
Analysis and Design of

Cryptographic Hash Functions

Bart PRENEEL

February 2003

v

Acknowledgements

I like prefaces. I read them. Sometimes I do not
read any further. Malcolm Lowry

At the end of this Ph.D. project it is a pleasure to thank everybody who has helped
me along the way.

In the first place, I would like to express my thanks to my supervisors, Prof. R. Go-
vaerts and Prof. J. Vandewalle who have introduced me to the field of cryptography.
I appreciate their guidance and support, and I value the interesting discussions on
various subjects we had. They also have taught me many practical aspects of research.
I also would like to thank them for the many opportunities I have received to broaden
my knowledge and to discuss my work with other researchers.

I would also like to thank Prof. A. Oosterlinck for giving me the opportunity to
work at ESAT, and Prof. A. Haegemans and Prof. J.-J. Quisquater for reviewing this
manuscript. Prof. A. Barbé, Prof. J. Berlamont, and Prof. P. Landrock are gratefully
acknowledged for serving on the jury.

I would like to mention my COSIC colleagues, Joan Daemen, Rita De Wolf, Mark
Vandenwauver, Luc Van Linden, and Jan Verschuren, who created a nice working at-
mosphere. Special thanks go to Antoon Bosselaers for the many years of collaboration,
for the assistance with the software, and for the valuable comments on all my drafts. I
would like to thank Ria Vanden Eynde for the active proof reading and for the moral
support.

I also would like to acknowledge the collaboration with the students who have been
working under my supervision. I have learned many things from my colleagues of the
RIPE project and from the experts of ISO/IEC JTC1/SC27/WG2.

Many people in the cryptographic community have contributed to this research,
through interesting discussions or by providing useful information. I would like to
mention especially Prof. T. Beth, dr. C. Carlet, Prof. D. Chaum, dr. D. Coppersmith,
Prof. I. Damg̊ard, dr. B. den Boer, dr. A. Jung, L. Knudsen, dr. X. Lai, dr. K. Martin,
dr. W. Meier, dr. K. Nyberg, dr. L. O’Connor, dr. R. Rueppel, dr. B. Sadeghiyan, dr.
O. Staffelbach, dr. H. Tiersma, and dr. Y. Zheng.

Finally I would like to acknowledge the support of the Belgian National Science
Foundation (N.F.W.O.).

vi

vii

Abstract

The subject of this thesis is the study of cryptographic hash functions. The importance
of hash functions for protecting the authenticity of information is demonstrated. Ap-
plications include integrity protection, conventional message authentication and digital
signatures. Theoretical results on cryptographic hash functions are reviewed. The in-
formation theoretic approach to authentication is described, and the practicality of
schemes based on universal hash functions is studied. An overview is given of the com-
plexity theoretic definitions and constructions. The main contribution of this thesis
lies in the study of practical constructions for hash functions. A general model for hash
functions is proposed and a taxonomy for attacks is presented. Then all schemes in the
literature are divided into three classes: hash functions based on block ciphers, hash
functions based on modular arithmetic and dedicated hash functions. An overview is
given of existing attacks, new attacks are demonstrated, and new schemes are pro-
posed. The study of basic building blocks of cryptographic hash functions leads to the
study of the cryptographic properties of Boolean functions. New criteria are defined
and functions satisfying new and existing criteria are studied.

viii

Contents

1 Authentication and Privacy 1
1.1 Introduction . 1
1.2 Background and definitions . 2
1.3 The separation of privacy and authentication 3

1.3.1 Models for symmetric and asymmetric cipher systems 3
1.3.2 Information authentication and digital signatures 5
1.3.3 Privacy and authentication: two different concepts 6

1.4 Three approaches to the authentication problem 8
1.4.1 Information theoretic approach 8
1.4.2 Complexity theoretic approach 9
1.4.3 System based or practical approach 11

1.5 Outline of the thesis . 12
1.6 Main contributions . 12

2 Cryptographic Hash Functions 15
2.1 Introduction . 15
2.2 Practical definitions . 16

2.2.1 One-way hash function (OWHF) 17
2.2.2 Collision resistant hash function (CRHF) 18
2.2.3 Message Authentication Code (MAC) 18

2.3 Applications of hash functions . 19
2.3.1 Information authentication . 19

2.3.1.1 Authentication without secrecy 19
2.3.1.2 Authentication with secrecy 21

2.3.2 Authentication of multi-destination messages 22
2.3.3 Non-repudiation . 24

2.3.3.1 Optimization of digital signature schemes 25
2.3.3.2 Practical digital signatures based on a one-way function 27

2.3.4 Identification with passwords . 29
2.3.5 Encryption algorithms based on hash functions 29
2.3.6 Application to software protection 30

2.4 General constructions . 31
2.4.1 General model . 31

ix

x CONTENTS

2.4.2 Conditions on the function f for a OWHF 35
2.4.3 Conditions on the function f for a CRHF 37
2.4.4 Tree approach to hash functions 38
2.4.5 Cascading of hash functions . 39

2.5 Methods of attack on hash functions . 40
2.5.1 Attacks independent of the algorithm 41

2.5.1.1 Random attack . 42
2.5.1.2 Exhaustive key search 42
2.5.1.3 Birthday attack . 43

2.5.2 Attacks dependent on the chaining 45
2.5.2.1 Meet in the middle attack 45
2.5.2.2 Constrained meet in the middle attack 46
2.5.2.3 Generalized meet in the middle attack 46
2.5.2.4 Correcting block attack 46
2.5.2.5 Fixed point attack . 47
2.5.2.6 Key collisions . 47
2.5.2.7 Differential attacks . 48
2.5.2.8 Analytical weaknesses 48

2.5.3 Attacks dependent on an interaction with the signature scheme . 48
2.5.4 Attacks dependent on the underlying block cipher 48

2.5.4.1 Complementation property 49
2.5.4.2 Weak keys . 49
2.5.4.3 Fixed points . 49

2.5.5 High level attacks . 50
2.6 Conclusion . 50

3 The Information Theoretic Approach 53
3.1 Introduction . 53
3.2 Basic theory . 53

3.2.1 Definitions and notations . 54
3.2.2 Bounds on authentication codes 55
3.2.3 Characterization of perfect Cartesian authentication codes 57

3.3 Practical Cartesian authentication codes 57
3.3.1 The perfect schemes . 57
3.3.2 Universal hash functions . 58

3.3.2.1 Definitions . 58
3.3.2.2 Constructions . 60
3.3.2.3 Authentication codes based on universal hash functions 61

3.3.3 A comparative overview . 62
3.4 Conclusion . 65

CONTENTS xi

4 The Complexity Theoretic Approach 67
4.1 Introduction . 67
4.2 Complexity theoretic definitions . 68

4.2.1 Basic definitions . 68
4.2.2 Pseudo-random string generators 69
4.2.3 One-way functions . 70

4.3 Complexity theoretic constructions . 72
4.3.1 Universal hash functions and uniformizers 72
4.3.2 Universal One-Way Hash Functions (UOWHF) 72

4.3.2.1 Definition . 73
4.3.2.2 General construction methods 74
4.3.2.3 The scheme of Naor and Yung 75
4.3.2.4 The first scheme of Zheng, Matsumoto, and Imai 76
4.3.2.5 The schemes of De Santis and Yung 76
4.3.2.6 The scheme of Rompel 77
4.3.2.7 The second scheme of Zheng, Matsumoto, and Imai . . 77
4.3.2.8 The scheme of Sadeghiyan and Pieprzyk 78

4.3.3 Collision Resistant Hash Functions (CRHF) 79
4.3.3.1 Definition . 79
4.3.3.2 Fixed size CRHF . 81
4.3.3.3 Claw resistant permutations 81
4.3.3.4 Distinction resistant permutations 83
4.3.3.5 Claw resistant pseudo-permutations 84

4.3.4 Sibling resistant functions (SRF) 84
4.3.4.1 Definition . 84
4.3.4.2 Construction . 85

4.3.5 Perfect Authentication codes . 85
4.4 Conclusion . 86

5 Hash Functions Based on Block Ciphers 89
5.1 Introduction . 89
5.2 Authentication based on encryption and redundancy 90

5.2.1 Authentication based on randomized encryption 91
5.2.2 New modes of use . 92
5.2.3 Addition schemes . 94
5.2.4 A simple MAC . 96

5.3 Overview of MDC proposals . 97
5.3.1 Size of hashcode equals block length 97

5.3.1.1 Conventional modes of use 97
5.3.1.2 Invertible key chaining 98
5.3.1.3 Non-invertible key chaining 99
5.3.1.4 A synthetic approach 100

5.3.2 Size of hashcode equals twice the block length 111
5.3.2.1 Iteration of a OWHF 111

xii CONTENTS

5.3.2.2 Schemes with rate greater than or equal to 2 112
5.3.2.3 Schemes with rate equal to 1 124

5.3.3 Size of key equals twice the block length 132
5.3.3.1 Size of hashcode equals block length 132
5.3.3.2 Size of hashcode equals twice the block length 132

5.3.4 A new scheme based on a block cipher with fixed key 133
5.3.4.1 Background and design principles 133
5.3.4.2 Description of the new scheme 134
5.3.4.3 Attacks on the scheme 138
5.3.4.4 A detailed study of the security level 143
5.3.4.5 Extensions . 148
5.3.4.6 Overview of results . 150

5.4 Overview of MAC proposals . 155
5.4.1 CBC and CFB modes of a block cipher algorithm 155
5.4.2 Invertible chaining for a MAC . 159

5.5 Conclusion . 160

6 Hash Functions Based on Modular Arithmetic 161
6.1 Introduction . 161
6.2 Overview of MDC proposals . 162

6.2.1 Schemes with a small modulus 162
6.2.2 Schemes with a large modulus 164

6.2.2.1 Schemes that are not provably secure 165
6.2.2.2 Provably secure schemes with large modulus 172

6.3 A MAC proposal . 174
6.3.1 Description of the scheme . 175
6.3.2 Weakness of the modulo reduction 176
6.3.3 Deriving the first s bits of the key K 177

6.3.3.1 Deriving the most significant bit of K 178
6.3.3.2 Deriving the s most significant bits of K 180

6.3.4 Further extensions . 181
6.4 Conclusion . 181

7 Dedicated Hash Functions 183
7.1 Introduction . 183
7.2 Overview of MDC proposals . 183

7.2.1 The Binary Condensing Algorithm (BCA) 183
7.2.2 MD2 . 188
7.2.3 MD4, MD5, SHA, RIPEMD, and HAVAL 190

7.2.3.1 MD4 . 190
7.2.3.2 MD5 . 192
7.2.3.3 SHA . 193
7.2.3.4 RIPE-MD . 195
7.2.3.5 HAVAL . 195

CONTENTS xiii

7.2.4 N-hash . 195
7.2.5 FFT-Hash I and II . 197
7.2.6 Snefru . 198
7.2.7 Hash functions based on cellular automata 199
7.2.8 Hash functions based on the knapsack problem 201

7.2.8.1 The knapsack problem 201
7.2.8.2 Solving the knapsack problem 202
7.2.8.3 Hash functions based on additive knapsacks 203
7.2.8.4 Hash functions based on multiplicative knapsacks . . . 205

7.3 Overview of MAC Proposals . 206
7.3.1 The ASP MAC function . 206
7.3.2 Message Authenticator Algorithm (MAA) 209
7.3.3 Decimal Shift and Add algorithm (DSA) 210
7.3.4 Based on a stream cipher . 211
7.3.5 Matrix algebra . 212
7.3.6 Proprietary algorithms . 212

7.4 Design principles . 213
7.4.1 Security relevant criteria . 213
7.4.2 Efficiency . 216
7.4.3 Trapdoors in hash functions . 219

7.5 Conclusion . 219

8 Cryptographic Properties of Boolean Functions 221
8.1 Introduction . 221
8.2 Definitions . 223

8.2.1 Basic definitions . 223
8.2.2 Transformations on Boolean functions 223

8.2.2.1 The algebraic normal transform 223
8.2.2.2 The Walsh-Hadamard transform 224
8.2.2.3 The autocorrelation function 228

8.3 Criteria for Boolean functions and their properties 230
8.3.1 Completeness . 230
8.3.2 Nonlinearity . 231
8.3.3 Balancedness and correlation immunity 233
8.3.4 Propagation criteria . 235

8.4 Functions satisfying certain criteria . 242
8.4.1 Quadratic functions . 242

8.4.1.1 A canonical form . 242
8.4.1.2 Quadratic functions satisfying PC(k) 243
8.4.1.3 Quadratic functions satisfying CI(m) 245
8.4.1.4 Quadratic functions satisfying higher order PC 250
8.4.1.5 Quadratic functions satisfying combined criteria 253

8.4.2 Bent functions . 255
8.4.2.1 Constructions of bent functions 255

xiv CONTENTS

8.4.2.2 Counting bent functions 257
8.4.2.3 Extension of bent functions for odd n 259

8.5 Construction of Boolean functions . 259
8.5.1 Exhaustive search . 260
8.5.2 Recursive construction methods 262
8.5.3 Nonlinear optimization . 262

8.6 Extensions to S-boxes . 263
8.7 Conclusion . 264

9 Conclusions and Open Problems 265

A Modes of Use 269
A.1 The ECB mode . 269
A.2 The CBC mode . 270
A.3 The CFB mode . 271
A.4 The OFB mode . 272

B Birthday Attacks and Collisions 275
B.1 Introduction . 275
B.2 Models for matching probabilities . 276
B.3 Coincidences . 277
B.4 k-fold collisions . 279

C Differential Cryptanalysis of Hash Functions Based on Block Ciphers287
C.1 Introduction . 287
C.2 Differential attacks on single length hash functions 288
C.3 Differential attacks on MDC-2 and MDC-4 290
C.4 Differential attacks on FEAL-N based hash functions 291
C.5 Conclusion . 293

D The Number of Graphs with a Given Minimum Degree 295
D.1 Definitions and basic properties . 295
D.2 A solution for some values of the minimum degree 297

References 301

List of notations

Such is the advantage of a well-constructed lan-
guage that its simplified notation often becomes
the source of profound theories. P.S. Laplace

xv

xvi LIST OF NOTATIONS

List of abbreviations

AGL(n) : affine linear group of GF (2n)
ANSI : American National Standards Institute
CBC : Cipher Block Chaining
CCITT : International Telegraph and Telephone Consultative Committee
CFB : Cipher Feedback
CI(m) : Correlation Immune of order m
CIB(m) : Balanced and Correlation Immune of order m
CIN(m) : Non-balanced and Correlation Immune of order m
CPU : Central Processing Unit
CRC : Cyclic Redundancy Check
CRF : Collision Resistant Function
CRHF : Collision Resistant Hash Function
ECB : Electronic Codebook
EFT : Electronic Funds Transfer
EPC(k) : Extended Propagation Criterion of degree k
ETEBAC : Echanges Télématiques Entre les Banques et leurs Clients
FIPS : Federal Information Processing Standard
GF (pn) : Galois Field with pn elements
GL(n) : general linear group of GF (2n)
IEC : International Electrotechnical Committee
ISO : International Organization for Standardization
IV : Initial Value
MAC : Message Authentication Code
MDC : Manipulation Detection Code
NIST : National Institute for Standards and Technology (US)
OFB : Output Feedback
OFBNLF : Output Feedback with a Non-Linear Function
OWF : One-Way Function
OWHF : One-Way Hash Function
PC(k) : Propagation Criterion of degree k
PCBC : Plaintext-Ciphertext Block Chaining
PSG : Pseudo-random String Generator
RCC : Random Code Chaining
RIPE : Race Integrity Primitives Evaluation
SAC : Strict Avalanche Criterion
SRF : Sibling Resistant Function
SV : Starting Variable
UOWHF : Universal One-Way Hash Function

xvii

List of cryptographic algorithms

BCA : Binary Condensing Algorithm
BMAC : Bidirectional MAC
DEA : Data Encryption Algorithm
DES : Data Encryption Standard
DSA : Decimal Shift and Add algorithm

: Digital Signature Algorithm
DSAA : Dect Standard Authentication Algorithm
FEAL : Fast data Encipherment Algorithm
FFT-hash : Fast Fourier Transform hash function
IDEA : International Data Encryption Algorithm
IPES : Improved Proposed Encryption Standard
MAA : Message Authenticator Algorithm
MD-x : Message Digest x
PES : Proposed Encryption Standard
QCMDC : Quadratic Congruential MDC
QCMDCV4 : Quadratic Congruential MDC Version 4
RSA : Rivest Shamir Adleman
SHA : Secure Hash Algorithm
TRASEC : TRAnsmission Security

List of mathematical symbols

x‖y : the concatenation of the binary strings x and y

bzc : the greatest integer less than or equal to z

dze : the least integer greater than or equal to z

xviii LIST OF NOTATIONS

Chapter 1

Authentication and Privacy

The beginning is easy; what happens next is
much harder.

1.1 Introduction

The title of this chapter will sound familiar and yet a little odd to anyone who is
interested in cryptography. The explanation is that the frequently cited 1979 overview
paper of W. Diffie and M. Hellman in the Proceedings of the IEEE [96] is entitled
“Privacy and Authentication: an introduction to cryptography”. In spite of the title,
this overview paper is devoted almost completely to the protection of privacy. This
is not surprising, since at that time cryptology was mainly concentrating on the pri-
vacy problem, and it was widely believed that the authentication problem was only
a subproblem, in the sense that protection of authenticity would follow automatically
from privacy protection. W. Diffie and M. Hellman conclude “The problems of privacy
and authentication are closely related and techniques for solving one can frequently be
applied to the other”.

However, their seminal 1976 paper [95] has given cryptography a new orientation,
through the introduction of new concepts and definitions. These concepts gave birth
to new ideas and approaches, resulting in a clear separation of the privacy and authen-
tication problem. About the protection of authenticity, they state that “Not only must
a meddler be prevented from injecting totally new, authentic messages into a channel,
but he must be prevented from creating apparently authentic messages by combining,
or merely repeating, old messages which he has copied in the past. A cryptographic
system intended to guarantee privacy will not, in general, prevent this latter form of
mischief.” The development of both theoretical and practical cryptographic systems
to guarantee authenticity has been an important research topic in the cryptographic
community during the last fifteen years.

In this chapter basic concepts of privacy and authentication will be briefly ex-

1

2 CHAPTER 1. AUTHENTICATION AND PRIVACY

plained. Subsequently, it will be shown that privacy and authentication are two differ-
ent concepts. This will require the description of a model for symmetric and asymmet-
ric cipher systems and an explanation of how cryptographically secure hash functions
can be used to provide authentication and to optimize digital signature schemes. A
taxonomy will be given for authentication systems, comparing the information theo-
retic approach, the complexity theoretic approach, and the system based or practical
approach. Finally an outline of this thesis will be given and the main contributions
will be described.

1.2 Background and definitions

It is well known that the concealment of information or protection of privacy is as old
as writing itself. Human ingenuity found many ways to conceal information: steganog-
raphy, i.e., the hiding of the mere existence of a message, codes, where words or com-
binations of words are replaced by fixed symbols, and cryptology or ciphers, where
information is transformed to render it useless for the opponent. The distinction be-
tween the latter two is rather subtle, and can be made on the fact that codes split
up information according to semantic borders, while ciphers operate on chunks of in-
formation independently of the linguistic interpretation. The technological evolution
from handwritten messages on paper sent by courier to the communication of infor-
mation through both local and worldwide communication networks and the storage
and processing in a variety of computer systems certainly has increased the vulner-
ability of information to eavesdropping. Cryptology was the only solution that was
able to make the leap from the closed world of generals and diplomats to worldwide
commercial applications.

Apart from concealment or privacy protection, it is equally important that both
the contents and the originator of the information are not modified. Both requirements
are captured in the term authentication. An attacker who tries to modify contents or
origin of information is called an active attacker. The fact that the relative importance
of this threat has increased can be illustrated by the emergence of malicious software
programs. The best known examples of this group are certainly the computer viruses
[51]. Others include worms [306], Trojan horses, and logical bombs. Every effective
solution will have to be based on a verification of the authenticity of the software when
it is loaded on the hard disk and when it is loaded by the CPU. The latter application
will require very high throughput of 100 Mbytes per second and even more. A second
illustration is situated in the banking world. The authenticity of financial transactions
is generally considered more important than the secrecy, as one successful fraud can
result in a considerable benefit for the attacker. The problem here is not only the
economical value of a single attack, but the fact that the trust in the system can be lost
[117]. A third application that will become more and more important is the protection
of the authenticity of pictures and moving images (e.g. videoconferencing). As one
can expect that it will become feasible to “edit” moving pictures and make a person
say and do things he or she never said or did, it is required that one can guarantee

1.3. THE SEPARATION OF PRIVACY AND AUTHENTICATION 3

the authenticity of moving images. This will impose even higher requirements on the
throughput. Other applications where authentication is important are alarm systems,
satellite control systems, distributed control systems, and systems for access control
[88].

Authentication is the protection of the communicating parties against attacks of a
third party. However, a different threat emerges when the two communicating parties
are mutually distrustful and try to perform a repudiation. This means that sender or
receiver will try to modify a message and/or deny to have sent or received a particular
message. In paper documents, protection against this type of attack is offered by a
handwritten signature. It is clear that in case of electronic messages, a simple name
at the end of the message offers no protection at all. This is analogous to the fact
that a photocopy of a document with a manual signature has no value, as one can
always produce a bogus document with cut and paste operations. A typical example
of this fraud is the electronic communication of orders to a stockbroker. The customer
can place an order to buy shares of company X. If some days later the transaction
turns out badly, he will try to deny his order. If on the other hand, the transaction
is successful, the stockbroker might claim that he never received the order with the
intention to keep the profit. In case of a dispute, a third party (a judge), has to take a
decision. An elegant technical solution to this problem was offered by the concept of
digital signature schemes based on trapdoor one-way functions [95]. It will be discussed
in more detail in the next section.

