with public key B and random coins
as those used by the oracle B̂.

So we’ve seen that non-aborting runs of F result in perfect runs of M. On the other hand,
non-aborting runs of F happen only when M chooses its test session equal to the g-session (or
when M fails without choosing a test session). Let’s consider the triples (i, j, t) as used by F (in
step 3) to choose the g-session. Let γ denote one specific triple (such a triple defines a unique
session which may or may not be activated in a given run of M). From the above argument we
have that all runs of M that end with the choice of session γ as the test session of M will result
in perfect runs under F provided that F chooses γ as its g-session (since in this case F will not
abort). In particular, this implies that for every value of γ:

Prob (M succeeds in session γ under the run of F : F chooses γ as its g-session)
= Prob (M succeeds in session γ).

By “M succeeds in session γ” we mean that M outputs a correct guess for the session signature
corresponding to session γ.

Since a run of M is successful (i.e., ends with a correct guess for the test signature) if and only
if there is an (unexposed) session γ activated at this run for which M outputs a correct forgery
(and since there are at most n2m possible values of γ) we get:

Prob (Successful run of M under F) =

=
∑
γ

Prob (F chooses γ as the g-session AND M succeeds in γ under F)

=
∑
γ

Prob (M succeeds in γ under F : F chooses γ as the g-session) ∗

∗ Prob ( F chooses γ as the g-session)

≥ (n2m)−1
∑
γ

Prob (M succeeds in γ)

= (n2m)−1Prob (M succeeds)
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Since by assumption, Prob (M succeeds) is non-negligible, when at least one of the cases C1-C3
holds, then the above bound on Prob (Successful run of M under F) is non-negligible.

2

Claim 13 If in a run of F , M outputs a correct guess for the test signature, then the output of F
in that run is a correct and valid forgery against B̂’s DCR signatures.

Proof: By construction, F outputs an attempted forgery against B̂’s signatures each time that M,
as run by F , completes its run and outputs a guess π̃0 for the test signature π0 = π(Â, B̂,X0, Y0).
More precisely, in this case F outputs a forgery triple τ = (m = Â, Y0, π̃0) under the input challenge
value X0. Clearly, the forgery is correct if π̃0 = π0 which is the case by the claim’s hypothesis.
Therefore, what remains to be shown is that the triple τ is a valid forgery, namely, that Y0 6= 0
and the pair (m = Â, Y = Y0) never appeared in a signature issued by B̂ in any of its invocations
by F . The first condition, Y0 6= 0, holds since otherwise this value would have been rejected by Â
as the incoming value to the g-session. As for the second condition, let’s assume that π̃0 = π0 and
examine its validity under each of the three cases C1-C3.

Case C1: In this case the value Y0 was never output in any of the signatures issued by B̂ and
therefore τ is clearly a valid forgery.

Case C2: Here, Y0 was generated by B̂ in session (B̂, Â, Y0, X0). However this session, being match-
ing to the test session, was never queried by M (or F would have aborted without outputting
a forgery), which in turn implies that F never queried B̂ for the value of π(B̂, Â, Y0, X0).
Note that, by construction, F never queries the signature corresponding to a session in B̂
except if this session is queried, via state reveal or session-key queries, by M. Since Y0 was
generated by B̂ only for the above session (except for a negligible probability of accidental
repetition) then no signature issued by B̂ has this value of Y0. Thus, τ is a valid forgery.

Case C3: The value Y0 was generated by B̂ in relation to a session (B̂, Â∗, Y0, X
∗) with Â∗ 6= Â.

Thus, if M queried this session then B̂ did produce the signature π(B̂, Â∗, Y0, X
∗). However

this is a signature of B̂ with Y0 on message m = Â∗ which is different than the message
m = Â in the forgery τ . Hence τ is valid in this case too

Summarizing, for each of the above cases, if M succeeds with non-negligible probability in that
case, then with non-negligible probability F outputs a forgery triple τ which is correct and valid.
2

5.2.2.2 Forger F ′ for Case C4

We now define a forger F ′ that will succeed in forging B̂’s DCR signatures provided that there is
a non-negligible probability that M succeeds in a forgery attack under case C4. Recall that this
case happens when M outputs a correct guess π0 for the signature of the test session (Â, B̂,X0, Y0)
and the value Y0 was generated by B̂ in another session (B̂, Â, Y0, X

∗) with X∗ 6= X0. We build
the forger F ′ following the same lines of the design of F , but with some important differences that
we specify next.

1. In addition to choosing random values i, j, t as F does, F ′ also chooses a number
l ∈R {1, . . . ,m}. As before we denote Pi and Pj by Â and B̂, respectively.
The choice of i, j, t represents a guess by F ′ that the test session will be chosen by M as
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the t-th session activated at Pi and that Pj will be the peer to this session; the choice of l
represents a further guess that the l-th session activated at B̂ will be the session in which B̂
generated Y0, i.e. this session will have identifier (B̂, Â, Y0, X

∗) for some X∗ 6= X0.

2. F ′ aborts in the cases that F does, plus in the following two cases: (i) the l-th activation
at B̂ has a peer other than Â or it has X∗ = X0, and (ii) the incoming value fed by M to
Â in its t-th session is different than the value Y0 output by B̂ in its l-th activation. (This
guarantees that if F ′ does not abort its run then the l-th activation of B̂ resulted in a session
(B̂, Â, Y0, X

∗) for some value X∗ 6= X0.)

3. The rest of F ′ is the same as F except that in the l-th activation at B̂, F ′ does not query
the signer B̂ but instead it chooses a random Y0 and provides it to M as B̂’s outgoing value
for this session. If at any point M queries the session (B̂, Â, Y0, X

∗) (via a state reveal or
session-key query) then F ′ chooses a random value in {0, 1}k (the range of H) and answers
M’s query with that value. (Note that F ′ never queries the signature π(B̂, Â, Y0, X

∗).)

4. If M halts without having queried session (B̂, Â, Y0, X
∗) then F ′ halts with same result as

M, namely, if M fails so does F ′, and if M outputs a guess π̃0 for π(Â, B̂,X0, Y0) then
F ′ outputs the triple (Â, Y0, π̃0) as its forgery of B̂’s signature on message m = Â (under
challenge X0).

5. If M halts after having queried session (B̂, Â, Y0, X
∗), F ′ chooses a random bit β and proceeds

as follows:

(a) Case β = 0. F ′ halts and its output is determined exactly as in Step 4 above.

(b) Case β = 1. Rewinding step: F ′ rewinds M to its state at the time it queried session8

(B̂, Â, Y0, X
∗). This time, however, instead of answering this query by a random value,

F ′ chooses at random one of the queries to H produced by M, say v, and responds to
the (B̂, Â, Y0, X

∗) query with H(v). (The query v is chosen among all queries by M
to H including queries made after M queried the session (B̂, Â, Y0, X

∗) in the original
run.) From this point F ′ continues the normal running of M, which may end with F ′

aborting or with M halting. In the latter case, the output of F ′ is determined as in
Step 4 above.

Note: In the above run of M by F ′ it may happen that if M queries the session (B̂, Â, Y0, X
∗)

the response by F ′ is different than the actual value H(π(B̂, Â, Y0, X
∗)). This discrep-

ancy relative to the real runs of M may cause M to run beyond the normal time bounds
of M. Therefore, to be precise, we can specify that if M exceeds a certain (polynomial)
running time then F ′ stops and outputs failure.

Lemma 14 Assume that M has a non-negligible probability to correctly guess the test signature
when case C4 holds, then forger F ′ succeeds in forging B̂’s DCR signatures with non-negligible
probability.

The lemma is proved through Claims 15 and 16.
8Note that by construction of F ′ the rewinding step is performed only in cases where M actually queried

(B, A, Y0, X
∗) during its run.
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Claim 15 Let M be a forging attacker against protocol Π which succeeds with non-negligible prob-
ability in case C4, then there is a non-negligible probability that a run of M under F ′ succeeds (i.e.,
ends with a correct guess for the value of the unexposed test signature).

Proof: As in Claim 12 we refer to a “run of M” as a fixed (deterministic) execution of the attacker
M when we fix a set of random coins for M, for all the parties in the protocol, and for the random
functions H̄ and H.

We will say that a run of M is of type-C4 if M outputs a guess (not necessarily a correct
one) for the session signature of an unexposed test session (Â, B̂,X0, Y0) (chosen by M) in which
Y0 was generated by B̂ during a session (B̂, Â, Y0, X

∗) with X∗ 6= X0. Note that by the Claim’s
hypothesis, the attacker M has a non-negligible probability to succeed (i.e., guess correctly) in a
run of type-C4. In particular, this implies that type-C4 runs occur with non-negligible probability
in the runs of M. Also note that in type-C4 runs the session (B̂, Â, Y0, X

∗) is well-defined and
unique (up to a negligible probability that B̂ chose the same Y0 for two different sessions).

We denote the test session (Â, B̂,X0, Y0) by s0, and the session (B̂, Â, Y0, X
∗) by s∗. The test

signature π(Â, B̂,X0, Y0) is denoted by π0 and the session signature π(B̂, Â, Y0, X
∗) of session s∗ by

π∗. We will say that M queries session s∗ if M issues a state-reveal or session-key query against s∗.
We say that M queries H on π∗ if M presents the value π∗ explicitly as an input to H (therefore
querying s∗ is not the same as querying H on π∗ even though the answer to both queries is the
same).

We divide the type-C4 runs of M into three classes:

1. M does not query the session s∗.

2. M queries session s∗ but does query H on π∗.

3. M queries s∗ and also queries H on π∗.

We proceed to analyze what happens to these runs in the executions of M under F ′. For
the time being we are going to consider only executions of F ′ in which F ′ does not abort (i.e., in
which M’s run is of type-C4 and F ′ guessed correctly the s0 and s∗ sessions). First we need two
observations from which we can see that the notion of a run of C4-type is well defined for runs of
M under F ′.

The first is that following a similar argument as in the proof of Claim 12, in the non-aborting
runs of F ′ the simulation of the protocol actions carried by F ′ for M are perfect except for (i)
the response to the query to session s∗, if such a query is presented by M, and (ii) the subsequent
rewinding step, if performed. For the second observation we consider the runs of M under F ′ that
precede the rewinding step (or those in which this step is not performed at all). Note that in runs
in which M queries s∗ before it queries H on π∗ (this includes runs where M does not query H on
π∗ at all), the probability that M later queries H on π∗ is the same whether the response to the s∗

query was the real H(π∗) or a random value (indeed, at this point of the run these two responses
are indistinguishable given the current view of M). Similarly, if M first queries H on π∗, then the
probability that it will later query s∗ is the same regardless of the random value used to answer
H(π∗).

