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Abstract

We compare the relative strengths of popular notions of security for public-key encryption

schemes. We consider the goals of privacy and non-malleability, each under chosen-plaintext

attack and two kinds of chosen-ciphertext attack. For each of the resulting pairs of de�nitions

we prove either an implication (every scheme meeting one notion must meet the other) or a

separation (there is a scheme meeting one notion but not the other, assuming the �rst notion

can be met at all). We similarly treat plaintext awareness, a notion of security in the random-

oracle model. An additional contribution of this paper is a new de�nition of non-malleability

which we believe is simpler than the previous one.
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1 Introduction

In this paper we compare the relative strengths of various notions of security for public-key encryp-

tion. We want to understand which de�nitions of security imply which others. We start by sorting

out some of the notions we will consider.

1.1 Notions of Encryption Scheme Security

A convenient way to organize de�nitions of secure encryption is by considering separately the

various possible goals and the various possible attack models, and then obtain each de�nition as a

pairing of a particular goal and a particular attack model. This viewpoint was suggested to us by

Moni Naor [25].

We consider two di�erent goals: indistinguishability of encryptions, due to Goldwasser and

Micali [21], and non-malleability, due to Dolev, Dwork and Naor [13]. Indistinguishability (IND)

formalizes an adversary's inability to learn any information about the plaintext x underlying a

challenge ciphertext y, capturing a strong notion of privacy. Non-malleability (NM) formalizes an

adversary's inability, given a challenge ciphertext y, to output a di�erent ciphertext y0 such that

the plaintexts x; x0 underlying these two ciphertexts are \meaningfully related". (For example,

x0 = x+ 1.) It captures a sense in which ciphertexts can be tamper-proof.

Along the other axis we consider three di�erent attacks. In order of increasing strength these

are chosen-plaintext attack (CPA), non-adaptive chosen-ciphertext attack (CCA1), and adaptive

chosen-ciphertext attack (CCA2). Under CPA the adversary can obtain ciphertexts of plaintexts

of her choice. In the public-key setting, giving the adversary the public key suÆces to capture

these attacks. Under CCA1, formalized by Naor and Yung [26], the adversary gets, in addition

to the public key, access to an oracle for the decryption function. The adversary may use this

decryption function only for the period of time preceding her being given the challenge ciphertext y.

(The term non-adaptive refers to the fact that queries to the decryption oracle cannot depend on

the challenge y. Colloquially this attack has also been called a \lunchtime," \lunch-break," or

\midnight" attack.) Under CCA2, due to Racko� and Simon [27], the adversary again gets (in

addition to the public key) access to an oracle for the decryption function, but this time she may

use this decryption function even on ciphertexts chosen after obtaining the challenge ciphertext y,

the only restriction being that the adversary may not ask for the decryption of y itself. (The attack

is called adaptive because queries to the decryption oracle can depend on the challenge y.) As a

mnemonic for the abbreviations CCA1 / CCA2, just remember that the bigger number goes with

the stronger attack.

One can \mix-and-match" the goals fIND;NMg and attacks fCPA;CCA1;CCA2g in any com-

bination, giving rise to six notions of security:

IND-CPA; IND-CCA1; IND-CCA2; NM-CPA; NM-CCA1; NM-CCA2 :

Most are familiar (although under di�erent names). IND-CPA is the notion of [21];
1
IND-CCA1 is

the notion of [26]; IND-CCA2 is the notion of [27]; NM-CPA, NM-CCA1 and NM-CCA2 are from

[13, 14, 15].

1.2 Implications and Separations

In this paper we work out the relations between the above six notions. For each pair of notions

A;B 2 f IND-CPA; IND-CCA1; IND-CCA2; NM-CPA; NM-CCA1; NM-CCA2 g, we show one of

1Goldwasser and Micali referred to IND-CPA as polynomial security, and also showed this was equivalent to

another notion, semantic security.
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Figure 1: An arrow is an implication, and in the directed graph given by the arrows, there is a path

from A to B if and only A) B. The hatched arrows represent separations we actually prove; all

others follow automatically. The number on an arrow or hatched arrow refers to the theorem in

this paper which establishes this relationship.

the following:

� A) B: A proof that if PE is any encryption scheme meeting notion of security A then PE

also meets notion of security B.

� A 6) B: A construction of an encryption scheme PE that provably meets notion of security

A but provably does not meet notion of security B.
2

We call a result of the �rst type an implication, and a result of the second type a separation. For

each pair of notions we provide one or the other, so that no relation remains open.

These results are represented diagrammatically in Figure 1. The (unhatched) arrows repre-

sent implications that are proven or trivial, and the hatched arrows represent explicitly proven

separations. Speci�cally, the non-trivial implication is that IND-CCA2 implies NM-CCA2, and

the separations shown are that IND-CCA1 does not imply NM-CPA; nor does NM-CPA imply

IND-CCA1; nor does NM-CCA1 imply NM-CCA2.

Figure 1 represents a complete picture of relations in the following sense. View the picture as a

graph, the edges being those given by the (unhatched) arrows. (So there are eight edges.) We claim

that for any pair of notions A;B, it is the case that A implies B if and only if there is a path from

A to B in the graph. The \if" part of this claim is of course clear from the de�nition of implication.

The \only if" part of this claim can be veri�ed for any pair of notions by utilizing the hatched and

unhatched arrows. For example, we claim that IND-CCA1 does not imply IND-CCA2. For if we

had that IND-CCA1 implies IND-CCA2 then this, coupled with NM-CCA1 implying IND-CCA1

and IND-CCA2 implying NM-CCA2, would give NM-CCA1 implying NM-CCA2, which we know

to be false.

That IND-CCA2 implies all of the other notions helps bolster the view that adaptive CCA is

the \right" version of CCA on which to focus. (IND-CCA2 has already proven to be a better tool

for protocol design.) We thus suggest that, in the future, \CCA" should be understood to mean

adaptive CCA.

1.3 Plaintext Awareness

Another adversarial goal we will consider is plaintext awareness (PA), �rst de�ned by Bellare and

Rogaway [6]. PA formalizes an adversary's inability to create a ciphertext y without \knowing" its

underlying plaintext x. (In the case that the adversary creates an \invalid" ciphertext what she

should know is that the ciphertext is invalid.)

2This will be done under the assumption that there exists some scheme meeting notion A, since otherwise the

question is vacuous. This (minimal) assumption is the only one made.
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So far, plaintext awareness has only been de�ned in the random-oracle (RO) model. Recall

that in the RO model one embellishes the customary model of computation by providing all parties

(good and bad alike) with a random function H from strings to strings. See [5] for a description of

the random-oracle model and a discussion of its use.

The six notions of security we have described can be easily \lifted" to the RO model, giving six

corresponding de�nitions. Once one makes such de�nitional analogs it is easily veri�ed that all of

the implications and separations mentioned in Section 1.2 and indicated in Figure 1 also hold in

the RO setting. For example, the RO version of IND-CCA2 implies the RO version of NM-CCA2.

Since PA has only been de�ned in the RO model it only makes sense to compare PA with

other RO notions. Our results in this vein are as follows. Theorem 4.2 shows that PA (together

with the RO version of IND-CPA) implies the RO version of IND-CCA2. In the other direction,

Theorem 4.4 shows that the RO version of IND-CCA2 does not imply PA.

1.4 De�nitional Contributions

Beyond the implications and separations we have described, we have two de�nitional contributions:

a new de�nition of non-malleability, and a re�nement to the de�nition of plaintext awareness.

The original de�nition of non-malleability [13, 14, 15] is in terms of simulation, requiring, for

every adversary, the existence of some appropriate simulator. We believe our formulation is simpler.

It is de�ned via an experiment involving only the adversary; there is no simulator. Nonetheless,

the de�nitions are equivalent [7], under any form of attack.

Thus the results in this paper are not a�ected by the de�nitional change. We view the new

de�nition as an additional, orthogonal contribution which could simplify the task of working with

non-malleability. We also note that our de�nitional idea lifts to other settings, like de�ning semantic

security [21] against chosen-ciphertext attacks. (Semantic security seems not to have been de�ned

against CCA.)

With regard to plaintext awareness, we make a small but important re�nement to the de�-

nition of [6]. The change allows us to substantiate their claim that plaintext awareness implies

chosen-ciphertext security and non-malleability, by giving us that PA (plus IND-CPA) implies the

RO versions of IND-CCA2 and NM-CCA2. Our re�nement is to endow the adversary with an

encryption oracle, the queries to which are not given to the extractor. See Section 4.

1.5 Motivation

In recent years there has been an increasing role played by public-key encryption schemes which

meet notions of security beyond IND-CPA. We are realizing that one of their most important uses is

as tools for designing higher-level protocols. For example, encryption schemes meeting IND-CCA2

appear to be the right tools in the design of authenticated key exchange protocols in the public-key

setting [1]. As another example, the designers of SET (Secure Electronic Transactions) selected

an encryption scheme which achieves more than IND-CPA [28]. This was necessary, insofar as

the SET protocols would be wrong if instantiated by a primitive which achieves only IND-CPA

security. Because encryption schemes which achieve more than IND-CPA make for easier-to-use

(or harder-to-misuse) tools, emerging standards rightly favor them.

We comment that if one takes the CCA models \too literally" the attacks we describe seem

rather arti�cial. Take adaptive CCA, for example. How could an adversary have access to a

decryption oracle, yet be forbidden to use it on the one point she really cares about? Either she

has the oracle and can use it as she likes, or she does not have it at all. Yet, in fact, just such

a setting e�ectively arises when encryption is used in session key exchange protocols. In general,
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one should not view the de�nitional scenarios we consider too literally, but rather understand that

these are the right notions for schemes to meet when these schemes are to become generally-useful

tools in the design of high level protocols.

1.6 Related Work and Discussion

Relations. The most recent version of the work of Dolev, Dwork and Naor, the manuscript [15],

has, independently of our work, considered the question of relations among notions of encryptions

beyond IND-CPA. It contains (currently in Remark 3.6) various claims that overlap to some extent

with ours. (Public versions of their work, namely the 1991 proceedings version [13] and the 1995

technical report [14], do not contain these claims.)

Foundations. The theoretical treatment of public-key encryption begins with Goldwasser and

Micali [21] and continues with Yao [29], Micali, Racko� and Sloan [24], and Goldreich [18, 19]. These

works treat privacy under chosen-plaintext attack (the notion we are capturing via IND-CPA). They

show that various formalizations of it are equivalent, in various models. Speci�cally, Goldwasser and

Micali introduced, and showed equivalent, the notions of indistinguishability and semantic security;

Yao introduced a notion based on computational entropy; Micali, Racko� and Sloan showed that

appropriate variants of the original de�nition are equivalent to this; Goldreich [18] made important

re�nements to the notion of semantic security and showed that the equivalences still held; and

Goldreich [19] provided de�nitions and equivalences for the case of uniform adversaries. We build

on these foundations both conceptually and technically. In particular, this body of work e�ectively

justi�es our adopting one particular formulation of privacy under chosen-plaintext attack, namely

IND-CPA.