1.3 The separation of privacy and authentication

1.3.1 Models for symmetric and asymmetric cipher systems

In this section it will be explained how the concepts of authentication and privacy,
that were at first closely related, grew more and more apart. First a model has to be
given for a cipher system. Hereto the model for a symmetric or conventional cipher
system introduced by C. Shannon in 1949 [303] will be extended to include asymmetric
or public-key cipher systems (figure 1.1). The sender Alice wants to transmit the
plaintext P to the receiver. She will transform the plaintext P into the ciphertext C
with the encryption algorithm E. The encryption algorithm E is actually a family
of transformations parameterized by an encryption key KE . The receiver Bob will
recover the plaintext P by applying the decryption algorithm D. This algorithm is
in the same way parameterized by a decryption key KD. The model also contains a
key generation algorithm KG, that produces corresponding pairs KE and KD. For
simplicity it will be assumed that the generation of keys is controlled by Bob. The key
KE has to be sent to Alice through a secure channel. The eavesdropper Eve, who also
will be called cryptanalyst or opponent, knows the description of E and D, and has
access to C. She will try to derive information on the plaintext P .

In case of a symmetric cipher, KE and KD are equal and the channel to distribute
KE has to protect both its privacy and its authenticity. A possible but expensive
solution is to have the key communicated by a courier. The security of the cipher

4 CHAPTER 1. AUTHENTICATION AND PRIVACY

E D- - -

KG

6

secure channel

6

�

P PC

Alice Eve Bob

KE KD

Figure 1.1: Model of cipher system.

relies on the fact that knowledge of E, D, and C does not allow to derive P .
In case of an asymmetric cipher, KE is made public, and therefore this type of

cipher is also called public-key algorithm. The channel to distribute KE only has to
protect the authenticity, while Bob has to protect both the authenticity and the secrecy
of KD. The assumptions underlying this cipher are that knowledge of E, D, and C
does not allow to derive P and that knowledge of KE does not allow to derive KD.
The concept invented to achieve these properties is the trapdoor one-way permutation
(in fact a trapdoor one-way function suffices). This is a permutation that is hard to
invert unless one knows some secret trapdoor information.

A beautiful property of the public-key algorithms is that if the encryption function
is a trapdoor one-way permutation, they can be turned easily into a digital signature
scheme. If Bob transforms a plaintext P with his secret key KD, he obtains the cipher-
text C ′. It is possible for Alice — in fact for everyone who knows the corresponding
public key KE — to encipher C ′ with KE and to verify that P is obtained. Note
that here the implicit assumption is made that P contains some verifiable redundancy,
as will be discussed in the next section. Because Bob is the only person who knows
KD, it is clear that he is the only person who can possibly have generated C ′, and
hence he can not deny to have sent P . If both Alice and Bob generate their own key
pair and exchange their respective public keys, a superposition of both operations will
guarantee both privacy and authentication (figure 1.2). Alice will decipher P with her
secret key KD

A , subsequently encipher the result with the public key KE
B of Bob, and

send the resulting ciphertext C ′′ to Bob. Bob can obtain the corresponding plaintext
and verify its authenticity by deciphering C ′′ with his secret key KD

B and subsequently
encrypting the result with the public key KE

A of Alice.

1.3. THE SEPARATION OF PRIVACY AND AUTHENTICATION 5

D E D E

6 6 6 6

- - - - -

KD
A KE

B KD
B KE

A

Alice Bob

Figure 1.2: Protection of both authenticity and privacy with a public key system.

It is clear that the extension of this model to a model with central key generation
and distribution is straightforward. In this case a hierarchical approach is possible
based on master keys.

1.3.2 Information authentication and digital signatures

This section aims to illustrate briefly how cryptographic hash functions can be used to
protect the authenticity of information and to improve digital signature schemes. A
more detailed treatment will be given in chapter 2.

The protection of the authenticity of information includes two aspects:

• the protection of the originator of the information, or in ISO terminology [151]
data origin authentication,

• the fact that the information has not been modified, or in ISO terminology [151]
the integrity of the information.

There are two basic methods for protecting the authenticity of information.

• The first approach is analogous to the approach of a symmetric or asymmetric
cipher, where the secrecy of large data quantities is based on the secrecy and
authenticity of a short key. In this case the authentication of the information
will also rely on the secrecy and authenticity of a key. To achieve this goal, the
information is compressed to a quantity of fixed length, which is called a hashcode.
Subsequently the hashcode is appended to the information. The function that
performs this compression operation is called a hash function. The basic idea
of the protection of the integrity is to add redundancy to the information. The
presence of this redundancy allows the receiver to make the distinction between
authentic information and bogus information.

In order to guarantee the origin of the data, a secret key that can be associated
to the origin has to intervene in the process. The secret key can be involved
in the compression process or can be used to protect the hashcode and/or the

6 CHAPTER 1. AUTHENTICATION AND PRIVACY

information. In the first case the hashcode is called a Message Authentication
Code or MAC, while in the latter case the hashcode is called a Manipulation
Detection Code or MDC.

• The second approach consists of basing the authenticity (both integrity and origin
authentication) of the information on the authenticity of a Manipulation Detec-
tion Code or MDC. A typical example for this approach is a computer user who
will calculate an MDC for all its important files. He can store this collection of
MDC’s on a floppy, that is locked in his safe, or he can write them down on a
piece of paper. If he has to transfer the files to a remote friend, he can simply
send the files and communicate the MDC’s via telephone. The authenticity of
the telephone channel is offered here by voice identification.

The second application of cryptographically secure hash functions is the optimiza-
tion of digital signature schemes and the construction of digital signature schemes that
are not based on a trapdoor one-way permutation (cf. section 2.3.3). The optimization
is obtained through signing the MDC of a message instead of every bit or block. The
description of the hash function can be public and it does not depend on any secret
parameter. The advantages of this approach are that the signature has a fixed short
length and that the computational requirements are minimized. In some cases the se-
curity level of the signature scheme can be increased. For some signature schemes the
hash function is even an integral part of the scheme. Digital signature schemes based
on one-way functions are in general less practical, but can be an alternative if one is
not allowed or willing to use a scheme based on a trapdoor one-way permutation.

1.3.3 Privacy and authentication: two different concepts

Until recently, it was generally believed that encryption of information suffices to
protect its authenticity. The argument was that if a ciphertext resulted after decryption
in meaningful information, it should be originated with someone who knows the secret
key, guaranteeing authenticity of message and sender. As a consequence, if an opponent
wants to modify an enciphered message or to send a fake message, he has to know the
secret key and hence to break the encryption algorithm. The opposite observation
is clearly true: someone who has broken the encryption algorithm can easily modify
messages or send bogus messages. One of the famous persons who experienced this
was Mary, Queen of Scotland, who organized with A. Babington in 1586 a plot to
assassinate Elisabeth. Her encrypted communications were deciphered by Phelippes.
This enabled Phelippes to add a correctly enciphered postscript to one of Mary’s letters
asking for “the names and the qualities of the six gentlemen which are to accomplish
the designment”, [174], pp. 122-123. Although the conspirators were caught before the
answer could be intercepted, the forgery clearly illustrates the point.

Several counterexamples will show that it is not necessary to break the cipher
system in order to be able to falsify messages. At first, the protection of integrity
is strongly dependent on the encryption algorithm and on the mode in which the
algorithm is used. The reader who is not familiar with the four standardized modes of a

1.3. THE SEPARATION OF PRIVACY AND AUTHENTICATION 7

cipher (Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback
(CFB), and Output Feedback (OFB)) and with the difference between stream ciphers
and block ciphers will find a detailed treatment of the modes and their properties in
appendix A.

A famous cipher that offers unconditional secrecy is the Vernam cipher or modulo 2
one-time pad [322]. It was invented in 1917 by G. Vernam to encipher printed telegraph
communications. The ciphertext is obtained through an addition modulo 2 or exor of
the key. Its security relies on the fact that ciphertext and plaintext are statistically
independent. The disadvantage of the system is that the size of the key is as large
as the size of the plaintext. However, C. Shannon showed in 1949 [303] that this is
optimal to achieve unconditional or perfect secrecy. Nevertheless an active attacker
can change any bit of the plaintext by simply flipping the corresponding bit of the
ciphertext, as was remarked by Feistel [104, 105]. This observation is also valid for any
additive stream cipher and for the OFB mode of any block cipher. It holds partially
if a block cipher is used in CFB or CBC mode [91].

If a plaintext longer than one block is enciphered with a block cipher in ECB mode,
an active attacker can easily reorder the blocks. Another example is the vulnerability
to active attacks of a plaintext encrypted in Cipher Feedback Mode (CFB). Due to
the self-synchronization properties, any modification in the ciphertext will cause a
corresponding modification to the plaintext and will subsequently garble the next part
of the plaintext. When the error has shifted out of the feedback register, the ciphertext
will be deciphered correctly again. If the last part of the ciphertext is modified, it
is completely impossible to detect this. If the garbling occurs in the middle of the
plaintext, it can only be detected based on redundancy, as will be discussed in the
next paragraph.

In other modes (e.g. CBC) every ciphertext bit is a complex function of the previous
plaintext bits and an initial value. If the modification of a single ciphertext bit results
in t bits of the plaintext being garbled, the probability that the new plaintext will be
accepted as meaningful equals 2−tD, where D is the redundancy in the information.
In case of natural language D ≈ 3.7, and this probability is negligible for t > 8.
However, ifD = 0 all messages are meaningful, and encryption offers no authentication,
independently of the encryption algorithm or of the mode. This means that an attacker
can modify messages or forge messages of his choice. The limitation is that he does not
know on beforehand what the corresponding plaintext will be, but many applications
can be considered where such an attack would cause serious problems. Note that
even if redundancy is present, a human checker or a designated computer program is
required to check its presence. A detailed discussion of the use of different modes for
authentication purposes will be given in chapter 5.

The second illustration of the independence of privacy and authentication is given
by the use of public-key algorithms. From section 1.3.1 it is clear that two independent
operations and two independent key pairs are necessary to protect both privacy and
authenticity.

A third example is the use of a Message Authentication Code or MAC to protect

8 CHAPTER 1. AUTHENTICATION AND PRIVACY

the authenticity, as discussed in section 1.3.2. A widely accepted and standardized
way to compute a MAC is to encrypt the plaintext in CBC mode. The ciphertext
corresponding to the last block depends on the secret key, on the initial value, and on
all bits of the plaintext, hence it can be used as a MAC. In case the plaintext has to
be encrypted, it is very appealing to use the same key for the encryption and for the
calculation of the MAC, but a different initial value. However, it can be shown that this
approach is insecure [167], and that a different key should be used for authentication
and encryption purposes. This is discussed in more detail in chapter 5. A similar
observation is made in [91] for an authentication scheme based on a stream cipher.

The last argument is an interesting series of toy examples with a two bit key and
a one bit plaintext [202] illustrating that a cipher can offer either perfect secrecy, or
perfect authenticity or both. The conclusion is that “. . . secrecy and authenticity are
independent attributes of a cryptographic system . . . ”

1.4 Three approaches to the authentication problem

In present day cryptography, three approaches can be identified to solve most prob-
lems comprising information secrecy and information authenticity. These approaches
differ in the assumptions about the capabilities of an opponent, in the definition of a
cryptanalytic success, and in the notion of security. This taxonomy is based on the
taxonomy that was developed for stream ciphers by R. Rueppel [287], and deviates
from the taxonomy for authentication developed by G. Simmons [310].

A first method is based on information theory, and it offers unconditional security,
i.e., security independent of the computing power of an adversary. The complexity
theoretic approach starts from an abstract model for computation, and assumes that
the opponent has limited computing power. The system based approach tries to pro-
duce practical solutions, and the security estimates are based on the best algorithm
known to break the system and on realistic estimates of the necessary computing power
or dedicated hardware to carry out the algorithm. In [310] the second and third ap-
proach are lumped together as computationally secure, and in [287] a fourth approach
is considered, in which the opponent has to solve a problem with a large size (namely
examining a huge publicly accessible random string); it can be considered as both
computationally secure and information theoretically secure.

The properties of the three approaches are compared in table 1.1. It should be noted
that the information theoretic approach is impractical for most applications because
of the size of the secret key. Sometimes the complexity theoretic approach allows for
efficient constructions, but in a practical scheme the dimensions of the scheme are fixed
and the proof of security has only a limited value.

1.4.1 Information theoretic approach

This approach results in a characterization of unconditionally secure solutions, which
implies that the security of the system is independent of the computing power of the

1.4. THREE APPROACHES TO THE AUTHENTICATION PROBLEM 9

computing power security practicality
of opponent

information theoretic unlimited provable (unconditional) impractical
complexity theoretic polynomial asymptotic (assumptions) impractical
system based fixed no proof efficient

Table 1.1: Comparison of the three approaches in cryptography.

opponent. E.g., in case of privacy protection, it has been shown by C. Shannon that
unconditional privacy protection requires that the entropy of the key is lower bounded
by the entropy of the plaintext. It should be remarked that both unconditional privacy
and unconditional authenticity are only probabilistic: even if the system is optimal with
respect to some definition, the opponent has always a non-zero probability to cheat.
However, this probability can be made exponentially small. The advantage of this
approach lies in the unconditional security. Like in the case of the Vernam scheme,
the price paid for this is that these schemes are rather impractical.

The cryptographer considers a game-theoretic model, in which the opponent ob-
serves l messages and subsequently tries to impersonate or substitute messages. The
cryptographer will encipher his messages under control of a secret key. Because the
goal of the cryptographer is now the protection of the authenticity (or the combination
of secrecy and authenticity), the transformation will be called an authentication code.
The information theoretic study of authentication has now been reduced to the design
of authentication codes, that are in some sense dual to error correcting codes [310]. In
both cases redundant information is introduced: in case of error correcting codes the
purpose of this redundancy is to allow the receiver to reconstruct the actual message
from the received codeword, and to facilitate this the most likely alterations are in
some metric close to the original codeword; in case of authentication codes, the goal of
the redundancy is to allow the receiver to detect substitutions or impersonations by an
active eavesdropper, and this is obtained by spreading altered or substituted messages
as uniformly as possible.

The advantage of this approach lies in the unconditional security. Like in case of
the Vernam scheme, the price paid for this is that these schemes are rather impractical.

1.4.2 Complexity theoretic approach

The approach taken here is to define at first a model of computation, like a Turing
machine [5] or a Boolean circuit [98]. All computations in this model are parameterized
by a security parameter, and only algorithms or circuits that require asymptotically
polynomial time and space in terms of the size of the input are considered feasible.
The next step is then to design cryptographic systems that are provably secure with
respect to this model. This research program has been initiated in 1982 by A. Yao
[331, 332] and tries to base cryptographic primitives on general assumptions. Exam-

10 CHAPTER 1. AUTHENTICATION AND PRIVACY

ples of cryptographic primitives are: secure message sending, cryptographically secure
pseudo-random generation, general zero-knowledge interactive proofs, Universal One-
Way Hash Functions (UOWHF), Collision Resistant Hash Functions (CRHF), and
digital signatures. It will be shown that the latter three are relevant for information
authentication. Examples of general assumptions to which these primitives can be
reduced are the existence of one-way functions, injections, or permutations, and the
existence of trapdoor one-way permutations. A third aspect is the efficiency of the re-
duction, i.e., the number of executions of the basic function to achieve a cryptographic
primitive, and the number of interactions between the players in the protocol.

Several lines of research have been followed. A first goal is to reduce cryptographic
primitives to weaker assumptions, with as final goal to prove that the reduction is
best possible. A different approach is to produce statements about the impossibility
of basing a cryptographic primitive on a certain assumption [150]. One can also try to
improve the efficiency of a reduction, possibly at the cost of a stronger assumption. If
someone wants to build a concrete implementation, he will have to choose a particular
one-way function, permutation, etc. The properties of a particular problem that is
believed to be hard can be used to increase the efficiency of the solutions. Examples
of problems that have been intensively used are the factoring of a product of two large
primes, the discrete logarithm problem modulo a prime and modulo a composite that
is the product of two large primes, and the quadratic residuosity problem.

The complexity theoretic approach has several advantages:

1. It results in provable secure systems, based on a number of assumptions.

2. The constructions of such proofs requires formal definitions of the cryptographic
primitives and of the security of a cryptographic primitive.

3. The assumptions on which the security of the systems is based are also defined
formally.

The disadvantage is that the complexity theoretic approach has only a limited impact
on practical implementations, due to limitations that are inherently present in the
models.

1. In complexity theory, a number of operations that is polynomial in the size of
the input is considered to be feasible, while a superpolynomial or exponential
number of operations in the size of the input is infeasible. In an asymptotic
setting, abstraction is made from both constant factors and the degrees of the
polynomials. This implies that this approach gives no information on the secu-
rity of concrete instances (a practical problem has a finite size). Secondly, the
scheme might be impractical because the number of operations to be carried out
is polynomial in the size of the input but impractically large.

2. The complexity theoretic approach yields only results on the worst case or av-
erage case problems in a general class of problems. However, cryptographers
studying the security of a scheme are more interested in the subset of problems
that is easy.

1.4. THREE APPROACHES TO THE AUTHENTICATION PROBLEM 11

3. Complexity usually deals with single isolated instances of a problem. A crypt-
analyst often has a large collection of statistically related problems to solve.

It is interesting to remark that the starting point of this approach was the informal
definition of a one-way function and a trapdoor one-way permutation in the seminal
paper of W. Diffie and M. Hellman [95]. The first practical public-key cryptosystems
were based on the hardness of factoring the product of two large primes (the RSA
system proposed by R. Rivest, A. Shamir and L. Adleman [278]) and on the subset
sum or knapsack problem (proposed by R. Merkle and M. Hellman [210]). However, it
is not possible to show that the security of these systems is equivalent to solving the
underlying hard problem. The best illustration of this fact is the fate of the knapsack
public-key cryptosystems, that are almost completely broken [32, 92]. Although no one
has been able to show that the security of RSA public-key cryptosystem is equivalent
to factoring, no attack on the RSA scheme has been proposed that is more efficient
than factoring the modulus. Historically, the attempts to prove the security of RSA
resulted in the construction of new schemes for which it was possible to prove that
breaking the scheme is equivalent to factoring. The next step was to design systems
based on other assumptions and finally to generalize these assumptions.

1.4.3 System based or practical approach

In this approach schemes with fixed dimensions are designed and studied, paying spe-
cial attention to the efficiency of software and hardware implementations. The objec-
tive of this approach is to make sure that breaking a cryptosystem is a difficult problem
for the cryptanalyst.

By trial and error procedures, several cryptanalytic principles have emerged, and it
is the goal of the designer to avoid attacks based on these principles. Typical examples
are statistical attacks and meet in the middle attacks. An overview of these principles
for cryptographic hash functions will be given in chapter 2.

The second aspect is to design building blocks with provable properties. These
building blocks are not only useful for cryptographic hash functions, but also for the
design of block ciphers and stream ciphers. Typical examples are statistical criteria,
diffusion and confusion, correlation, and non-linearity criteria. The study of these
criteria leads to the study of fundamental properties of Boolean functions in chapter 8.

Thirdly, the assembly of basic building blocks to design a cryptographic hash func-
tions can be based on theorems. Results of this type are often formulated and proven
in a complexity theoretic setting, but can easily be adopted for a more practical defini-
tion of “hardness” that is useful in a system based approach. A typical example is the
theorem discovered independently in [66] and [213], stating that a collision-resistant
hash function can always be constructed if a collision-resistant function exists, where
the first reference uses a complexity theoretic approach and the second a more prac-
tical definition. A similar observation holds for the theorem that hash functions can
be parallelized efficiently under certain assumptions, where a complexity theoretic ap-
proach was proposed in [66] and a practical approach independently by the author in

12 CHAPTER 1. AUTHENTICATION AND PRIVACY

[252]. But even if the results are formulated directly in a practical approach, interest-
ing results can be produced. A nice example is the design of a collision resistant hash
function [213] based on the assumption that the underlying block cipher is random.

1.5 Outline of the thesis

In this thesis cryptographic hash functions will be studied according to the three
approaches that have been presented in the previous section.

Chapter 2 contains an overview of cryptographic hash functions. This comprises
practical definitions of the basic concepts, a discussion of applications, a general model
for constructions of hash functions, and an extensive taxonomy of attacks on hash
functions.

Chapter 3 contains a brief overview of the information theoretic approach to au-
thentication, with the emphasis on the practicality of the constructions for authenti-
cation without secrecy.

In chapter 4 the complexity theoretic approach is presented. The uniform notation
and definitions to describe the different schemes will make the complexity theoretic
results more accessible to non-experts in this domain.

Our research concentrated on the practical approach. First an overview of three
types of practical schemes will be given, and subsequently some design criteria for
basic building blocks are discussed. In chapter 5, which is the most extensive chapter,
cryptographic hash functions based on block ciphers are discussed. This comprises a
brief introduction explaining the origin of the concept of an MDC, and subsequently
the discussion of a large variety of schemes. Also three new schemes are proposed in
this chapter.

In chapter 6 a survey of cryptographic hash functions based on modular arithmetic
is given.

In chapter 7 proposals for dedicated hash functions are reviewed, and design criteria
for these hash functions are discussed.

In chapter 8 the study of basic building blocks of cryptographic hash functions
leads to the study of Boolean functions. Here new criteria are defined, and functions
satisfying these criteria are studied. Extensions of these criteria to S-boxes will also
be mentioned.

Chapter 9 contains the conclusions from this thesis and discusses some open prob-
lems.

1.6 Main contributions

One of the main contributions of this thesis is that it is the first text that gives an
extensive treatment of cryptographic hash functions according to the information theo-
retic, complexity theoretic, and system based approach. The emphasis in our research
lies on the more practical schemes, and in the interaction between theoretical and

1.6. MAIN CONTRIBUTIONS 13

practical constructions. In chapter 5 it is explained how the concept of cryptographic
hash functions has developed from the redundancy that is added before encryption.

The contributions of chapter 2 are the establishment and discussion of a general
model for hash functions. Also a taxonomy for attacks on hash functions is presented
that can be used as a checklist for the evaluation of a hash function.

In chapter 3 that deals with the information theoretic approach, the efficiency of
schemes that provide authentication without secrecy is compared for practical param-
eters.

In chapter 5, 6, and 7 all practical proposals published in the literature are described
and evaluated. For hash functions based on block ciphers a synthetic approach was
developed for the case where the size of the hashcode equals the block length of the
underlying block cipher. This approach is applicable to the study of both MDC’s and
MAC’s and can be extended to hash functions based on modular exponentiation. Three
new hash functions based on a block cipher are proposed. In these chapters twelve
new attacks on published hash functions are discussed, and for many other schemes
an improved evaluation is presented. For some schemes this evaluation is based on an
expression for the number of operations to obtain a multiple collision, that is derived
in appendix B.