From the above two observations we obtain that the probability that M queries the session s∗

and/or queries H on π∗ is the same in the real runs of M than in the runs under F ′ (and before
carrying the rewinding step). Thus, the probability that a run of M under F ′ (before the rewinding
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step) falls into any one of the three classes of C4-type runs is the same as the probability that a
real M run fall in this case.

Let’s now consider how the behavior of M when run under F ′ differs from a real run of M in
each of the three classes of C4-type runs. (Remember that we are considering only non-aborting
executions of F ′.) In the first class the run of M by F ′ is identical to a real run (since none of the
differences (i) or (ii) exist). In the second case, if β = 0 then the run of M under F ′ is identical
to a real run since as long as M does not query H on π∗ then the random response of F ′ to the
s∗ query is indistinguishable from any other random value. Finally, for the third class we consider
the case that β = 1 and F ′ happens to choose the query v by M such that v = π∗ (there is a
non-negligible probability, at least 1/Q, that this happens since we are considering the case that
at least one of the Q queries made by M to H during its run was the value π∗). In this case, if
we consider the “hybrid” run by M as the one composed of the execution preceding the query by
M of session s∗ followed by the execution of M after the rewinding step, we get that this run is
identical to the corresponding run of the real M (in which the query to s∗ is answered with the
correct value H(π∗)).

In all, we have that for each class of type-C4 runs the probability of such runs under F ′ is the
same as in a real execution of M, and that there is a non-negligible probability (over the choice
of β and of the query v in the rewinding step) that the behavior of M in these runs under F ′ is
identical to the corresponding runs in a real execution of M.

Thus, since there is a non-negligible probability that a type-C4 run of (the real) M will be
successful, then there must be at least one class of C4-type runs in which the probability of success
of M is also non-negligible. But then, by the above argument, the latter is true also for this class
of runs under F ′. We thus conclude that, in the non-aborting runs of F ′, M as run by F ′ has
non-negligible probability of success.

All we need in order to conclude the proof is to observe that, by an argument similar to the
one in the proof of Claim 12, for each type-C4 run of M there is a non-negligible probability
(i.e., 1 over the number of quadruples (i, j, t, l) chosen by F ′ in Step 1), that this run under F ′

is non-aborting. Thus, the conditioning on non-aborting runs in the above arguments holds with
non-negligible probability, and then the overall probability that the run of M under F ′ outputs a
successful forgery is non-negligible.

2

Claim 16 If in a run of F ′, M outputs a correct guess for the test signature, then the output of
F ′ in that run is a correct and valid forgery against B̂’s DCR signatures.

Proof: In the case that M outputs the correct guess π0 for the test session (Â, B̂,X,Y0) under a run
of F ′, F ′ outputs a forgery against B̂’s signatures of the form τ = (m = Â, Y0, π0), under the input
challenge value X0, which is correct since M’s guess was correct. Therefore, it remains to show that
when case C4 holds this forgery is also valid. That is, that Y0 6= 0 and the pair (m = Â, Y = Y0)
never appeared in a signature issued by B̂ in any of its invocations by F ′. The first condition,
Y0 6= 0, holds since otherwise this value would have been rejected by Â as the incoming value to
the g-session. As for the second condition, we know that the only session in which B̂ used Y0 is the
session s∗ = (B̂, Â, Y0, X

∗). Thus the only signature that could have possibly used Y0 is the session
signature π∗ = π(B̂, Â, Y0, X

∗). However, this signature was never queried by F ′. Indeed, even if
M queried the session, F ′ answered this query by a random value (Step 3) or by a previous output
of H (Step 5b), with no invocation to B̂. Thus the forgery triple τ is a correct and valid forgery
by F ′ against B̂’s signatures. 2
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5.2.3 Infeasibility of Key-Replication Attacks

As introduced and motivated in Section 5.2.1 a successful key-replication attack is one in which
the attacker, acting as a KE attacker, has as its goal to force the establishment of two different,
non-matching, sessions that output the same session key, and in which one of the two sessions (we
will refer to it as the “test session”) is unexposed. Note that if an attacker succeeds in such an
attack against Π, it can easily find the session key of the test session by querying the second session
containing the same key (this is allowed since the sessions are non-matching).9.

In this section we prove that key-replication attacks are infeasible against protocol Π by showing
that such a successful attacker would contradict the security of DCR signature. For this we use the
same forgers F and F ′ built in Section 5.2.2. Specifically, we show the following:

Lemma 17 If an efficient attacker, M, succeeds in a key-replication attack against Π with non-
negligible probability then one of forgers F or F ′ constructed above is a successful forger against the
DCR signature scheme.

Proof: Assume that attacker M is successful in a replication attack against the (unexposed)
test session denoted by s = (Â, B̂,X0, Y0). Namely, M succeeds in establishing a session s′ =
(Â′, B̂′, X ′, Y ′) which has the same key as (Â, B̂,X0, Y0) (and this session is different than (Â, B̂,X0, Y0)
and (B̂, Â, Y0, X0)). This means that (except of a negligible probability of collision in the output
of H) π(Â′, B̂′, X ′, Y ′) = π(Â, B̂,X0, Y0).

Let’s now consider the four cases C1-C4, described in Section 5.2.2, concerning the generation
of the value Y0 in the test session s. Since these four cases cover all possible ways to generate Y0

during the protocol, then there must be (at least) one of these cases in which M wins the key-
replication attack with non-negligible probability. Assume, first, that this non-negligible probability
of success holds for any of the first three cases C1-C3, and consider the forger F built above and its
interaction with the key-replication attacker M. Recall that, by construction, F provides M with
the session signatures of exposed sessions (not just the session keys). Therefore, if M is able to
succeed in a key-replication attack then it can query the session s′ (which M is allowed to expose)
and obtain the signature π′ = π(Â′, B̂′, X ′, Y ′) from F . But this means that M is able to find
the test signature π(Â, B̂,X0, Y0) (which is the same as π′) without exposing the test session or its
matching session. But as we showed, in this case F succeeds in outputting a valid forgery against
B̂’s signatures.

Let’s now consider case C4. Observing the construction of F ′, we note that F ′ provides M
with the session signatures (not just the session keys) for any exposed session other than session
(B̂, Â, Y0, X

∗). Thus, by the same argument above, if M is able to force the same key as the test
session in a non-matching session other than (B̂, Â, Y0, X

∗) then M is able to win the forging game,
and F ′ succeeds as a forger against B̂’s signatures. We are then left with the possibility that the
session (B̂, Â, Y0, X

∗) had the same key as (Â, B̂,X0, Y0). This however is not possible since for
X∗ 6= X0 it must be that π(B̂, Â, Y0, X

∗) 6= π(B̂, Â, Y0, X0) = π(Â, B̂,X0, Y0) and thus the two
session keys are different (except for a negligible probability of collision in the output of H on these
two different input values). 2

This completes the proof of Lemma 10 which, together with Lemma 9 and Lemma 24 (the latter
proven in the next section), completes the proof of Theorem 8.

9Formally, key-replication attacks can be defined by requiring that the attacker explicitly outputs the identifiers
of the two non-matching sessions that have the same key, or equivalently, i.e. up to a polynomial factor in success
probability, one may just require that these sessions exist at the end of a successful run of the attacker.
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6 Further Security Properties of the HMQV Protocol

In the previous section we have proved that the HMQV protocol enjoys the essential security prop-
erties captured by the formal model of [11] (and outlined in Section 2). This definition guarantees
the essential security properties of a key-exchange protocol, namely, that a party that completes a
session has the guarantee that (i) if the peer to the session is uncorrupted then the session key is
not known to anyone except this peer, and (ii) if the peer completes a matching session then the
two have the same shared key. These properties are guaranteed even if the attacker has corrupted
other parties in the system and/or the attacker have learned secret information from other sessions.
Most importantly, as shown in [11], this security definition is all that is needed to ensure that the
communications between the session peers, when protected with the exchanged key (via symmetric
encryption and MAC function), are secure.

In some applications and scenarios, however, there are additional properties of a key-exchange
protocol that one may be interested to have. In this section we consider the properties and examine
if they apply or not to HMQV.

As a result we have the following comprehensive extension of Theorem 8.

Theorem 18 Under the CDH assumption and in the random oracle model, the HMQV protocol
as defined in Section 5.1 is secure in the Canetti-Krawczyk model (outlined in Section 2) and in
addition it enjoys the following properties: Resistance to KCI attacks, weak forward secrecy, and
resilience to the leakage of ephemeral secret DH exponents (the last property proven in Section 7
under the Gap Diffie-Hellman and KEA1 assumptions).

The definition and proof of the above additional properties is presented in the following subsec-
tions. Resilience to leakage of ephemeral DH exponents requires a more extensive treatment and
is presented in Section 7.

6.1 Resistance to KCI Attacks

A basic principle guiding any security formulation for key-exchange protocols is that the leakage of
ephemeral information associated with a particular session (e.g., its session key or state) does not
compromise other sessions. As pointed out before, this property is indeed ensured by our security
definition. On the other hand, this definition provides no guarantee for sessions exchanged by, or
with, corrupted parties. Yet, in practice, it is important to confound the damage of key leakage
even when this leakage concerns the long-term private key of a party. In this, and next subsection,
we discuss two security notions that extend our basic model and deal precisely with limiting the
damage of leakage of long term private keys.

We start by observing that when an attacker learns the private key of a party Â, our model
considers that party to be under the full control of the attacker, and all the sessions established by
that party are deemed insecure. This, however, is a simplification of practical scenarios in which
it is possible that the private key of Â is compromised, yet the attacker does not actively control
Â (e.g., it does not have access to Â’s computer). In such a situation, while there is nothing to
prevent the attacker from running its own key exchange session in the name of Â, one would like
to ensure the security of the sessions established by Â itself while not being actively controlled by
the attacker.

An example of this type of security is the so called resistance to key-compromise impersonation
(KCI). This notion has been postulated in many works as a desirable property of (public-key based)
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key-exchange protocols and, in particular, it has been stated as one of the advantages of the MQV
protocol over other protocols. Informally (as this property has not been formalized before) a key-
compromise impersonation is deemed successful if the attacker, knowing the private key of a party
Â is able to “impersonate” other, uncorrupted, parties to Â. Here, we first formalize this notion
and then prove it to hold in the case of HMQV.10 For this we first introduce the following definition:

Definition 19 We say that a completed session of a key-exchange protocol is clean if the attacker
did not have access to the session’s state at the time of session establishment, nor it issued a
session-key query against the session after completion.