None of the above works considered chosen-ciphertext attacks and, in particular, the question of

whether indistinguishability and semantic security are equivalent in this setting. In fact, semantic

security under chosen-ciphertext attack seems to have not even been de�ned. As mentioned earlier,

de�nitions for semantic security under CCA can be obtained along the lines of our new de�nition

of non-malleability. We expect (and hope) that, after doing this, the equivalence between semantic

security and indistinguishability continue to hold with respect to CCA, but this has not been

checked.

Recent work on simplifying non-malleability. As noted above, Bellare and Sahai [7]

have shown that the de�nition of non-malleability given in this paper is equivalent to the original

one of [13, 14, 15]. In addition, they provide a novel formulation of non-malleability in terms of

indistinguishability, showing that non-malleability is just a form of indistinguishability under a

certain type of attack they call a parallel attack. Their characterization can be applied to simplify

some of the results in this paper.

Schemes. It is not the purpose of this paper to discuss speci�c schemes designed for meeting any

of the notions of security described in this paper. Nonetheless, as a snapshot of the state of the art,

we attempt to summarize what is known about meeting \beyond-IND-CPA" notions of security.

Schemes proven secure under standard assumptions include that of [26], which meets IND-CCA1,

that of [13], which meets IND-CCA2, and the much more eÆcient recent scheme of Cramer and

Shoup [10], which also meets IND-CCA2. Next are the schemes proven secure in a random-oracle

model; here we have those of [5, 6], which meet PA and are as eÆcient as schemes in current

standards. Then there are schemes without proofs, such as those of [11, 30]. Finally, there are

schemes for non-standard models, like [16, 27].

We comment that it follows from our results that the above mentioned scheme of [10], shown

to meet IND-CCA2, is also non-malleable, even under an adaptive chosen-ciphertext attack.
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Symmetric encryption. This paper is about relating notions of security for public-key (ie. asym-

metric) encryption. The same questions can be asked for private-key (ie. symmetric) encryption.

De�nitions for symmetric encryption scheme privacy under CPA were given by [2]. Those notions

can be lifted to deal with CCA. De�nitions for non-malleability in the private-key setting can be

obtained by adapting the public-key ones. Again we would expect (and hope) that, if properly

done, the analogs to the relations we have proven remain.

One feature of de�nitions in this setting is worth highlighting. Recall that in the public-key

setting, nothing special had to be done to model CPA; it corresponds just to giving the adversary

the public key. Not so in a private-key setting. The suggestion of [3] is to give the adversary an

oracle for encryption under the private key. This must be done in all de�nitions, and it is under

this notion that we expect to see an analog of the results for the public-key case.

Goldreich, in discussions on this issue, has noted that in the private-key case, one can consider an

attack setting weaker than CPA, where the adversary is not given an encryption oracle. He points

out that under this attack it will not even be true that non-malleability implies indistinguishability.

Encryption scheme security which goes beyond indistinguishability is important in the private-

key case too, and we feel it deserves a full treatment of its own which would explore and clarify

some of the above issues.

Further remarks. We comment that non-malleability is a general notion that applies to primi-

tives other than encryption [13]. Our discussion is limited to its use in asymmetric encryption.

Bleichenbacher [8] has recently shown that a popular encryption scheme, RSA PKCS #1, does

not achieve IND-CCA1. He also describes a popular protocol for which this causes problems. His

results reinforce the danger of assuming anything beyond IND-CPA which has not been demon-

strated.

A preliminary version of this paper appeared as [3]. We include here material which was omitted

from that abstract due to space limitations.

2 De�nitions of Security

This section provides formal de�nitions for the six notions of security of an asymmetric (ie., public-

key) encryption scheme discussed in Section 1.1. Plaintext awareness will be described in Section 4.

We begin by describing the syntax of an encryption scheme, divorcing syntax from the notions of

security.

Experiments. We use standard notations and conventions for writing probabilistic algorithms

and experiments. If A is a probabilistic algorithm, then A(x1; x2; : : : ; r) is the result of running

A on inputs x1; x2; : : : and coins r. We let y  A(x1; x2; : : :) denote the experiment of picking r

at random and letting y be A(x1; x2; : : : ; r). If S is a �nite set then x  S is the operation of

picking an element uniformly from S. If � is neither an algorithm nor a set then x � is a simple

assignment statement. We say that y can be output by A(x1; x2; : : :) if there is some r such that

A(x1; x2; : : : ; r) = y.

Syntax and conventions. The syntax of an encryption scheme speci�es what kinds of algorithms

make it up. Formally, an asymmetric encryption scheme is given by a triple of algorithms, PE =

(K; E ;D), where

� K, the key generation algorithm, is a probabilistic algorithm that takes a security parameter

k 2 N and returns a pair (pk; sk) of matching public and secret keys.

� E , the encryption algorithm, is a probabilistic algorithm that takes a public key pk and a

message x 2 f0; 1g� to produce a ciphertext y.
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� D, the decryption algorithm, is a deterministic algorithm which takes a secret key sk and

ciphertext y to produce either a message x 2 f0; 1g� or a special symbol ? to indicate that the

ciphertext was invalid.

We require that for all (pk; sk) which can be output by K(k), for all x 2 f0; 1g�, and for all y

that can be output by Epk(x), we have that Dsk(y) = x. We also require that K, E and D can be

computed in polynomial time. As the notation indicates, the keys are indicated as subscripts to

the algorithms.

Recall that a function � : N! R is negligible if for every constant c � 0 there exists an integer

kc such that �(k) � k�c
for all k � kc.

2.1 Framework

The formalizations that follow have a common framework that it may help to see at a high level

�rst. In formalizing both indistinguishability and non-malleability we regard an adversary A as

a pair of probabilistic algorithms, A = (A1; A2). (We will say that A is polynomial time if both

A1 and A2 are.) This corresponds to A running in two \stages." The exact purpose of each stage

depends on the particular adversarial goal, but for both goals the basic idea is that in the �rst stage

the adversary, given the public key, seeks and outputs some \test instance," and in the second stage

the adversary is issued a challenge ciphertext y generated as a probabilistic function of the test

instance, in a manner depending on the goal. (In addition A1 can output some state information s

that will be passed to A2.) Adversary A is successful if she passes the challenge, with what \passes"

means again depending on the goal.

We consider three types of attacks under this setup.

In a chosen-plaintext attack (CPA) the adversary can encrypt plaintexts of her choosing. Of

course a CPA is unavoidable in the public-key setting: knowing the public key, an adversary can,

on her own, compute a ciphertext for any plaintext she desires. So in formalizing de�nitions of

security under CPA we \do nothing" beyond giving the adversary access to the public key; that's

already enough to make a CPA implicit.

In a non-adaptive chosen-ciphertext attack (CCA1) we give A1 (the public key and) access to a

decryption oracle, but we do not allow A2 access to a decryption oracle. This is sometimes called

a non-adaptive chosen-ciphertext attack, in that the decryption oracle is used to generate the test

instance, but taken away before the challenge appears.

In an adaptive chosen-ciphertext attack (CCA2) we continue to give A1 (the public key and)

access to a decryption oracle, but also give A2 access to the same decryption oracle, with the only

restriction that she cannot query the oracle on the challenge ciphertext y. This is an extremely

strong attack model.

As a mnemonic, the number i in CCAi can be regarded as the number of adversarial stages

during which she has access to a decryption oracle. Additionally, the bigger number corresponds

to the stronger (and chronologically later) formalization.

By the way: we do not bother to explicitly give A2 the public key, because A1 has the option

of including it in s.

2.2 Indistinguishability of Encryptions

The classical goal of secure encryption is to preserve the privacy of messages: an adversary should

not be able to learn from a ciphertext information about its plaintext beyond the length of that

plaintext. We de�ne a version of this notion, indistinguishability of encryptions (IND), following

[21, 24], through a simple experiment. Algorithm A1 is run on input the public key, pk. At the end
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of A1's execution she outputs a triple (x0; x1; s), the �rst two components being messages which

we insist be of the same length, and the last being state information (possibly including pk) which

she wants to preserve. A random one of x0 and x1 is now selected, say xb. A \challenge" y is

determined by encrypting xb under pk. It is A2's job to try to determine if y was selected as the

encryption of x0 or x1, namely to determine the bit b. To make this determination A2 is given the

saved state s and the challenge ciphertext y.

For concision and clarity we simultaneously de�ne indistinguishability with respect to CPA,

CCA1, and CCA2. The only di�erence lies in whether or not A1 and A2 are given decryption

oracles. We let the string atk be instantiated by any of the formal symbols cpa; cca1; cca2, while

ATK is then the corresponding formal symbol from CPA;CCA1;CCA2. When we say Oi = ",

where i 2 f1; 2g, we mean Oi is the function which, on any input, returns the empty string, ".

De�nition 2.1 [IND-CPA, IND-CCA1, IND-CCA2] Let PE = (K; E ;D) be an encryption scheme

and let A = (A1; A2) be an adversary. For atk 2 fcpa; cca1; cca2g and k 2 N let,

Adv
ind-atk
PE;A (k) = Pr[Exp

ind-atk-1
PE;A (k) = 1 ]� Pr[Exp

ind-atk-0
PE;A (k) = 1 ]

where, for b 2 f0; 1g,

Experiment Exp
ind-atk-b
PE;A (k)

(pk; sk)
R

 K(k) ; (x0; x1; s) A
O1(�)
1 (pk) ; y  Epk(xb) ; d A

O2(�)
2 (x0; x1; s; y)

Return d

and

If atk = cpa then O1(�) = " and O2(�) = "

If atk = cca1 then O1(�) = Dsk(�) and O2(�) = "

If atk = cca2 then O1(�) = Dsk(�) and O2(�) = Dsk(�)

Above it is mandated that jx0j = jx1j. In the case of CCA2, we further insist that A2 does not ask its

oracle to decrypt y. We say that PE is secure in the sense of IND-ATK if A being polynomial-time

implies that Advind-atkPE;A (�) is negligible.

2.3 Non-Malleability

Notation. We will need to discuss vectors of plaintexts or ciphertexts. A vector is denoted in

boldface, as in x. We denote by jxj the number of components in x, and by x[i] the i-th component,

so that x = (x[1]; : : : ;x[jxj]). We extend the set membership notation to vectors, writing x 2 x

or x 62 x to mean, respectively, that x is in or is not in the set f x[i] : 1 � i � jxj g. It will be

convenient to extend the decryption notation to vectors with the understanding that operations

are performed componentwise. Thus x  Dsk(y) is shorthand for the following: for 1 � i � jyj

do x[i] Dsk(y[i]).

We will consider relations of arity t where t will be polynomial in the security parameter k.

Rather than writing R(x1; : : : ; xt) we write R(x;x), meaning the �rst argument is special and the

rest are bunched into a vector x with jxj = t� 1.

Idea. The notion of non-malleability was introduced in [13], and re�ned subsequently. The goal of

the adversary, given a ciphertext y, is not (as with indistinguishability) to learn something about

its plaintext x, but only to output a vector y of ciphertexts whose decryption x is \meaningfully

related" to x, meaning that R(x;x) holds for some relation R. The question is how exactly one

measures the advantage of the adversary. This turns out to need care. One possible formalization
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is that of [13, 14, 15], which is based on the idea of simulation; it asks that for every adversary there

exists a certain type of \simulator" that does just as well as the adversary but without being given y.