In chapter 5 and appendix C the technique of differential cryptanalysis is extended
to hash functions based on block ciphers. In the same chapter the treatment of the
addition schemes is generalized, as well as the treatment of the interaction between
MAC calculation and encryption. In chapter 7 design criteria for dedicated hash
functions are discussed.

The main contribution of chapter 8 is the definition of a new criterion for Boolean
functions that generalizes existing criteria. Also, properties of quadratic functions are
characterized through connections with matrix and graph theory. It proved useful to
determine the number of graphs with a given minimum degree (appendix D). Functions
that satisfy new and existing criteria are studied. Moreover this chapter proposes
a new construction for bent functions and an efficient way to count the number of
bent functions of 6 variables (which was previously unknown). Finally a new class of
functions is presented that has some interesting properties.

14 CHAPTER 1. AUTHENTICATION AND PRIVACY

Chapter 2

Cryptographic Hash Functions

To know that we know what we know, and that
we do not know what we do not know, that is
true knowledge. Henry David Thoreau

2.1 Introduction

Hash functions are functions that compress an input of arbitrary length to a result
with a fixed length. If hash functions satisfy additional requirements, they are a very
powerful tool in the design of techniques to protect the authenticity of information. In a
first section cryptographic hash functions will be informally defined, and subsequently
it will be discussed how hash functions can be used in a variety of applications. Next
a general model will be presented together with a brief discussion of some specific
constructions. Finally an extensive taxonomy is given of methods of attack on hash
functions. These attacks are mainly relevant for the system based approach, that
will be followed in chapters 5 to 8. However, the models and attacks presented in
this chapter make it easier to understand the unconditionally secure and complexity
theoretic constructions that are presented in chapter 3 and 4 respectively.

Many articles have discussed general aspects and applications of hash functions and
the definitions have grown organically. Although a specific reference has been made
wherever possible, the following valuable references on hash functions could not be
indicated at a specific location: [6, 39, 64, 70, 71, 74, 86, 128, 129, 136, 166, 167, 168,
169, 170, 183, 211, 216, 220, 223, 230, 233, 250, 264, 280, 295, 335]. The most important
contributions of this chapter are the establishment and discussion of a general model
and the taxonomy for attacks. Part of the results in this chapter have been published
in [253, 254, 256, 261].

15

16 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

2.2 Practical definitions

In the first chapter, it was explained how the authenticity of information can be verified
through the protection of the secrecy and/or the authenticity of a short imprint or
hashcode. In this section informal definitions will be given for a hash function that
uses a secret key (Message Authentication Code or MAC) and for a hash function
that does not make use of a secret key (Manipulation Detection Code or MDC). This
last category can be split in two classes, depending on the requirements: one-way
hash functions (OWHF) or weak one-way hash functions and collision resistant hash
functions (CRHF), collision free hash functions, or strong one-way hash functions.

A brief discussion of the existing terminology can avoid confusion that is found in
the literature. The term hash functions originates historically from computer science,
where it denotes a function that compresses a string of arbitrary input to a string
of fixed length. Hash functions are used to allocate as uniformly as possible storage
for the records of a file. The name hash functions has also been widely adopted
for cryptographic hash functions or cryptographically strong compression functions,
but the result of the hash function has been given a wide variety of names in the
cryptographic literature: hashcode, hash total, hash result, imprint, (cryptographic)
checksum, compression, compressed encoding, seal, authenticator, authentication tag,
fingerprint, test key, condensation, Message Integrity Code (MIC), message digest,
etc. The terms MAC and MDC originated from US standards and are certainly not
perfect (a MAC or an MDC are actually no codes, and both can serve for message
authentication), but the adoption of these terms offers a practical solution to the
momentary “Babel of tongues”. One example of the confusion is that “checksum” is
associated with the well known Cyclic Redundancy Checks (CRC) that are of no use
for cryptographic applications. In this thesis the names MAC and MDC will also be
used for the hashcode obtained with a MAC and an MDC respectively. Sometimes a
MAC is called a keyed hash function, but then one has to use for an MDC the artificial
term unkeyed or keyless hash function. According to their properties, the class of
MDC’s will be further divided into one-way hash functions (OWHF) and collision
resistant hash functions (CRHF). The term collision resistant hash function (CRHF)
is preferable over strong one-way hash function, as it explains more clearly the actual
property that is satisfied. The term collision free hash function proposed by I. Damg̊ard
is also more explicit, but can be slightly misleading: in fact collisions do exist, but it
should be hard to find them. An alternative that was proposed in [339, 341] is collision
intractible hash functions. The term weak one-way hash function was proposed by
R. Merkle in [213], in order to stress the difference with a strong or collision resistant
hash function. Finally note that in a complexity theoretic context the term universal
one-way hash function (UOWHF) was proposed by M. Naor and M. Yung in [233].
The main characteristic of this one-way hash function is that it is randomly selected
from a large set and independently of the data to be hashed. This implies trivially that
producing collisions for a single hash function is useless. To avoid confusion between
this very specific definition and the more general one-way hash function, this term will
only be used in the complexity theoretic approach. The relation between the different

2.2. PRACTICAL DEFINITIONS 17

hash functions can be summarized in figure 2.1.

cryptographic hash function

MAC MDC

OWHF CRHF

�
�

�
�

�=

Z
Z

Z
Z

Z~

�
�

��	

@
@

@@R

Figure 2.1: A taxonomy for cryptographic hash functions.

In the following the hash function will be denoted with h, and its argument, i.e.,
the information to be protected with X. The image of X under the hash function h
will be denoted with h(X) and the secret key with K.

2.2.1 One-way hash function (OWHF)

The first informal definition of a OWHF was apparently given by R. Merkle [211, 213]
and M. Rabin [274].

Definition 2.1 A one-way hash function is a function h satisfying the following
conditions:

1. The description of h must be publicly known and should not require any secret
information for its operation (extension of Kerckhoffs’s principle1).

2. The argument X can be of arbitrary length and the result h(X) has a fixed length
of n bits (with n ≥ 64, cf. section 2.5.1).

3. Given h and X, the computation of h(X) must be “easy”.

4. The hash function must be one-way in the sense that given a Y in the image of
h, it is “hard” to find a message X such that h(X) = Y and given X and h(X)
it is “hard” to find a message X ′ 6= X such that h(X ′) = h(X).

The first part of the last condition corresponds to the intuitive concept of one-wayness,
namely that it is “hard” to find a preimage of a given value in the range. In the case
of permutations or injective functions only this concept is relevant. The second part
of this condition, namely that finding a second preimage should be hard, is a stronger
condition, that is relevant for most applications. Formal definitions of a OWHF can be
obtained through insertion of a formal definition of “hard” and “easy” in combination

1The Dutchman A. Kerckhoffs (1853–1903) was the first to enunciate the principle that the security
of a cipher must reside entirely in the secret key.

18 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

with the introduction of a security parameter. In the complexity theoretic approach (cf.
chapter 4) this means that the number of operations is superpolynomial in the size of
the input. For a practical definition, one still has several options. In the case of “ideal
security”, introduced by X. Lai and J. Massey [183], producing a (second) preimage
requires 2n operations operations. However, it may be that an attack requires a number
of operations that is smaller than O(2n), but is still computationally infeasible.

2.2.2 Collision resistant hash function (CRHF)

The first formal definition of a CRHF was apparently given by I. Damg̊ard [64, 65]
and will be discussed in chapter 4. An informal definition was given by R. Merkle in
[213].

Definition 2.2 A collision resistant hash function is a function h satisfying the
following conditions:

1. The description of h must be publicly known and should not require any secret
information for its operation (extension of Kerckhoffs’s principle).

2. The argument X can be of arbitrary length and the result h(X) has a fixed length
of n bits (with n ≥ 128, cf. section 2.5.1).

3. Given h and X, the computation of h(X) must be “easy”.
4. The hash function must be one-way in the sense that given a Y in the image of

h, it is “hard” to find a message X such that h(X) = Y and given X and h(X)
it is “hard” to find a message X ′ 6= X such that h(X ′) = h(X).

5. The hash function must be collision resistant: this means that it is “hard” to find
two distinct messages that hash to the same result.

In section 4.3.3 a result will be given that suggests that in certain cases the first part
of the one-way property follows from the collision resistant property. Similarly formal
definitions of a CRHF can be obtained through insertion of a formal definition of
“hard” and “easy” in combination with the introduction of a security parameter. For
a practical definition, several options are available. In the case of “ideal security” [183],
producing a (second) preimage requires 2n operations and producing a collision requires
O(2n/2) operations. This can explain why both conditions have been stated separately.
One can however also consider the case where producing a (second) preimage and a
collision requires at least O(2n/2) operations, and finally the case where one or both
attacks require less than O(2n/2) operations, but the number of operations is still
computationally infeasible (e.g., if a larger value of n is selected).

2.2.3 Message Authentication Code (MAC)

Message Authentication Codes have been used for a long time in the banking commu-
nity and are thus older than the open research in cryptology that started in the mid
seventies. However, MAC’s with good cryptographic properties were only introduced
after the start of open cryptologic research.

2.3. APPLICATIONS OF HASH FUNCTIONS 19

Definition 2.3 A MAC is a function satisfying the following conditions:

1. The description of h must be publicly known and the only secret information lies
in the key (extension of Kerckhoffs’s principle).

2. The argument X can be of arbitrary length and the result h(K,X) has a fixed
length of n bits (with n ≥ 32 . . . 64, cf. section 2.5.1).

3. Given h, X and K, the computation of h(K,X) must be “easy”.
4. Given h and X, it is “hard” to determine h(K,X) with a probability of success

“significantly higher” than 1/2n. Even when a large set of pairs {Xi, h(K,Xi)} is
known, where the Xi have been selected by the opponent, it is “hard” to determine
the key K or to compute h(K,X ′) for any X ′ 6= Xi. This last attack is called an
adaptive chosen text attack 2.

Note that this last property implies that the MAC should be both one-way and collision
resistant for someone who does not know the secret key K. This definition leaves
open the problem whether or not a MAC should be one-way or collision resistant for
someone who knows K. In the next section, some applications will be discussed where
this property could be useful, and in chapter 5 some new MAC’s based on a block
cipher will be proposed that satisfy one or both properties.

2.3 Applications of hash functions

In chapter 1 it has been explained that cryptographic hash functions can be used
to protect information authenticity and to protect against the threat of repudiation.
In this section both applications will be discussed in detail, together with the more
specific problem of authentication for messages with more than one recipient. It will
also be discussed how one can use hash functions for identification with passwords, and
how one can derive an encryption algorithm from a hash function. The example of
protection of a computer program against viruses will be used to illustrate the different
concepts.

2.3.1 Information authentication

The basic idea of the use of cryptographic hash functions is to reduce the protection
of the authenticity of information of arbitrary length to the protection of the secrecy
and/or authenticity of quantities of fixed length. First, a distinction will be made
between protection of authentication with and without secrecy. The second option is
whether the protection of authenticity will depend on the secrecy and authenticity of
a key or on the authenticity of an information dependent hashcode.

2.3.1.1 Authentication without secrecy

In this case there is only a plaintext available, which significantly reduces the number
of options.

2For a more extensive discussion of attacks on a MAC the reader is referred to section 2.5.

20 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

MAC The simplest approach is certainly the use of a Message Authentication Code
or MAC. In order to protect the authenticity of the information, one computes the
MAC and appends this to the information. The authenticity of the information now
depends on the secrecy and authenticity of the secret key and can be protected and
verified by anyone who is privy to this key. Essentially the protection of authenticity
has been reduced to the problem of secure key management. This scheme can only
protect against outsider attacks, as all parties involved have the same capabilities and
hence should trust each other.

The scheme can be made even more secure but less practical if also the authenticity
and/or secrecy of the MAC of every plaintext is protected. A possible implementation
could consist of an exchange of messages via a high speed communication link, while the
corresponding MAC’s are sent via a slower channel, that protects authenticity and/or
secrecy. A simple authentic channel can be a telephone line (with voice recognition)
or the conventional mail system (with manual signatures). The advantage is that
it becomes impossible for any of the parties that know the secret key to modify an
existing message and the corresponding MAC.

An issue of discussion is whether it should be “hard” for someone who knows the
secret key to construct two arguments with the same MAC for that key. This will
strongly depend on the application: in general an internal procedure has to be estab-
lished to resolve disputes. A third party can make no distinction between the parties
involved, but it is possible that, although both parties have the same capabilities, a
certain asymmetry exists in their relation, e.g., the bank versus a customer. This
procedure should specify what happens if someone denies a messages or subsequently
claims he has sent a different message. If some additional protection against insider
attacks is obtained from protection of the MAC, this property should be satisfied.
However, also physical solutions based on tamper resistant devices can offer such pro-
tection. Nevertheless, a better way to solve disputes is to provide for non-repudiation
through digital signatures.

MDC The alternative for a MAC is the use of an MDC. In this case the authenticity
of the information is transferred to the authenticity of a string of fixed length. The
advantage over a MAC is that there is no need for key management. In exchange for
this, an authentic channel has to be provided for every MDC. This means that the
capacity of the channel will increase with the number of messages. Although the life
time of a key is also related to the number of times it has been used, it is clear that
the authentic channel for the MDC will need a significantly greater capacity than the
channel that protects both authenticity and privacy of the secret key for a MAC.

Just as in case of a MAC, the parties that use this approach are supposed to trust
each other, but it is important to consider what will happen if a dispute arises, or what
will happen if an insider will attack the system. An insider will try to find a collision,
i.e., two plaintexts X and X ′ such that h(X) = h(X ′). Subsequently he will protect
the authenticity of X through h(X), but at any time later he will be able to substitute
X ′ for X. In order to avoid this attack, h should be a CRHF.

2.3. APPLICATIONS OF HASH FUNCTIONS 21

However, one can certainly imagine applications where this attack is not relevant.
In that case one only has to be protected against outsiders, hence it suffices that h is
a OWHF: an outsider can not select X, but will only be able to observe X and h(X)
and subsequently try to come up with an X ′ such that h(X) = h(X ′).

1. The parties involved completely trust each other, which is trivially the case if
there is only one party. One could think of someone who protects the integrity
of his computer files through the calculation of an MDC that he stores in printed
form in this vault. Every day he can repeat the calculation and verify the result.

2. The computation of the h(X) involves a random component, that can not be
controlled by the insider [213]: X can be randomized before applying h through
encryption of X with a good block cipher using a truly random key, that is added
to the resulting ciphertext [211], or through the selection of a short random prefix
to X [64]; h itself can be randomized through randomly choosing h from a family
of functions indexed by a certain parameter.

The advantage of a OWHF is that its design is easier and that storage for the hash-
code can be halved (64 bits instead of 128 bits). The price paid for this is a degrading
of the security level proportional to the number of applications of h: an outsider who
knows a set {h(X) | X ∈ Domain(h)} of size s has increased his probability to find an
X ′ with a factor s. This limitation can be overcome through the use of a parameterized
OWHF.

2.3.1.2 Authentication with secrecy

If both authentication and secrecy are protected, this can be used in certain cases to
simplify the overall system. For insider attacks, the additional encryption makes no
difference, as an insider knows the secret key for the encryption. This means that for
certain applications it should be hard to find collisions. For an outsider, an attack on
the scheme becomes in general harder, as his knowledge decreases.

Although it is tempting to use this fact to lower the requirements imposed on the
hash functions, this is certainly not a good practice. The additional protection offered
by the encryption is dependent on the encryption algorithm and on the mode of the
encryption algorithm (cf. appendix A). Examples of this can be found in chapter 5.

MAC Several options can be considered, but all share the problem of a double key
management: one for the authentication and one for the encryption. It is tempting
to use the same key twice, but this has to be discouraged strongly: not only are
there dangerous interactions possible between the encryption scheme and the MAC
(these are extensively discussed in section 5.4.1), but the management of both keys
should be different (e.g. lifetime, storage after use). The advantage of this approach
is a high security level, owing to the complete separation of protection of privacy and
authentication.

The most straightforward option is to calculate the MAC, append it to the in-
formation and subsequently encrypt the new message. An alternative is to omit the

22 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

encryption of the MAC. The third solution is to calculate the MAC on the enciphered
message. The advantage is that the authenticity can be verified without knowing the
plaintext or the secret key of the encryption algorithm, but in general it is preferable to
protect the authenticity of the plaintext instead of the authenticity of the ciphertext.

MDC The advantages for using an MDC are a simplified key management and the
fact that the authentication is derived directly from the privacy protection. The key
management will be simplified because only one key will be necessary to protect both
privacy and authenticity. The fact that the authentication is based on the privacy
protection implies that it requires no additional secret key or authentic channel. In
the context of the ISO Open System Interconnect Reference Model [151] integrity and
confidentiality can be protected at different layers. No secret information would be
necessary at the layer that calculates the MDC. The disadvantage is that the protection
of authenticity depends on the privacy protection: if the encryption algorithm is weak,
the protection of authenticity will also be jeopardized.

The most straightforward option is to calculate the MDC, append it to the in-
formation, and subsequently encrypt the new message. An alternative is to omit the
encryption of the MDC. This approach seems to be more vulnerable to outsider at-
tacks, but it should cause no problem if the MDC satisfies the imposed conditions. The
third solution is to calculate the MDC on the enciphered message. However, this ap-
proach can not be recommended: the result has to be protected now with an authentic
channel, and an important advantage of this approach is lost.

A special warning should be added in case the encryption algorithm is an additive
stream cipher where the opponent knows the plaintext [167, 169]: in that case he can
easily compute the key-stream sequence. Subsequently he can modify the plaintext,
calculate the MDC, and encrypt both the new plaintext and the new MDC. This attack
depends only on the mode of operation of the encryption and is independent of the
choice of the MDC. A solution suggested by R. Jueneman is to let the MDC depend
on a random initial value IV (cf. section 2.4.1) that is added to the plaintext, which
means that it can not be known by an adversary. This is equivalent to using a MAC
and adding the key for the MAC to the plaintext. In a communication environment
this could be realized in practice by making the MDC in a message dependent on the
previous message and on the previous MDC. The MDC in the first message should be
based on a secret random component that was sent by the receiver when the session
was established. The last message should contain and end-of-session symbol, the MDC
of the previous message, and the MDC of the current message. This approach is limited
to systems where sessions are established in real-time.

2.3.2 Authentication of multi-destination messages

In some applications a user Alice wants to send an authenticated message X to more
than one receiver. To reduce communication bandwidth, only a single message is
sent (e.g., in electronic mail applications this would allow that the message is only
replicated where it needs to be). To simplify the treatment, it will be assumed that

2.3. APPLICATIONS OF HASH FUNCTIONS 23

there are only two intended receivers, Bob and Cecile. The results can be generalized
easily to more receivers. It is assumed that Alice and Bob share a secret key KAB,
and Alice and Cecile share a secret key KAC . Bob and Cecile both trust Alice, but
Cecile will try to cheat Alice and Bob by sending a message X ′ to Bob and claiming
that it was sent by Alice. This problem together with some solutions were considered
in [218]. In this context it seems natural to use digital signatures based on public-key
techniques, as will be discussed in the next section, but in some cases this is excluded
for performance reasons or because of legal restrictions. The use of a secret key for
every group of intended receivers is not secure (group members can cheat each other)
and it is not practical (the management of group keys is complex). Three solutions
will be discussed based on a MAC, and it will be shown that the requirements for the
MAC can be different.

• The most straightforward solution is that Alice calculates a MAC of the message
X using the secret keyKAB which will be denoted with MAC(KAB, X). Similarly
she computes MAC(KAC , X) and appends both MAC values to the message.
Subsequently she sends the complete message to Bob and Cecile. Both can
easily verify the authenticity of X, and Cecile can not cheat because she does
not know KAB. The disadvantage of this scheme is that Alice has to compute
twice a MAC.

• To reduce the computational load, a scheme was proposed where the MAC is
computed only once with a single session key KS [192]: MAC(KS , X). This
key is sent together with the message under encrypted form such that KS can
be retrieved by both Bob and Cecile. The MAC is encrypted under KAB and
under KAC and appended to the message. The complete message will have the
following form:

E(KAB,KS), E(KAC ,KS), E(KAB,MAC(KS , X)), E(KAC ,MAC(KS , X)), X .

In this case, Cecile will be able to obtain both KS and MAC(KS , X). If Cecile
can find an X ′ such that MAC(KS , X

′) = MAC(KS , X), she will be able to
replace X by X ′ and convince Bob that Alice has sent to him X ′. Note that if
the MAC intended for Bob was not encrypted under KAB, it would be trivial
for Cecile to replace X by X ′ and to update the MAC accordingly. If Cecile can
select a message that has to be sent by Alice, it is even sufficient that she can
produce a pair X,X ′ such that MAC(KS , X

′) = MAC(KS , X), for the given key
KS . If KS is generated randomly before the MAC calculation, Cecile will not
know this key, and the equality will have to hold for a reasonably large subset
of the key space in order to make the attack work. If on the other hand KS is
predictable, the MAC should be collision resistant for someone who knows the
key.

The first way of cheating can be thwarted if the MAC is one-way in both senses
as defined in definition 2.1. This was also remarked in [218], but it was only
stated there that finding a preimage should be hard. The fact that the MAC

24 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

proposed in [192] was not one-way allowed C. Mitchell to break the scheme [221].
To thwart the second attack, Alice should randomize every message that she
wants to authenticate, or the MAC should be collision resistant as stated above.
The solution for this case that is proposed in [218] is to use a CRHF and to
encrypt the result with KS .

• In order to extend the lifetime of the shared secret keys, one can also generate
a different session key for every intended receiver of the message: in this way
the requirements to be imposed on the MAC are less stringent (an attacker does
not know the value of the MAC), but the computational overhead for MAC
calculation will again be higher [218].

The results in this section can easily be generalized to the case where both secrecy and
authenticity have to be protected.