When considering sessions at uncorrupted parties the definition of clean session is equivalent to
saying that the attacker did not issue a state-reveal query while the session was incomplete or a
session-key query after completion. However, when considering an attacker that learned the long-
term private key of a party, this notion is more general and it implies that the attacker was not
actively controlling or impersonating the party during the session establishment (neither by making
any choices on behalf of that party in that session or eavesdropping into the session’s state). Note
that in the case of HMQV, a clean session is one in which the attacker does not choose the outgoing
value of the session, nor it issues a session-key query against it.

Definition 20 We say that a KE-attacker M that has learned the private key of party Â succeeds
in a Key-compromise impersonation (KCI) attack against Â, if M is able to distinguish from random
the session key of a complete session at Â for which the session peer is uncorrupted and the session
and its matching session (if it exists) are clean.

In other words, the definition says that as long as the attacker is not actively controlling or observing
the secret choices made for the generation of the session then, even the knowledge of Â’s private
key does not allow M to compromise the session key. In particular, in such a protocol M cannot
impersonate an uncorrupted party B̂ to Â in a way that allow M to learn (any information about)
the resultant session key.

Lemma 21 Under the CDH assumption, the HMQV protocol resists key-compromise imperson-
ation (KCI) attacks.

Proof: All is needed is to note that the proof of HMQV in Section 5.2 holds even if we assume
that the attacker M is given the private key of Â. The only change to the proof is that in the
description of forger F (step 10b) we now remove the corruption of Â as a reason for F to abort.
The proof remains valid since (i) as proven in Theorem 7 the DCR signatures of B̂ with challenger
Â remain secure even if the private key of Â is known, and (ii) the above abort operation is never
used in the proof (we added it for ease of presentation and for compliance with the notion of session
exposure in the basic security model). Also worth noting is that in the proof the outgoing value
X0 in the test session is provided in the input to F and then not chosen by M (thus ensuring that
the session is clean). 2

10It is illustrative to note that some natural key-exchange protocols do not achieve this property: Such is the case
of key-transport protocols based on public key encryption (such as SSL) or key-exchange protocols that use long
term static DH keys ga, gb to derive a long-term shared key gab (see Section 3.1). Examples of protocols that do
provide resistance to KCI are the the signature-based SIGMA protocol [27], the ISO protocol [11, 22] and the SKEME
protocol authenticated via public-key encryption [26].
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As shown in Section 3.3, ensuring resistance to KCI attacks requires that the attacker does not
learn the DCR signature produced in the protocol which explains the need to define the session
key in HMQV as the hash of this signature.

6.2 Perfect Forward Secrecy (PFS)

Another important notion that provides a security guarantee of key-exchange sessions in the case
that the attacker has learned the private keys of some parties is Perfect Forward Secrecy (PFS).
Informally, a key-exchange protocol is said to have the PFS property if the leakage of the long-term
key of a party does not compromise the security of session keys established by that party, and
erased from memory, before the leakage occurred. A formal definition of PFS in the context of the
model from Section 2 appears at the end of that section. As it turns out, HMQV (nor the original
MQV) protocol achieve this property. Moreover, as shown in Section 3.2, no 2-message protocol
can achieve PFS (as long as there are no means, such as a secure state shared by the parties in a
previous exchange, to authenticate the first message and avoid its replay).

Note that, nonetheless, HMQV does provide a weak form of forward secrecy: If the attacker is
not actively involved with the choice of the X, Y values at a session (specifically if it does not get
to choose or learn the exponents x and y) then the resultant session key does enjoy forward secrecy.
While certainly weaker than the usual PFS, this guarantee of forward secrecy is still significant in
practice where the mounting of active attacks is harder than simple recording past communications
and can usually be performed on a smaller number of sessions. This (unavoidable) weakness of
the 2-message HMQV protocol can be solved by adding a third message to the protocol and a key
confirmation mechanism as shown in Section 8.

Definition 22 A key-exchange protocol provides weak PFS (wPFS) if an attacker M cannot dis-
tinguish from random the key of any session for which the session and its matching session are
clean even if M has learned the private keys of both peers to the session.

Note that in the regular definition of PFS (Section 2) one assumes that the session was established
at the time that both Â and B̂ were uncorrupted and the attacker only learns the private keys of
these parties at a later point after the session key has already expired and erased from memory. In
the above formulation, the security guarantee is provided even if the attacker learned the private
keys before the session was established, as long as the session (and its matching one) are clean.
Of course, this comes at the cost of assuming that the attacker was passive during the session
establishment.

Lemma 23 Under the CDH assumption, protocol HMQV provides weak PFS.

Proof: We only outline the idea of the proof and omit the details that can be completed following
the proof from Section 5.2. Given an attacker M that breaks the wPFS property, we construct a
CDH solver C as follows. (An important difference between this case and the proof from Section 5.2
is that here we use M to directly build a CDH solver rather than building a DCR forger.) Let
X = gx and Y = gy be the inputs to C; the goal of C is to compute gxy. C runs M against
a virtual execution of the protocol in which C chooses all parties’ private keys, and also chooses
a random guess for the test session against which M succeeds in its wPFS attack. We call this
guessed session the g-session and denote its peers by Â and B̂ (and their private keys by a and
b, respectively). C then uses the input values X, Y as the incoming and outgoing messages in
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the g-session. If the attacker does choose the g-session as its test session and M distinguishes its
session key from random (both events happen simultaneously with non-negligible probability) then
the following must be true. In order to be considered successful M cannot modify the X, Y values
in the test session (otherwise the session is not clean). Hence the established key is H(π0) for
π0 = g(x+da)(y+eb), and for distinguishing H(π0) from random M must output at some point in its
run the value π0. Now, with the knowledge of a and b, C can compute gxy out of π0. 2

6.3 Reflection Attacks

In the analysis of protocol HMQV we have assumed that the peers Â and B̂ in the test session
are different (see Step 3 in the description of forger F in Section 5.2). In some scenarios, how-
ever, a party may want to establish a secure channel with itself (for example, a mobile user that
communicates to its desktop computer, while both the mobile device and the desktop have the
same identity in the form of the same digital certificate). Here we show how to extend the analysis
of Section 5.2 to include such scenarios. In particular, we show that HMQV resists the so called
reflection attacks in which the attacker simply copies Â’s authentic messages and sends them back
to Â as the messages coming from the other copy of Â.

The technical difficulty in achieving this result is that we are now concerned with test ses-
sions of the form (B̂, B̂,X0, Y0), that is, sessions in which Â = B̂. When we apply the anal-
ysis of Section 5.2 to this case we get that if an attacker can successfully win the distinguish-
ing test against the above test session then we can build a forger F against the dual signature
DSIGB̂,B̂(m1 = B̂,m2 = B̂,X0, Y0) where X0 is the value input to F (as the challenge on which to
forge the signature) and Y0 is chosen by F . The problem, however, is that we have not shown that
such forgers do not exist. Indeed, Theorem 7 only guarantees the security of DCR signatures with
peers Â 6= B̂. Consequently, we outline here an extension of the proof of Theorem 7 that will allow
us to claim the infeasibility of a forger F as above, and then also the infeasibility of a KE-attacker
that wins the distinguishing test.

The difficulty in extending the proof of Theorem 7 to the case Â = B̂ is that the proof of the
theorem assumes that the private key a of Â is known to the forger and to the CDH solver C (the
value of a is required in the computation of W in Equation (1) in order to get rid of the factor Ad

in that computation). Here a is unknown since a = b and the latter is secret. Thus, if we apply
the same reduction as in Theorem 7 we get a solver C that computes (X0A

d)b rather than Xb
0 as

needed for deriving CDH(U, V ). An “obvious” fix is to change the way C sets X0 in Figure 4 from
X0 = U to X0 = U/Ad. This, however, requires knowing the value of d = H̄(X0,m1) at the onset
of F ’s activation which is not necessarily the case in general (indeed, F can choose the value m1

that determines d much later in the game). Fortunately, in the case of interest here (that considers
a specific signature of the form DSIGB̂,B̂(m1 =B̂,m2 =B̂,X0, Y0)) the value m1 is not chosen by F
but rather fixed to m1 = B̂. Thus both m1 and X0 are known in advance and thus we can specify
C to set X0 = U/Ad. There is, however, one more obstacle: if the forger F chooses Y0 to be X0

then we get d = H̄(X0, B̂) = H̄(Y0, B̂) = e, and therefore the value d changes, in the description
of C in Figure 4, before and after the repeat experiment. In this case setting X0 = U/Ad does not
allow computing W .

On the basis of the above discussion we can now go back to the security analysis of protocol
HMQV in the case that the attacker M is assumed to win the distinguishing game with a test
session (B̂, B̂,X0, Y0). We consider two cases:

Case I: X0 6= Y0. In this case the proof from Section 5.2 extends to show the existence of a forger
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F that forges B̂’s dual signatures DSIGB̂,B̂(m1 = B̂,m2 = B̂,X0, Y0) for X0 6= Y0. Thus, following
the above discussion, we build a CDH solver C that runs the forger F as in Figure 4 except that C:

1. Chooses a random value d in {0, 1}` (the range of H̄).

2. Sets X0 = U/Bd and B = V (remember that U, V are the inputs to C and here A = B).

3. Sets H̄(X0,m1) to the value d.

The rest of C is unchanged, including the same calculation of W as in Figure 4 which results in C
solving CDH(U, V ).

Case II: X0 = Y0. In this case a fix of C as above does not work since, as pointed out, the value
of d before and after the repeat experiment changes. To solve this issue we have two approaches.
The first is to change the specification of HMQV such that the definition of the values d, e has a
“directional indication”: for example, define d = H̄(X, Â, “0”) and e = H̄(Y, B̂, “1”) (here “0” and
“1” are used by the initiator and responder of the session, respectively). This guarantees that, even
if X0 = Y0, the value d does not change before and after the repeat experiment, and therefore the
argument in Case I holds here too, showing that the protocol is secure in the case X0 = Y0 too.

The second approach shows that the above modification to HMQV is not necessary. For this,
observe that when X0 = Y0 then these values are chosen by the uncorrupted B̂ and therefore we are
in a situation similar to that of Section 6.2 in which the Diffie-Hellman values are chosen in “clean
sessions”. Specifically, by applying the argument in the proof of Lemma 23 one can show how to
transform an attacker that can distinguish the key of session (B̂, B̂,X0, X0) from random into a
CDH solver. In this case, however, we can only guarantee this solver to work on inputs X, Y with
X = Y . In other words, we can build an algorithm that given gx0 computes gx2

0 . But, as observed
by Maurer and Wolf [31], such an algorithm can in turn be used to solve the general CDH problem
(namely, where the inputs are arbitrary values X, Y in G).

Summarizing the above we have the following lemma:

Lemma 24 Under the CDH assumption, sessions established in the HMQV protocol between an
uncorrupted peer and itself are secure. In particular, successful reflection attacks are not feasible.