Here, we introduce a novel formalization which seems to us to be simpler. Our formalization does

not ask for a simulator, but just considers an experiment involving the adversary. It turns out that

our notion is equivalent to DDN's [7].

Our formalization. Let A = (A1; A2) be an adversary. In the �rst stage of the adversary's

attack, A1, given the public key pk, outputs a description of a message space, described by a

sampling algorithm M . The message space must be valid, which means that it gives non-zero

probability only to strings of some one particular length. In the second stage of the adversary's

attack, A2 receives an encryption y of a random message, say x1, drawn from M . The adversary

then outputs a (description of a) relation R and a vector y (no component of which is y). She

hopes that R(x;x) holds, where x Dsk(y). An adversary (A1; A2) is successful if she can do this

with a probability signi�cantly more than that with which R(x0;x) holds for some random hidden

x0  M .

De�nition 2.2 [NM-CPA, NM-CCA1, NM-CCA2] Let PE = (K; E ;D) be an encryption scheme

and let A = (A1; A2) be an adversary. For atk 2 fcpa; cca1; cca2g and k 2 N let,

Adv
nm-atk
PE;A (k) = Pr[Exp

nm-atk-1
PE;A (k) = 1 ]� Pr[Exp

nm-atk-0
PE;A (k) = 1 ]

where, for b 2 f0; 1g,

Experiment Exp
nm-atk-b
PE;A (k)

(pk; sk)
R

 K(k) ; (M; s) A
O1(�)
1 (pk) ; x0; x1  M ; y  Epk(x1) ;

(R;y) A
O2(�)
2 (M; s; y) ; x Dsk(y) ;

If y 62 y ^ ? 62 x ^R(xb;x) then d 1; else d 0 ;

Return d

and

If atk = cpa then O1(�) = " and O2(�) = "

If atk = cca1 then O1(�) = Dsk(�) and O2(�) = "

If atk = cca2 then O1(�) = Dsk(�) and O2(�) = Dsk(�)

We insist, above, that M is valid: jxj = jx0j for any x; x0 that are given non-zero probability in the

message space M . In the case of CCA2, we further insist that A2 does not ask its oracle to decrypt

y. We say that PE is secure in the sense of NM-ATK if for every polynomial p(k): if A runs in

time p(k), outputs a (valid) message space M samplable in time p(k), and outputs a relation R

computable in time p(k), then Advnm-atkPE;A (�) is negligible.

The condition that y 62 y is made in order to not give the adversary credit for the trivial and

unavoidable action of copying the challenge ciphertext. Otherwise, she could output the equality

relation R, where R(a; b) holds i� a = b, and output y = (y), and be successful with probability

one. We also declare the adversary unsuccessful when some ciphertext y[i] does not have a valid

decryption (that is, ? 2 x), because in this case, the receiver is simply going to reject the adversary's

message anyway. The requirement that M is valid is important; it stems from the fact that

encryption is not intended to conceal the length of the plaintext.
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3 Relating IND and NM

We state more precisely the results summarized in Figure 1 and provide proofs. As mentioned

before, we summarize only the main relations (the ones that require proof); all other relations

follow as corollaries.

3.1 Results

The �rst result, that non-malleability implies indistinguishability under any type of attack, was of

course established by [13] in the context of their de�nition of non-malleability, but since we have a

new de�nition of non-malleability, we need to re-establish it. The (simple) proof of the following is

in Section 3.3.

Theorem 3.1 [NM-ATK ) IND-ATK] If a scheme PE is secure in the sense of NM-ATK then

PE is secure in the sense of IND-ATK, for any attack ATK 2 fCPA;CCA1;CCA2g.

Remark 3.2 Recall that the relation R in De�nition 2.2 was allowed to have any polynomially

bounded arity. However, the above theorem holds even under a weaker notion of NM-ATK in which

the relation R is restricted to have arity two.

The proof of the following is in Section 3.4.

Theorem 3.3 [IND-CCA2 ) NM-CCA2] If a scheme PE is secure in the sense of IND-CCA2

then PE is secure in the sense of NM-CCA2.

Remark 3.4 Theorem 3.3 coupled with Theorem 3.1 and Remark 3.2 says that in the case of

CCA2 attacks, it suÆces to consider binary relations, meaning the notion of NM-CCA2 restricted

to binary relations is equivalent to the general one.

Now we turn to separations. Adaptive chosen-ciphertext security implies non-malleability according

to Theorem 3.3. In contrast, the following says that non-adaptive chosen-ciphertext security does

not imply non-malleability. The proof is in Section 3.5.

Theorem 3.5 [IND-CCA16)NM-CPA] If there exists an encryption scheme PE which is secure

in the sense of IND-CCA1, then there exists an encryption scheme PE 0 which is secure in the sense

of IND-CCA1 but which is not secure in the sense of NM-CPA.

Now one can ask whether non-malleability implies chosen-ciphertext security. The following says

it does not even imply the non-adaptive form of the latter. (As a corollary, it certainly does not

imply the adaptive form.) The proof is in Section 3.6.

Theorem 3.6 [NM-CPA 6)IND-CCA1] If there exists an encryption scheme PE which is secure

in the sense of NM-CPA, then there exists an encryption scheme PE 0 which is secure in the sense

of NM-CPA but which is not secure in the sense of IND-CCA1.

Now the only relation that does not immediately follow from the above results or by a trivial

reduction is that the version of non-malleability allowing CCA1 does not imply the version that

allows CCA2. See Section 3.7 for the proof of the following.

Theorem 3.7 [NM-CCA16)NM-CCA2] If there exists an encryption scheme PE which is secure

in the sense of NM-CCA1, then there exists an encryption scheme PE 0 which is secure in the sense

of NM-CCA1 but which is not secure in the sense of NM-CCA2.
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3.2 Notation and Preliminaries

For relations R which could be of arbitrary arity we use the simplifying notation R(a; b) as a

shorthand for R(a;b) when it is clear that b[1] = b and jbj = 1. We let a denote the bitwise

complement (namely the string obtained by ipping each bit) of a.

For an IND-ATK adversary A = (A1; A2) we will, whenever convenient, assume that the mes-

sages x0; x1 that A1 outputs are distinct. Intuitively this cannot decrease the advantage because

the contribution to the advantage in case they are equal is zero. Actually one has to be a little

careful. The claim will be that we can modify A to make sure that the output messages are distinct,

and one has to be careful to make sure that when A outputs equal messages the modi�ed adversary

does not get any advantage, so that the advantage of the modi�ed adversary is the same as that of

the original one. For completeness we encapsulate the claim in the following proposition.

Proposition 3.8 Let A = (A1; A2) be any adversary attacking encryption scheme PE in the

sense of IND-ATK. Then there exists another adversary B = (B1; B2) attacking PE in the sense

of IND-ATK such that the two (equal length) messages that B1 outputs are always distinct,

Advind-atkPE;B (k) = Advind-atkPE;A (k), and the running time of B is within a constant factor of that of A.

Proof: Adversaries A and B have access to an oracle O1 in their �rst stage and an oracle O2 in

their second stage, these oracles being instantiated according to the attack ATK as described in

the de�nitions. The adversary B = (B1; B2) is as follows:

Algorithm BO1

1 (pk)

(x0; x1; s) AO1

1 (pk)

if x0 6= x1 then d 0 else d 1

x00  x0 ; s
0  s k d

if d = 0 then x01  x1 else x01  x0
return (x00; x

0
1; s

0
)

Algorithm BO2

2 (x00; x
0
1; s

0; y) where s0 = s k d

if d = 0 then c AO2

2 (x00; x
0
1; s; y)

else c f0; 1g

return c

Note that by de�ning x00; x
0
1 this way we always have x00 6= x01. Also note that when x0 = x1 we

have B2 output a random bit c to make sure its advantage in that case is zero.

It is easy to see that the running time of B is within a constant factor of that of A. Now we

claim that Advind-atkPE;B (k) = Advind-atkPE;A (k). To justify this, consider the experiments underlying the

de�nitions of the advantages of A and B, respectively:

Experiment1
def
= (pk; sk) K(k) ; (x0; x1; s) A1(pk) ; b f0; 1g ;

y  Epk(xb) ; c AO2

2 (x0; x1; s; y)

Experiment2
def
= (pk; sk) K(k) ; (x0; x1; s) A1(pk) ; b f0; 1g ;

y  Epk(xb) ; c BO2

2 (x00; x
0
1; s k d; y) :

In the last experiment, x00; x
0
1; d are de�ned in terms of x0; x1 as per the code of B1. Let Pr1[ � ] =

Pr[Experiment1 : �] be the probability function under Experiment1 and Pr2[ � ] = Pr[Experiment2 : �]

be that under Experiment2. By de�nition

Advind-atkPE;A (k) = 2 � Pr1 [ b = c ]� 1 and Advind-atkPE;B (k) = 2 � Pr2 [ b = c ]� 1 :

Thus it suÆces to show that Pr1 [ b = c ] = Pr2 [ b = c ]. Let E denote the event that x0 = x1, or,

equivalently, that d = 1. Then

Pr1 [ b = c ] = Pr1 [ b = c j E ] � Pr1 [E ] + Pr1

h
b = c j E

i
� Pr1

h
E
i

Pr2 [ b = c ] = Pr2 [ b = c j E ] � Pr2 [E ] + Pr2

h
b = c j E

i
� Pr2

h
E
i
:
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That Pr1 [ b = c ] = Pr2 [ b = c ] now follows by putting together the following observations:

� Pr1 [E ] = Pr2 [E ] since E depends only on A1.

� Pr1 [ b = c j E ] = 1=2 because when E is true, A2 has no information about b. On the other

hand Pr2 [ b = c j E ] = 1=2 because when E is true we have B2 output a random bit.

� Pr1

h
b = c j E

i
= Pr2

h
b = c j E

i
because in this case the experiments are the same, namely

we are looking at the output of A2.

This completes the proof of Proposition 3.8.

3.3 Proof of Theorem 3.1: NM-ATK) IND-ATK

We are assuming that encryption scheme PE is secure in the NM-ATK sense. We will show it is also

secure in the IND-ATK sense. Let B = (B1; B2) be a IND-ATK adversary attacking PE . We want

to show that Advind-atkPE;B (�) is negligible. To this end, we describe a NM-ATK adversary A = (A1; A2)

attacking PE . Adversaries A and B have access to an oracle O1 in their �rst stage and an oracle

O2 in their second stage, these oracles being instantiated according to the attack ATK as per the

de�nitions. Recall that z denotes the bitwise complement of a string z.

Algorithm AO1

1 (pk)

(x0; x1; s) BO1

1 (pk)

M := fx0; x1g

s0  (x0; x1;pk; s)

return (M; s0)

Algorithm AO2

2 (M; s0; y) where s0 = (x0; x1;pk; s)

c BO2

2 (x0; x1; s; y)

y0  Epk(xc)

return (R; y0) where R(a; b) = 1 i� a = b

The notation M := fx0; x1g means that M is being assigned the probability space which assigns to

each of x0 and x1 a probability of 1=2. AO2

2 outputs (the description of) the complement relation

R, which for any arguments a; b is 1 if a = b and 0 otherwise.