2.3.3 Non-repudiation

The technical term non-repudiation of origin [151] denotes a service whereby the recip-
ient is given guarantee of the message’s authenticity, in the sense that the recipient can
subsequently prove to a third party that the message is authentic even if its originator
subsequently revokes it. The need for a “purely digital, unforgeable, message dependent
signature” has been identified by W. Diffie and M. Hellman in their 1976 paper [95].
In the same paper the authors propose an elegant solution based on trapdoor one-way
permutations. The first practical proposal of a public-key system with digital signature
capability as suggested by the title of the original paper was the RSA cryptosystem
[278]. Its security is based on the fact that it is “easy” to find two large primes, but
“hard” to factor their product. Subsequently new schemes appeared, based on the
other number theoretic problems like the discrete log problem [100]. The complexity
theoretic approach has resulted in provably secure digital signature schemes based on
claw-free pairs of permutations [128, 129], one-way permutations [233], and finally on
one-way functions [284], which can be shown to be optimal. A remarkable evolution
here is the intertwining in some schemes between the signature and the hashing opera-
tion. The 1988 CCITT X.400 and X.500 recommendations [44, 45] (cf. also [219]) and
in particular CCITT X.509 [46] are an example of recent standards that offer security
facilities that are based on digital signatures. Digital signature schemes based on the
practical approach were further optimized but have not received too much attention.
Some of these schemes will be discussed briefly.

However, it is not within the scope of this thesis to give an extensive treatment of
digital signature schemes. For such an overview the reader can consult [223]. We will
limit ourselves to the interaction between these schemes and hash functions: first it
will be discussed how digital signature schemes can be optimized using hash functions,
and subsequently it will be shown how practical signature schemes can be constructed
based on one-way functions.

2.3. APPLICATIONS OF HASH FUNCTIONS 25

2.3.3.1 Optimization of digital signature schemes

The basic idea to speed up all digital signature schemes is to compress the information
to be signed with an MDC to a string of fixed length. Instead of signing the information
one signs the hashcode, that is also called the “imprint” in standards terminology. In
order to verify a signature, the outcome of the verification process of the signature is
compared to the hashcode that can be calculated from the information. The advantages
of this approach are the following:

1. The size of the signature can be reduced from the size of the information to one
block length, independent of the length of the signed information. If no use is
made of an MDC, it is of course possible to store only the signed information,
and to compute the information from the signature whenever it is needed, but
this solution involves a significant computational overhead.

2. The sign and verify function of most known signature schemes are several orders
of magnitude slower in hardware and software than symmetric encryption func-
tions, MAC’s or MDC’s. An example of highly optimized assembly code for a
16 MHz IBM PS/2 Model 80: the verification operation for 512-bit RSA takes
about 330 milliseconds (1, 550 bit/sec), the signing operation with a small public
exponent a few milliseconds (100 Kbit/sec). This should be compared to an en-
cryption speed for the block cipher DES [8, 108] of 97 µseconds (660 Kbit/sec)
and for the hash function MD4 (cf. chapter 7) of 6.3 Mbit/sec.

3. If no MDC is used, and the information to be signed is longer than one block, it is
easy to manipulate these individual blocks. The simplest example is a reordering
of blocks.

4. The algebraic structure of the message space can be destroyed. In the case of
RSA the message space has a multiplicative structure, i.e., the signature of the
product of two messages equals the product of their signatures. A generalization
is described in [102]. A similar property holds for the ElGamal signature scheme
[223]. Examples of how this algebraic structure can be exploited in a protocol
are described in [133, 232].

5. The reblocking problem can be avoided. This problem occurs when both privacy
and authentication are protected with the RSA public-key cryptosystem. If the
sender first encrypts the message with the public key of the receiver (to protect
privacy), the result might be larger than his modulus. Before he can apply his
secret key (to protect authenticity) he has to reblock the message. It is not too
hard to overcome the reblocking problem: a simple solution is to let the order of
the operations depend on the size of the two moduli. However, it is preferable
to have no reblocking problem at all.

6. The signature protocol will not be useful for an opponent trying to obtain the
plaintext corresponding to encrypted messages. This can only happen if one uses

26 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

the same key and digital signature scheme for privacy protection or authentica-
tion.

One has to be careful with the selection of the hash function, as an unfortunate inter-
action between the digital signature scheme and the hash function can result in specific
vulnerabilities (cf. section 2.5.3).

Again the problem arises to determine the properties that have to be satisfied by
the MDC. To protect against an attack of an outsider, if suffices that the MDC is a
OWHF. He is not able to select the messages that he will attack, and hence he has
to come up with a new message with the same hashcode as one of these messages. It
is of no help for him to have a set of collisions that are randomly distributed over the
message space. For an insider the situation is completely different: if he is able to find
two messages say X and X ′ with the same hashcode, he can sign X and at a later
stage claim that he has signed X ′. Note that the insider is not necessarily the owner of
the secret key: it is sufficient that he can construct messages that this person is willing
to sign. In order to thwart this type of attack it is clear that the MDC should be a
CRHF. One can argue that a OWHF would be sufficient if a randomization occurs in
the signature process (X is randomized or h is randomly selected). The problem with
this randomization is that it should not be under control of the insider.

Because this type of attack can only be performed by an insider, namely the person
who produces the messages to be signed, it is not possible to repeat it too often: other
users would not trust him any more. Nevertheless, digital signature schemes are used
in cases where a repudiation could cause problems, and hence it is not acceptable that
even one repudiation is possible. The only exception is an environment where digital
signatures are used for message authentication solely for the purpose of information
authentication: they could be preferred over a MAC because of the flexibility of the
verification, i.e., they can be verified by anyone that knows the correct public key.

The hashcode can also be generated with a MAC, which implies that only persons
privy to this secret key can verify the signature. The disadvantage of this approach
is the management of an additional secret key: for digital signatures it is sufficient to
guarantee the authenticity of the public key of the signer. One can however indicate
some advantages with respect to outsider and insider attacks. For an outsider his
knowledge of the system decreases. Breaking the scheme will require a chosen text
attack on the system with the secret key for the MAC in place, and hence no paral-
lel attacks are possible. A similar observation holds for an insider who can prepare
messages to be signed, but who does not know the secret key. For an insider who
knows the secret key it should be hard to construct collisions, which means that the
requirements on the MAC are very strong.

For the signature schemes based on zero knowledge techniques, e.g., Fiat-Shamir
[107], Guillou-Quisquater [266] and Schnorr [296], the hash function forms an integral
part of the signature process. First a random number is generated, that is transformed
with a one-way function to obtain y. The hash function is then applied to the con-
catenation of y and the message. The hashcode is subsequently transformed with the
secret signature key. The signature then consists of the outcome of this transformation

2.3. APPLICATIONS OF HASH FUNCTIONS 27

together with y. From the discussion it follows that it is sufficient for the hash function
to be a OWHF: an attacker can not completely control its input.

Note that if short messages are to be signed, the only argument to use a hash
function is the destruction of the algebraic structure of the message space. An alter-
native to a hash function is the addition of well chosen redundancy to the information.
An elegant proposal to avoid multiplicative attacks against the RSA digital signature
scheme can be found in [137, 155]. Other solutions and their analysis can be found in
[79, 80].

2.3.3.2 Practical digital signatures based on a one-way function

One-way functions are closely related to one-way hash functions; the only difference
is that the input now has to be of fixed length. Although several definitions exist for
one-way functions, it is sufficient here to modify the second condition in the defini-
tion of a OWHF and a CRHF to obtain the definition of a one-way function (OWF)
and of a collision resistant function (CRF). Again formal definitions can be obtained
through insertion of a formal definition of “hard” and “easy” in combination with the
introduction of a security parameter.

Definition 2.4 A one-way function (OWF) is a function g satisfying the following
conditions:

1. The description of g must be publicly known and should not require any secret
information for its operation (extension of Kerckhoffs’s principle).

2. The argument X has a fixed length of m bits and the result g(X) has a fixed
length of n bits (with n ≥ 64, cf. section 2.5.1).

3. Given g and X, the computation of g(X) must be “easy”.
4. The function must be one-way in the sense that given a Y in the image of g, it

is “hard” to find a message X such that g(X) = Y and given X and g(X) it is
“hard” to find a message X ′ 6= X such that g(X ′) = g(X).

Definition 2.5 A collision resistant function (CRF) is a function g satisfying
the following conditions:

1. The description of g must be publicly known and should not require any secret
information for its operation (extension of Kerckhoffs’s principle).

2. The argument X has a fixed length of m bits and the result g(X) has a fixed
length of n bits (with n ≥ 128 cf. section 2.5.1).

3. Given g and X, the computation of g(X) must be “easy”.
4. The function must be one-way in the sense that given a Y in the image of g, it

is “hard” to find a message X such that g(X) = Y and given X and g(X) it is
“hard” to find a message X ′ 6= X such that g(X ′) = g(X).

5. The function must be collision resistant: this means that it is “hard” to find two
distinct messages that yield the same result.

28 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

Several digital signatures have been proposed based on the practical definition of
a one-way function. The choice between a CRF and a OWF is based on the same
arguments: if the attacker is able to select X, the function should be a CRF.

The first scheme is the Diffie-Lamport one time signature [95]. In order to sign
a single bit message, Alice randomly selects a pair x1, x2 ∈ Dom(g) and computes
y1 = g(x1) and y2 = g(x2). Next she puts y1, y2 in an authenticated public file. If
Alice wants to sign the message, she reveals x1 if the message bit equals 0 and x2 if the
message bit equals 1. Bob can subsequently easily verify that yi = g(xi). A signature
scheme for M possible k-bit messages requires for every user pair a public storage of
2Mkn bits. If M = 220 and k = n = 128 then this amounts to 4 Gigabytes. The
signer needs 2k applications of g for every message, while the verifier needs only k
applications of g. Note that if k is large, one can always apply a CRHF to reduce its
size to about 128 bits and sign subsequently this hashcode.

A first improvement can be obtained through coding of the message. The basic
observation is that, if one forgets about x1 and y1, it becomes easy for Bob to change
a 1 into a 0, by simply denying that he ever received x2. If a k-bit message has to
be signed, this can be solved by appending the count of the 0 bits to the message,
resulting in an improvement with a factor

2

1 + log2 k
k

,

as only k∗ = k+ log2 k (xi, g(xi)) pairs are necessary. An additional improvement was
proposed by R. Winternitz and is described by R. Merkle in [212]. It reduces the size
of the signature at the expense of an increased computation. If yi is obtained from 2α

repeated applications of g to xi, every yi an be used to sign an α-bit message, hence
the size of the signature can be reduced with a factor of α. If both optimizations are
implemented, signer and verifier need about k2α−1 applications of g, while the storage
requirements are reduced to Mkn/α bits. For the same example and α = 6 the public
storage capacity will now be 360 Megabytes. The main limitations of these schemes is
that they are one time signatures, i.e., the authenticated public quantities can be used
only once. This is reflected by the fact that the public storage grows linearly with M .

The tree authentication scheme proposed by R. Merkle [212] results in a significant
reduction of the storage requirements. Without going into the details, one can mention
the following conclusions. The public storage will be only k bits. The size of the signa-
ture grows logarithmically with M and is equal to 2k∗n log2M . The signing operation
will require on average about 3k∗ log2M applications of g (this comprises the use of g
to generate pseudo-random variables instead of using truly random quantities) and a
memory of size (log2M)2n/2. The verification operation requires about k∗ log2M ap-
plications of g. For the example this means only 3.1 Kbytes for the computations and
8100 applications of g. The length of a signature is 84.4 Kbytes. The author indicates
that further optimizations are possible, that reduce the number of applications of g
with a factor 4. Note that the logarithmic dependence on the number of messages to
be signed M implies that this number can be increased significantly without requiring
excessive storage.

2.3. APPLICATIONS OF HASH FUNCTIONS 29

The advantage of these schemes is that they can be based on any one-way function,
and that one has an informal proof of their security. The disadvantage is that the pub-
lic storage is rather large compared to the 64 bytes for a public key for RSA (in the
case of a small public exponent) and that it depends on the number of messages that
will be signed. The number of operations is comparable: the speed of the fastest one-
way functions (e.g., functions based on DES or derived from existing hash functions) is
about three orders of magnitude faster than the speed of a modular exponentiation (cf.
section 2.3.3.1). An overview of the size of the parameters for 4 signature schemes (Ra-
bin, Diffie-Lamport, Winternitz and Merkle) is given in table 2.1. The Rabin scheme
[274] is a scheme with probabilistic verification depending on a security parameter t:
the probability that an invalid signature is accepted by the verifier is approximately√
πt/22t, which means that t should be ≈ n/2 to obtain a similar security level.

operations size
signing verification public storage signature

Rabin (k = n) 2t t 4Mtn 2tn
Diffie-Lamport k k Mk∗n k∗n
Winternitz k2α−1 k2α−1 Mk∗n/α k∗n/α
Merkle 3k∗ log2M k∗ log2M (log2M)2n/2 2 log2Mk∗n

Table 2.1: Parameters for 4 signature schemes based on a one-way function.

2.3.4 Identification with passwords

An MDC can be used to generate from a password or a passphrase a publicly acces-
sible (readable) password file: one stores the MDC corresponding to the password or
passphrase, instead of the password itself. Subsequently one has to protect only the
integrity of the password file. In most applications it should be infeasible to derive a
valid password from an entry in the file, which implies that a OWHF is sufficient. This
is in fact one of the few cases were only finding a first preimage should be hard. His-
torically this is probably the first application of one-way functions. If a passphrase of
arbitrary size has to be compressed, one will need a one-way hash function. A related
application is commitment to a string without revealing it.

2.3.5 Encryption algorithms based on hash functions

Without going into details, one can remark that every hash function can be used in
several ways to produce an encryption algorithm. A first possibility is to use the hash
function as the F -function in a Feistel cipher [104, 105]. The text input of the round
can be used as the chaining variable of the hash function (cf. section 2.4.1), and the
key can go to the data input. An alternative is to have a fixed chaining variable and
to concatenate the data to the key. Interesting theoretical results can be shown if the

30 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

hash function is pseudo-random and if the round keys are independent (e.g. [340]).
A second possibility is to construct a key stream generator with a mode where the
output of the hash function is fed back to the input, or where the input is derived from
a counter. In case of a MAC the design can even be simpler, as the use of a secret
key is already part of the algorithm. It is certainly possible to design more efficient
encryption algorithms from scratch, but this type of solutions could be acceptable for
applications where encryption is required occasionally.

2.3.6 Application to software protection

To illustrate the use of a MAC, MDC, and a digital signature scheme, it will be
explained how these three techniques can be applied to protect the integrity of software
[216]. The two parties involved in the application are the software vendor (who is also
supposed to be the author of the software) and the user. The attacker will try to
modify the software: this can be a computer virus, a competitor or even one of the
parties involved. For this application there is clearly no need for secrecy. The three
approaches will be discussed together with their advantages and disadvantages.

MAC: the software vendor will use his secret key to compute the MAC for the program
and append the MAC to the program. The main problem here is the distribution
of the secret key to the user through a channel that protects both its secrecy and
its authenticity, which induces a significant overhead. This secret key has to be
protected carefully by both software vendor and user: if a compromise at one
place occurs, the protection is lost. Both software vendor and user can modify
the program and the corresponding MAC, and thus in case of a dispute, a third
party can not make any distinction between them. The vulnerability of the
secret key implies that it is mandatory that every user shares a different key
with the software vendor. The advantage of this approach is that the secret
storage is independent of the number of programs to be protected, but depends
on the number of users (for the software vendor) and on the number of different
software vendors (for the user).

MDC: the software vendor will compute the MDC for the program. The main prob-
lem here is the distribution of the MDC to the user through a channel that
protects the authenticity of the MDC. This is easier than the distribution of a
secret key, but for every update of the program or for every new program a new
transmission of an MDC is necessary. If the authenticity of the MDC is compro-
mised, the protection is lost: the software vendor, the user, and any third party
can modify the program and the corresponding MDC. If a dispute occurs, one
has to show to a judge that the value of an MDC is authentic: it is generally
not possible to prove to the judge who actually modified the authentic channel
and the program. The main advantage is that this approach requires no secret
storage. Every program needs an authentic storage both at the user’s site and
at the vendor’s site.

2.4. GENERAL CONSTRUCTIONS 31

Digital signature: the software vendor will append to the program a digital sig-
nature that is computed with his secret key. The main problem here is the
distribution of the corresponding public key to the user through a channel that
protects its authenticity. The secrecy and authenticity of the secret key have to
be protected carefully by the software vendor: if it is compromised, anyone can
modify programs and update the corresponding signature. If the authenticity of
the public key is compromised, the protection is also lost: anyone can replace
it with the public key corresponding to his secret key. The difference with the
previous approaches is the asymmetry: only the software vendor can generate a
signature, but anyone can verify it. This implies that the vendor can be held
liable to a third party if the program contains a virus. The only way he can
escape is by claiming that his secret key was stolen. He can however not repeat
this type of fraud, as he will loose quickly the trust of his customers. Every
vendor has to store one secret key, while every user needs an authentic storage
for the public key of every vendor.

The selection of a particular solution will depend on the one hand on the number of
users, vendors and programs, and on the other hand on the availability of authentic
and/or secret storage and communication. The digital signature is clearly the only
solution that can protect the users against a malicious software vendor.

A similar verification process can be executed when the program is loaded from
disk to the Central Processing Unit. If the disk is not shared, non-repudiation is not
required, but it is still attractive to use a digital signature scheme: the CPU has to
know only the public key corresponding to the disk. An alternative is to provide for
authentic storage of the MDC of a file that contains the MDC’s of all programs. In
[69] a scheme is described that combines a digital signature for checking new software
with a MAC for verification at run-time.

2.4 General constructions

In this section a general model will be established for a hash function. Based on this
model the relation will be discussed between the properties of the hash function and the
properties of its building block, the “round function”. Subsequently a tree construction
for hash functions is described and cascading of hash functions is discussed.

2.4.1 General model

The general model for describing a hash function will be sketched. All known hash
functions are based on a compression function with fixed size input; they process every
message block in a similar way. This has been called an “iterated” hash function in
[183].

The information is divided into t b-bit blocks X1 through Xt. If the total number
of bits is no multiple of the block length b, a padding procedure has to be specified.

32 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

A number of examples of padding rules with increasing strength are given, where the
roles of 0’s and 1’s can always be interchanged.

• The simplest padding rule is to complete the information with 0’s. This padding
rule is ambiguous as it not clear how many trailing 0’s are part of the information.
However this can be acceptable if the length of the information is known in
advance or if it is included in the information.

• Padding of the information on the right with a 1 followed, if necessary, by 0’s
until it becomes complete. If the last block is complete, a supplementary block
is added to the information, equal to a 1 followed by 0’s.

• Padding of the information with z 0’s except for the last r bits; these contain
the r-bit binary representation of z. If no r bits are left in the incomplete last
block, one or more blocks have to be added.

• Padding of the information with z 0’s except for the last r bits; these contain
the length of the information in bits. If no r bits are left in the incomplete last
block, one or more blocks have to be added. If this padding rule is applied, no
message can be obtained from another message by deleting the first blocks.

The choice between these different rules depends on the application, but it will be-
come clear that the last one offers a larger security level, and is therefore strongly
recommended.

The hash function h with compression function or round function f can then be
defined as follows:

H0 = IV

Hi = f(Xi,Hi−1) i = 1, 2, . . . t
h(X) = Ht .

Here Hi are the intermediate variables or chaining variables that have a length of n
bits, and the Xi are b-bit blocks. The result of the hash function is denoted with h(X)
and IV is the abbreviation for Initial Value. This corresponds to the description of
a finite state machine with initial state IV , input Xi and next state function f . In
some cases the input is subjected to preprocessing. This preprocessing stage introduces
additional redundancy to increase the strength of the hash function. This redundancy
consists of constant bits, a repetition of bits, or even a more complex procedure. The
price paid for this redundancy is a decreased speed of the hash function.

The specification of a hash function requires the description of f , IV , a padding
procedure, and optionally a preprocessing stage. If a hash function h is collision
resistant, this implies that it should be hard to find an input pair X, X ′ such that
h(X) = h(X ′), for a given IV , padding procedure and preprocessing stage. The
same holds for the one-way property. Several attacks on hash functions have been
described that attack the hash function for a different IV . The following cases can be
distinguished:

2.4. GENERAL CONSTRUCTIONS 33

• If a collision pair can be found for an IV ′ 6= IV , this also creates suspicion on
the security of the hash function, depending on the size and nature of the sets of
IV ’s: if IV ′ is the outcome of a pseudo-random process, this is not so dangerous,
as the probability of hitting the right IV is negligible.

• The situation is different for a CRHF if a pair X, X ′ is constructed that results
in the same hashcode if IV and respectively IV ′ are used as initializing variables
of the hash function. It is clear that this deviates significantly from the strict
definition of a collision, and therefore we suggest the term “pseudo-collision”.
Most hash functions are not designed to meet this criterium. Of course it is
a nice property if even finding such a pseudo-collision is hard, but it is only
relevant for applications where IV can be modified by an attacker, or where the
hash function is constructed in a different way (cf. section 2.4.4).

• A similar remark applies if a preimage can be found for an IV ′ 6= IV : for a large
class of constructions it is always possible to find such a “pseudo-preimage”. If
the attack yields an IV ′ that is the outcome of a pseudo-random process, the
probability of hitting the right IV is as small as finding a random preimage.
However, finding a “pseudo-preimage” should not be too easy, as one can trans-
form a pseudo-preimage into a preimage with a so called meet in the middle
attack (cf. section 2.5.2.1).

One can conclude that every specification of a hash function should fix an initial value
IV (or a small set of initial values), together with a motivation for the choice. If IV is
generated pseudo-randomly, the algorithm should be described: a proposal is to take
the all zero block or the hash value (with IV = 0) of a block consisting of all zeroes.
If IV is not specified, it should be hard to produce collisions for any IV . In that case
it is clearly necessary to add the length of the message at the end, in order to avoid
trivial attacks, like omitting one or more blocks at the beginning of the message. If
the first message block is derived from IV , say X1 = g(IV) (note that in some cases it
is insecure to take the identity function), one can show that finding a pseudo-preimage
is not easier than finding a preimage: an attacker can go backwards till the first stage,
but he will not be able to come up with an IV such that f(IV, g(IV)) = H1. Note
that in the case of a digital signature it is easy to protect against pseudo-collisions: it
is sufficient to sign IV together with the hashcode.