We note that this lemma together with Lemmas 9 and 10 completes the proof of Theorem 8.

7 HCR Signatures and Resilience to Leakage of DH Exponents

As we have stated repeatedly, a main security requirement for key-exchange protocols is to confine
the damage caused by the leakage of session-specific ephemeral information to the compromised
session only (and its matching session, if it exists). In particular, Diffie-Hellman protocols should
ensure that the leakage of ephemeral DH exponents does not affect the security of sessions where
this exponent is not used. A good illustration of a protocol not having this property is the signature-
based 2-message protocol discussed at the beginning of Section 3.1. In that case, stealing the value
of a DH exponent from a single session between Â and B̂ suffices for the attacker to impersonate
Â to B̂ forever, and without having to learn anything about Â’s or B̂’s private keys.

The present section is devoted to showing the robustness of the HMQV protocol against such
ephemeral leakage of Diffie-Hellman exponents. We show that disclosing to the attacker the expo-
nent used in an HMQV session has no bearing on the security of other sessions. Formally, we show
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that even if the ephemeral session DH exponents are stored in the session’s state, the protocol re-
mains secure in the face of state-reveal queries through which the attacker learns these exponents.
Moreover, resilience to the leakage of ephemeral DH exponents is important to protect a party
that pre-computes pairs (y, gy) for use at later sessions (pre-computation reduces the on-line cost
of the protocol to 1.5 exponentiations). Discovering such a pair helps the attacker in two ways:
learning y and being able to predict which value of gy will be used in a session. We show that the
best protection against such an attacker is obtained by adding the parties’ identities to the key
derivation hashing or by adding an unpredictable nonce to the protocol messages.

A significant technical point that is worth noting is that resilience to the disclosure of ephemeral
DH exponents does not follow from the analysis in Sections 5 and 6. That analysis refers to the
formal specification of HMQV in Section 5.1 which did not allow for the storage of ephemeral
exponents in the session state (thus requiring that ephemeral exponents be as protected as the
long term private key). Moreover, the fact that the attacker is not allowed to see these ephemeral
exponents is used in an essential way in that analysis. This is so since the proof of unforgeability
of XCR signatures (in Section 4.2), on which the security of HMQV relies, does not carry on to the
case in which the attacker learns an ephemeral value y used by the signer B̂ in one of its signatures.
Indeed, observe that in the simulation of B̂’s signatures performed by the CDH solver C in Figure 4
(specifically steps S1-S3) the simulator does not know the value y (and thus cannot present it to
F if such a value is queried). Consequently, the analysis of HMQV in Section 5.2 that builds on
the security of XCR signatures does not apply to the case where the ephemeral DH exponents are
revealed.

To overcome this problem we are going to consider in this section a “hashed variant” of XCR
signatures (which we call HCR signatures) that we prove to be unforgeable even if the exponents y
used by the signer in its signatures are provided to the forger. On the basis of these signatures we
are able to claim the security of HMQV even in the face of leaked DH exponents. This, however,
requires replacing the CDH assumption used in our previous analysis with two substantially stronger
assumptions that we recall below: Gap Diffie-Hellman and KEA1. Yet, we emphasize that these
stronger assumptions are not needed for any one of the other properties proven to hold for HMQV
(this is the main reason to treat the resilience to DH exponents separately).

Definition 25 [37] Let G be a cyclic group generated by an element g. We say that a decision
algorithm O is a Decisional Diffie-Hellman (DDH) Oracle for a group G and generator g if on input a
triple (X, Y, Z), for X, Y ∈ G, oracle O outputs 1 if and only if Z = CDHg(X, Y ). We say that G
satisfies the Gap-Diffie-Hellman (GDH) assumption if no feasible algorithm exists to solve the CDH
problem, even when the algorithm is provided with a DDH-oracle for G.

What this assumption says is that in the group G computing CDH(X, Y ), for X, Y ∈R G, is strictly
harder than deciding if a given Z equals CDH(X, Y ).

The following assumption was first stated and used in [14]; it was re-defined and further studied
in [18, 4]. The name KEA1 (where KEA stands “knowledge of exponent assumption”) is from [4].
The statement of the assumption presented next is somewhat informal; please refer to the above
works for the details. The KEA1 assumption captures the intuition related to the difficulty of the
Diffie-Hellman problem by which the “only way” to produce a pair of the form (C,Cb) when all is
given is a pair (g, gb), where g is a generator of a group of prime order q, is to choose c ∈ Zq and
compute (gc, (gb)c).

Definition 26 [14, 18, 4] Let G be a cyclic group of prime order q generated by an element g, and
consider algorithms that on input a pair (g, gb) output a pair (C,D) in G2. Such an algorithm E is
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said to be a KEA1 algorithm if with non-negligible probability (over the choice of b and E’s random
coins) E(g, gb) outputs (C,D) such that D = Cb. We say that the KEA1 assumption holds over G
if for every efficient KEA1 algorithm E in G there exists another efficient algorithm E′ for which
the following property holds except for a negligible probability: let (g, gb) be an input to E and ρ
a vector of random coins for E on which E outputs (C,D = Cb) then on the same inputs (and
random coins) E′ outputs the triple (C,D = Cb, c) where C = gc.

The rest of the section is organized as follows: Section 7.1 introduces HCR signatures and their
security requirements; Section 7.2 proves the unforgeability of these signatures under the above
assumptions; Section 7.3 deals with the case in which a DH value Y used in a signature is known
in advance by the forger. Finally, Section 7.4 uses these results to prove the resilience of HMQV
to the leakage of ephemeral DH exponents.

7.1 HCR Signatures

Here we introduce Hashed XCR signatures (HCR, for short) defined exactly as XCR signatures except
that instead of a pair (Y, σ) as output by regular XCR signatures (on input message m and challenge
X), the HCR signature outputs (Y, H(σ)) where H outputs k bits (same output length as used in
producing the key in the HMQV protocol). The computation of σ by a signer B̂ with public key
B = gb is exactly as in XCR, namely, σ = XSIG(Y, m,X) = Xy+eb, where e = H̄(Y, m) is of length
` bits. We denote the modified signature by HSIG, i.e., HSIG(Y, m,X) = H(Xy+eb). Note that in
spite of the hashing of σ such a signature can be verified by the challenger that knows the dlog of
X; in particular, the HMQV protocol uses such signatures. Our main motivation to consider HCR
signatures (in addition to XCR ones) is that they enjoy the property of being unforgeable even if
the attacker knows the ephemeral exponent y corresponding to Y = gy.11

In order to formalize this property in a way that is applicable to the security analysis of HMQV
we modify the forgery game from Figure 3 and present the modified game in Figure 5. In this new
game we are making the task of the forger F harder by providing it with only a hashed version
of XCR signatures, but at the same time making it easier for F by disclosing to it the exponent
y used by B̂ to compute each signature component Y = gy. Moreover, we will accept a forgery
(Y0,m0, HSIG(Y0,m0, X0) as valid even if F is unable to compute y0 = logg(Y0). We also let F
choose its challenge value X presented to the signer only after the signer disclosed its value y for
the signature. As we pointed out in Remark 4.3, this modified order of interaction captures the
interaction induced by the HMQV protocol.

7.2 Unforgeability of HCR signatures

Lemma 27 Under the GDH and KEA1 assumptions, the HCR signature scheme is secure in the
random oracle model, namely, no efficient forger can succeed with non-negligible probability in the
forgery game of Figure 5.

Proof: Let F be a forger against HCR signatures that wins with non-negligible probability the
forgery game of Figure 5. We will use such F to build a successful CDH solver C which is equipped
with a DDH oracle, thus contradicting the Gap Diffie-Hellman assumption. The general structure
of C is similar to the CDH solver built in the proof of Theorem 5 and presented in Figure 4, yet it

11See Remark 4.5 for a comparison of HCR and DSS signatures.
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1. Forger F is given values B,X0 where B,X0 ∈R G.

2. F is given access to a signing oracle B̂ (representing an HCR signer B̂ with private key b and
public key B = gb).

3. Each signature query from F to B̂ consists of the following interaction

(a) F presents B̂ with a message m;

(b) B̂ responds with y ∈R Zq and stores the triple (y, Y = gy,m) as an “incomplete triple”

(c) F presents B̂ with a pair (Y, m) and a challenge X.

(d) B̂ checks that the pair (Y,m) is in one of its incomplete triples and that X 6= 0; if not,
it aborts, else it responds with r = HSIGB̂(Y = gy,m, X) = H(Xy+H̄(Y,m)b), marks the
triple (y, Y,m) as complete and stores with it the signature values X, e = H̄(Y,m), r.

4. F is allowed a polynomial number of signature queries (as in 3) to B̂ where the queries are
chosen (possibly adaptively) by F . We allow for the interaction steps from different signature
queries may be interleaved. (This is why B̂ records incomplete and complete triples.)

5. F halts with output “fail” or with a guess in the form of a triple (Y0,m0, r).

F ’s guess is called a successful forgery if the following two conditions hold:

(a) The pair (Y0,m0) did not appear in any of the responses of B̂ to F ’s queries and Y0 6= 0.

(b) r = HSIGB̂(Y0,m0, X0) (where X0 is the value provided as input to F).

We say that F wins the game (or simply forges) if it outputs a successful forgery.

Figure 5: Forgery Game for HCR Signatures

has some important differences resulting from a different way to simulate the signer’s answers. In
particular, in the present case C does not need to simulate the computation of the signature value
σ but just return a random value for H(σ). The problem is how to provide consistent answers to
the forger F . For example, if C returns a random value r as the value of H(σ), where C does not
know the actual value of σ, and later F queries H on the explicit value σ (which F may be able
to compute if it chose the challenge x) how does C know to return the same value r? It is for this
purpose that we need to use a DDH oracle (which is also why we need to assume the Gap DH
assumption). The full description of C is presented in Figure 6.

We now analyze the behavior of C. First note that the simulation of the signer B̂ by C is
perfect except for the negligible probability that the input (Y = gy,m) was queried from H̄ before
C chose Y . However, since this choice by C is done independent of previous computations, then the
probability that (Y, m) was queried earlier is at most Q/q where Q is the number of H̄-queries in
the whole simulation. It is also worth noting the essential use of the DDH oracle needed to check
whether the value of a signature σ = Xy+be was previously presented as input to the oracle H.
This is required since if F chose the challenge X = gx knowing x then it can compute the actual
value of σ and therefore it can query H on σ. For the simulation to succeed, C must make sure that
it answers the H query and the simulated output of the HCR signature consistently. The same
argument holds for the consistency check of other H-queries.
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Building a CDH solver C from an HCR forger F

Setup. Given a successful HCR-forger F we build an algorithm C that having access to a DDH
oracle solves the CDH problem over G. The inputs to C are a generator g of G and a pair U =
gu, V = gv ∈R G. The goal of C is to compute CDH(U, V ) = guv.
Initializing F . C sets B = V and X0 = U , and runs the forger F on input (B,X0) against a
simulated signing oracle, denoted B̂, under public key B. C provides F with a random tape and also
provides answers to the random oracle queries H̄ and H generated in the run as specified below.
Simulation of signer B̂. The interaction between F and B̂ takes four steps as specified in Figure 5.
The actions of B̂ in this interaction are simulated by C as follows.