We consider the advantage of A, given by

Adv
nm-atk
PE;A (k) = Pr[Exp

nm-atk-1
PE;A (k) = 1 ]� Pr[Exp

nm-atk-0
PE;A (k) = 1 ]

where

Exp
nm-atk-1
PE;A (k)

def
=

h
(pk; sk) K(k) ; (M; s0) AO1

1 (pk) ; x M ; y  Epk(x) ;

(R; y0) AO2

2 (M; s0; y) ; x0  Dsk(y
0
) : y 6= y0 ^ ? 6= x0 ^R(x; x0)

i

Exp
nm-atk-0
PE;A (k)

def
=

h
(pk; sk) K(k) ; (M; s0) AO1

1 (pk) ; x; ~x M ; y  Epk(x) ;

(R; y0) AO2

2 (M; s0; y) ; x0  Dsk(y
0
) : y 6= y0 ^ ? 6= x0 ^R(~x; x0)

i
:

The advantage of B is given by Advind-atkPE;B (k) = 2 � Pr[Expind-atk-b
PE;B (k) = b ]� 1, where

Exp
ind-atk-b
PE;B (k)

def
= Pr

h
(pk; sk) K(k) ; (x0; x1; s) BO1

1 (pk) ; b f0; 1g ;

y  Epk(xb) ; c BO2

2 (x0; x1; s; y) : c = b
i
:

By Proposition 3.8 we may assume here, without loss of generality, that we always have x0 6= x1.

This turns out to be important below.
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Claim 1: Pr[Expnm-atk-1
PE;A (k) = 1 ] = Pr[Exp

ind-atk-b
PE;B (k) = b ].

Proof: Look �rst at the code of A2. Note that R(x; x
0
) is true i� Dsk(y) = xc. Also note that when

R(x; x0) is true it must be that x 6= x0 and hence, by the unique decryptability of the encryption

scheme, that y 6= y0. Also we always have ? 6= x0.

Now, consider Exp
ind-atk-b
PE;B (k). An important observation is that Dsk(y) = xc i� b = c. (This uses

the fact that x0 6= x1, and would not be true otherwise.) Now one can put this together with the

above and see that b = c in the experiment underlying pk exactly when y 6= y0 ^ ? 6= x0 ^R(x; x0)

in the experiment Exp
nm-atk-1
PE;A (k). 2

Claim 2: Pr[Expnm-atk-0
PE;A (k) = 1 ] = 1=2.

Proof: This follows from an information theoretic fact, namely that A has no information about

the message ~x with respect to which its success is measured. 2

Now we can apply the claims to get Advind-atkPE;B (k) = 2 �Advnm-atkPE;A (k). But since PE is secure in the

NM-ATK sense we know that Advnm-atkPE;A (�) is negligible, and hence the above implies Advind-atkPE;B (�)

is negligible too. This concludes the proof of Theorem 3.1.

The claim of Remark 3.2 is clear from the above because the relation R output by A is binary.

3.4 Proof of Theorem 3.3: IND-CCA2) NM-CCA2

We are assuming that encryption scheme PE is secure in the IND-CCA2 sense. We show it is

also secure in the NM-CCA2 sense. The intuition is simple: since the adversary has access to the

decryption oracle, she can decrypt the ciphertexts she would output, and so the ability to output

ciphertexts is not likely to add power.

For the proof, let B = (B1; B2) be an NM-CCA2 adversary attacking PE . We must show

that Advnm-cca2PE;B (�) is negligible. To this end, we describe an IND-CCA2 adversary A = (A1; A2)

attacking PE .

Algorithm A
Dsk
1 (pk)

(M; s) B
Dsk
1 (pk)

x0  M ; x1  M

s0  (M; s)

return (x0; x1; s
0
)

Algorithm A
Dsk
2 (x0; x1; s

0; y) where s0 = (M; s)

(R;y) B
Dsk
2 (M; s; y) ; x Dsk(y)

if (y 62 y ^? 62 x ^R(x0;x)) then d 0

else d f0; 1g

return d

Notice A is polynomial time under the assumption that the running time of B, the time to compute

R, and the time to sample from M are all bounded by a �xed polynomial in k. The advantage of

A is given by Advind-cca2PE;A (k) = pk(0)� pk(1) where for b 2 f0; 1g we let

pk(b) = Pr

h
(pk; sk) K(k) ; (x0; x1; s

0
) A

Dsk
1 (pk) ; y  Epk(xb) :

A
Dsk
2 (x0; x1; s

0; y) = 0

i
:

Also for b 2 f0; 1g we let

p0k(b) = Pr

h
(pk; sk) K(k) ; (M; s) B

Dsk
1 (pk) ; x0; x1  M ; y  Epk(xb) ;

(R;y) B
Dsk
2 (M; s; y) ; x Dsk(y) : y 62 y ^ ? =2 x ^R(x0;x)

i
:

Now observe that A2 may return 0 either when x is R-related to x0 or as a result of the coin ip.

Continuing with the advantage then,

Advind-cca2PE;A (k) = pk(0)� pk(1) =

1

2

� [1 + p0k(0)]�
1

2

� [1 + p0k(1)] =
1

2

� [p0k(0)� p0k(1)]
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We now observe that the experiment of B2 being given a ciphertext of x1 and R-relating x to

x0, is exactly Pr[Exp
nm-cca2-0
PE;B (k) = 1 ]. On the other hand, in case it is x0, we are looking at

Pr[Exp
nm-cca2-1
PE;B (k) = 1 ].

Advnm-cca2PE;B (k) = p0k(0) � p0k(1) = 2 � Advind-cca2PE;A (k) :

But we know that Advind-cca2PE;A (�) is negligible because PE is secure in the sense of IND-CCA2. It

follows that Advnm-cca2PE;B (�) is negligible, as desired.

3.5 Proof of Theorem 3.5: IND-CCA1 6) NM-CPA

Assume there exists some IND-CCA1 secure encryption scheme PE = (K; E ;D), since otherwise

the theorem is vacuously true. We now modify PE to a new encryption scheme PE 0 = (K0; E 0;D0
)

which is also IND-CCA1 secure but not secure in the NM-CPA sense. This will prove the theorem.

The new encryption scheme PE 0 = (K0; E 0;D0
) is de�ned as follows. Here x denotes the bitwise

complement of string x, namely the string obtained by ipping each bit of x.

Algorithm K0(k)

(pk; sk) K(k)

return (pk; sk)

Algorithm E 0pk(x)

y1  Epk(x) ; y2  Epk(x)

return y1ky2

Algorithm D0
sk(y1ky2)

return Dsk(y1)

In other words, a ciphertext in the new scheme is a pair y1 k y2 consisting of the encryption of the

message and its complement. In decrypting, the second component is ignored. It is now quite easy

to see that:

Claim 3.9 PE 0 is not secure in the NM-CPA sense.

Proof: Given a ciphertext y1 k y2 of a message x, it is easy to create a ciphertext of x: just output

y2 k y1. Thus, the scheme is malleable.

Formally, we can specify a polynomial time adversary A = (A1; A2) that breaks PE
0
in the sense of

NM-CPA, with probability almost one, as follows. A1(pk) outputs (M;�) where M puts a uniform

distribution on f0; 1gk . Then algorithm A2(M;�; y1 k y2) outputs (R; y2 k y1) where R describes

the binary relation de�ned by R(m1;m2) = 1 i� m1 = m2. It is easy to see that the plaintext, x0,

corresponding to the ciphertext that A outputs is R-related to x with probability 1. Observe that

the probability of some random plaintext ~x being R-related to x0 is at most 2
�k
. Thus Adv

nm-cpa

PE 0;A
(k)

is 1� 2
�k

which is not negligible. (In fact it is close to one.) Hence A is a successful adversary and

the scheme is not secure in the sense of NM-CPA.

On the other hand, a hybrid argument establishes that PE 0 retains the IND-CCA1 security of PE :

Claim 3.10 PE 0 is secure in the sense of IND-CCA1.

Proof: Let B = (B1; B2) be some polynomial time adversary attacking PE 0 in the IND-CCA1 sense.

We want to show that Advind-cca1PE 0;B (k) is negligible. To do so, consider the following probabilities,

de�ned for i; j 2 f0; 1g:

pk(i; j) = Pr

h
(pk; sk) K(k) ; (x0; x1; s) B

Dsk
1 (pk) ; y1  Epk(xi) ; y2  Epk(xj) :

B2(x0; x1; s; y1ky2) = 1

i
:

We know that Advind-cca1PE 0;B (k) = pk(1; 1) � pk(0; 0). The following lemmas state that, under our

assumption that PE is IND-CCA1-secure, it must be that the di�erences pk(1; 1) � pk(1; 0) and
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pk(1; 0) � pk(0; 0) are both negligible. This will complete the proof since

Advind-cca1PE 0;B (k) = pk(1; 1) � pk(0; 0) = [pk(1; 1) � pk(1; 0)] + [pk(1; 0) � pk(0; 0)] ;

being the sum of two negligible functions, will be negligible. So it remains to (state and) prove the

lemmas.

Lemma 1: pk(1; 1) � pk(1; 0) is negligible.

Proof: We can construct an adversary A = (A1; A2) that attacks the scheme PE in the IND-CCA1

sense, as follows:

Algorithm A
Dsk
1 (pk)

(x0; x1; s) B
D0

sk

1 (pk)

m0  x0 ; m1  x1
return (m0;m1; s)

Algorithm A2(m0;m1; s; y)

y1  Epk(m1) ; y2  y

d B2(m0;m1; s; y1 k y2)

return d

The computation B
D0

sk
1 (pk) is done by A1 simulating the D0

sk oracle. It can do this by replying

to query y1 k y2 via Dsk(y1), using its own Dsk oracle and the de�nition of D0
sk . This adversary is

polynomial time. One can now check the following:

Pr

h
(pk; sk) K(k) ; (m0;m1; s) A

Dsk
1 (pk) ; y  Epk(m1) : A2(m0;m1; s; y) = 1

i
= pk(1; 1)

Pr

h
(pk; sk) K(k) ; (m0;m1; s) A

Dsk
1 (pk) ; y  Epk(m0) : A2(m0;m1; s; y) = 1

i
= pk(1; 0)

Thus Advind-cca1PE;A (k) = pk(1; 1)� pk(1; 0). The assumed security of PE in the IND-CCA1 sense now

implies the latter di�erence is negligible. 2

Lemma 2: pk(1; 0) � pk(0; 0) is negligible.

Proof: We can construct an adversary A = (A1; A2) that attacks the scheme PE in the IND-CCA1

sense, as follows:

Algorithm A
Dsk
1 (pk)

(x0; x1; s) B
D0

sk
1 (pk)

return (x0; x1; s)

Algorithm A2(x0; x1; s; y)

y1  y and y2  Epk(x0)

d B2(x0; x1; s; y1ky2)

return d

Again A is polynomial time and can simulate D0
sk given Dsk . We observe that

Pr

h
(pk; sk) K(k) ; (x0; x1; s) A

Dsk
1 (pk) ; y  Epk(x1) : A2(x0; x1; s; y) = 1

i
= pk(1; 0)

Pr

h
(pk; sk) K(k) ; (x0; x1; s) A

Dsk
1 (pk) ; y  Epk(x0) : A2(x0; x1; s; y) = 1

i
= pk(0; 0)

Thus Advind-cca1PE;A (k) = pk(1; 0)� pk(0; 0). The assumed security of PE in the IND-CCA1 sense now

implies the latter di�erence is negligible. 2

This completes the proof of Claim 3.10.