It has been indicated that adding the length of the message in the padding proce-
dure can thwart trivial attacks in case IV is not specified. Moreover it can also protect
against fixed point attacks (cf. infra) and against attacks that produce a second preim-
age for a long message in less than 2n operations. The long message attack is basically
due to R. Winternitz [328], and it was improved in [183]. Here a further generalization
is given, that takes into account the required storage.

Proposition 2.1 Given a t-block message X, a second preimage for h(X) can be
found in 2n/r+r computations of the round function f and with a storage requirement

34 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

of r n-bit quantities, under the restriction

1 ≤ r ≤ min(t, 2n/2) .

Proof: One calculates and stores the first r intermediate values Hi of the compu-
tation of h(X). After computing 2n/r values for H ′

1 = h(IV,X ′
1) with randomly chosen

X ′
1, the probability for a match between H ′

1 and some Hi, say for i = i∗ is approxi-
mately 63% (cf. appendix B). Then the message X ′ = (X ′

1, Xi∗+1, . . . , Xt) hashes to
the same value as the message X (note that the probability that X ′ = X is negligible).
It is clear from the expression for the number of computations that if t > 2n/2 it does
not make sense to choose r larger than 2n/2: this would imply that evaluation of the
intermediate values of h(X) requires more computations of the round function than
finding a second preimage.

If there are no storage limitations, r will be chosen equal to its maximal value.
This generalization is motivated by the fact that in general 2n computations is easier
to achieve than storage (and sorting) of 2n n-bit quantities. The main problem is
the access time of the memory (cf. section 2.5.1.3). It is clear that this attack is not
possible if the length of X is added as the last block.

A second problem with long messages is the “loss of memory” problem. It was
posed by H. Block in an oral communication at Eurocrypt’84, and was mentioned by
D. Davies in [72]. Assume that for a fixed Xi, f is a random injective mapping. If a
large number of variations of the first blocks are chosen, all 2n states will be reached
at some point. However, if the next message blocks are kept constant, it can be shown
that the fraction of states y[i] at stage i is given by the recursion

y[i+ 1] = 1− exp(−y[i]) .

With y[0] = 1 (for convenience) one finds that

y[i] ≈ 2
i+ 1

3 ln i+ 9
5

.

One can conclude that this is clearly an argument to let f be a bijection for fixed Xi.
If this is not the case, it has to be checked to what extent this effect occurs (f might
behave even worse than a random mapping). Moreover the message size has to be
limited, or the size of the chaining variables has to be increased. Observe that this is
only a problem if n is relatively small, which might happen in the case of a MAC.

As a conclusion one can state that one should either fix the initial value IV or add
the total length of the message in the padding, and that it is strongly recommended
to take both measures. Moreover, one should specify an upper bound on the size of
the input.

In case of a MAC, it is a common mistake to choose the IV equal to the secret key.
If this is the only way the key is involved in the MAC calculation, one can append an
arbitrary number of blocks to the message and update the hashcode without knowledge
of the secret key. Therefore the secret key should be involved both at the beginning

2.4. GENERAL CONSTRUCTIONS 35

and at the end of the computations, but it is recommended that f depends on the
secret key.

Research on hash functions has been focussed on the question: what conditions
should be imposed on f to guarantee that h satisfies certain conditions ? This approach
is based on the fact that one of the problems in assessing the security of a hash function
is caused by the arbitrary size of the input. It is clear that weaknesses of f will
generally result in weaknesses of h, but the converse does not hold in general. The
main problem is to derive sufficient conditions on f . An important result that was
achieved is that under certain conditions a CRHF or OWHF can be derived from a
fixed size compression function that is collision resistant or one-way.

2.4.2 Conditions on the function f for a OWHF

The “composition theorem” by M. Naor and M. Yung [233] shows that a specific
OWHF (namely a Universal One-Way Hash Function or UOWHF) can be constructed
if a specific one-way function can be constructed that compresses a single bit. Their
result will be discussed in detail in chapter 4.

Below four conditions are discussed that have to be verified to assess the security
of a OWHF. These conditions have to be met to thwart certain attacks. It is assumed
that the function f is not trivially weak, which means that it is linearly dependent or
even not dependent on one of its inputs.

Direct Attack: the most straightforward attack is to simply invert f w.r.t. Xi. This
can be thwarted by imposing the requirement that f is one-way w.r.t. Xi, or
given Hi−1, Hi, (and Xi) it must be “hard” to find an X ′

i 6= Xi such that
f(X ′

i,Hi−1) = Hi. The expression “for a given . . . ” implies that Hi−1 and Hi

can not be selected directly by an attacker. This attack can be used to construct
either a preimage or a second preimage. If a direct attack requiring 2s operations
can be mounted such that only n′ < n bits of Hi are matched, finding a (second)
preimage will require 2n−n

′+s operations, which is more efficient than exhaustive
search if s < n′.

Forward Attack: an attacker can always replace Xj by X ′
j . At a later stage, say

iteration i with i > j, he will have to bring the two chains together again. This
implies that given Hi−1, H ′

i−1, and Xi, it must be “hard” to find an X ′
i such that

f(X ′
i,H

′
i−1) = f(Xi,Hi−1) = Hi. This attack can only be used to construct a

second preimage. If only n′ bits can be matched in 2s operations, one finds again
that 2n−n

′+s operations will be necessary for a complete match.

Backward Attack: it should be hard for an attacker to go backwards through the
chain, i.e., given Hi to produce a pair (Xi,Hi−1) such that f(Xi,Hi−1) = Hi.
The motivation to forbid this is the existence of meet in the middle attacks (cf.
section 2.5.2.1), that can help an attacker as follows [183]:

36 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

Proposition 2.2 If it takes 2s operations to go one step backwards in the chain,
then a pseudo-preimage can be found in 2s operations, and a (second) preimage
for a fixed IV in 21+n+s

2 operations.

It is clear that if s = n this attack does not yield any improvement. The following
generalization can be made if only n′ bits of Hi can be matched:

Proposition 2.3 If it takes 2s operations to go one step backwards in the chain,
while providing a match for only n′ < n bits of Hi, a pseudo-preimage can be

found in 2n−n
′+s operations, and a (second) preimage for a fixed IV in 21+n+ s−n′

2

operations.

Proof: The number of operations for the preimage follows from the fact that
the remaining n− n′ bits will be correct with a probability of 2−(n−n′).

For the (second) preimage attack one computes H ′
1 = f(X1,H0) for 2n+ s−n′

2

randomly chosen values of X1. Then one constructs 2n−
s+n′

2 pairs of (X2,H
′′
1)

for which f(X2,H
′′
1) agrees in n′ positions with H2. One expects that all n

positions of H2 will be correct for 1 value in 2n−n
′
, yielding 2

−s+n′
2 useful pairs

(X2,H
′′
1). The attack succeeds if a match occurs between an H ′

1 and an H ′′
1 (cf.

section 2.5.1.3). The probability that this happens is approximately equal to
63% (cf. appendix B). The number of operations for both phases is equal, which

results in a total of 21+n+ s−n′
2 operations.

Fixed Point Attack: a fixed point is a pair (Xi,Hi−1) such that f(Xi,Hi−1) = Hi−1.
An extension of this concept is a fixed point of the r-fold iteration of f . If an
attacker can easily find an Xi for a chosen Hi−1, it is a special case of a backward
attack. On the other hand, ifXi can be chosen, and subsequently a corresponding
value of Hi−1 is obtained, or if the pair (Xi,Hi−1) is obtained from a random
process, the value is much more limited: it can only be used to find a pseudo-
preimage or a second preimage of a hashcode equal to Hi−1. If the values of Hi−1

are uniformly distributed, this attack is not better than a random search for a
preimage.

The first three conditions are clearly necessary, and the first two are a special case
of the backward attack. They have been described because they will form the basis of
a classification of hash functions based on block ciphers in section 5.3.1.4. In [183], it
was shown that if the padding contains the length of X, and if the message (without
padding) contains at least 2 blocks, ideal security of f against a backward attack is
necessary and sufficient for ideal security of h with fixed IV (cf. section 2.2).

Proposition 2.4 Assume that the padding contains the length of the input string, and
that the message X (without padding) contains at least 2 blocks. Then finding a second
preimage for h with a fixed IV requires 2n operations if and only if finding a second
preimage for f with arbitrarily chosen Hi−1 requires 2n operations.

2.4. GENERAL CONSTRUCTIONS 37

The proof is based on the fact that if IV /Hi−1 can be chosen freely, the security
of f is equivalent to the security of h.

2.4.3 Conditions on the function f for a CRHF

A construction for a CRHF based on a collision resistant function (CRF) was pre-
sented at Crypto’89 both by R. Merkle [212] and (independently) by I. Damg̊ard [66].
R. Merkle called his construction the “meta method”, and presented it together with
a scheme based on DES (cf. section 5.3.2.2). I. Damg̊ard [66] gave a more formal con-
struction and proof that will be discussed in chapter 4. The idea of the construction
is to select for f a CRF with input the concatenation of its arguments Xi and Hi−1.
It can then be shown that the fact that f is a CRF implies that h is a CRHF. The
proof will only work if the padding contains the length of the input string X.

The “meta method” takes an elegant approach, but might be too restrictive for
practical applications. The converse of the theorem is certainly not true: it might be
that f is not a collision resistant function, while h clearly is. The main observation is
that the role of the information blocks Xi and the chaining variables Hi in the hashing
process is essentially different: in the construction of a collision for h the attacker
can completely control Xi, but Hi is either the fixed initial value or the image of Xi

and Hi−1 under f . Note that this is not true if IV can be chosen freely. The main
problem to determine a set of conditions for f and to prove that these are necessary
and sufficient for h to be CRHF, is that nothing can be said on the distribution of
the Hi’s: an attacker can not simply select them, but the designer can not show that
the attacker can not control their distribution in a way that helps him to produce a
collision.

Again four types of attacks can be identified:

Direct Attack: the most straightforward attack is to simply replace Xi by X ′
i. This

can be thwarted by imposing the requirement that f is collision resistant w.r.t.
X, or for a given Hi−1 it must be “hard” to find a pair (Xi, X

′
i) with Xi 6= X ′

i

such that f(Xi,Hi−1) = f(X ′
i,Hi−1). The expression “for a given Hi−1” implies

that Hi−1 can not be selected directly by an attacker. If only n′ bits of Hi can
be matched, one obtains the following proposition:

Proposition 2.5 If it takes 2s operations for a direct attack, while providing a

match for only n′ < n bits of Hi, a collision can be found in 21+n−n′
2

+s operations.

Forward Attack: an attacker can always replace Xj by X ′
j . At a later stage, say

iteration i with i > j, he will have to bring the two chains together again.
This implies that for a given pair (Hi−1,H

′
i−1), it must be “hard” to find a pair

(Xi, X
′
i) such that f(Xi,Hi−1) = f(X ′

i,H
′
i−1). This is not equivalent to imposing

the condition that f should be collision resistant: this would be the case if the
attacker is able to select (Hi−1,H

′
i−1). It is clear that proposition 2.5 can be

extended to this attack.

38 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

Backward Attack: it should be hard for an attacker to go backwards through the
chain, i.e., for a given Hi, it must be “hard” to find a pair (Xi,Hi−1) such that
f(Xi,Hi−1) = Hi. The motivation to forbid this is the existence of meet in the
middle attacks (cf. section 2.5.2.1). These attacks are not generally applicable, as
they can only yield a pseudo-collision. Nevertheless it should not be too easy to go
backwards, as one requires from a CRHF that it is also one-way. Proposition 2.5
can be extended to this case if collision is replaced by pseudo-collision.

Fixed Point Attack: the definition of a fixed point is discussed in the previous sec-
tion. If an attacker can easily find an Xi for a chosen Hi−1, it is a special case
of a backward attack. On the other hand, if Xi can be chosen, and subsequently
a corresponding value of Hi−1 is obtained, or if the pair (Xi,Hi−1) is obtained
from a random process, the applications are much more limited: it can only be
used to find a collision for an IV = Hi−1. If the values of Hi−1 are uniformly
distributed, the probability that the exact IV will be matched is smaller than
the probability for a random collision. Moreover this type of collisions can be
avoided easily by adding the length at the end of the message.

The two first conditions are clearly necessary, and the third and fourth condition will
thwart a certain class of attacks. We have for the time being no idea whether or not
these conditions are sufficient to trust a practical hash function.

A possible solution for the problem concerning the distribution of the chaining
variables could be to introduce the assumptions that f is a random mapping, which
would imply that all intermediate values Hi will be random. The expression “for a
given Hi” implies then that the chaining variables Hi are uniformly distributed and
independently selected random variables. It is not obvious that in this case the four
conditions are sufficient, because other attacks are applicable, that operate on more
than one block at a time. The opponent can try to solve the following problem: find
for a given Hi−2 two different pairs (Xi−1, Xi) and (X ′

i−1, X
′
i) such that

f(Xi, f(Xi−1,Hi−2)) = f(X ′
i, f(X ′

i−1,Hi−2)) .

This type of attack can of course be extended to more steps. It seems that the ran-
domness of the intermediate values makes this attack as difficult as directly attacking
the hashcode with a birthday attack (cf. section 2.5.2.1), but no formal proof of this
has been given.

The “meta method” also requires some trust: one has to trust that f is a collision
resistant function. The main advantage is that one has to study only a function with a
fixed size argument. For constructions where this method is not applicable, one has to
trust that the function f satisfies less stringent requirements and that the conditions
are sufficient to guarantee that h is a CRHF.

2.4.4 Tree approach to hash functions

The linear structure for a hash function can also be replaced with a tree structure for
different reasons:

2.4. GENERAL CONSTRUCTIONS 39

• to speed up the evaluation of h with a time-processor trade-off,

• to authenticate only a single leaf from the input: this requires knowledge of only
O(log n) entries and only O(log n) computations instead of O(n) computations
to verify the whole tree [85, 211, 212].

In this case it should be hard to find a pseudo-preimage or a pseudo-collision for the
round function f . The first argument was independently discovered by the author
[252] and by I. Damg̊ard [66], who also gave a formal proof of the correctness in case
that the building function f is collision resistant. For universal hash functions (cf.
section 3.3.2), a similar construction was suggested by M. Wegman and J. Carter in
[325].

If one disposes of a suitable round function f that hashes m bits to n bits, the
evaluation of h for a k-bit input can be done with k

2n processors with

O

(
n

m− n
· log2

(
k

n

))
evaluations of f . For the simple case where k = 2q for some integer q and m = 2 · n,
this results in

H1
i = f(X2i−1, X2i) i = 1, . . . , 2q−1

Hj
i = f(Hj−1

2i−1,H
j−1
2i) i = 1, . . . , 2q−j (j = 2, . . . , k − 1)

H = f(Hk−1
1 ,Hk−1

2) .

The time to compute the result is O(log k) instead of O(k). A trade-off between
chaining and tree approach allows for a speedup with about a factor c when c processors
are available. Note that with this approach a different hash function is obtained for
every value of the parameter k.

2.4.5 Cascading of hash functions

This section contains two simple observations concerning cascading hash functions,
inspired by similar results for stream ciphers [205]. If h1() and h2() are hash functions,
and g() is a one-way function, then

• h(X1, X2) = g(h1(X1) ‖ h1(X2)) is a CRHF if h1() is CRHF and g() is a CRF,

• h(X1) = g(h1(X1) ‖ h2(X1)) is a CRHF if either h1() or h2() is a CRHF and g()
is a CRF,

• h(X1) = h1(X1) ‖ h2(X1) is a CRHF if either h1() or h2() is a CRHF.

Here ‖ denotes the concatenation of two strings. The first part is equivalent to the
tree construction. The second part constructs a CRHF that is at least as strong as the
strongest of two collision resistant hash functions, provided a CRF is available. Note
however that in both cases one could replace g() by a OWF with a result of 128 bits.
The resulting hash function will be a CRHF if finding collisions for g() is not too easy.

40 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

For the third part the function g() is omitted, but the hashcode will now be at least
256 bits long. The two last constructions increase the security level at the cost of a
decreased performance. Note that this result can easily be extended to more than two
functions.

2.5 Methods of attack on hash functions

The goal of this section is to give an overview of the known methods of attack on hash
functions. The large number of possible attacks will be classified in five types:

1. attacks independent of the algorithm,

2. attacks dependent on the chaining,

3. attacks dependent on an interaction with the signature scheme,

4. attacks dependent on the underlying block cipher,

5. high level attacks.

Before treating these attacks in detail, the assumptions on the information available
to an attacker will be discussed. In case of an MDC, all information is public, and the
attacker simply faces the task to produce a preimage or a different element with the
same image in case of a OWHF or a collision in case of a CRHF. One can make a
distinction between the following cases, depending whether the value of IV is different
from the specified value:

Preimage: here an attacker tries to find a preimage for a given hashcode.

Second preimage: here an attacker tries to find a second preimage for a given hash-
code.

Pseudo-preimage: here an attacker tries to find a preimage for a given hashcode,
with IV ′ 6= IV .

Second pseudo-preimage: here an attacker tries to find a second preimage for a
given hashcode, with IV ′ 6= IV (note that this case will not be discussed in the
following).

Collision: here an attacker tries to find a collision.

Collision for different IV : here an attacker tries to find a collision for IV ′ 6= IV .

Pseudo-collision: here an attacker tries to find for some IV ′ and IV ′′ a pair X ′, X ′′,
such that hIV ′(X ′) = hIV ′′(X ′′).

It is clear from the definitions that finding a pseudo-collision can be not harder than
finding a pseudo-preimage, and that finding a collision can be not harder than finding
a (second) preimage. A similar taxonomy was suggested in [183], but they make
no distinction between second preimage and preimage. Their terminology for second
(pseudo-)preimage is “(free-start) target attack”, and the two last collision attacks are
called “semi-free-start” respectively “free-start collision attack”.

2.5. METHODS OF ATTACK ON HASH FUNCTIONS 41

For a MAC the situation is more complicated. The proposed taxonomy is equivalent
to the taxonomy of [129] for digital signature schemes. Depending on the information
available to an attacker, the following types of attacks are distinguished:

Known plaintext attack: here an attacker is able to examine some plaintexts and
their corresponding MAC.

Chosen plaintext attack: here an attacker is able to select a set of plaintexts, and
subsequently he will obtain a list of MAC’s corresponding to these plaintexts.

Adaptive chosen plaintext attack: this is the most general attack where an at-
tacker will choose a plaintext and immediately receive the corresponding MAC:
the choice of a plaintext can depend on the outcome of previous questions.

“Breaking” a MAC can have different meanings:

Total break: this means that an attacker can determine the secret key K.

Universal forgery: in this case an attacker can find an algorithm that is functionally
equivalent to the MAC evaluation algorithm.

Selective forgery: here an attacker can determine the correct MAC for a particular
plaintext chosen a priori by him.

Existential forgery: here an attacker can determine the MAC for at least one plain-
text. As he has no control over this plaintext, it may be random or nonsensical.

The fourth requirement in definition 2.3 can now be restated as follows: it should
be “hard” to perform an existential forgery with an adaptive chosen plaintext attack.
Note that obtaining a MAC for a plaintext from the owner of the secret key is not
considered as a forgery.

An evaluation of a scheme for message authentication or a digital signature strongly
depends on the information at the disposal of an adversary, the actions he can under-
take and finally on the consequences of both a successful and an unsuccessful attack.
In general, a conservative approach is recommended. This implies that one assumes
that a MAC will be considered to be broken if an attacker can commit an existential
forgery based on an adaptive chosen message attack with the only restriction on the
number of plaintexts coming from limited storage and computation capacities.

2.5.1 Attacks independent of the algorithm

This class of attacks depends only on the size of the hashcode n and the size of the secret
key k (for a MAC), and is independent of the nature of the algorithm. It is assumed
that the hashcode is a uniformly distributed and independent random variable: if this
is not the case this class of attacks will be even more successful.

42 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

2.5.1.1 Random attack

The opponent selects a random message and hopes that the change will remain un-
detected. If the hash function has the required random behavior, his probability of
success equals 1/2n with n the number of bits of the hashcode. A major difference
between a MAC and an MDC is that for a MAC the attack has to be carried out
on-line, and hence the attack depends on two elements:

• The number of trials T that can be carried out, which depends on the speed of
the implementation and on the time an attacker has access to the system with the
key in place. The number of trials can be limited by undertaking a special action
(e.g., perform manual verifications) if the number of erroneous results exceeds a
certain threshold. An example where a large number of trials is possible, is the
control of a satellite authenticated by a MAC.

• The expected value V of a successful attack. In wholesale banking this can be
on the order of 100 million $ or even more.

The expected value of an attack equals then T · V/2n. If the number of trials can be
limited, or if the expected value is limited like in retail banking, a value of n = 32
is sufficient. However, for most applications it is recommended that the size of the
hashcode is at least 64 bits.

For an MDC the attack can be carried out off-line and in parallel. This means
that the length of the hashcode n should be at least 64 bits. If a significant number
of messages can be attacked at the same time, it is advisable to select a larger value
of n. In section 2.4.1 it has been shown that finding a preimage for long messages is
easier, unless the length of the message is included in the padding.

2.5.1.2 Exhaustive key search

An exhaustive search for a key is only applicable to a MAC. It is a known plaintext
attack, where an attacker knows M plaintext-MAC pairs for a given key. He will
precompute the MAC for every possible key in order to eliminate wrong keys. The
size of the key space is equal to k bits, and the expected number of keys that remain
will be denoted with Kexp. If M is sufficiently large, it is possible to determine the key
uniquely or Kexp ≈ 1. The relation between Kexp, M and n can be determined [236]
under the assumption that the MAC is a random mapping, and that no key clustering
occurs, i.e., that there are no equivalent keys. For the correct key, an attacker will
perform M MAC calculations, while for a bad key the probability that exactly i trials
are performed is equal to (

1− 1
2n

)
2−n(i−1) .

The expected number of trials is given by the following expression:(
1− 1

2n

) M∑
i=1

i

2n(i−1)
<

1
1− 2−n

.

2.5. METHODS OF ATTACK ON HASH FUNCTIONS 43

The total number of trials to identify the key is upper bounded by

M +
2k − 1
1− 2−n

, (2.1)

and the number of keys that remains is expected to be

Kexp = 1 +
2k − 1
2Mn

. (2.2)

This means that the number of plaintext-MAC pairs to determine the key uniquely is
slightly larger than k/n. After the birthday attack it will be discussed how large k has
to be in order to offer sufficient security for the next decades.