S1. F presents to B̂ a message m for signing.

S2. C chooses y ∈R Zq and e ∈R {0, 1}`, and sets H̄(Y, m) to e (if (Y,m) was queried earlier from
H̄ then C aborts). C responds to F , on behalf of B̂, with y and e. It stores the values e and
the triple (y, Y,m) which it marks as an “incomplete triple”.

S3. F presents B̂ with a pair (Y,m) and a challenge X.

S4. C checks that the pair (Y, m) is part of one of its incomplete triples and that X 6= 0; if not
the query is ignored. Else C checks for every value σ ∈ G previously used as input to the
oracle H whether σ = Xy+be: it does so using the DDH oracle, namely, by checking whether
CDH(X, B) = (σ/Xy)1/e. If the answer is positive then C sets r to the already determined
value of H(σ), otherwise r is set to a random value in {0, 1}k; C marks the triple (y, Y,m) as
complete, stores a vector (y, m, e,X, r), and returns r to F .

Simulation of H queries. Queries of F to the random oracle are answered by C as follows. If the
same query was made earlier then C responds with the same original answer. New queries to H̄ are
answered with a random value in {0, 1}`. If a new input σ is queried from H, then C checks whether
σ = Xy+be for any one of the vectors (y, m, e,X, r) stored by C (as before this check is done using
the DDH oracle). If equality holds then the corresponding r is returned as H(σ), else a random r
in {0, 1}k is returned.
Upon F ’s termination. When F halts with a forgery guess Y0,m0, r0 (i.e., r0 is a guess by F for
HSIGB̂(Y0,m0, X0)), C checks whether:

F1. The pair (Y0,m0) is valid, i.e. it was not used as the (Y, m) pair in any of the signatures
generated by B̂ in steps S1-S4 and also Y0 6= 0.

F2. The value H̄(Y0,m0) was queried from the random oracle; if so, we denote the response of H̄
to this query by e0.

F3. The value r0 was set earlier as H(σ0) for some queried value σ0.

If these conditions hold, C proceeds to run the following “repeat experiment”, else it aborts.
The repeat experiment. C runs F again for a second time under the same input (B,X0) and
using the same coins for both C and F . The difference between the two runs is in the way in which
C answers the H̄ queries during the second run. Specifically, all queries to H̄ performed before the
H̄(Y0,m0) query are answered identically as in the first run. The query H̄(Y0,m0), however, is
answered with a new independent value e′0 ∈R {0, 1}`. Subsequent queries to H̄ are also answered
at random from {0, 1}`, independently of the responses provided in the first run.
C’s Output. If at the end of the second run, F outputs a forgery guess (Y0,m0, r

′
0) (with the same

(Y0,m0) as in the first run), then C checks that conditions F1 − F3 hold wrt (Y0,m0, r
′
0). If not C

aborts. Else, C sets σ′0 to be the value in which H(σ′0) = r′0, it computes W = (σ0/σ′0)
(e0−e′0)

−1
, and

outputs W as a guess for guv.

Figure 6: Proof of Lemma 27
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As a result of this almost perfect simulation of B̂ in its game with F , we see that the probability
that F outputs a correct forgery in its run by C is, up to a negligible difference, the same as in a
real run of F , and hence non-negligible. Below we will argue that whenever F outputs a correct
forgery Y0,m0, r0 under the run by C then the three conditions F1-F3 checked by C hold except for a
non-negligible probability. Therefore, except for such a negligible probability, a successful run of F
(i.e., in which the triple Y0,m0, r0 is a valid forgery wrt X0) will produce a value σ0 as in condition
F3 and such that σ0 = Xy0+e0b

0 . Since F outputs correct forgeries with non-negligible probability
then we have that with non-negligible probability the first run of F ends with a value σ0 = Xy0+e0b

0 .
In this case, the repeat experiment will be performed. By (a straightforward adaptation of) the
Forking Lemma [38] we get that with non-negligible probability this second run ends with a forgery
Y ′

0 ,m
′
0, r

′
0 where (Y ′

0 ,m
′
0) = (Y0,m0) and r′0 = H(σ′

0) where σ′
0 is a value presented by F as an input

to H and also σ′
0 = X

y0+e′0b
0 . In this case the value (σ0/σ′

0)
(e0−e′0)−1

is equal to Xb
0 which in turn is

equal to guv. In all, the probability that C outputs a correct value CDH(U, V ) is non-negligible.
All is left to prove is that in the case in which the forgery Y0,m0, r0 output by F is correct and

valid then conditions F1-F3 checked by C hold except for a negligible probability. This is obvious
for F1 since this is a condition for the forgery to be valid. In the case of F2, if H̄(Y0,m0) was
not queried then the probability for F to output a correct forgery is at most 1/2` + 1/2k: for each
value of e0 = H̄(Y0,m0) the induced value σ0 = Xy0+e0b

0 is different and then hitting the right r0

requires guessing e0 or guessing H(σ0) without knowing σ0. In the case of condition F3, guessing
r0 without querying H(σ0) has only a probability of 1/2k to succeed. However, the value r0 may be
chosen by F as one of the random values r answered by C (on behalf of B̂) in the simulation step
S4, say an r taken from a vector (y, m, e,X, r) stored by C. In this case, even though neither C nor
F queried H on the value σ = Xy+eb (nor on σ0 = Xy0+e0b

0 ), the forgery by F would be correct if
it happens that

Xy0+e0b
0 = Xy+eb (2)

where e0 = H̄(Y0,m0), e = H̄(Y, m), X0 is the input to F , and X the challenge (chosen by F)
under which B̂ produced the signature (y, m, r). However, if this is the case then we cannot use
algorithm C from Figure 6 to compute the DH value Xb

0 since in order to do that C needs to learn
the value σ0. What we are going to show, in Lemma 28 below, is that the probability that algorithm
F finds a forgery that satisfies Equation (2) is negligible. This will end the proof of Lemma 27. 2

In order to formalize and prove Lemma 28 below, we first define a class of forgers F , which we
call collision forgers, that interact with an HCR-signer B̂ with public key B as specified in Step 3
of Figure 5. Without loss of generality, we will assume that F either aborts or else it outputs a
signature triple (Y0,m0, r0) as a candidate forgery; we also assume that r0 6= H(σ) for all values of
σ explicitly queried from H (we are only interested on the ability of F to output triples (Y0,m0, r0)
that violate condition F3). We will call such a triple (Y0,m0, r0) a collision forgery, and say it is
correct if (i) the pair (Y0,m0) is valid (i.e. Y0 6= 0 and (Y0,m0) was not used in any of the signatures
issued by B̂), (ii) B̂ generated a signature (y, m, r) under some challenge X (chosen by F) for which
r = r0, and (iii) Equation (2) holds. In this case we call (Y0,m0, r0) the collision forgery and call
the triple (Y, m, r) the colliding signature (of B̂ wrt some challenge X).

Lemma 28 Under the Gap Diffie-Hellman and KEA1 assumptions, there is no efficient collision
forger against HCR signatures in the random oracle model.

Proof: We assume that there is an efficient algorithm F that contradicts the lemma’s statement.
Specifically, we will assume that F interacts with a signer B̂ (with public key B) and eventually
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outputs either “abort” or a collision forgery (Y0,m0, r0) such that for some signature (y, m, r) issued
by B̂ with respect to a challenge X (chosen by F) it holds that r = r0 (and r was not output by
H on any explicit query σ); in this case we call (y, m, r) the colliding signature. For contradiction,
we assume that with non-negligible probability F outputs a correct collision forgery.

We prove the lemma by considering two cases. The first assumes that with non-negligible
probability F solves Equation (2) with a value of Y0 (in the collision forgery) different than Y (in
the colliding signature); the second case assumes that with non-negligible probability F succeeds
with Y0 = Y (obviously, at least one of the two cases must hold with non-negligible probability).

Case I: Y0 6= Y . We show how to build from F an algorithm D that solves the discrete logarithm
problem over G. We start by defining an algorithm C similar to the one described in Figure 6 but
with some important changes.

C runs F as in Figure 6, in particular by simulating B̂ to F via the simulation steps S1-S4.
However, before this simulation starts, C chooses i ∈R {1, . . . , n}, where n is a bound on the
number of signature queries performed by F , and three other values y1 ∈R Zq, e1 ∈R {0, 1}` and
r1 ∈R {0, 1}k. Simulation of signature queries is identical to Figure 6 except that when F asks its
i-th signature query, say on message m1, C uses y1 as the y-value of this signature. In this case, C
also sets H̄(Y1 = gy1 ,m1) to the value e1 (except if H̄(Y1,m1) was queried before in which case C
aborts). When presented with the challenge X for this signature, C sets the r-value of the signature
to r1; we denote the challenge X presented by F in this query by X1.

If F outputs a forgery guess (Y0,m0, r0) where r0 = r1 (i.e., an alleged forgery collision with
the i-th signature by B̂) and (Y0,m0) is valid (i.e., not used by B̂ in any of its signatures and with
Y0 6= 0) then C performs the following “repeat experiment”; in all other cases C aborts its run.

The repeat experiment: C rewinds its computation up to the point in which F queried the
value H̄(Y0,m0) and re-runs F from this point on but this time with new random values for the
H̄(Y0,m0) query and subsequent H̄-queries. We denote by e0 the response to H̄(Y0,m0) in the first
run and by e′0 the response to H̄(Y0,m0) during the repeat experiment. In addition, C makes the
following modification to its re-run of F : if in the first run of F the simulation used the pair (y1, e1)
after the H̄(Y0,m0) query took place, then in the repeat experiment C chooses at random (among
the remaining sessions, and independently of the choice of i in the first run) the signature query in
which to embed the values y1, e1, r1. If the H̄(Y0,m0) query happened after the pair (y1, e1) was
used by C then the above modification is not needed.