Remark 3.11 We could have given a simpler scheme PE 0 than the one above that would be secure

in the IND-CCA1 sense but not in the NM-CPA sense. Let K0 be as above, let E 0pk(x) y k b where

y  Epk(x) and b f0; 1g and D
0
sk(b k y) Dsk(y). The malleability of PE 0 arises out of the ability
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of the adversary to create another ciphertext from the challenge ciphertext y k b, by returning y k b.

This is allowed by De�nition 2.2 since the only restriction is that the vector of ciphertexts y the

adversary outputs should not contain y k b. However, the de�nition of [13] did not allow this, and,

in order to have a stronger separation result that also applies to their notion, we gave the above

more involved construction.

3.6 Proof of Theorem 3.6: NM-CPA 6) IND-CCA1

Let's �rst back up a bit and provide some intuition about why the theorem might be true and how

we can prove it.

Intuition and first attempts. At �rst glance, one might think NM-CPA does imply IND-CCA1

(or even IND-CCA2), for the following reason. Suppose an adversary has a decryption oracle, and

is asked to tell whether a given ciphertext y is the encryption of x0 or x1, where x0; x1 are messages

she has chosen earlier. She is not allowed to call the decryption oracle on y. It seems then the only

strategy she could have is to modify y to some related y0, call the decryption oracle on y0, and use

the answer to somehow help her determine whether the decryption of y was x0 or x1. But if the

scheme is non-malleable, creating a y0 meaningfully related to y is not possible, so the scheme must

be chosen-ciphertext secure.

The reasoning above is fallacious. The aw is in thinking that to tell whether y is an encryption

of x0 or x1, one must obtain a decryption of a ciphertext y
0
related to the challenge ciphertext y. In

fact, what can happen is that there are certain strings whose decryption yields information about

the secret key itself, yet the scheme remains non-malleable.

The approach to prove the theorem is to modify a NM-CPA scheme PE = (K; E ;D) to a new

scheme PE 0 = (K0; E 0;D0
) which is also NM-CPA but can be broken under a non-adaptive chosen-

ciphertext attack. (We can assume a NM-CPA scheme exists since otherwise there is nothing to

prove.) A �rst attempt to implement the above idea (of having the decryption of certain strings

carry information about the secret key) is straightforward. Fix some ciphertext u not in the range

of E and de�ne D0
sk(u) = sk to return the secret key whenever it is given this special ciphertext.

In all other aspects, the new scheme is the same as the old one. It is quite easy to see that this

scheme falls to a (non-adaptive) chosen-ciphertext attack, because the adversary need only make

query u of its decryption oracle to recover the entire secret key. The problem is that it is not so

easy to tell whether this scheme remains non-malleable. (Actually, we don't know whether it is or

not, but we certainly don't have a proof that it is.)

As this example indicates, it is easy to patch PE so that it can be broken in the sense of

IND-CCA1; what we need is that it also be easy to prove that it remains NM-CPA secure. The

idea of our construction below is to use a level of indirection: sk is returned by D0
in response to

a query v which is itself a random string that can only be obtained by querying D0
at some other

known point u. Intuitively, this scheme will be NM-CPA secure since v will remain unknown to

the adversary.

Our construction. Given a non-malleable encryption scheme PE = (K; E ;D) we de�ne a new

encryption scheme PE 0 = (K0; E 0;D0
) as follows:

Algorithm K0(k)

(pk; sk) K(k)

u; v  f0; 1gk

pk0  pk ku

sk0  sk k u k v

return (pk 0; sk 0)

Algorithm E 0
pk ku(x)

y  Epk(x)

return 0 k y

Algorithm D0
sk ku k v(b k y) where b 2 f0; 1g

if b = 0 then return Dsk(y)

else if y = u then return v

else if y = v return sk

else return ?
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Analysis. The proof of Theorem 3.6 is completed by establishing that PE 0 is vulnerable to a

IND-CCA1 attack but remains NM-CPA secure.

Claim 3.12 PE 0 is not secure in the sense of IND-CCA1.

Proof: The adversary queries D0
sk ku k v(�) at 1 k u to get v, and then queries it at the point 1 k v,

to get sk. At this point, knowing the secret key, she can obviously perform the distinguishing task

we later require of her.

If you wish to see it more formally, the �nd stage A1 of the adversary gets pk as above and

outputs any two distinct, equal length messages x0; x1. In the next stage, it receives a ciphertext

0 k y  E 0
pk ku(xb) where b was a random bit. Now it can compute Dsk(y) to recover the message

and thus determine b with probability one. It is obviously polynomial time.

Remember that PE is assumed secure in the sense of NM-CPA. We will use this to establish the

following:

Claim 3.13 PE 0 is secure in the sense of NM-CPA.

Proof: To prove this claim we consider a polynomial time adversary B attacking PE 0 in the

NM-CPA sense. We want to show that Adv
nm-cpa

PE 0;B
(�) is negligible. To do this, we construct an

adversary A = (A1; A2) that attacks PE in the NM-CPA sense. The idea is that A can run B as a

subroutine and simulate the choosing of u; v by the key generation algorithm K0 for B.

Algorithm A1(pk)

u; v  f0; 1gk

pk0  pk ku

(M; s) B1(pk
0
)

s0  (s; u; v;pk)

return (M; s0)

Algorithm A2(M; s0; y) where s0 = (s; u; v;pk)

(R; z) B2(M; s; 0 k y)

for 1 � i � jzj do parse z[i] as bi k zi where bi is a bit

for 1 � i � jzj do

if bi = 0 then y[i] zi
else if (bi = 1) ^ (zi = u) then y[i] Epk(v)

else y[i] y

return (R;y)

We now de�ne two experiments. The �rst is the one under which Adv
nm-cpa

PE;A (k) is evaluated, and

the second is the one under which Adv
nm-cpa

PE 0:B
(k) is evaluated:

Experiment1
def
= (pk; sk) K(k) ; (M; (s; u; v;pk)) A1(pk) ; x; ~x M ; y  Epk(x) ;

(R;y) A2(M; (s; u; v;pk); y) ; x Dsk(y)

Experiment2
def
= (pk ku; sk k u k v) K0(k) ; (M; s) B1(pk ku) ; x; ~x M ;

0 k y  E 0pk ku(x) ; (R; z) B2(M; s; 0 k y) ; w D0
skkukv(z) :

Let Pr1[ � ] = Pr[Experiment1 : � ] be the probability function under Experiment1 and Pr2[ � ] =

Pr[Experiment2 : � ] be that under Experiment2. Let E1,E2, and E3 be the following events:

E1
def
= 8i : (bi = 0) _ (bi = 1 ^ zi = u)

E2
def
= 9i : (bi = 1 ^ zi = v ^ u 6= v)

E3
def
= 9i : (bi = 1 ^ zi 6= u ^ zi 6= v)
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For j = 1; 2; 3 let

p(1; j) = Pr1 [ y 62 y ^ ? 62 x ^R(x;x) j Ej ]� Pr1 [ y 62 y ^ ? 62 x ^R(~x;x) j Ej ]

p(2; j) = Pr2 [ 0 k y 62 z ^ ? 62 w ^R(x;w) j Ej ]� Pr2 [ 0 k y 62 z ^ ? 62 w ^R(~x;w) j Ej ] :

By conditioning we have:

Adv
nm-cpa

PE;A (k) =

P3
j=1 p(1; j) � Pr1[Ej ]

Adv
nm-cpa

PE 0;B
(k) =

P3
j=1 p(2; j) � Pr2[Ej ] :

We now upper bound Adv
nm-cpa

PE 0;B
(k) in terms of Adv

nm-cpa
PE;A (k) by a series of lemmas. The �rst

observation is that the probability of our three events is the same in both experiments.

Lemma 1: Pr1[Ej ] = Pr2[Ej ] for j = 1; 2; 3.

Proof: These events depend only on the keys and B. 2

Let q be a polynomial which bounds the running time of B. In particular we can assume jzj < q(k).

Lemma 2: p(2; 1) � p(1; 1) + q(k) � 2�k
.

Proof: By event E1 every z[i] = bi k zi has either (bi = 0) or (bi = 1 ^ zi = u).

If bi = 0 then A will output zi in Experiment1, while B would be outputting 0 k zi in Experiment2.

But D0
sk ku k v(0 k zi) = Dsk(zi), and furthermore y = zi (the challenge to A is equal to this compo-

nent of A's output) i� 0 k y = 0 k zi (the challenge to B is equal to this component of B's output).

Thus A properly simulates B.

If bi = 1 and zi = u then D0
sk ku k v(bi k zi) = v is random and independent of the execution of B.

To \simulate" it we have A output an encryption of random v. But, A will only be successful if the

created ciphertext is di�erent from y. The probability of this not happening can be upper bounded

by the probability that v = Dsk(y), which is at most 2
�k
. The worst case in this event is when

8i : (bi = 1 ^ zi = u). Since jzj � q(k), the probability, under this event, that A does not match

the advantage of B, is at most q(k) � 2�k
. 2

Lemma 3: Pr1[E2 ] � q(k) � 2�k
.

Proof: B has no information about v since the latter was chosen independently of its execution,

and also u has a 2
�k

chance of equaling v. The Lemma follows since jzj < q(k). 2

Lemma 4: p(1; 3) = p(2; 3) = 0.

Proof: When event E3 happens in Experiment1, one of the ciphertexts y[i] that A2 outputs equals

y and hence there is no contribution to the success probability. When event E3 happens in

Experiment2, the de�nition of D0
sk ku k v says that the decryption of some z[i] is ? and hence again

there is no contribution to the success probability. In other words, in both cases, there is no success

in either the \real" or the \random" experiment. 2

From Lemmas 1,2,3,4 we get

Adv
nm-cpa

PE 0;B
(k) =

P3
j=1 p(2; j) � Pr1[Ej ]

� q(k) � 2�k
+ p(1; 1) � Pr1[E1 ] + p(2; 2) � Pr1[E2 ] + p(1; 3) � Pr1[E3 ]

� q(k) � 2�k
+ p(1; 1) � Pr1[E1 ] + p(1; 2) � Pr1[E2 ] + p(1; 3) � Pr1[E3 ]
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+ (p(2; 2) � p(1; 2)) � Pr1[E2 ]

� q(k) � 2�k
+

P3
j=1 p(1; j) � Pr1[Ej ] + Pr1[E2 ]

� 2q(k) � 2�k
+ Adv

nm-cpa
PE;A (k) :

The assumption that PE is secure in the sense of NM-CPA implies that Adv
nm-cpa

PE;A (k) is negligible,

and hence it follows that Adv
nm-cpa

PE 0;B
(k) is negligible.