2.5.1.3 Birthday attack

The idea behind this attack is that for a group of 23 people the probability that at
least two people have a common birthday exceeds 1/2 [106] . Because this number of
people is significantly smaller than what one would expect, this has also been called the
“birthday paradox”. For some applications a related problem is relevant: if two groups
of people have 17 persons each, the probability that two people in the two different
groups have a common birthday will also exceed 1/2. Note that these results assume
that birthdays are randomly distributed over the year; as this is not the case the
probability will be even higher. This can be generalized as follows. If two samples of
size r1 and r2 are drawn from a set of n elements, and if r1r2 = n with r1, r2 = O(

√
n),

then the probability of a match equals 1 − 1/e or 63%. Note that if the attacker is
unlucky, it is sufficient to increase the size of r1 and r2 slightly, which will increase
the success probability significantly. If r1 + r2 has to be minimized, one can show that
this corresponds to r1 = r2 =

√
n. This explains why attacks based on this property

have also been called “square root” attacks. For a more detailed discussion of the
probabilities the reader is referred to appendix B.

The first attack based on this property was proposed by G. Yuval [335]. He showed
how to attack a digital signature scheme of Rabin [274], more in particular he shows
that it is easier to construct collisions for a one-way function than to find a preimage
of a given element in the range. A collision can be produced in the following way.

• The adversary generates r1 variations on a bogus message and r2 variations on
a genuine message. This is very easy, even if r1 and r2 are large: it is sufficient
to have log2(r1) respectively log2(r2) positions where one has two alternatives or
synonyms. If r1 = r2 = r =

√
n the probability of the existence of a match will be

63%. Note that in case of a MAC the opponent is unable to generate the MAC
of a message. He could however obtain these MAC’s with a chosen plaintext
attack. A second possibility is that he collects a large number of messages and
corresponding MAC’s and divides them in two categories, which corresponds to
a known plaintext attack.

44 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

• The search for a match does not require r2 operations: after sorting the data,
which requires O(r log r) operations, comparison is easy.

An algorithmic improvement has been the collision search algorithm proposed by
J.-J. Quisquater [267, 270]. It is based on Pollard’s ρ-method for finding cycles [300]
in periodic functions on a finite domain. It eliminates almost completely the storage
requirements if the attacker is able to call the function (it does not work if a match
has to be found in stored data). If a MAC is attacked this corresponds to an adaptive
chosen text attack. The basic idea is that if a random mapping is iterated (the output
is fed back to the input), it will arrive after a tail with length λ into a cycle with
period µ. At the point where the tail enters the cycle (the point of contact), one
has found two values x and x′ such that f(x) = f(x′). A graphical representation
of this process will correspond to the Greek letter ρ. The storage requirements can
be reduced to a negligible quantity by only storing points with specific characteristics
(distinguished points). The expected number of function evaluations is equal to ρ =
λ+µ =

√
πn/8+

√
πn/8 =

√
πn/2 (for a proof, see [113]). This result is also applicable

to several other attacks: it is possible to produce pseudo-collisions for a single iteration
step or collisions with initial values chosen from a small set. Other extensions will be
discussed in the rest of this section.

Feasibility An important problem is to decide which computations should be consid-
ered feasible for the time being and within 10 and 20 years from now. This discussion
is partially based on [273]. In terms of computations, one can start from the following
facts (mid 1992):

• a single PC or workstation is able to perform a function evaluation in about
25 µsec, which corresponds to 240 function evaluations per year,
• a supercomputer like the Cray-3 or the Cray Y-MP C90 (both with 16 processors)

is capable of performing 16 Gigaflops on 64-bit words [348, 349]. If one function
evaluation takes 64 operations, this corresponds to 252 function evaluations per
year.

Based on the observation that the speed of computers is multiplied by four every three
years this means that 21 years from now (which seems a reasonable time scale for a
number of applications) a single super computer will be able to perform 266 function
evaluations per year. It will require 4096 simple processors to perform the same num-
ber of operations. However, it can be expected that in the near future even inexpensive
computers will have many processors built in, as increasing the number of processors is
the most effective way to increase the computational power without excessive increase
of the cost (economy of scale) [349]. Hence it is realistic to assume that this comput-
ing power will be available in any small size organization. It can be shown that many
problems in cryptanalysis can be easily adapted to such a distributed environment
[272]: it are probably the applications that will achieve the highest performance on
massive parallel machines. These predictions can be extended to dedicated cryptan-
alytic hardware, if one accepts the assumption that hardware will remain about two

2.5. METHODS OF ATTACK ON HASH FUNCTIONS 45

orders of magnitude faster. This corresponds to a factor of 26 . . . 27. The disadvantage
of dedicated hardware is the higher cost.

For memory requirements, the situation is more complex, as the size of the avail-
able memory depends on the access time [265]. Moreover the access time to memory
decreases much slower than the cycle time of the processor, and this can be solved only
partially by using cache memories. An efficient attack will balance the use of differ-
ent types of memories such that the access times are comparable to the calculations
that have to be done in between. An example of such an attack using one central
hardware board that is connected to a large number of PC’s with a few Megabytes
of memory has been described in [169]. Predictions can be based on the observation
that memory devices increase in capacity by a factor of four every three years. Today’s
supercomputers have a main memory of up to 32 Gigabytes, a disk capacity of 50−100
Gigabytes and a high-performance mass storage system of 200 Gigabytes [349]. For
storage with still slower access, like tapes, capacity in the order of several Terabytes is
currently available, and in the next decade this will become Pentabytes. The memory
available in workstations is much smaller. Fast cache memories have currently a ca-
pacity between 256 and 512 Kbytes. For dynamic RAMs, 4 Mbit chips are currently
in mass production, which means that main memory of 32 Megabytes is becoming the
standard in workstations. For disk storage, 1 Gigabyte can be considered state of the
art.

One can conclude that for attacks that require no storage, a size of 128 bits cor-
responding to 264 operations is sufficient for the next 10 years, but it will be only
marginally secure within 20 years. One can predict that a storage of about 64 Giga-
bytes with an acceptable access time will be available on a single workstation within 10
years. If one has 1024 machines of this type available, this amounts to 64 Terabytes.
With this constraint, attacking a 64-bit hashcode requires only 221 operations, but
probably the access time to the memory would be dominant. For a 96-bit hashcode
this amounts to 254 operations corresponding to a few years on these machines, and
to a few months if dedicated hardware is available for the computations. For a 128-bit
hashcode this would require 286 operations, which is probably not realistic for the next
20 years (in fact the storage capacity will be a factor 64 larger by then, which yields
280 operations). It is clear that a hashcode of 160 bits offers a sufficient security level
for 20 years or more.

2.5.2 Attacks dependent on the chaining

This class of attacks depends on some high level properties of the elementary function
f .

2.5.2.1 Meet in the middle attack

This attack is a variation on the birthday attack, but instead of the hashcode, interme-
diate chaining variables are compared. The attack enables an opponent to construct a
message with a prespecified hashcode, which is not possible in case of a simple birthday

46 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

attack. Hence it also applies to a OWHF. The opponent generates r1 variations on
the first part of a bogus message and r2 variations on the last part. Starting from the
initial value and going backwards from the hashcode, the probability for a matching
intermediate variable is given by the same formula. The only restriction that applies
to the meeting point is that it can not be the first or last value of the chaining variable.
The probability to find a match as a function of r1 and r2 is described in appendix B.
The cycle finding algorithm by J.-J. Quisquater can be extended to perform a meet
in the middle attack with negligible storage [270, 273]. The attack can be thwarted
by avoiding functions f that are invertible to the chaining variable Hi−1 and to the
message Xi (cf. section 2.4.2 and 2.4.3).

2.5.2.2 Constrained meet in the middle attack

This type of attack is based on the same principles as the meet in the middle attack,
but it takes into account certain constraints that have to be imposed on the solution.
Examples of restrictions are that the sum modulo 2 of all blocks should be constant,
or that a block of the CBC encryption of the solution with a given initial value and
key should take a prespecified value.

2.5.2.3 Generalized meet in the middle attack

This attack was extended [56, 123] to break the p-fold iterated schemes. In these
schemes the message is repeated p times or p hash values are computed corresponding
to p initial values. With the extended attack, breaking these schemes does not require
O(2

pn
2) but only O(10p · 2

n
2) operations. The size of the message in this construction

is 2 · 10p−1 blocks. Modest trade-offs between time, storage, size of the message and
processing are possible.

2.5.2.4 Correcting block attack

This attack consists of substituting all blocks of the message except for some block
Xj . This block is then calculated such that the hashcode takes a certain value, which
makes it also suitable to attack a OWHF. It often applies to the last block and is then
called a correcting last block attack, but it can also apply to the first block or to some
blocks in the middle. The hash functions based on modular arithmetic are especially
sensitive to this attack.

A correcting block attack can also be used to produce a collision. One starts with
two arbitrary messages X and X ′ and appends one or more correcting blocks denoted
with Y and Y ′, such that the extended messages X‖Y and X ′‖Y ′ have the same
hashcode.

One can try to thwart a correcting block attack by adding redundancy to the
message blocks, in such a way that it becomes computationally infeasible to find a
correcting block with the necessary redundancy. The price paid for this solution is a
degradation of the performance.

2.5. METHODS OF ATTACK ON HASH FUNCTIONS 47

2.5.2.5 Fixed point attack

The idea of this attack is to look for a Hi−1 and Xi such that f(Xi,Hi−1) = Hi−1. If
the chaining variable is equal to Hi−1, it is possible to insert an arbitrary number of
blocks equal to Xi without modifying the hashcode. Producing collisions or a second
preimage with this attack is only possible if the chaining variable can be made equal
to Hi−1: this is the case if IV can be chosen equal to a specific value, or if a large
number of fixed points can be constructed (if e.g., one can find an Xi for every Hi−1).
Of course this attack can be extended to fixed points that occur after a number of
steps. This attack can be prevented easily: one can append a block count to the data
or one can (for theoretical constructions) encode the data with a prefix-free code [66].

2.5.2.6 Key collisions

This type of attack can only be applied to hash functions based on block ciphers. If
the chaining mode is poorly designed, attacks can be launched based on key collisions.
A key collision is a pair of keys K1, K2 such that E(K1, P) = E(K2, P) for a plaintext
P . The number of collisions for a given plaintext can be obtained from theorem B.2.
In the case of DES [8, 108], with a block length of 64 bits and a key size of 56 bits, the
number of k-fold collisions for a given P is indicated in table 2.2. Key collisions can

k 2 3 4 5 6 7
47.0 37.4 27.4 17.1 6.5 -4.3

Table 2.2: Binary logarithm of the expected number of k-fold key collisions for a given
plaintext in the case of DES.

be constructed with an ordinary birthday attack, but J.-J. Quisquater has shown how
the efficient cycle algorithms combined with the method of the distinguished points
can produce a collision in about 233 operations [267, 270] and with negligible storage.
An important observation is that doubling the number of operations yields a squaring
of the number of different collisions.

The attack can be extended to the case of double encryption [270]. In this case a
key collision consists of two pairs of keys (K1,K2) and (K ′

1,K
′
2) (with Ki 6= K ′

i) such
that

E(K2, E(K1, P)) = E(K ′
2, E(K ′

1, P)) .

It is also possible to produce a single key pair such that E(K2, E(K1, P)) = C for a
given plaintext P and ciphertext C.

The collision search is feasible for any block cipher that behaves as a random
mapping if the key size is significantly smaller than 128, but a good design of the hash
function can make the collisions useless. There is however no easy way to guarantee
this, and every scheme has to be verified for this attack (cf. chapter 5).

48 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

2.5.2.7 Differential attacks

Differential cryptanalysis is based on the study of the relation between input and
output differences and is applicable to both block ciphers and hash functions [20, 21,
22, 23, 24, 25, 182]. The attack is statistical as one searches for input differences that
are likely to cause a certain output difference. If one is looking for collisions this output
difference should be equal to zero. In case of hash functions based on block ciphers,
the situation is slightly different: depending on the mode one requires that the output
difference is zero or that the output difference is equal to the input difference (in case of
feedforward of the plaintext). It applies only to iterated ciphers that satisfy particular
conditions, the so-called Markov ciphers. It turns out that most known iterated ciphers
(DES [8, 108], FEAL [225, 228], LOKI [33, 34], PES or IDEA [181, 182, 184], etc.)
are of this nature. For well designed block ciphers this attack will find the key based
on a large number of plaintexts with a chosen difference, or an even larger number of
known plaintexts. One can remark that this class of attacks is in fact more natural in
case of an MDC, where there is no secret information. A chosen message attack is the
standard way of attacking an MDC, and in this case all calculations can be performed
off-line and in parallel.

2.5.2.8 Analytical weaknesses

Some schemes allow manipulations like insertion, deletion, permutation and substi-
tutions of blocks. A large number of attacks have been based on a blocking of the
diffusion of the data input: this means that changes have no effect or can be cancelled
out easily in a next stage. This type of attacks has been successful for dedicated hash
functions [12, 22, 61, 62, 321] and for hash functions based on modular arithmetic
[252].

2.5.3 Attacks dependent on an interaction with the signature scheme

In some cases it is possible that even if the hash function is a CRHF, it is possible
to break the signature scheme. This attack is then the consequence of a dangerous
interaction between both schemes. In the known examples of such an interaction
both the hash function and the signature scheme have some multiplicative structure.
Examples are the attack by D. Coppersmith on a hash function based on modular
arithmetic [58] and the attack by B. den Boer that is discussed in [65]. It was shown in
[64] that the security of a digital signature scheme which is not existentially forgeable
under a chosen message attack will not decrease if it is combined with a CRHF.

2.5.4 Attacks dependent on the underlying block cipher

Certain weaknesses of a block cipher are not significant when it is used to protect the
privacy, but can have dramatic consequences if the cipher is used in one of the special
modes for hashing. These weaknesses can be exploited to insert special messages or to
carry out well chosen manipulations without changing the hashcode. The discussion

2.5. METHODS OF ATTACK ON HASH FUNCTIONS 49

will be limited to the weaknesses of DES [8, 108], LOKI [33] and its improved variant
LOKI91 [34], and PES [181] and its improved variant IDEA [182, 184].

2.5.4.1 Complementation property

One of the first properties that was known of DES was the symmetry under comple-
mentation [146]:

∀ P,K : C = DES(K,P)⇐⇒ C = DES(K,P)

It can reduce an exhaustive key search by a factor 2 but it also allows to construct
trivial collisions.

A more extended set of related properties of LOKI was described independently in
[22, 180] and by B. den Boer [82]. They can be exploited to attack several hash modes,
and also to speed up an exhaustive key search with a factor 256. In the new version
of LOKI [34] it can be shown that only the complementation property holds.

2.5.4.2 Weak keys

Another well known property of DES is the existence of 4 weak keys [74, 231]. For
these keys, encryption equals decryption, or DES is an involution. These keys are also
called palindromic keys. This means that E(K,E(K,P)) = P , ∀ P . There exist also
6 pairs of semi-weak keys, for which E(K2, E(K1, P)) = P , ∀ P . This property can be
exploited in certain hash functions to construct fixed points after two iterations steps.
Compared to DES, LOKI had more weak keys, but LOKI91 has the same number of
weak and semi-weak keys [34].

It was remarked by B. den Boer that a similar property holds for PES and IDEA:
for the all zero key the cipher is an involution.

2.5.4.3 Fixed points

Fixed points of a block cipher are plaintexts that are mapped to themselves for a
certain key. As a secure block cipher is a random permutation, it will probably have
fixed points (for every key there is a probability of 1−e−1 that there is at least a single
fixed point). However, it should be hard to find these. Under some conditions it is
easy to produce fixed points:

• For DES, this can be done based on a property of the weak keys [231]: for every
weak key Kp, there exist 232 values of P that can be easily found for which
DES(Kp, P) = P . A similar property holds for the anti-palindromic keys: these
are 4 semi-weak keys for which there exist 232 values of P that can be easily
found for which DES(Kap, P) = P .

• The block cipher LOKI has 256 simple fixed points where the key is of the
special form gggggggghhhhhhhhx, and the plaintext is equal to iiiiiiiiiiiiiiiix,
with i = g ⊕ h [22]. Here g, h and i are 4-bit numbers in hexadecimal notation.
For every weak key there exist 232 fixed points.

50 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

2.5.5 High level attacks

Even if the above attacks would not be feasible, special care has to be taken to avoid
replay of messages and construction of valid messages by combining others.

For authentication of transmitted messages, attacks at this level can be thwarted
by adding a nonce, this is a quantity that is never transmitted twice in a given context,
and through the use of sound cryptographic protocols. It is essential to authenticate
the integrity of the nonces together with the message.

Timestamps: the date and time of the moment at which the message is sent. If the
resolution of the time is sufficiently high, it will provide a unique identifier of
the message. For a resolution of one second, 5 to 6 bytes are sufficient. The two
main problems are the cost of maintaining reasonably well synchronized clocks at
both ends of the communication line and of delays in communication channels.

Serial numbers: a unique number is assigned to every message. A size of 4 bytes
should be sufficient for most applications, depending on the lifetime of the key.
If every user keeps a different sequence number for every user he communicates
with, the serial numbers should be consecutive, and the deletion of a message
can be detected. If every user has only one sequence number for all his commu-
nications, one has to check that the serial numbers form an increasing sequence.
This is only possible if every user stores the highest sequence number of every
communication. This system does not allow for checking for deleted messages.
A serial number is less expensive than a time stamp, but the timeliness of the
information can not be checked. This should be no problem for applications like
electronic mail.

Random numbers: a sufficiently long random number is added to the message. To
thwart a birthday attack on the number, it has to be larger than the square of the
maximal number of messages that will be sent with a key. For most applications
this means a size of about 8 bytes. A random number is not very useful if all
previous random numbers have to be stored to detect a replay. However, if the
random number is used in the next step of the protocol, it can offer an adequate
protection.

In the case of stored information, a ‘replay’ attack becomes a ‘restore’ attack [74].
The serial numbers have to be replaced by version numbers, and a separate file is
necessary that contains a single date and time stamp and for every file the current
version number. If rearrangements of units that are protected by a different MAC is a
problem, the address in the memory space can be protected together with the stored
information.

2.6 Conclusion

In this chapter several types of cryptographic hash functions have been defined, with
the emphasis on the system based or practical approach. It has been shown how

2.6. CONCLUSION 51

cryptographic hash functions provide an efficient way to protect integrity and to speed
up digital signatures. A general model has been introduced that allows for a compact
description of iterated hash functions and attacks.

52 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

Chapter 3

The Information Theoretic
Approach

Faith is an island in the setting sun. But proof
is the bottom line for everyone. Paul Simon

3.1 Introduction

The information theoretic approach results in a characterization of unconditionally
secure solutions, which implies that the security of the system is independent of the
computing power of the opponent.

This chapter starts with a brief summary of the basic theory of unconditionally
secure authentication schemes and discusses some optimal schemes. Subsequently some
schemes that are close to optimal are treated, with the emphasis on universal hash
functions, as this concept will also be used in the next chapter. Finally it will be
discussed whether these schemes are practical and how other, more practical schemes
can be derived from them. The main contribution of this chapter is the comparison of
the efficiency of the different schemes.

3.2 Basic theory

The first result on unconditionally secure authentication appeared in 1974 in a paper
by E. Gilbert, F. MacWilliams, and N. Sloane [118]. Subsequently the theory has been
developed by G. Simmons, analogous to the theory of secrecy systems that was invented
by C. Shannon [303]. An overview of this theory can be found in [309, 310]. From
the brief but clear summary by J. Massey in [202] we can cite the following statement
“The theory of authenticity is in many ways more subtle than the corresponding theory
of secrecy. In particular, it is not at all obvious how “perfect authenticity” should be

53

54 CHAPTER 3. THE INFORMATION THEORETIC APPROACH

defined. This is caused by the fact that there are different bounds that can be met with
equality. This section will give the basic definitions and will introduce a taxonomy.
The most important theoretical bounds will be discussed (without proof).

3.2.1 Definitions and notations

According to the definitions that are used in the literature on this subject, the infor-
mation to be communicated is called the source state, while the information that will
be sent to the receiver is called the message. A mapping between the space of source
states and the message space is called an encoding rule. The set of source states,
messages and encoding rules is called an authentication code. In the following we will
keep the more usual terminology of plaintext, ciphertext and key. The set of plaintext,
ciphertexts, and keys will be denoted with {P}, {C}, and {K} respectively. The size
of plaintext, ciphertext, and key space will be denoted with p, c, and k respectively.

In the theory of authenticity, a game with three players is considered like in the
theory of secrecy systems. First one has the sender Alice, who wants to send informa-
tion to the receiver Bob under the form of a cryptogram. The opponent of Alice and
Bob is the active eavesdropper Eve, who can perform three types of attacks:

• Eve can send a fraudulent cryptogram to Bob as if it came from Alice (imper-
sonation attack).

• Eve can wait until she observes a cryptogram and replace it by a different cryp-
togram (substitution attack).

• Eve can choose freely between both strategies (deception attack).

The probability of success (when the strategy of Eve is optimal) will be denoted with
Pi, Ps, and Pd respectively. A first result which follows from Kerckhoff’s assumption
(namely that the strategy to choose the key is known by Eve) is that

Pd = max(Pi, Ps) .

This model can be extended in several ways [310]:

• If one also assumes that Alice and Bob are mutually distrustful, one needs a
fourth person to resolve their disputes: the arbiter. This can be more than one
person, who may have access to secret information. In this case the situation is
much more complex, and one should also consider attacks by Alice, Bob, and by
one or more arbiters. The difference with digital signatures is that a signature
can in principle be verified and disputes can be resolved by any other person.

• Eve can wait until she observes l cryptograms, and subsequently perform a substi-
tution or impersonation. It is obvious that here one should take care of the special
case of simply replaying an old cryptogram or reordering the cryptograms (this
can be solved by inserting a sequence number into the plaintext). The schemes
that are resistant to this type of attack are called l-fold secure. If this extension
is not considered, the authentication schemes are, just like the Vernam scheme,

3.2. BASIC THEORY 55

one-time schemes: the secret key can be used only once. Only a few results will
be described in this more general setting.
• The mapping from plaintext to ciphertext can be probabilistic. In this case one

speaks of an authentication code with splitting .