If both the first and second run of F by C end up with valid collision forgeries with the same
pair (Y0,m0) and the same values (y1, e1, r1) in the colliding signature, then we denote by m1, X1

the message and challenge used in the colliding signature in the first run, and by m′
1, X

′
1 the

corresponding values from the colliding signature in the second run. In this case, C outputs the
values: Y0,m0, e0, y1, e1,m1,m

′
1, X1 6= 0, X ′

1 6= 0 as well as two values C1, C2 computed as:

C1 = X
e0−e′0
0

(
X1

X ′
1

)−e1

and C2 =
(

X1

X ′
1

)y1

(3)

In all other cases C aborts.
We proceed to analyze C. By assumption, when interacting with a real signer B̂, F outputs a

correct collision forgery with non-negligible probability. Since the simulation of B̂ by C is perfect
up to a negligible probability (see the proof of Lemma 27) then the non-negligible probability of
success of F holds too when F is run by C. Also, with non-negligible probability C guesses correctly
the signature query in which the colliding signature is computed. Therefore with non-negligible
probability F ends its first run by C with a correct collision forgery (wrt the challenge X0) with
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parameters denoted as Y0,m0, e0, r0 and with a colliding signature with parameters y1,m1, e1, r1, X1

where (y1, e1, r1) were chosen by C at the beginning of its run and m1, X1 were chosen by F . Using
(an adaptation of) the Forking Lemma from [38] one gets that all of the above holds for the second
run of F under the repeat experiment (which also has a non-negligible probability of guessing
the correct i in which to embed the values y1, e1, r1). More precisely, there is a non-negligible
probability that F will output in both first and second runs a correct collision forgery with the
same parameters Y0,m0, r0, and the same colliding values y1, e1, r1 = r0, but possibly different
values of m1 and X1 (since the choice of these elements by F may depend on the response to the
H̄(Y0,m0) query). Hence, we let m1, X1 denote the corresponding values from the first run of F ,
and m′

1, X
′
1 denote the values from the second run. We note that even if m1 6= m′

1, we have by
construction of C that the values H̄(Y, m1) and H̄(Y, m′

1) are both equal to e1.
Putting all together, we have that with non-negligible probability C outputs a sequence of

values Y0,m0, e0, y1, e1,m1,m
′
1, X1.X

′
1 which satisfy Equation (2), namely,

Xy0+e0b
0 = Xy1+e1b

1

X
y0+e′0b
0 = X ′y1+e1b

1

Re-arranging these two equations and dividing one by the other we obtain that(
X

e0−e′0
0

(
X1

X ′
1

)−e1
)b

=
(

X1

X ′
1

)y1

(4)

In other words, we see that the values C1 and C2 output by C satisfy that Cb
1 = C2. By the KEA1

assumption there exists an algorithm C′ that in addition to all values output by C also outputs a
value t such that t = logg(C1) = (e0−e′0)x0−e1∆x1 where x0 = logg(X0) and ∆x1 = logg(X1/X ′

1).
Note that by the equality Cb

1 = C2 we also have that t satisfies bt = y1∆x1.
We are now ready to describe a dlog solver D. Algorithm D receives as input a value X0 ∈R G.

It chooses an element b ∈R Zq, sets B = gb, and runs C′ on inputs B = gb, X0. When C′ produces
its output, including the value t, then D sets the two equations induced by t, namely:

t = (e0 − e′0)x0 − e1∆x1 and bt = y1∆x1. (5)

Since D knows b and t, these represent two linear equations on two unknowns x0 and ∆x1, which
can be solved to obtain X0. Note that these equations have a unique solution provided that e0 6= e′0
which is the case except for probability 2−`.

Summarizing, we have shown that if F is an efficient collision forger that succeeds with non-
negligible probability then we can build an efficient algorithm D that solves the discrete logarithm
problem over the group G. This ends the proof of Case I.

Case II: Y0 = Y . Since in the proof of case I we have used the notation Y1 instead of Y we
will keep this notation here, i.e., we assume that the component Y0 in the forgery output by F
equals the value Y1 = gy1 generated by C. In the analysis of case I we have used the fact that
H̄(Y0,m0) and H̄(Y1,m1) are chosen independently of each other so that a change in the response
to H̄(Y0,m0) did not result in changing e1. This is not the case, however, when Y0 = Y1; in this
case the whole argument used in Case I collapses. Fortunately, in Case II we can take advantage
of the fact that Y0 = Y1 in a different way: now, we know also the exponent y0 for which Y0 = gy0

since y0 = y1 and the latter is chosen by C.
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Using the above fact, we define a new algorithm C that on input X0, B̂ ∈R G, interacts with
the forger F as in Figure 6. This time, however, we do not need C to choose in advance the
values y1, e1 for the colliding signature nor it is needed to guess which query from B̂ produces this
colliding signature. Moreover, we can get rid of the repeat experiment all together. All is needed
is to specify that when F outputs a collision forgery (Y0,m0, r0) wrt challenge X0 which collides
with a signature (y1,m1, r1) output by B̂ under challenge X1 (i.e., r1 = r0) and such that Y0 = Y1,
then C outputs the sequence of values: Y0,m0, e0 = H̄(Y0,m0), y1 = y0, e1 = H̄(Y1,m1),m1, X1 as
well as two values C1, C2 computed as C1 = Xe0

0 Xe1
1 and C2 = (X1/X0)y1 .

Analyzing the behavior of C we see that, if in a run under C, the forger F outputs a correct
collision forgery (Y0,m0) which collides with a signature (y1,m1) output by B̂ (and with values
X0, X1, y0 = y1,m1, y1, e0, e1 as specified above) then by virtue of Equation (2) and since Y0 = Y1

we have that Xy1+e0b
0 = Xy1+e1b

1 . Re-arranging terms and denoting C1 = Xe0
0 X−e1

1 and C2 =
(X1/X0)y1 , we have that in the case of a correct collision forgery by F , C succeeds in finding two
(known) constant C1, C2 such that Cb

1 = C2. Thus, using the KEA1 assumption we know that
there is an algorithm C′ that, in addition to the other outputs of C, it also outputs t = logg(C1) =
e0x0 − e1x1 (where x0 = logg(X0) and x1 = logg(X1)).

We are now ready to define an algorithm D for solving the dlog problem for input X0 ∈R G.
This algorithm D chooses b ∈R Zq and runs C ′ on inputs B = gb and X0. When C′ halts with a
(non-abort) output as above then D can set two linear equations t = e0x0−e1x1 and bt = y1x0−y1x1

on unknowns x0, x1. In the case that y1 6= 0 and e0 6= e1, these equations have a unique solution
from which D can obtain x0 = logg(X0). Hence D successfully computes the dlog of its input X0

whenever the following three conditions are satisfied: (i) the run of F under C produces a correct
collision forgery, (ii) y1 6= 0, and (iii) e0 = H̄(Y0,m0) 6= e1 = H̄(Y1,m1). The first happens with
non-negligible probability by assumption on F and by the almost-perfect simulation of C. Condition
(ii) happens with probability 1 − 1/q since y1 is chosen by C (or B̂) at random in Zq. The last
condition (e0 6= e1) happens as long as H̄(Y0,m0) 6= H̄(Y1,m1). Now, since m0 6= m1 (otherwise,
since Y0 = Y1 we would have (Y0,m0) = (Y1,m1) which would make F ’s forgery invalid), then the
probability that H̄(Y0,m0) = H̄(Y1,m1) is 2−`. 2

This completes the proof of Lemma 28 and with it the proof of Lemma 27.

7.3 HCR Signatures with Off-Line Computed Y

In Section 7.2 we proved that if the exponent y of the Y = gy component in an HCR signature
generated by the legitimate signer is revealed then the scheme still remains unforgeable. How-
ever, the analysis there assumed that the value y is chosen randomly at the time of the signature
generation (i.e., in Step 3b of Figure 5) and only then y is revealed. Moreover, the analysis used
the fact that Y = gy is unpredictable to the forger before this value is output by the signer B̂.
This is used in an essential way in the proof of Lemma 28 when arguing that in case II the prob-
ability that H̄(Y, m0) = H̄(Y, m) for m 6= m0 is 2−` and, similarly, that in case I the probability
H̄(Y0,m0) = H̄(Y1,m1) where Y0 6= Y1 (and m0,m1 unrestricted) is also at most 2−`. In the case
that the attacker knows Y in advance the analysis needs to consider that the attacker can now
find m0,m1 for which H̄(Y0,m0) = H̄(Y1,m1) with probability O(min{N2, Q2}2−`), where N is a
bound on the number of possible messages in the system and Q is the total number of H̄-oracle
queries made by F .

Therefore, if we envision a scenario in which the attacker may have access to the values Y
before they are used by the signer B̂ (as in the case in which pre-computed values of Y are leaked)
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then the security of the scheme depends on the quantity O(min{N2, Q2}2−`) rather than 2−` as
before. When the space of possible messages (in the case of HMQV this is the space of possible
identities) is small or when |q| is large enough (e.g., |q| = 255 as mandated in [36]) the above
bound may be considered sufficient for dealing with this limited threat (see Remark 7.2). In other
cases, however, one may want to strengthen HCR signatures against such leakage; we discuss
several possible approaches. One, of course, is to increase `. This however has a negative impact
on the performance of HCR signatures (and their application to the HMQV protocol). A more
efficient solution to the above problem is that instead of computing the exponent e as H̄(Y, m) one
could compute e = H̄(Y, m, ν) where ν is a nonce chosen by the signer at the time of signing and
transmitted to the verifier as part of the signature.

Yet another solution, probably the most simple and economical, is to keep ` small, dispense of
ν, and just include the value of the message m under the final hash. That is, instead of computing
the HCR signature as H(σ), one would compute it as H(σ,m). In this case, the success probability
of the above attack on an a-priori known Y would reduce to min{N2, Q2}2−(`+k). If we consider
a typical case (e.g., the use of HCR signatures in HMQV) where ` ≥ 80 and k ≥ 128 then the
level of security achieved by including m under the hash as above is perfectly satisfactory (like a
birthday attack on a 208-bit hash function). In Section 7.4 we will discuss the possible effect of
such a change to the security and specification of HMQV.

7.4 Application to HMQV: Resilience to the Leakage of DH Exponents

Here we show how the resilience of the HMQV protocol to the disclosure of ephemeral DH exponents
follows from the proven security of HCR signatures. We first consider the case in which a party to
a session generates the ephemeral DH value, say Y = gy, during the run of the session and stores
the exponent y in the session’s state. In this case an attacker M can find the value y by breaking
into the session’s state (formally, via a state-reveal query). Later, we will consider the case in which
the DH value Y is pre-computed ahead of the session in which it is used.

Lemma 29 Under the GDH and KEA1 assumptions, protocol HMQV remains secure in the ran-
dom oracle model even if session states are specified to store the secret exponent of the session’s
outgoing value. That is, learning the exponent of an ephemeral DH value used in a session via a
state-reveal query does not help the attacker M in breaking other sessions (not even the session
that uses the leaked ephemeral exponent).