3.7 Proof of Theorem 3.7: NM-CCA1 6) NM-CCA2

The approach, as before, is to take a NM-CCA1 secure encryption scheme PE = (K; E ;D) and

modify it to a new encryption scheme PE 0 = (K0; E 0;D0
) which is also NM-CCA1 secure, but can

be broken in the NM-CCA2 sense.

Intuition. Notice that the construction of Section 3.6 will no longer work, because the scheme

constructed there, not being secure in the sense of IND-CCA1, will certainly not be secure in the

sense of NM-CCA1, for the same reason: the adversary can obtain the decryption key in the �rst

stage using a couple of decryption queries. Our task this time is more complex. We want queries

made in the second stage, after the challenge is received, to be important, meaning they can be

used to break the scheme, yet, somehow, queries made in the �rst stage cannot be used to break the

scheme. This means we can no longer rely on a simplistic approach of revealing the secret key in

response to certain queries. Instead, the \breaking" queries in the second stage must be a function

of the challenge ciphertext, and cannot be made in advance of seeing this ciphertext. We implement

this idea by a \tagging" mechanism. The decryption function is capable of tagging a ciphertext so

as to be able to \recognize" it in a subsequent query, and reveal in that stage information related

speci�cally to the ciphertext, but not directly to the secret key. The tagging is implemented via

pseudorandom function families.

Our construction. Let PE = (K; E ;D) be the given NM-CCA1 secure encryption scheme. Fix

a family F = f F k
: k � 1 g of pseudorandom functions as per [20]. (Notice that this is not

an extra assumption. We know that the existence of even a IND-CPA secure encryption scheme

implies the existence of a one-way function [23] which in turn implies the existence of a family of

pseudorandom functions [22, 20].) Here each F k
= f FK : K 2 f0; 1gk g is a �nite collection in

which each key K 2 f0; 1gk indexes a particular function FK : f0; 1g
k ! f0; 1gk. We de�ne the

new encryption scheme PE 0 = (K0; E 0;D0
) as follows. Recall that " is the empty string.

Algorithm K0(k)

(pk; sk) K(k)

K  f0; 1gk

sk0  sk kK

return (pk; sk0)

Algorithm E 0pk(x)

y  Epk(x)

return 0 k y k "

Algorithm D0
sk kK(b k y k z) where b is a bit

if (b = 0) ^ (z = ") then return Dsk(y)

else if (b = 1) ^ (z = ") then return FK(y)

else if (b = 1) ^ (z = FK(y)) return Dsk(y)

else return ?

Analysis. The proof of Theorem 3.7 is completed by establishing that PE 0 is vulnerable to a

NM-CCA2 attack but remains NM-CCA1 secure.

Claim 3.14 PE 0 is not secure in the sense of NM-CCA2.

Proof: The idea is that while the adversary may not ask for the decryption of the challenge

ciphertext 0ky k " in its second stage, it may ask for the decryption of 1kykFK(y). This is in fact

exactly the decryption of 0ky k ". The adversary �rst needs to compute FK(y) without access to

K. This is easily done by calling the decryption oracle on 1kyk".
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More precisely, the adversary A = (A1; A2) works like this. In the �rst stage it outputs a message

space M consisting of two distinct strings x0; x1, each having probability 1=2. A2, given challenge

ciphertext 0ky k ", makes query 1kyk" to get FK(y), and outputs (R;Z) where R(a; b) = 1 i�

a = b is the equality relation, and Z = 1 k y kFK(y). Notice that Z 6= 0ky k " so this is a valid

output, but D0
sk kK(Z) = D0

sk kK(0ky k ") so Pr[Exp
nm-cca2-1
PE;A (k) = 1 ] = 1. On the other hand,

Pr[Exp
nm-cca2-0
PE;A (k) = 1 ] � 1=2. So Advnm-cca2PE;A (k) � 1=2, which is certainly not negligible.

Remember that PE is assumed secure in the sense of NM-CCA1. We will use this to establish the

following:

Claim 3.15 PE 0 is secure in the sense of NM-CCA1.

Let us �rst give some intuition and then the proof. The key point is that to defeat the scheme, the

adversary must obtain FK(y) where 0 k y k " is the challenge. However, to do this she requires the

decryption oracle. This is easy for an NM-CCA2 adversary but not for an NM-CCA1 adversary,

which has a decryption oracle available only in the �rst stage, when y is not yet known. Once y is

provided (in the second stage) the possibility of computing FK(y) is small because the decryption

oracle is no longer available to give it for free, and the pseudorandomness of F makes it hard to

compute on one's own.

Proof of Claim 3.15: To prove this claim we consider a polynomial time adversary B attacking

PE 0 in the NM-CCA1 sense. We want to show that Advnm-cca1PE 0;B (�) is negligible. To do this, we

consider the following adversary A = (A1; A2) attacking PE in the NM-CCA1 sense. The idea is

that A can choose the key K for the key generation algorithm K0 of B and thus provide a simulation

of the decryption oracle of B.

Algorithm A
Dsk
1 (pk)

K  f0; 1gk

(M; s) B
D0

sk kK

1 (pk)

s0  (s;K;pk)

return (M; s0)

Algorithm A2(M; s0; y) where s0 = (s;K;pk)

(R; z) B2(M; s; 0 k y k ")

for 1 � i � jzj do parse z[i] as bi k ui k vi where bi is a bit

for 1 � i � jzj do

if (bi = 0) ^ (vi = ") then y[i] ui
else if (bi = 1) ^ (vi = ") then y[i] Epk(FK(ui))

else if (bi = 1) ^ (vi = FK(ui)) then y[i] ui
else y[i] y

return (R;y)

The analysis follows in spirit that in the proof of Claim 3.13; the key new element is the pseudo-

random function. Roughly we seek to recapture the lemmas in that proof modulo the security of

the pseudorandom function family.

For the proof, we de�ne two experiments. The �rst is the one under which Advnm-cca1PE;A (k) is evalu-

ated, and the second is the one under which Advnm-cca1PE 0;B (k) is evaluated:

Experiment1
def
= (pk; sk) K(k) ; (M; (s;K;pk)) A

Dsk
1 (pk) ; x; ~x M ; y  Epk(x) ;

(R;y) A2(M; (s;K;pk); y) ; x Dsk(y)

Experiment2
def
= (pk; sk kK) K0(k) ; (M; s) B

D0
sk kK

1 (pk) ; x; ~x M ;

0 k y k " E 0pk ku(x) ; (R; z) B2(M; s; 0 k y k ") ; w D0
sk kK(z) :
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Let Pr1[ � ] = Pr[Experiment1 : � ] be the probability function under Experiment1 and Pr2[ � ] =

Pr[Experiment2 : � ] be that under Experiment2. Let E1,E2, and E3 be the following events:

E1
def
= 8i : (vi = ") _ (bi = 1 ^ vi = FK(ui) ^ ui 6= y)

E2
def
= 9i : (bi = 1 ^ vi = FK(ui) ^ ui = y ^ vi 6= ")

E3
def
= 9i : (bi = 1 ^ vi 6= FK(ui) ^ vi 6= ") _ (bi = 0 ^ vi 6= ")

For j = 1; 2; 3 let

p(1; j) = Pr1 [ y 62 y ^? 62 x ^ R(x;x) j Ej ]� Pr1 [ y 62 y ^ ? 62 x ^R(~x;x) j Ej ]

p(2; j) = Pr2 [ 0 k y k " 62 z ^ ? 62 w ^R(x;w) j Ej ]� Pr2 [ 0 ky k " 62 z ^ ? 62 w ^ R(~x;w) j Ej ] :

By conditioning we have:

Adv
nm-cpa

PE;A (k) =

P3
j=1 p(1; j) � Pr1[Ej ]

Adv
nm-cpa

PE 0;B
(k) =

P3
j=1 p(2; j) � Pr2[Ej ] :

We now upper bound Adv
nm-cpa

PE 0;B
(k) in terms of Adv

nm-cpa

PE;A (k) by a series of lemmas.

Lemma 1: Pr1[Ej ] = Pr2[Ej ] for j = 1; 2; 3.

Proof: These events depend only on the keys and B. 2

Let q be a polynomial which bounds the running time of B and in particular so that jzj < q(k).

Lemma 2: p(2; 1) � p(1; 1) + �(k) for some negligible function � depending on B.

Proof: We consider two possible cases for values of z[i] = bi kui k vi, given event E1.

First suppose (bi = 1 ^ vi = FK(ui) ^ ui 6= y). Note that vi = FK(ui) implies vi 6= " since the

output of FK is always k bits long. Now, from the code of A2, we see that in this case A2 sets y[i]

to ui. Observe that if ciphertext y[i] (respectively z[i]) that A (respectively B) creates equals y

(respectively 0 k y k ") then there is no contribution to the success probability. Since bi = 1 we know

that z[i] 6= 0 k y k ". On the other hand the condition ui 6= y means that y[i] 6= y too. From the

de�nition of D0
we have D0

sk kK(1 k ui kFK(ui)) = Dsk(ui), so A is properly simulating B. (Meaning

the contribution to their respective success probabilities is the same.)

For the second case, namely vi = ", we consider the two possible values of bi.

If bi = 0 then A will set y[i] = ui, and from the de�nition of D0
we have D0

sk kK(0 k ui k ") = Dsk(ui).

Observe that A will output a ciphertext y[i] that equals y if and only if B outputs a ciphertext z[i]

that equals 0 k y k ". So again A is properly simulating B.

If bi = 1 then D0
sk kK(1 k ui k ") = FK(ui) by de�nition of D0

. A correctly \simulates" this by

outputting an encryption of FK(ui). This choice of A contributes to the success probability as

long as it is di�erent from y. The probability of this not happening can be upper bounded by the

probability that Epk(FK(ui)) = y. We must consider the worst case, which is when 8i : (bi = 1^vi =

"), so we are interested in bounding the probability that there is some i such that Epk(FK(ui)) = y.

Intuitively, such \ciphertext collisions" are unlikely since otherwise the scheme would not be secure

even in the sense of IND-CCA1. Formally, one can show that the probability of such collisions is

at most �(k), where �(�) is a negligible function depending on B, by showing that if not, we could

design an adversary A0
that would break the scheme in the sense of IND-CCA1. This is standard,

and a sketch of the details follows.
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In the �rst stage A0
does what A does, picking a key K so that it can provide a simulation of

the decryption oracle of B, similar to the simulation provided by A. It runs the �rst stage of B

and picks a pair of messages uniformly from the message space output by B. In the second stage

it is given an encryption of one of these messages as the challenge. It then obtains a polynomial

number of encryptions of one of the messages and checks if any of the resulting ciphertexts match

the challenge ciphertext. If it does then it bets that the challenge ciphertext corresponds to this

message, otherwise it decides by ipping a coin. Observe that the success of A0
is exactly one half

the probability of there being some i such that Epk(FK(ui)) = y since the experiments de�ning the

success of A0
and the upper bound on the probability in question are similar. Since PE is given to

be secure in the NM-CCA1 sense (and therefore in the IND-CCA1 sense, see Theorem 3.1), we get

a bound of �(k) where � is a negligible function depending on B. 2

Notice that in the above we did not use the security of the pseudorandom function family. That

comes up only in the next lemma. Accordingly, in the following, for any polynomial f we let

Æf (k) be a negligible function which upper bounds the advantage obtainable by any adversary in

distinguishing F from a family of random functions when the running time of this adversary is at

most f(k).