In [88, 90] the model is extended to take into account the economical value of the
plaintexts.

A basic distinction that can be made in this theory is between authentication codes
with and without secrecy. In the latter case the plaintext can be derived easily from
the ciphertext. The corresponding codes are called Cartesian. In this case one can
write the ciphertext as the concatenation of the plaintext P with an authenticator,
Message Authentication Code or MAC. The number of authenticators is denoted with
r.

3.2.2 Bounds on authentication codes

The simplest bound that can be given is for an impersonation attack: if the enemy
selects C completely at random from the c cryptograms that occur with nonzero prob-
ability in the authentication code, this probability of success can be lower bounded by
the following expression:

Theorem 3.1 (Combinatorial Bound for Impersonation)

Pi ≥
p

c
. (3.1)

One can show that this bound can not be met with equality if splitting occurs. For
Cartesian codes this bound reduces to Pi > 1/r.

If no splitting occurs, a similar bound can be given for substitution.

Theorem 3.2 (Combinatorial Bound for Substitution)

Ps ≥
p− 1
c− 1

. (3.2)

The next bound is based on the concept of mutual information. Therefore some
definitions have to be introduced:

Definition 3.1 Let {p(x)}x∈X be a probability distribution on a finite set X. The
entropy H(X) is defined as

H(X) = −
∑
x∈X

p(x) log p(x) .

Definition 3.2 Let X and Y be two sets and let {p(x, y)}x∈X,y∈Y be a joint probability
distribution on their Cartesian product. The conditional entropy H(X | Y) (or
equivocation) of X given Y is defined as

H(X | Y) = −
∑

x∈X,y∈Y
p(x, y) log p(x | y) .

56 CHAPTER 3. THE INFORMATION THEORETIC APPROACH

Definition 3.3 Let X and Y be two sets. The mutual information I(X;Y) is
defined as

I(X;Y) = H(X) +H(Y)−H(XY) .

This can also be written as I(X;Y) = H(X)−H(X | Y) = H(Y)−H(Y | X).
The following information theoretic bound can now be given on the probability of

impersonation.

Theorem 3.3 (Authentication Channel Capacity)

Pi ≥ 2−I(C;K) . (3.3)

For the shortest proof known until now and a discussion of the recent improvements
on this bound by R. Johannesson and A. Sgarro the reader is referred to [202]. A
formulation in words is that the difference between the amount of information trans-
mitted through the channel and that needed by the receiver to resolve his uncertainty
about the plaintext can be used to authenticate the plaintext, and conversely no better
result can be achieved [310]. One can now show the following corollary, which was first
proven by E. Gilbert, F. MacWilliams, and N. Sloane [118].

Corollary 3.1

Pd ≥
1√
k
. (3.4)

For l-fold secure schemes where an opponent can first observe l ciphertexts, this
can be extended to [103]

Theorem 3.4
Pd ≥

1
l+1
√
k
. (3.5)

The next step is to define perfect authenticity to mean that equality holds in (3.3).
However, even if a system is perfect, Pd will only be small if the cryptogram C reveals
much information about the key K. Two simple examples of perfect authentication
codes are given in table 3.1 [202].

K P = 0 P = 1
00 00 10
01 01 11
10 00 11
11 01 10

K P = 0 P = 1
00 00 10
01 01 00
10 11 01
11 10 11

Table 3.1: A perfect Cartesian authentication code and a perfect authentication code
that also provides perfect secrecy.

One can conclude that perfect authenticity schemes are less efficient in terms of
key bits than schemes that provide perfect secrecy [201]: if a p′-bit plaintext is mapped

3.3. PRACTICAL CARTESIAN AUTHENTICATION CODES 57

to a c′-bit ciphertext, the number of key bits per plaintext bit for perfect authenticity
with Pi and Ps equal to the combinatorial bound is at least (c′− p′)/p′, which is much
larger than 1 if p′ is small. Note that Pi = 1/2c

′−p′ , so c′ − p′ can not be small.

3.2.3 Characterization of perfect Cartesian authentication codes

A large number of authentication codes have been proposed in the literature that
meet these bounds (or a subset of them). We will not attempt to overview all these
constructions, but we will concentrate on characterizations. A characterization of an
authentication code with certain properties shows that these codes can be obtained
essentially in one way, which means that all other constructions are equivalent. For
the time being no general characterization of perfect authentication codes is known.
For Cartesian codes some characterizations exist in terms of combinatorial structures.

For Cartesian authentication codes that meet the bound (3.4) with equality, a
characterization was given by M. De Soete, K. Vedder, and M. Walker [93] based on
nets. This result was in fact a generalization of the work by E. Gilbert, F. MacWilliams,
and N. Sloane [118].

For Cartesian authentication codes that meet the combinatorial bound for imper-
sonation and substitution with equality, a characterization was given by D. Stinson
[313] based on orthogonal arrays. It should be noted that only for a subset of these
codes the bound (3.4) is met with equality. For general codes that meet the two
combinatorial bounds, D. Stinson has derived characterizations based on balanced in-
complete block designs.

3.3 Practical Cartesian authentication codes

In the following more practical authentication schemes will be discussed that are still
unconditionally secure. To be more in line with the other chapters, the notation will be
changed: an m-bit message will be authenticated with a n-bit MAC. The problem with
the perfect constructions is that a key of at least 2m bits is required. The basic idea
to make these schemes more efficient is to allow that Ps increases with an acceptable
factor under the assumption that this will reduce the size of the key.

In [91] a different approach was also explored: it was shown how the description
and calculations for the scheme can be made extremely simple at the cost of increasing
the key size to (n+ 1)m bits.

It will be discussed how the perfectly secure schemes behave in a practical context,
and several schemes based on universal hash functions will be compared. The theory
of universal hash functions will be discussed in more detail, as this concept will turn
out to be useful in chapter 4 on the complexity theoretic approach.

3.3.1 The perfect schemes

The property of the perfect schemes with minimal key size based on nets [93] is that
Ps = Pi = 2−n, and the key size is 2n bits. One can show that in this case 2m ≤ 2n+1

58 CHAPTER 3. THE INFORMATION THEORETIC APPROACH

or m < n, and hence the key size is larger than 2m. In a practical problem, one designs
a system with given Pd and size of the plaintext. One can distinguish between three
situations:

• For very small messages (m� n), these schemes are very inefficient because the
key size is much larger than twice the message size.
• For medium sized messages (m ≈ n) the key size will be equal to 2m, and hence

the schemes make optimal use of the key.
• For large messages (m � n), it follows that the key size will be equal to about

2m, but Pd will be much smaller than required. This can be avoided by splitting
the message in n bit blocks and authenticating these separately: the efficiency
in terms of key bits will remain the same, but the calculations will be on smaller
blocks, and hence the scheme will be more efficient [91].

3.3.2 Universal hash functions

Universal hash functions have been proposed by J. Carter and M. Wegman [42, 43] and
were studied further by D. Sarwate, [293], M. Wegman and J. Carter [325] and D. Stin-
son [312, 314]. J. Carter and M. Wegman proposed to use universal hash functions
for unconditionally secure authentication schemes and for probabilistic algorithms for
testing set equality. Ten years later universal hash functions were shown to be a useful
building block for provably secure hash functions, as will be shown in chapter 4.

3.3.2.1 Definitions

A universal hash function is a mapping from a finite set A with size a to a finite set B
with size b. For a given hash function g and for a pair (x, x′) with x 6= x′ the following
function is defined:

δg(x, x′) = 1 if g(x) = g(x′)
0 otherwise.

For a finite set of hash functions G (in the following this will be denoted with a class of
hash functions), δG(x, x′) is defined as

∑
g∈G δg(x, x

′), or δG(x, x′) counts the number
of functions in G for which x and x′ collide. When a random choice of g is made,
then for any two distinct inputs x and x′, the probability that these two inputs yield
a collision equals δG(x, x′)/ |G |. In the case of a universal hash function, the goal is
to minimize this probability together with the size of G.

A lower bound on δG(x, x′)/ |G | has been proven in [293] (improving slightly a
bound in [325]):

Theorem 3.5 For any class of hash functions from A to B, there exist distinct ele-
ments x and x′ such that

δG(x, x′) ≥ a− b
b(a− 1)

· |G | .

3.3. PRACTICAL CARTESIAN AUTHENTICATION CODES 59

Moreover, equality will hold only if a is a multiple of b. For a � b the right hand of
the equation can be approximated by 1/b.

Definition 3.4 Let ε be any positive real number. An ε-almost universal2 class (or
ε−AU2 class) G of hash functions from a set A to a set B is a class of functions from
A to B such that for any distinct elements x, x′ ∈ A

|
{
g ∈ G : g(x) = g(x′)

}
|= δG(x, x′) ≤ ε · |G | .

This definition states that for any two distinct inputs the probability for a collision
is at most ε. Because of theorem 3.5 the lowest possible value for ε is a−b

b(a−1) . This
class of functions is called optimally universal [293]. In [42] the case ε = 1/b is called
universal.

Definition 3.5 Let ε be any positive real number. An ε-almost strongly universal2
class (or ε − ASU2 class) G of hash functions from a set A to a set B is a class of
functions from A to B such that

• for every x ∈ A and for every y ∈ B,

| {g ∈ G : g(x) = y} |= |G |
b
,

• for every x1, x2 ∈ A (x1 6= x2) and for every y1, y2 ∈ B (y1 6= y2),

| {g ∈ G : g(x1) = y1, g(x2) = y2} |≤ ε ·
|G |
b
.

The first condition states that the probability that a given input x is mapped to a
given output y equals 1/b. The second condition implies that if x1 is mapped to y1,
then the conditional probability that x2 (different from x1) is mapped to y2 is upper
bounded by ε. The lowest possible value for ε equals 1/b and this class has been called
strongly universal2 functions in [325].

If more than two inputs at the same time are considered, the following generaliza-
tions can be made.

Definition 3.6 Let ε be any positive real number, and let r be an integer with r > 2.
An ε-almost strongly universalr class (or ε−ASUr class) G of hash functions from
a set A to a set B is a ε − ASU2 class of hash functions from A to B such that for
any distinct elements x1, x2, . . . xr ∈ A and for any (not necessarily distinct) elements
y1, y2, . . . yr ∈ B if

| {g ∈ G : g(x1) = y1 ∧ g(x2) = y2 ∧ . . . ∧ g(xr) = yr} |≤ ε · |G | .

Note that this is equivalent to saying that the random variables {g(x) | x ∈ A} are
uniform and r-wise independent. The case ε = 1/br has been called strongly universalr
in [325]. More work has to be done to characterize universalr hash functions. To
simplify the notation, the index 2 will be omitted from universal2 from hereon.

60 CHAPTER 3. THE INFORMATION THEORETIC APPROACH

3.3.2.2 Constructions

Universal and strongly universal hash functions can be constructed both with simple
direct methods and with recursive methods, i.e., by composition of other hash func-
tions. The examples of direct constructions that have been given for any prime power
q [312, 314] are summarized in table 3.2. Other constructions can be found in [42, 43].

type a b |G | ε expression
ε−AU2 q2 q q 1/q b− ax
ε−ASU2 q2 q q3 1/q x+ ay + bz
ε−ASU2 q q q2 1/q x+ ay

Table 3.2: Summary of direct constructions of universal hash functions. Here q is a
prime power; a, b are elements of GF (q); x, y, and z are independent variables.

It will be shown that for authentication codes it is required that |G | is small. For
the ε − ASU2 constructions in table 3.2, the number of functions is larger than the
product of a and b, which is a corollary from theorem 3.10. M. Wegman and J. Carter
showed how to obtain an ε′-ASU2 [325] from a 2/b-ASU2 with ε′ = (2/b) · log2 log2 a

1.
The idea is to use a universal hash function that maps 2s-bit strings to s-bit strings
(with s = log2 b+log2 log2 log2 a) in a tree structure. The number of functions is equal
to

|G |= 4s log2 log2 a .

The following theorems of D. Stinson [314] show how (strongly) universal hash
functions can be used in recursive constructions. These theorems generalize similar
constructions that were given before. These theorems can be further generalized to
universalr hash functions.

Theorem 3.6 (Cartesian Product) If there exists an ε−AU2 class G of hash func-
tions from A to B, then, for any integer i ≥ 1, there exists an ε−AU2 class Gi of hash
functions from Ai to Bi with |G |=|Gi |.

Theorem 3.7 (Composition 1) If there exists an ε1 − AU2 class G1 of hash func-
tions from A to B and an ε2 − AU2 class G2 of hash functions from B to C, then
there exists an ε−AU2 class G of hash functions from A to C, where ε = ε1 + ε2 and
|G |=|G1 | · |G2 |.

Theorem 3.8 (Composition 2) If there exists an ε1 − AU2 class G1 of hash func-
tions from A to B and an ε2 − ASU2 class G2 of hash functions from B to C, then
there exists an ε−ASU2 class G of hash functions from A to C, where ε = ε1 + ε2 and
|G |=|G1 | · |G2 |.

1In fact they claim that ε′ = (2/b), but this has been corrected by D. Stinson.

3.3. PRACTICAL CARTESIAN AUTHENTICATION CODES 61

Based on these recursive constructions, the schemes described in table 3.3 can be
obtained [314].

type a b |G | ε

ε−AU2 q2
i

q qi i/q

ε−ASU2 q2
i

q qi+2 (i+ 1)/q
ε−ASU2 q2

i
q q2i+3 i/q2 + 1/q

Table 3.3: Summary of recursive constructions of universal hash functions. Here q is
a prime power, and i is an integer ≥ 1.

A simple example of a universalr family is obtained by chopping the first n bits of
a polynomial of degree r − 1 over the finite field GF (2m) [325]:

Ga0,a1,...,ar−1 ={
ga0,a1,...,ar−1(x) = chopn

(
a0 + a1x+ · · ·+ ar−1x

r−1
)
| a0, a1, . . . , ar−1 ∈ GF (2m)

}
.

Here chopn() returns the first n bits of its m-bit argument. Note that exactly 2n−m

elements in the domain have the same value in the range.

3.3.2.3 Authentication codes based on universal hash functions

The following theorem indicates how ε-ASU2 classes of hash functions can be used to
construct an authentication code [314].

Theorem 3.9 If there exists an ε-ASU2 class G of hash functions from A to B, then
there exists a Cartesian authentication code with a plaintexts, b authenticators and
k =|G | keys, such that Pi = 1/b and Ps ≤ ε.

A lower bound on the number of keys can be obtained with the following theorem
[314].

Theorem 3.10 If there exists an ε-ASU2 class G of hash functions from A to B, then

|G |≥ 1 +
a(b− 1)2

ε b(a− 1) + b− a
.

Schemes that achieve this bound will be called optimal ε-ASU2 schemes. No con-
structions are known that achieve this lower bound, except when ε = 1/b, but this
corresponds to the well known case where Ps = Pi.

In the following it will be assumed that a = 2m and b = 2n. The scheme proposed
by M. Wegman and J. Carter results in an authentication code with Ps = 2 log2m/2n

and with a key of 4(m+log2 log2 n) log2 n bits. The recursive construction by D. Stinson
(the second scheme in table 3.3) yields an authentication code with Ps = (log2m −
log2 n+ 1)/2n and with a key of (log2m− log2 n+ 2)n bits.

62 CHAPTER 3. THE INFORMATION THEORETIC APPROACH

In order to obtain schemes that are l-fold secure, one can construct an authenti-
cation code based on an ε-ASUl+1 [325]. This construction will be very inefficient in
terms of use of key material: the key size will grow as the l + 1th power of 1/Pd. A
more efficient and more general solution will be described in the following section.

In [49] a very simple scheme is suggested to produce an ε-ASU2 with ε = 3(m+n)/2n

under the condition that m ≥ n ≥ 64. The key consists of two elements: an n-bit prime
p that is larger than 2n−1 and an n-bit integer ν. This means that the key size is equal
to 2n− log2(2n ln 2). The function is defined as

g(x) = [(x · 2n) mod p+ ν] mod 2n .

Based on theorem 3.9 one can show that this generates an authentication code with
Pi = 2−n and Ps = 3(m+ n)/2n.

An even better and more elegant scheme was proposed recently by B. den Boer
[84]. It produces an ε-ASU2 with ε = (m/n)/2n. The key consists of 2 elements of
GF (2n) denoted with µ and ν. The argument x is split in elements of GF (2n) denoted
with x1, x2, . . . , xt, hence m = t · n. The function is then defined as follows:

g(x) = µ+
t∑
i=1

xi · νi ,

where the addition and the multiplication are in GF (2n). It is easy to prove that this
function is an ε-ASU2. Given x, g(x), and ν, there is exactly one corresponding value
of µ. Moreover, if one knows a pair g(x), g(x′) with x 6= x′, one can solve for µ and ν
as follows. Subtract the two equations in order to eliminate µ. This yields an equation
in ν of degree t, that has at most t solutions, which results in the claimed value for ε.
From theorem 3.9 it follows that one has an authentication code with Pi = 2−n and
Ps = (m/n)/2n. It is clear that this scheme can be generalized to any finite field, but
the arithmetic will be more complicated. B. den Boer has indicated other fields for
which efficient implementations exist [84]. Observe that if m = n this construction
reduces to the construction by E. Gilbert, F. MacWilliams, and N. Sloane [118].

3.3.3 A comparative overview

Table 3.4 gives an overview of the probability for impersonation and substitution, and
the key size for the authentication codes that have been discussed. It is assumed that
an m-bit message is mapped to an n-bit hashcode. For all schemes the probability of
impersonation Pi = 1/2n.

A concrete example for an authenticator with n = 64 bits is worked out in table 3.5.
It can be seen that the scheme by D. Chaum et al. is most efficient in terms of key bits,
at the cost of a significant increase in Ps. For large values of m, this factor is equal to
3m. If this factor is substituted for t in the equation for the optimal ε-ASU2 schemes,
one finds that the scheme by D. Chaum et al. has a key that is about log2(3m) bits
larger than for the optimal construction. The scheme by B. den Boer yields a smaller

3.3. PRACTICAL CARTESIAN AUTHENTICATION CODES 63

Ps key size k (bits)
perfect 1/2n 2m
opt. ε-ASU2 t/2n log2(1 + (2m(2n − 1)2)/(t(2m − 1) + 2n − 2m))
Wegman-Carter (2 log2m)/2n (n+ log2 log2m)4 log2m

Stinson (log2m− log2 n+ 1)/2n (log2m− log2 n+ 2)n
Chaum et al. 3(m+ n)/2n 2n− log2(2n ln 2)
den Boer (m/n)/2n 2n

Table 3.4: Probability of substitution Ps and key size k of the perfect scheme, the op-
timal scheme with minimal key size based on ε-ASU2, and the schemes by M. Wegman
and J. Carter, D. Stinson, D. Chaum et al., and B. den Boer.

scheme m = 64 m = 220

Ps key size k (bits) Ps key size k (bits)
perfect 1/264 128 1/264 221

opt. ε-ASU2 t/264 128− log2 t t/264 128− log2(t− 1)
Wegman-Carter 12/264 1, 598 1/258.7 5, 466
Stinson 1/264 128 1/260.1 1, 024
Chaum et al. 1/255.4 122 1/242.4 122
den Boer 1/264 128 1/250 128

Table 3.5: Ps and key size k for the perfect schemes, the optimal scheme with minimal
key size based on ε-ASU2, and the schemes by M. Wegman and J. Carter, D. Stinson,
D. Chaum et al., and B. den Boer. The size of the authenticator n is equal to 64 bits.

64 CHAPTER 3. THE INFORMATION THEORETIC APPROACH

increase of Ps, while the key is only about log2(m/n) bits larger than for the optimal
construction.

In fact one could also think of a more realistic scenario where not n and m are
given, but where the size of the message m and Pd are imposed. In this case one has
to determine n and k. For large m (m � n) one obtains the following approximate
formulas for the scheme by D. Stinson:

k = (− log2 Pd + log2 log2m) · (log2m+ 2− log2 (− log2 Pd + log2 log2m))
≈ (− log2 Pd + log2 log2m) · (log2m+ 2)

n = − log2 Pd + log2 log2m.

Under these conditions the scheme by D. Chaum et al. yields:

k = −2 log2 Pd + 2 log2m+ 2 log2 3
n = − log2 Pd + log2m+ log2 3 .

For the scheme by B. den Boer one finds approximately:

k = −2 log2 Pd + 2 log2m− 2 log2(− log2 Pd + log2m)
n = − log2 Pd + log2m− log2(− log2 Pd + log2m) .

From these equations one can conclude that the authenticator of the scheme by
B. den Boer will be at most log2m bits larger than for the scheme by D. Stinson,
which approximates the perfect schemes very closely. On the other hand the key size
for the scheme by D. Stinson is about (− log2 Pd) · log2m, while the key size for the
scheme by B. den Boer is approximately equal to −2 log2 Pd + 2 log2m. The scheme
by D. Chaum et al. performs slightly worse than the scheme by B. den Boer.

From an implementation point of view, one can note that the constructions by
M. Wegman and J. Carter, by D. Stinson, by D. Chaum et al., and by B. den Boer
require only very simple operations (multiplication and addition in a finite field GF (qn)
or GF (q) with q about n bits in size, followed by chopping of bits, or a modular
reduction modulo an n-bit prime). Note however that this will be about five to ten
times faster than a conventional MAC based on the CBC mode of the DES algorithm,
that will be discussed in chapter 5. The basic practical problem however is that a new
secret key has to be exchanged for every message. This is mainly a problem if there
are many small messages. In that case one could however use the following approach:
protect the individual messages with a practical and fast MAC, and apply from time to
time a provably secure scheme to all collected messages. Other solutions are to derive
the key from the from the previous key, or to design the scheme such that every key
can be used l times.