Proof (sketch): The lemma follows from Lemma 27 in a way similar to the proof of Lemma 10
(Section 5.2), namely, by showing how to construct a successful forger F in the game of Figure 5
given a successful HMQV attacker M which is allowed to learn ephemeral DH exponents via state-
reveal queries. As usual, F will orchestrate a run of the HMQV protocol, in which the signing oracle
B̂ is used as one of the parties, and will run M against this simulated protocol. The difference with
respect to previous such constructions of F is that we assume an attacker M that is allowed to learn,
via state-reveal queries, the values of ephemeral exponents y (corresponding to DH values Y = gy

exchanged in the protocol). Specifically, F needs to be able to provide these values for any session
held at an uncorrupted party (except for the test session and its matching session). For uncorrupted
parties other than B̂, F itself chooses these exponents so it can provide them to M. In the case
of B̂, F receives the exponents y directly from B̂, as part of B̂’s HCR signatures, and therefore
it can provide these values to M if M queries them. In the case of state-reveal and session-key
queries against sessions held at B̂, F can also provide to M the value of the corresponding session

53



keys since these are exactly the output of HCR signatures. As in the original proof in Section 5.2,
the run of M by F is indistinguishable from a real run of M and therefore when F happens to
guess the test session and M outputs a correct forgery for the test signature, then F can use this
test signature as a forgery against B̂. Thus, if M succeeds with non-negligible probability against
HMQV, the constructed F succeeds also with non-negligible probability to forge HCR signatures.
A final technical point is that since HMQV uses dual HCR signatures, in which the challenge X is
replaced with XAd for d = H̄(X, m), then in the above forgery game we have to replace challenges
X with XAd for A = ga and d = H̄(X, m). However, since the above proof works even in case that
the attacker knows a then forging a signature with challenge XAd is equivalent to forging it with
challenge X. (Similarly to the modified computation of W (in this case, relative to Figure 6) as in
the proof of Theorem 7). 2

Remark 7.1 (Security of sessions that use a compromised DH exponent.) The proof of Lemma 29
shows that even if M learns the value y corresponding to a test session (Â, B̂,X, Y = gy), M
cannot distinguish the session key from random (this holds even if M knows Â’s private key a).
In addition, it is possible to show that if both private keys of Â and B̂ are unknown to M and
Â completes a session (Â, B̂,X, Y ) with values X = gx, Y = gy chosen by Â, B̂, respectively, then
even if M knows x and y, the session key remains secure. The proof for the latter case consists
of showing how to use an assumed successful attacker M in order to build a CDH solver that
computes CDH(A,B). We sketch this idea: Given inputs A,B, the solver C for CDH(A,B) will
run M against a setting of the HMQV protocol in which two of the parties (call them Â, B̂) are
provided with public keys A and B, respectively. The simulation of Â and B̂ (for which C does
not know the private keys) uses the simulation of HCR signatures (helped by a DDH-oracle as
before). If M succeeds in a test session (Â, B̂,X, Y ) for which the exponents x, y are chosen by C
on behalf of A,B (and possibly known to M) then M must query the dual signature g(x+da)(y+eb)

from the oracle H. From this value, and using the knowledge of x, y, d, e, the solver C derives
CDH(A,B) = gab.

We proceed to analyze the case in which the exposure of the exponent y (or even gy) happens
before its use in a session. The security of the protocol in this case also follows from the unforge-
ability of HCR signatures. However, the setting that we need to consider is the one analyzed in
Section 7.3, namely, in which the value gy to be used in a session (or a signature) is known to the
attacker in advance. As discussed there, in cases where ` is small and the space of messages (i.e.,
identities) is large, one may want to add an (unpredictable) nonce to the signature or to hash the
signed message together with the hashing of σ. This results in two possible variants of HMQV:

1. When Â sends X = gx to B̂ she also sends a random nonce νÂ (where νÂ cannot be predicted
by M before it is sent). Similarly, B̂ will respond with Y = gy and its own unpredictable
nonce νB̂. The exponents d and e are computed as H̄(X, B̂, νÂ) and H̄(Y, Â, νB̂), respectively.

2. The protocol messages are unchanged; instead the parties’ identities are added to the key
derivation procedure; namely the session key is now computed as K = H(σ, Â, B̂) instead of
K = H(σ) as before (the order of Â and B̂ under H can be determined arbitrarily but, of
course, must be the same for both Â and B̂).

Both variants are simple and inexpensive. The second may be preferable as it saves the extra
nonce; on the other hand, such a nonce is likely to be used anyway in actual implementations of
the protocol for purposes of session identification (but note that the nonce in this case must be
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unpredictable). An advantage of variant 2 is that the hashing of identities in the key derivation
function provides uniformity with the one-pass protocol of Section 9 (see Remark 9.1).

We thus have the following lemma.

Lemma 30 Under the GDH and KEA1 assumptions, any one of the above variants of protocol
HMQV remain secure in the random oracle model even if the attacker is allowed access to secret
ephemeral DH exponents before or during the session that uses these exponents.

Remark 7.2 (The effect of birthday-type attacks on the original HMQV.) While we do not rec-
ommend ignoring the effect of the birthday-type attacks described above (especially, that they can
be avoided easily), it is illustrative to understand the effect of such an attack on the basic HMQV
protocol. In order to take advantage of such an attack, M would need to know the value Y used
by a party B̂ in advance. Then it would need to find two identities in the system (recall that
in HMQV the message m is always the identity of a party), say P̂ and P̂ ′, for which a collision
H̄(Y0, P̂ ) = H̄(Y, P̂ ′) can be found. Once these are found, the attacker can mount a UKS attack
against B̂ and P̂ by forcing the generation of two unmatching sessions at these parties which output
the same key but have different peers (B̂ would end the session with peer P̂ ′ and P̂ with peer B̂).
In addition, for this attack to succeed, M would need to corrupt P̂ ′ and register the same public
key of P̂ under the name of P ′ (this also assumes that no proof of possession is required by the
CA). Finally, note that in general M may have some control about one of the identities to attack,
but in order to control both identities it would require that each identity will have many different
representations (e.g., the identity could include arbitrary random bits in its representation). In all,
it can be argued that the practicality of such an attack is minimal. Yet, for the case in which ` is
relatively small, say ` = 160, then one may want to choose one of the above variants of HMQV.

8 The 3-message HMQV-C Protocol

The HMQV-C Protocol

Â Â , B̂ , X=gx
- B̂

B̂ , Â , Y=gy , MACKm
(“1”)�

MACKm(“0”) -

Key Computation (by Â and B̂):

Compute σ as in HMQV; compute Km = H(σ, 0) and SK = H(σ, 1)

Figure 7: Â and B̂, with public keys A=ga and B=gb, resp., share session key SK.

In this section we study a 3-message variant of the HMQV protocol, which we refer to as
HMQV-C (where C stands for “key Confirmation”), and which is depicted in Figure 7. The protocol
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enjoys all the security properties of HMQV (the same analysis of HMQV establishes these properties
for HMQV-C) and essentially the same computational cost. It adds, however, a third message to the
protocol and a slight increase in the length of protocol messages. In return, HMQV-C provides some
properties lacking in the basic HMQV protocol. We discuss three such properties: key confirmation,
PFS, and universal composability.

Key confirmation. The HMQV protocol provides a fundamental assurance to a party Â that
completes a session with peer B̂ and session key K: if B̂ is not corrupted then only B̂ may possibly
know K. What the protocol does not provide is any assurance to Â that B̂ completed the session
or computed the session key; moreover, B̂ might not have even been “alive” during the execution
of the session. This is not just a drawback of HMQV but the same will be true for any 2-message
public-key based protocol (assuming, as in the typical public key scenario, that no prior shared state
was created at an earlier communication between Â and B̂). Furthermore, as pointed out by Shoup
[41], the seemingly natural goal that both parties have assurance that the the peer completed the
session before each starts using the key cannot be achieved by any key-exchange protocol. Indeed,
the attacker can always prevent this mutual assurance by stopping the last protocol message from
reaching its destination.

Yet, the weaker assurance to each of the parties that the peer was able to compute the key (but
not necessarily that it output the key to the calling application) is achievable and referred to in the
literature as the key confirmation property. While not crucial for the basic security of a key exchange
(e.g., the lack of key confirmation is not a threat to the privacy or authenticity of communications
protected with this key [11]), this property may provide a useful “operational sanity check” for some
applications. In this case, protocol HMQV-C is better suited than HMQV since the added MAC
values provide key confirmation. Moreover, the MAC validation confirms the active involvement
of the identified peer to the session as well as the fact that this peer possesses a matching session
(i.e., with same peers and same session key). Note that in order to achieve these properties, the
MAC in HMQV-C does not need to be applied to any specific session information but simply to
a single bit used to indicate the “direction” of the message and to prevent reflection. Also worth
noting is that the protocol consisting of only the first two messages in HMQV-C already provides
key confirmation to the initiator (which may add a useful feature to HMQV without increasing the
number of protocol messages).

Note (denial of service): In many applications of key exchange, lack of key confirmation may
lead to a form of “denial of service” (DoS) attack in which a party Â starts using the key, say to
send protected information to B̂, while B̂ is not able to process this information since it did not
yet establish the key. As said, this situation cannot be avoided completely since mutual “session
completion” confirmation is not achievable. Moreover, there are more serious forms of DoS attacks
against protocols based on public key operations, in which a party is forced to spend significant
computation cycles (and create session state) before discovering the invalidity of the peer. Some
useful but limited-scope counter-measures to DoS attacks exist (cf. [19]) that can be applied to
any key-exchange protocol (including HMQV) at the expense of added protocol messages.

Perfect Forward Secrecy (PFS). As shown in Section 6.2, no 2-message protocol, and in
particular HMQV, can provide full perfect forward secrecy. Instead, the best one can hope for is
the weak form of PFS provided by HMQV and proven in that section. The main advantage of
HMQV-C is that it lifts this inherent limitation of HMQV and provides for full PFS (see formal
definition in Section 2). The proof of this fact is similar to the proof of Lemma 23. In that case,
in order to claim forward secrecy, we had to explicitly assume (as formally captured by the notion
of “clean sessions”) that the legitimate parties chose the DH values for the session. In the case
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of HMQV-C, however, there is no need for any such assumptions. Indeed, a completed session in
HMQV-C already provides assurance that the DH values were chosen (and explicitly authenticated)
by the session’s peers. We thus obtain full perfect forward secrecy: if an uncorrupted party Â
establishes an HMQV-C session with uncorrupted peer B̂, then the session key K remains secure
even if the attacker corrupts Â after K expired at Â, or it corrupts B̂ after K expired at B̂.