Lemma 3: Pr1[E2 ] � q(k) � [Æq(k) + �(k)] for some negligible function � that depends on B.

Proof: Event E2 occurs if B outputs 1 k ui k vi where ui = y and vi = FK(y). The claim is that

this happens with only a small probability.

Note that it is not impossible for B to compute the value of FK on a point, even though F is

pseudorandom, because it can compute FK(m) on a point m of its choice simply by querying its

decryption oracle on 1 km k ". However, this oracle is only available in the �rst stage, and in that

stage B does not know y. When she does get to know y (in the second stage) she no longer has the

decryption oracle. The pseudorandomness of F then says her chance of computing FK(y) is small.

To turn this intuition into a formal proof, �rst imagine that we use, in the role of FK , a random

function g. (Imagine that Dsk kK has oracle access to g and uses it in the role of FK .) In the

resulting scheme and experiment, it is clear that the chance that B computes g(y) is at most 2
�k

plus the chance that she made a query involving y to the decryption oracle in the �rst stage. Since

y is a ciphertext created after the �rst stage, we claim that the chance that B could make a query

involving y in her �rst stage is negligible. This is true because if not, we would contradict the fact

that PE is IND-CCA1. (This can be argued analogously to the argument in the previous Lemma.

We omit the details.)

Let �(k) then be the negligible probability of computing g(y). Now given that F is pseudorandom

in nature we can bound the probability of B correctly computing FK(y) by Æq(k) + �(k) for some

polynomial q which depends on B. (Justi�ed below.) So while B could always pick ui to be y, she

would have a negligible probability of setting vi to be FK(y). In the worst case this event could

happen with probability at most jzj � [Æq(k) + �(k)].

The bound of Æq(k) + �(k) mentioned above is justi�ed using the assumed security of F as a

pseudorandom function family. If the event in question had a higher probability, we would be

able to construct a distinguisher between F and the family of random functions. This distinguisher

would get an oracle g for some function and has to tell whether g is from F k
or is a random function

of k bits to k bits. It would itself pick the secret keys underlying Experiment1 or Experiment2 and

run the adversaries A or B. It can test whether or not the event happens because it knows all

decryption keys. If it happens it bets that g is pseudorandom, because the chance under a random

function is at most 2
�k

+ �(k). Since this kind of argument is standard, we omit the details. 2

21



Lemma 4: p(1; 3) = p(2; 3) = 0.

Proof: When event E3 happens in Experiment1, one of the ciphertexts y[i] that A2 outputs equals

y and hence there is no contribution to the success probability. When event E3 happens in

Experiment2, the de�nition of D0
sk kK says that the decryption of some z[i] is ? and hence again

there is no contribution to the success probability. In other words, in both cases, there is no success

in either the \real" or the \random" experiment. 2

From Lemmas 1,2,3,4 we get

Advnm-cca1PE 0;B (k) =

P3
j=1 p(2; j) � Pr1[Ej ]

� �(k) + p(1; 1) � Pr1[E1 ] + p(2; 2) � Pr1[E2 ] + p(1; 3) � Pr1[E3 ]

� �(k) + p(1; 1) � Pr1[E1 ] + p(1; 2) � Pr1[E2 ] + p(1; 3) � Pr1[E3 ]

+ (p(2; 2) � p(1; 2)) � Pr1[E2 ]

� �(k) +

P3
j=1 p(1; j) � Pr1[Ej ] + Pr1[E2 ]

� �(k) + q(k) � [Æq(k) + �(k)] + Adv
nm-cpa

PE;A (k) :

Since Æq(k) and �(k) are negligible quantities, the assumption that PE is secure in the sense

of NM-CCA1 implies that Advnm-cca1PE;A (�) is negligible, and hence it follows that Advnm-cca1PE 0;B (�) is

negligible.

4 Results on PA

In this section we de�ne plaintext awareness and prove that it implies the random-oracle version

of IND-CCA2, but is not implied by it.

Throughout this section we shall be working exclusively in the RO model. As such, all notions

of security de�ned earlier refer, in this section, to their RO counterparts. These are obtained in a

simple manner. To modify De�nitions 2.1 and 2.2, begin the speci�ed experiment (the experiment

which de�nes advantage) by choosing a random function H from the set of all functions from some

appropriate domain to appropriate range. (These sets might change from scheme to scheme.) Then

provide an H-oracle to A1 and A2, and allow that Epk and Dsk may depend on H (which we write

as EHpk and DH
sk).

4.1 De�nition

Our de�nition of PA is from [6], except that we make one important re�nement. An adversary B

for plaintext awareness is given a public key pk and access to the random oracle H. We also

provide B with an oracle for EHpk . (This is our re�nement, and its purpose is explained later.)

The adversary outputs a ciphertext y. To be plaintext aware the adversary B should necessarily

\know" the decryption x of its output. To formalize this it is demanded there exist some (universal)

algorithm K (the \plaintext extractor") that could have output x just by looking at the public

key, B's H-queries and the answers to them, and the answers to B's queries to EHpk . Let us now

summarize the formal de�nition and then discuss it.

By (hH ;C ; y) runB
H;EH

pk (pk) we mean the following. Run B on input pk and oracles H and

EHpk , recording B's interaction with its oracles. Form into a list hH = ((h1;H1); : : : ; (hqH ;HqH )) all

of B's H-oracle queries, h1; : : : ; hqH , and the corresponding answers, H1; : : : ;HqH . Form into a list

C = (y1; : : : ; yqE) the answers (ciphertexts) received as a result of EHpk-queries. (The messages that

formed the actual queries are not recorded.) Finally, record B's output, y.
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De�nition 4.1 [Plaintext Awareness { PA] Let PE = (K; E ;D) be an encryption scheme, let B

be an adversary, and let K be an algorithm (the \knowledge extractor"). For any k 2 N de�ne

Succ
pa
PE;B;K(k)

def
= Pr

h
H  Hash ; (pk; sk) K(k) ; (hH ;C ; y) runB

H;EH
pk (pk) :

K(hH ;C ; y;pk) = DH
sk(y)

i
:

We insist that y 62 C ; that is, B never outputs a string y which coincides with the value returned

from some EHpk-query. We say that K is a �(k)-extractor if K has running time polynomial in the

length of its inputs and for every adversary B, Succ
pa

PE;B;K(k) � �(k). We say that PE is secure in

the sense of PA if PE is secure in the sense of IND-CPA and there exists a �(k)-extractor K where

1� �(k) is negligible.

Let us now discuss this notion with particular attention to our re�nement, which, as we said,

consists of providing the adversary with the oracle for EHpk . At �rst glance this may seem redundant:

since B has the public key, can it not encrypt on its own? It can. But, in the random-oracle

model, encrypting such points oneself involves making H-queries (remember that EHpk itself makes

H queries), meaning B knows the oracle queries used by EHpk to produce the ciphertext. (Formally,

they become part of the transcript run B
H;EH

pk .) This does not accurately model the real world,

where B may have access to ciphertexts via eavesdropping, where B's state of knowledge does not

include the underlying oracle queries. By giving B an encryption oracle EHpk whose H-queries (if

any) are not made a part of B's transcript we get a stronger de�nition. Intuitively, should you

learn a ciphertext y1 for which you do not know the plaintext, still you should be unable to produce

a ciphertext (other than y1) whose plaintext you know. Thus the EHpk oracle models the possibility

that B may obtain ciphertexts in ways other than encrypting them herself.

We comment that plaintext awareness, as we have de�ned it, is only achievable in the random-

oracle model. (It is easy to see that if there is a scheme not using the random oracle for which an

extractor as above exists then the extractor is essentially a decryption box. This can be formalized

to a statement that an IND-CPA scheme cannot be plaintext aware in the above sense without using

the random oracle.) It remains an interesting open question to �nd an analogous but achievable

formulation of plaintext awareness for the standard model.

One might imagine that plaintext awareness coincides with semantic security coupled with a

(non-interactive) zero-knowledge proof of knowledge [12] of the plaintext. But this is not valid.

The reason is the way the extractor operates in the notion and scheme of [12]: the common random

string (even if viewed as part of the public key) is under the extractor's control. In the PA notion,

pk is an input to the extractor and it cannot play with any of it. Indeed, note that if one could

indeed achieve PA via a standard proof of knowledge, then it would be achievable in the standard

(as opposed to random-oracle) model, and we just observed above that this is not possible with the

current de�nition.

4.2 Results

The proof of the following is in Section 4.3.

Theorem 4.2 [PA ) IND-CCA2] If encryption scheme PE is secure in the sense of PA then it

is secure in the RO sense of IND-CCA2.

Corollary 4.3 [PA) NM-CCA2] If encryption scheme PE is secure in the sense of PA then PE

is secure in the RO sense of NM-CCA2.

Proof: Follows from Theorems 4.2 and the RO-version of Theorem 3.3.
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The above results say that PA ) IND-CCA2 ) NM-CCA2. In the other direction, we have the

following, whose proof is in Section 4.4.

Theorem 4.4 [IND-CCA26)PA] If there exists an encryption scheme PE which is secure in the

RO sense of IND-CCA2, then there exists an encryption scheme PE 0 which is secure in the RO

sense of IND-CCA2 but which is not secure in the sense of PA.

4.3 Proof of Theorem 4.2: PA) IND-CCA2

Intuition. The basic idea for proving chosen-ciphertext security in the presence of some kind

of proof of knowledge goes back to [16, 17, 9, 12]. Let us begin by recalling it. Assume there is

some adversary A = (A1; A2) that breaks PE in the IND-CCA2 sense. We construct an adversary

A0
= (A0

1; A
0
2) that breaks PE in the IND-CPA sense. The idea is that A0

will run A and use the

extractor to simulate the decryption oracle. At �rst glance it may seem that the same can be done

here, making this proof rather obvious. That is not quite true. Although we can follow the same

paradigm, there are some important new issues that arise and must be dealt with. Let us discuss

them.

The �rst is that the extractor cannot just run on any old ciphertext. (Indeed, if it could, it would

be able to decrypt, and we know that it cannot.) The extractor can only be run on transcripts that

originate from adversaries B in the form of De�nition 4.1. Thus to reason about the e�ectiveness

of A0
we must present adversaries who output as ciphertext the same strings that A0

would ask

of its decryption oracle. This is easy enough for the �rst ciphertext output by A, but not after

that, because we did not allow our Bs to have decryption oracles. The strategy will be to de�ne a

sequence of adversaries B1; : : : ; Bq so that Bi uses the knowledge extractor K for answering the �rst

i� 1 decryption queries, and then Bi outputs what would have been its i-th decryption query. In

fact this adversary A0
might not succeed as often as A, but we will show that the loss in advantage

is still tolerable.

Yet, that is not the main problem. The more subtle issue is how the encryption oracle given to

the adversary comes into the picture.

Adversary Bi will have to call its encryption oracle to \simulate" production of the challenge

ciphertext received by A2. It cannot create this ciphertext on its own, because to do so would

incorrectly augment its transcript by the ensuing H-query. Thus, in fact, only one call to the

encryption oracle will be required | yet this call is crucial.

Construction. For contradiction we begin with an IND-CCA2-adversary A = (A1; A2) with a

non-negligible advantage, Advind-cca2PE;A (k) against PE . In addition, we know there exists a plaintext

extractor, K, with high probability of success, Succ
pa
PE;B;K(k), for any adversary B. Using A and K

we construct an IND-CPA-adversary A0
= (A0

1; A
0
2) with a non-negligible advantage, Adv

ind-cpa

PE;A0 (k)

against PE . Think of A0
as the adversary A with access only to a simulated decryption oracle

rather than the real thing. If A(�; �; � � �) is any probabilistic algorithm then A(x; y; � � � ;R) means we

run it with coin tosses �xed to R. Let " denote the empty list. The adversary is de�ned as follows:
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Algorithm A0
1
(pk;R)

hH  "

Take R1 from R

Run A1(pk;R1), wherein

When A1 makes a query, h, to H :

A0
1
asks its H-oracle h, obtaining H(h)

Put (h;H(h)) at end of hH

Answer A1 with H(h)

When A1 makes its jth query, y, to DH
sk :

x K(hH ; "; y; pk)

Answer A1 with x

Finally A1 halts, outputting (x0; x1; s)

return (x0; x1; (s; hH ; pk))

Algorithm A0
2
(x0; x1; (s; hH ; pk); y;R)

Take R2 from R

Run A2(x0; x1; s; y;R2), wherein

When A2 makes a query, h, to H :

A0
2
asks its H-oracle h, obtaining H(h)

Put (h;H(h)) at end of hH

Answer A2 with H(h)

When A2 makes its jth query, y0, to DH
sk :

x K(hH ; (y); y0; pk)

Answer A2 with x

Finally A2 halts, outputting bit, d

return d

Analysis. To reason about the behavior of A0
we describe adversaries B1; : : : ; Bq, where q is the

number of decryption queries made by A.

Adversary B1 runs A)1, answeriing A1's H-oracle queries using its own H-oracle, being careful

to collect up the questions and their answers, forming a list of these, hH . When A1 �nally makes

its �rst decryption query, y1, algorithm B1 halts, outputting y1.

Algorithm B2 likewise runs A1. As before, H-queries (and their answers) are recorded in hH .

When the �rst query y1 to D
H
sk is made, B2 passes y1 to K along with the transcript hH and pk.

Since A1 does not have access to an encryption oracle, the ciphertext list C that K expects will

be empty (C = "). Algorithm B2 then passes on K's answer to A1 and continues running A1,

appropriately updating hH , until the second query, y2, is made to DH
sk . Then B2 outputs y2.

This process continues in this way to construct each Bi for i 2 f1; : : : ; q1g, where q1 is the

number of DH
sk-queries made by A1. This is described by the left-hand column below.

Algorithm B
H;EHpk
i (pk;R) // i 2 f1; : : : ; qg

hH  "

Let R1; R2 be taken from R.

Run A1(pk;R1), wherein

When A1 makes a query, h, to H :

Bi asks its H-oracle h, obtaining H(h)

Put (h;H(h)) at end of hH

Answer A1 with H(h)

When A1 makes its jth query, y, to DH
sk :

if j = i then return y and halt

else x K(hH ; "; y; pk)

Answer A1 with x

Finally, A1 halts, outputting (x0; x1; s)

// Algorithm Bi, continued

d f0; 1g

Using Bi's encryption oracle, let y  EHpk(xd)

Run A2(x0; x1; s; y;R2), wherein

When A2 makes a query, h, to H :

Bi asks its H-oracle h, obtaining H(h)

Put (h;H(h)) at end of hH

Answer A2 with H(h)

When A2 makes its j-th query, y0, to DH
sk :

if i = j + q1 then return y0 and halt

else x K(hH ; (y); y0; pk)

Answer A2 with x

Having de�ned adversaries corresponding to each decryption query made by A1, we now need to do

this for A2. Recall that adversary A2 gets as input (x0; x1; s; y) where, in the experiment de�ning

advantage, y is selected according to y  EHpk(xd) for a random bit d. Remember that A2 is

prohibited from asking DH
sk(y), although A2 may make other (possibly related) decryption queries.

How then can we pass y to our decryption simulation mechanism? This is where the encryption

oracle and the ciphertext list C come in. We de�ne adversaries Bq1+1, . . . , Bq just like we de�ned

B1; : : : ; Bq1 , except that this time C = (y) rather than being empty. This is shown above in the

righ-hand column.

Let us now see how good a simulation A0
1 is for A

DH
sk

1 . Note that the values (x0; x1; s) produced

by A0
1 are not necessarily the same as what A1 would have output after the analagous interactions
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with DH
sk , since one of K's answers may not be the correct plaintext. Let D be the event that

at least one of K's answers to A1's decryption queries was not the correct plaintext. Using the

existence of B1; B2; : : : we can lower bound the probability of the correctness of K's answers in A0
1

by

Pr[A0
1(pk) = A

DH
sk

1 (pk)] � 1� Pr[D] � 1� q1 � (1� �(k)) :

Letting q2 be the number of decryption oracle queries made by A2, we similarly have for A0
2 that

and that

Pr[A0
2(x0; x1; (s;hH ); y) = A

DH
sk

2 (x0; x1; s; y) jA
0
1(pk) = A

DH
sk

1 (pk)] � 1� q2 � (1� �(k)) :

Now using the above, one can see that

Adv
ind-cpa

PE;A0 (k) � Advind-cca2PE;A (k)� 2q � (1� �(k));

where q = q1+ q2 and represents the total number of decryption oracle queries made by the adver-

sary A. A0
1 runs A1, asking for q1 executions of K. Similarly A0

2 runs A2, asking for q2 executions

of K. Hence the running time of our new adversary A0
is equal to tA + q � tK , where tA and tK are

the running times of A and K respectively, which is polynomial if A and K are polynomial time.

Under our assumptions Advind-cca2PE;A (k) is non-negligible and 1 � �(k) is negligible, so Adv
ind-cpa

PE;A0 (k)

is non-negligible, and PE is not secure in the sense of IND-CPA security.

In concrete security terms, the advantage drops linearly in q while the running time grows

linearly in q. Note that it was important in the proof that K almost always succeeded; it would

not have worked with �(k) = 0:5, say.

4.4 Proof of Theorem 4.4: IND-CCA2 6)PA

Assume there exists some IND-CCA2 secure encryption scheme PE = (K; E ;D), since otherwise

the theorem is vacuously true. We now modify PE to a new encryption scheme PE 0 = (K0; E 0;D0
)

which is also IND-CCA2 secure but not secure in the PA sense. This will prove the theorem. The

new encryption scheme PE 0 = (K0; E 0;D0
) is de�ned as follows:

Algorithm K0(k)

(pk; sk) K(k)

b f0; 1gk ; a EHpk(b)

pk0  pk k a ; sk 0  sk k b

return (pk 0; sk 0)

Algorithm E 0H
pk k a(x)

return EHpk(x)

Algorithm D0H
sk k b(y)

return DH
sk(y)

In other words, the only di�erence is that in the new scheme, the public key contains a random

ciphertext a whose decryption is in the secret key. Our two claims are that PE 0 remains IND-CCA2

secure, but is not PA. This will complete the proof.

Claim 4.5 PE 0 is secure in the sense of IND-CCA2.

Proof: Recall our assumption is that PE is IND-CCA2 secure. To prove the claim we consider

a polynomial time adversary B attacking PE 0 in the IND-CCA2 sense. We want to show that

Advind-cca2PE 0;B (�) is negligible. To do this, we consider the following adversary A = (A1; A2) attacking

PE in the IND-CCA2 sense. The idea is that A can simulate the choosing of a by the key generation

algorithm K0 for B, and thus has access to the corresponding secret b. Note that having an oracle

for DH
sk , it is indeed possible for A to reply to any queries to the D0H

sk k b oracle made by B: to query y

it simply returns DH
sk(y).
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Algorithm A
DH

sk
1 (pk)

b f0; 1gk ; a EHpk(b)

pk0  pk k a

(x0; x1; s) B
D0H

sk k b

1 (pk k a)

s0  (s; a; b)

return (x0; x1; s
0
)

Algorithm A
Dsk
2 (x0; x1; s

0; y) where s0 = (s; a; b)

pk0  pk k a

d B
D0

sk k b

2 (x0; x1; s; y)

return d

It is clear that A is polynomial time and that Advind-cca2PE;A (k) = Advind-cca2PE 0;B (k). The assumption that

PE is secure in the sense of IND-CCA2 implies that Advind-cca2PE;A (k) is negligible, and hence it follows

that Advind-cca2PE 0;B (k) is negligible.

Claim 4.6 PE 0 is not plaintext-aware.

Proof: We consider the following speci�c adversary B that outputs as her ciphertext the value a

in her public key:

Algorithm B
H;EH

pk0 (pk 0) where pk0 = pk k a

return a

Intuitively, this adversary defeats any aspiring plaintext extractor: It will not be possible to con-

struct a plaintext extractor for this B as long as PE 0 is secure in the sense of IND-CPA. Hence

there does not exist a plaintext extractor for PE 0.

The formal proof is by contradiction. Assume PE 0 is PA. Then there exists a plaintext-extractor K 0

for PE 0. We now de�ne an adversary A = (A1; A2) that attacks PE in the sense of IND-CPA. the

empty list.

Algorithm A1(pk)

x0  f0; 1g
k

x1  f0; 1g
k

return (x0; x1;pk)

Algorithm A2(x0; x1;pk; y)

pk0  (pk; y)

x0  K 0
("; "; y;pk 0)

if x0 = x0 then d 0

else if x0 = x1 then d 1

else d f0; 1g

return d

Consider the experiment de�ning the success of (A1; A2) in attacking PE in the sense of IND-CPA.

In this experiment, y is the encryption of a random k-bit string. This means that in the input

("; "; y;pk 0) given to K, the distribution of ("; "; y) is exactly that of runBEpk0 (pk0). This is because

B, the adversary we de�ned above, has no interaction with its oracles, and the value a in the public

key pk0 is itself the encryption of a random k-bit string. Thus, our assumption that K 0
works

means that the extraction is successful with probability Succ
pa

PE 0;B;K0(k). Thus

Adv
ind-cpa
PE;A (k) � Succ

pa

PE 0;B;K0(k)�
1

2
k
�
1� Succ

pa

PE 0;B;K0(k)

2

:

The �rst term is a lower bound on the probability that A2 outputs 0 when the message was x0.

The second term is an upper bound on the probability that it outputs 1 when the message was x0.

Now since K 0
is assumed to be a good extractor we know that Succ

pa

PE0;B;K0(k) = 1��(k) for some

negligible function �(�) and hence Adv
ind-cpa
PE;A (k) is not negligible. (In fact is of the form 1 � �0(k)

for some negligible function �0(�).) This contradicts the indistinguishability of PE , as desired.
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