UC Security. In [13], Canetti and Krawczyk expand their model of key exchange from [11] (which
we use as the basis for this work) to a more ambitious model targeted at ensuring the security of
key-exchange protocols when run concurrently with other applications (as is the case in real-world
environments). This model is known as the Universal-Composability (UC) model of key exchange (a
part of the general UC framework of Canetti [10]). An important theorem from [13] shows that if a
protocol is proven secure in the model of [11] and it also enjoys the so called “ACK property” then
the protocol is also secure in the stronger UC model. Informally, the ACK property requires that
when the first party to complete a session outputs its session key then the peer’s state contains only
information that can be “simulated” from the public information in the protocol and the session
key. This can be shown to be the case for HMQV-C (see Claim 15 in [13]). Therefore, HMQV-C
is secure in the UC model as well. (On the other hand, HMQV can be shown to be secure in the
“relaxed UC” model from [13] but not in the regular UC model.)
We summarize the above properties of HMQV-C in the following theorem:

Theorem 31 Under the CDH assumption, the HMQV-C protocol, with its hash function modeled
as a random oracle, is a secure key-exchange protocol in the Canetti-Krawczyk model, which enjoys
all the security properties from Theorem 18, and the additional properties of perfect forward secrecy
(PFS) and key confirmation. The security of the protocol holds also in the Universal Composability
model of key-exchange protocols [13].

9 One-Pass HMQV

A one-pass key exchange protocol consists of a single message sent from a sender Â to a recipient B̂
from which both parties (using their private and public keys) derive a unique key that only Â and
B̂ may possibly know (as long as both parties and the session are uncorrupted as defined below). In
particular, B̂ knows that the incoming message originated from Â and was intended to B̂. In other
words, the requirements from the established key are the same as in a regular key exchange protocol
except for the possibility that the message received by B̂ is a replay of an older message from Â
(this replay is inevitable in a one-pass protocol, though it may be detectable by other means such as
synchronized time or shared state). In addition, such a protocol cannot provide PFS since (by lack
of a session-specific input from B̂) the key should be computable with the sole knowledge of B̂’s
private key. Below we outline a formal definition of the security of one-pass protocols. The MQV
papers [33, 29] suggested a one-pass variant of the protocol. Here we adopt the same ideas with
respect to HMQV, and obtain a very efficient and provably secure one-pass key-exchange protocol.

One-pass HMQV. One-pass HMQV between parties Â and B̂ (with public keys A = ga, B =
gb, respectively) consists of a single value X = gx transmitted from Â to B̂ (where x ∈R Zq is
chosen by Â). The session key K is computed by Â as: (i) Let (Â, B̂) denote a message that
includes the two identities Â and B̂, and set d to be the result of d = H̄(X, (Â, B̂)). (ii) compute
σÂ = XSIGÂ(X, (Â, B̂), B) = Bx+da (XSIG is defined in Definition 2); (iii) set K = H(σÂ) where H
outputs a number of bits equal to the length of the required key. The same key K is computed by
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B̂ (after checking that X 6= 0) as K = H((XAd)b).

Security model for one-pass protocols. The key-exchange security model of Canetti-Krawczyk
outlined in Section 2 applies to the one-pass protocol case through the following changes. Sessions
are named by their peers and the exchanged message, i.e. by the triple (Â, B̂,X) (for simplicity we
use the same session notation for both Â and B̂). A session is called exposed if one of the following
happens: (i) Â or B̂ are corrupted; (ii) a session-key query is issued against the session (in which
case the attacker obtains the session key); (iii) a state-reveal query is issued against the session
(either at Â or B̂). The test-session game is the same as in the general model (in particular, a
test session can be chosen among any one of the unexposed sessions). The rest of the model and
security definitions are unchanged.

Theorem 32 Under the CDH assumption and in the random oracle model, One-Pass HMQV is a
secure one-pass key-exchange protocol.

The proof of this theorem combines two elements: (i) a proof based on XCR signatures (by
Â) similar in spirit to the proof of the HMQV protocol from Section 5.2; and (ii) a proof of
indistinguishability of the key K which involves arguments similar to those used in [1]. The latter
aspect is orthogonal to most of the analysis work in this paper and its proof is related to other
implicitly-authenticated Diffie-Hellman studied in [28]. The reason to include the identity of Â
under the signed message (i.e., under the hash that defines d) is to thwart a UKS-type attack as
follows. The attacker M registers Â’s public key, A, as her own public key. Then, when Â sends
to B̂ the message Â,X, the attacker M replaces it with M, X. The result is that B̂ believes the
resultant key K is shared with M while Â believes she shared (the same) K with B̂.

We conclude by pointing out that the above one-pass protocol can be used as an authenticated
CCA encryption scheme, that is, Â can transmit a message m to B̂ encrypted (against chosen-
ciphertext attacks) as well as authenticated (by Â). For this, Â would send a triple (X, c, t) where
X = gx, c is a ciphertext obtained as the symmetric CPA encryption of message m under a key
K1, and t a MAC value computed on c under key K2. The keys K1 and K2 are derived from a
key K computed from X as in the one-pass HMQV protocol. The whole cost of this procedure is
2 exponentiations for Â (one is off-line) and 1.5 for B̂. This is just 1/2 exponentiation more for B̂
compared to the DHIES CCA encryption from [1] but in return it provides authentication from Â
(with DHIES this authentication would require a full additional signature from Â). This efficient
authenticated CCA encryption is very attractive for ”store-and-forward” applications such as PGP,
and significantly cheaper than the usual sign-and-encrypt paradigm. The only caveat here is that
the identity Â (and possibly its certificate) needs to be transmitted in the clear as it is needed for
the decryption operation. Yet another property of the above protocol that is worth noting is that
it can be used just as a verifier-specific signature of Â on message m without necessarily adding
the encryption part. This signature, however, is recipient specific and therefore does not provide
non-repudiation; instead it provides deniability, a very valuable feature in many applications, e.g.
PGP. (See also Remark 4.5.)

Remark 9.1 (A note on standardization.) Many of the standards that have adopted MQV, have
also adopted the one-pass variant of it. For standards interested in adopting HMQV in its different
forms (one, two and three messages), it could make sense to define the derivation of the key
in the one-pass protocol similar to the derivation in the other variants of HMQV. Specifically, by
substituting Y with B in the dual signatures that define the HMQV protocol (Section 5), we obtain
the following values for the one-pass key: Â and B̂ compute σÂ = (BBe)x+da and σB̂ = (XAd)b+eb,
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respectively, and set the key K to the hash of these (equal) values. (Note that in this case the
exponent e does not add any value to the protocol except for making it compatible with the other
variants; it actually somewhat detracts from the protocol efficiency.) Yet, an additional discrepancy
remains between the value of d = H̄(X, (Â, B̂)) in the one-pass version and d = H̄(X, B̂) in the
2-message version of HMQV. A way to provide compatibility between the three modes would be
to have in all of them d = H̄(X, B̂), e = H̄(Y, Â) (where Y = B in the one-pass case), and add the
identities Â, B̂ to the session-key derivation function: namely, K = H(σ, Â, B̂) (with the order of
Â and B̂ defined using some fixed criterion). This replaces the need to add Â in the computation
of d. It also has the advantage, as discussed in Section 7.3 of strengthening HMQV in the case of
leaked pre-computed DH values.

10 Concluding Remarks

The results in this paper show vulnerabilities of MQV to known-key and other attacks (in the case of
the 3-message variant of MQV some of these vulnerabilities depend on the ability of the attacker to
access ephemeral state information for incomplete sessions). The extent to which these weaknesses
are exploitable in practice depends of course on the application, the computing and communication
environment, threat model, etc. These results do not mean that applications already using MQV
are necessarily insecure in their specific environments. At the same time, the identified weaknesses
should not be dismissed as theoretical only, especially when considering that MQV has been (and
is being) standardized as a key-exchange protocol for use in heterogeneous and unknown scenarios
(including the highly sensitive applications such as those announced by the NSA [36]). This is
particularly true when, as shown here, these weaknesses are not inherent to the problem being
solved nor to the formal analytical setting.

Indeed, HMQV provides the same functionality with the same (or even better) performance
of MQV while enjoying a full proof of security.12 Two caveats regarding this proof are the use
of the idealized random oracle methodology and the significant (though polynomially bounded)
reduction cost. Other proven protocols (such as SKEME [26], ISO [22, 11] and SIGMA [27, 12]),
while less efficient, enjoy less expensive reductions and do not directly require random oracles.
We note, however, that dispensing of random oracles in these protocols requires the use of the
more expensive (and seldom used in practice) signature and encryption schemes that do not rely
on random oracles, and also requires the stronger DDH assumption. Certainly, coming up with a
protocol that offers the many attractive security and performance properties of HMQV and does
not rely on the random oracle model in its analysis is an important open question.

We end by stressing that in spite of the weaknesses demonstrated here, the MQV protocol
contains some remarkable ideas without which the design of HMQV would have not been possible.
Nor would this design have been possible without the rigorous examination of these ideas in a
formal framework such as the one in [11]. The design of HMQV is a demonstration of the strength
of “proof-driven designs” which guide us in choosing the necessary design elements of the protocol
while dispensing of unnecessary “safety margins”. As a result, one obtains solutions that are not
only cryptographically sound but are also more efficient.

12We hope that standard bodies will take into account provability of protocols when selecting or revising protocols
for standardization.
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A Kaliski’s On-line UKS Attack Against MQV

For the benefit of the reader we present here Kaliski’s UKS attack [24] demonstrating that the
requirement of proof-of-possession from registrants of public keys is not a solution to this UKS
weakness of the MQV protocol. Moreover, this attack demonstrates that replacing the exponents
d = X̄, e = Ȳ used in the MQV protocol with H̄(X), H̄(Y ), respectively, for any function H (even
a perfect random oracle) does not resolve the UKS attack.

1. Â sends X to B̂.

2. The attacker M intercepts X.

3. M registers with the CA a key C = gc where c is computed by (and then known to) M as:

(a) Choose u ∈R Zq;

(b) Set d = H(X), Z = XAdg−u, h = H(Z), and c = u/h.

4. M sends Z to B̂ as coming from M (with certified public key C).

5. B̂ responds with Y to M.

6. M relays Y to Â as coming from B̂.

Note that ZCh = XAd, and therefore the keys computed in sessions (Â, B̂,X, Y ) and (B̂,M, X, Y )
(established by Â and B̂, respectively) are identical.

It is worth noting that the above specific attack can be prevented by making the values d, e, h
depend on both exponents (e.g. d = H̄(X, Y )), a UKS attack in this case is still possible (as
pointed out in Section 3.2, even one that works against the 3-message MQV protocol with key
confirmation). What is needed to solve the attack is to bind the outgoing DH value and the peer’s
identity in the definition of e and d, as done in HMQV.
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