In the first case the key can be generated from a small seed with a computationally
or practically secure scheme, which implies that the scheme is no longer unconditionally
secure. For a computationally secure scheme one will use a secure pseudo-random
string generator. For a practically secure scheme one can choose between a stream

3.4. CONCLUSION 65

cipher and a mode (e.g. OFB mode) of a block cipher. In both cases the exchange
and storage of the key material will decrease, but the computational overhead will
increase. This will probably make the schemes of B. den Boer and of D. Chaum et
al. more efficient. On the other hand these schemes are more expensive in terms of
storage for the authenticator (at least if the messages are larger than 100 Kbytes),
which might be a small disadvantage for some applications. A second disadvantage,
which only applies for the scheme by D. Chaum et al., is that the generation of a new
key, that comprises primality tests, is more than three orders of magnitude slower than
performing the key scheduling for the DES algorithm.

In the second case an l-fold secure scheme is designed. This means that a particular
key can be used to authenticate l messages. This is possible if the authenticator is
encrypted with a good cipher. Again a distinction between three cases can be made:

1. M. Wegman and J. Carter suggest in [325] to use the Vernam scheme, which
implies that the scheme will be still unconditionally secure. The number of
additional key bits to authenticate l messages will be equal to ln.

2. A second proposal by G. Brassard [29], is to use a secure pseudo-random string
generator (cf. chapter 4), which implies that the security is now based on com-
plexity theoretic assumptions.

3. A practical and efficient scheme can be obtained by simply encrypting the hash-
code with a ‘good’ block cipher or stream cipher.

In all three cases the messages should contain a sequence number to avoid replay and
reorder attacks. In the scheme by D. Chaum et al. one can also modify part of the key,
but this implies that after l + 1 messages the probability of substitution will increase
to

P (l+1)
s =

1
1
Ps
− l

,

from which it follows that l should not be too large. This can be avoided by modifying
the complete key after every message. Similarly, one could modify the scheme by
B. den Boer such that only µ is replaced.

3.4 Conclusion

In this chapter an overview has been given of schemes that can protect the authen-
ticity of information unconditionally. The theory of these schemes is rather subtle,
and therefore it is developing more slowly than the theory of unconditionally secure
secrecy. A characterization in terms of combinatorial constructions can only be given
for a small subclass of schemes. The schemes that come closest to practical schemes
are unconditionally secure Message Authentication Codes or MAC’s based on strongly
universal hash functions. One can always derive both complexity theoretic and prac-
tical constructions from these schemes, but for the time being it seems more efficient
to design this type of schemes directly.

66 CHAPTER 3. THE INFORMATION THEORETIC APPROACH

Chapter 4

The Complexity Theoretic
Approach

Out of intense complexities intense simplicities
emerge. Winston Churchill

4.1 Introduction

The background of the complexity theoretic approach is the definition of a model of
computation. In the uniform model this is a Turing machine [5], while a Boolean
function is the model of computation in the non-uniform model. No detailed discus-
sion will be given on the difference between the two models, but it is important to
remark that only in the non-uniform model precomputations, that are carried out by
an adversary before the start of the protocol are included. All computations in this
model are now parameterized by a security parameter and the asymptotic behavior of
algorithms is studied. In the uniform model, only algorithms that require time and
space polynomial in the size of the input are considered to be feasible. Algorithms
that require exponential time and/or space in the size of the input are considered to
be infeasible. Along the same lines, an exponentially small fraction is considered to be
negligible. Note that in this context a birthday attack does not make sense: it reduces
the number of operations to the square root of the number of operations for a brute
force attack. However, the square root of a polynomial is still a polynomial and the
square root of an exponentially growing function still grows exponentially.

Before a complexity theoretic treatment of a OWHF and a CRHF is possible, some
basic definitions have to be discussed, together with some background on pseudo-
random string generators and one-way functions. Subsequently, a definition and some
important constructions for a OWHF and a CRHF will be given. An extension of
the concept of a OWHF will be studied, and it will be discussed how computationally
secure perfect authentication codes can be constructed.

67

68 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

Finally it is remarked that some complexity theoretic constructions can be obtained
from unconditionally secure schemes, as it has been discussed in the previous chapter.

4.2 Complexity theoretic definitions

4.2.1 Basic definitions

The set of all integers will be denoted with IN. The alphabet considered is the binary
alphabet Σ = {0, 1}. For n ∈ IN, Σn is the set of all binary strings of length n. The set
of all strings of arbitrary length will be written as Σ∗. The concatenation of two binary
strings x and y will be denoted with x‖y. Let l(n) be a monotone increasing function
from IN to IN, and f be a function from D to R where D =

⋃
nDn, Dn ⊆ Σn (in most

cases Dn = Σn), and R =
⋃
nRn, Rn ⊆ Σl(n). D is called the domain and R is called

the range of f . The restriction of f to Σn will be denoted with fn. The function f is
polynomial time computable if there is a polynomial time algorithm computing f(x),
∀x ∈ D. In the following it will be assumed that there is a description of fn of length
polynomial in n and that fn is polynomial time computable. The composition f ◦ g of
two functions f and g is defined as (f ◦ g)(x) = f(g(x)), and the k-fold composition of
f is denoted by f (k). The size of a set S is denoted with |S |.

A probability ensemble E, with length l(n), is a family of probability distributions{
En : Σl(n) −→ [0, 1], n ∈ N

}
. The uniform ensemble U with length l(n) is the family

of uniform probability distributions Un, where each Un is defined as Un(x) = 1/2l(n),
∀x ∈ Σl(n). By x ∈E Σl(n) we mean that x is randomly selected from Σl(n) according
to En, and in particular by x ∈R Σl(n) we mean that x is chosen from the set Σl(n)

uniformly at random. E is samplable if there is an algorithm M that on input n,
outputs an x ∈E Σl(n), and polynomially samplable if the running time of M is also
polynomially bounded.

The siblings of x under a function f is the set Sx of elements that are mapped
to f(x), and sn is the number of strings in Σn for which | Sx | > 1. A function f is
called an injection if each fn (n > n0) is a one-to-one function, which is equivalent to
|Sx | ≤ 1,∀x (with |x |> n0), or sn = 0, n > n0. In some cases a slightly more general
concept is necessary. A function f is called a quasi-injection if the following holds: for
any polynomial Q and for sufficiently large n: sn < 1/Q(n). An even more general
concept is a function with small expected preimage size. This implies that there exists
a polynomial Q such that for x ∈R Σn, the expected size of f−1(f(x)) < Q(n). A
function f is called a permutation if each fn is a one-to-one and onto function.

In this chapter chopt denotes the function from Σn+t to Σn that drops the t right-
most bits of its argument.

Let {n0i} and {n1i} be two (increasing) sequences such that n0i < n1i for all i,
but there exists a polynomial Q such that Q(n0i) > n1i , then these two sequences are
polynomially related.

The important concept of a function family has been defined in [65]. A simplified
version will be given here.

4.2. COMPLEXITY THEORETIC DEFINITIONS 69

Definition 4.1 A function family F is an infinite family of finite sets {Fn}∞n=1,
where Fn is the set of instances of size n. An instance f ∈ Fn is a tuple,

S = (fn, D,R) ,

where fn is a function fn : Dn −→ Rn. The following requirements have to be imposed:

• Fn is accessible, or there is a polynomial time algorithm, which on input n outputs
an instance chosen uniformly from Fn.

• Dn is samplable, or there is a polynomial time algorithm, which selects an element
uniformly from Dn.

• fn is polynomial time computable, or given x ∈ Dn there is a probabilistic poly-
nomial time algorithm (polynomial in n and in |x |) that computes fn(x).

4.2.2 Pseudo-random string generators

Definition 4.2 A statistical test is a probabilistic polynomial time algorithm T that
on input x outputs a bit 0/1.

Definition 4.3 Let P be a polynomial, and E1 and E2 be ensembles both with length
l(n). E1 and E2 are called indistinguishable from each other, iff for each statistical
test T , for each polynomial Q, and for all sufficiently large n,

| Pr {T (x1) = 1} − Pr {T (x2) = 1} | < 1
Q(n)

,

where x1 ∈E1 Σl(n), x2 ∈E2 Σl(n).

Definition 4.4 A polynomially samplable ensemble E is pseudo-random if it is in-
distinguishable from the uniform ensemble U with the same length.

Definition 4.5 A string generator extending an n-bit input into an l(n) bit output
(here l(n) > n), is a deterministic polynomial time computable function g : D −→ R.

In the following g will also be denoted by {gn | n ∈ IN}. Let gn(U) be the probability
distribution defined by the random variable gn(x), where x ∈R Σn, and let g(U) =
{gn(U) | n ∈ IN}. g(U) is polynomially samplable. The definition of a pseudo-random
string generator (PSG) can now be given [331].

Definition 4.6 g = {gn | n ∈ IN} is a pseudo-random string generator (PSG)
iff g(U) is pseudo-random.

Another important aspect of pseudo-random sequences is that given a part of the
sequence, it should be hard to predict the remaining part.

70 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

Definition 4.7 Let l be a polynomial, and E be an ensemble with length l(n). Then
E passes the next bit test iff for each statistical test T , for each polynomial Q, and
for all sufficiently large n the probability that on input of the first i bits of a sequence
x randomly selected according to E and i < l(n), T outputs the i + 1th bit of x is
polynomially close to 1/2, or

Pr {T (x1, . . . , xi) = xi+1} <
1
2

+
1

Q(n)
,

where x ∈E Σl(n).

A key result is the equivalence between the unpredictability and indistinguishability
[331].

Theorem 4.1 Let E be a polynomially samplable ensemble, the following statements
are equivalent:

• E passes the next bit test.
• E is indistinguishable from the uniform ensemble U .

4.2.3 One-way functions

An intuitive definition of a one-way function is that it is a function that should be hard
to invert. Of course one can always take a polynomial number of inputs S and evaluate
the function for the values in S: for all values in Image(S) it is now easy to invert the
function with a simple table lookup. The solution is to require that it should be hard
to invert the function almost everywhere. Many flavors of one-way functions exist, and
the subtle differences can only be captured in a formal definition. In practice it can
be shown that in the most important cases these definitions are equivalent.

Definition 4.8 A one-way function family F is a function family that satisfies the
following condition. Let x be selected uniformly in Dn and let M be a probabilistic
polynomial time algorithm that takes as input fn(x) ∈ Rn and outputs M(fn(x)) ∈ Dn.
For each M , for each polynomial Q, and for all sufficiently large n

Pr {fn(M(fn(x))) = fn(x)} <
1

Q(n)
.

If D = R, one has a one-way permutation family.

Observe that x can also be selected according to a different distribution, but in order to
avoid unnecessary complications, it will always be assumed that x is selected uniformly
in Dn.

A more complex definition can be given if it is only required that inverting more
than a negligible fraction of the instances of a given size is hard [65]. It can be shown
that the existence of one-way permutations according to this definition is in fact implied
by the existence of permutations that are one-way in a much weaker sense. Moreover

4.2. COMPLEXITY THEORETIC DEFINITIONS 71

if the function involves some group structure, it can be shown that if the function can
be inverted on a non-negligible fraction of its images, it can be inverted everywhere
with non-negligible probability.

The fact that f is a one-way function implies that given f(x) there are at least
O(log n) bits of x that are hard to predict. If such a bit is not biased, it is called a
hard bit of f . A formal definition of a hard bit is given below:

Definition 4.9 Let f be a one-way function. Let i(n) be a function from IN to IN with
1 ≤ i(n) ≤ n. The i(n)th bit is a hard bit of f iff for each probabilistic polynomial
time algorithm M , for each polynomial Q, and for sufficiently large n,

Pr
{
M(fn(x)) = x′i(n)

}
<

1
2

+
1

Q(n)
,

where x ∈R Σn and x′i(n) is the i(n)th bit of an x′ ∈ Σn satisfying f(x) = f(x′).

If a sufficient number of bits of x are given, it is always possible to find the remaining
bits by exhaustive search. This concept is captured in the definition of a computing
resource.

Definition 4.10 One has a computing resource for k bits if given the output of
a one-way function and n − k bits of the input string, one can find the remaining k
bits of the input string by exhaustive search.

It can be shown that all the hard bits of f are independent. Given only f(x), any
string of hard bits is indistinguishable from a random string. This is formally stated
as follows.

Definition 4.11 Let f be a one-way function, and let I = {i1, . . . it} be a subset of
{1, 2, . . . n} with t < n− k. Denote by EIn and ERn the probability distributions defined
by the random variables xit(n) . . . xi1(n)‖f(x) and rt . . . r1‖f(x) respectively, where x ∈R
Σn and rj ∈R Σ. Let EI =

{
EIn | n ∈ IN

}
and ER =

{
ERn | n ∈ IN

}
. Then the bits

xit(n) . . . xi1(n) are simultaneously hard if EI and ER are indistinguishable.

The collection of all simultaneously hard bits of a one-way function f is called the
hard core of f . In the following it will be assumed that the size of the hard core is
at least k + 1 bits. The maximal number of simultaneously hard bits is smaller than
n − k. It will be denoted with n − k+, where k+(n) is a function that grows slightly
faster than k(n).

Finally it is remarked that for any one-way function one can construct O(log n)
hard core predicates: O. Goldreich and L. Levin [127] showed that for any one-way
function f , given f(x) and p ∈R Σ|x|, the inner product of x and p is a hard core
predicate of f , which means that it can not be predicted with a success probability
that is better than 1/2 + 1/Q(n) for any polynomial Q.

72 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

4.3 Complexity theoretic constructions

4.3.1 Universal hash functions and uniformizers

For the definition of universal hash functions and for an overview of some constructions,
the reader is referred to section 3.3.2. If these functions have to be defined correctly in
a complexity theoretic setting, one has to state that they should be polynomial time
computable. Moreover one has to replace the concept class of functions by the concept
of a function family.

J. Carter and M. Wegman suggest to use universal hash functions for uncondition-
ally secure authentication schemes (cf. section 3.3.2) and for probabilistic algorithms
for testing set equality. Ten years later universal hash functions were shown to be a
useful building block for provably secure hash functions. However, their use in these
constructions requires an additional property, namely that it should be easy to find
collisions. This property was first suggested in [233], but here the slightly extended
version of [87] will be given.

Definition 4.12 A (strongly) universalr family G has the collision accessibility
property iff, given a requirement gi(x1) = y1 ∧ . . . ∧ gi(xr) = yr, it is possible to
generate in polynomial time a function gi uniformly among all functions in G that
obeys the requirement.

For the constructions in [233, 342] the requirement is of the form gi(x1) = gi(x2) =
· · · = gi(xr). This will be called the “weak collision accessibility property”.

A concept closely related to a strongly universal hash function is that of a pair-wise
independent uniformizer, defined in [341].

Definition 4.13 A pair-wise independent uniformizer family V from n-bit strings
to n-bit strings is a collection {vi} of permutations of Σn such that:
∀n, ∀(x1, x2) with x1, x2 ∈ Σn and x1 6= x2 and ∀(y1, y2) with y1, y2 ∈ Σn and y1 6= y2,
there are exactly

|Vn |
2n(2n − 1)

permutations in Vn that map x1 to y1 and x2 to y2.

4.3.2 Universal One-Way Hash Functions (UOWHF)

The concept of a UOWHF was introduced by M. Naor and M. Yung [233]. They
suggested the definition and gave a provably secure construction based on a strongly
universal hash function and a one-way permutation. They use the concept to construct
a provably secure digital signature scheme based on a one-way injection, which is a
less stringent requirement than a trapdoor one-way function which was necessary for
the scheme proposed in [15].

4.3. COMPLEXITY THEORETIC CONSTRUCTIONS 73

4.3.2.1 Definition

A formal definition of a UOWHF can be given as follows.

Definition 4.14 A Universal One-Way Hash Function family H is a function
family and a polynomially bounded function l : IN −→ IN.
A member of Hn is a function f : Σn −→ Σl(n).

A collision string finder F is a probabilistic polynomial time algorithm that on input
n outputs an initial value x ∈ Σn, and then given a random h ∈ Hn outputs either “?”
or an x′ ∈ Σn such that h(x′) = h(x).
H must satisfy the following condition:

for all collision string finders F , for all polynomials Q, and for sufficiently large n
holds that

Pr {F (h, x) 6= “?”} < 1
Q(n)

,

where the probability is taken over all h ∈ Hn and the random choices of F .

The collision string finder first selects an input string x and subsequently gets a ran-
domly selected hash function. The philosophy behind a UOWHF is that if first the
input is selected and subsequently the hash function, it does not help an opponent to
find collisions for the hash function. Collisions are only useful if first the function is
fixed and subsequently one can search for two colliding inputs.

This definition was generalized in [341], where a UOWHF is defined as a three
party game with an initial string supplier S, a hash function instance generator G and
a collision string finder F . Here S is an oracle with unlimited computing power, and
G and F are probabilistic polynomial time algorithms. The game consists of three
moves:

1. S outputs an initial string x ∈ Σn and sends it to both G and F .

2. G chooses an h ∈R Hn independently of x and sends it to F .

3. F outputs either “?” or an x′ ∈ Σn such that h(x′) = h(x).

F wins the game if its output is not equal to “?”. The input x is selected by S
according to a certain distribution. In the most general case this is the collection of all
ensembles with length n. If a different ensemble is introduced, a different definition is
obtained. In the original definition of M. Naor and M. Yung the initial string supplier
and the collision string finder were the same algorithm, which imposes the unnecessary
restriction that x should be selected according to all polynomially samplable ensembles
(the collision string finder has to be a polynomial time algorithm). The construction
by M. Naor and M. Yung also satisfies this more general definition. On the other hand
their definition is less complicated: in fact it does not really make sense for S to send
x to G, as G chooses subsequently h independent from x. In [341, 342] the hierarchy
between different types of UOWHF has been studied.

First two general methods will be described to construct a UOWHF. Subsequently
some specific schemes will be given, namely the scheme of Naor and Yung based on

74 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

�
�

�
�

�
�

A
A

A
A

A
A

? ?

? ?

? ?

? ?

. . .

. . .

. . .

. . .

A
A

A
A

A
A

�
�

�
�

�
�

? ?

? ?

? ?

? ?
. . .

. . .

. . .

. . .

Figure 4.1: Method 1 for serial extending and compressing (M. Naor and M. Yung).

strongly universal hash functions, the first scheme of Zheng, Matsumoto, and Imai, the
schemes by De Santis and Yung, the scheme by Rompel, the second scheme of Zheng,
Matsumoto, and Imai, and the scheme of Sadeghiyan and Pieprzyk.

4.3.2.2 General construction methods

Two general methods have been described to construct a UOWHF from a more simple
UOWHF. It has been pointed out by Y. Zheng, T. Matsumoto, and H. Imai [341] that
these two general constructions are related to similar constructions for pseudo-random
string generators. This can be explained by the duality between a PSG and a UOWHF:
the first extends an input of fixed length to a polynomial size result, while the second
compresses an input string of polynomial length into a string of fixed length. The
construction of a UOWHF by M. Naor and M. Yung is related to the construction of a
PSG by repeatedly applying an extension operation to the input string (cf. figure 4.1),
while the construction of I. Damg̊ard is the dual of the PSG scheme due to Boppana
and Hirschfeld (according to [7]) (cf. figure 4.2).

The basic idea behind the construction by Naor and Yung is that the composition
of two or more UOWHF families is again a UOWHF family. In fact a UOWHF was
defined such that this property would hold.

Definition 4.15 Let H1,H2, . . . ,Hl be families of functions such that for all i and for
all hi ∈ Hi (with ni−1 < ni), hi : Σni −→ Σni−1. The l-composition of H1,H2, . . .Hl
is the multiset H(l) = {h | h = h1 ◦ h2 ◦ · · · ◦ hl}.

Lemma 4.1 (composition lemma) Let H(l) be an l-composition. If there exists a
collision string finder F which, when given an initial value x and a uniformly random
h ∈ H(l), produces an output 6= “?” with probability Pr {F (h, x) 6= “?”} > ε, then there
exists an i with 1 ≤ i ≤ l and an algorithm F ′ such that

• F ′ produces an initial value xi ∈ Σni.

4.3. COMPLEXITY THEORETIC CONSTRUCTIONS 75

@
@

? ?
. . .

@
@

? ?
. . .

@
@

? ?
. . .

? ?
. . .

? ? ?

�
�

? ?
. . .

�
�

? ?
. . .

�
�

? ?
. . .

? ?
. . .

?

?

?

Figure 4.2: Method 2 for serial extending and compressing (I. Damg̊ard).

• Then on input hi ∈ Hi tries to find a x′i such that hi(xi) = hi(x′i).

• Pr {F ′(hi, xi) 6= “?”} > ε/l, where the probabilities are taken over hi ∈ Hi and
the random choices of F ′.

• The running time of F ′ is polynomially related to that of F .

Theorem 4.2 (composition theorem) Let {n0i}, {n1i}, {n2i}, . . . be a sequence of
increasing sequences, let U1,U2, . . . be a sequence of families of UOWHF such that Ui =
{Hi,m}∞m=1, where ∀h ∈ Hi,m ; h : Σnim −→ Σni−1m , let l : IN −→ IN be a polynomial
time computable function such that Q(n0m) > nl(m)m

for some polynomial Q. Let

H(l(m))
m be the l(m)-composition of H1,m, H2,m, . . ., Hl(m),m, and let U = {Ui}∞i=1.
Then U is a family of UOWHF if the Ui are simultaneously hard, that is for every

polynomial P and for every probabilistic polynomial time algorithm F , there is an m0

such that ∀m > m0, F can not succeed in finding collisions with probability 1/P (nim)
for all i ≥ 1.

It is interesting to note that this composition theorem also holds for a CRHF.
The general construction by I. Damg̊ard [66] as illustrated in figure 4.2 was intended

for the design of a CRHF based on a Collision Resistant Function. Therefore it will
be discussed in more detail in the corresponding section. It will become clear that if
specific conditions are imposed on a compression function with a fixed size input, this
general construction can also yield a UOWHF.

4.3.2.3 The scheme of Naor and Yung

As a result of the general construction method by M. Naor and M. Yung, the construc-
tion of a UOWHF is reduced to the construction of a UOWHF that compresses one
bit. This is achieved with the composition of a strongly universal hash function with
a one-way permutation.

76 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

Theorem 4.3 (Naor-Yung) Let f be a one-way permutation on Σn.
Define Hn = {h = g ◦ f | g ∈ Gn}, where Gn is a strongly universal2 family of hash
functions from Σn to Σn−1, which has the weak collision accessibility property. Then
U = {Hn}∞n=1 is a UOWHF family compressing n-bit input strings into n−1-bit output
strings.

Note that the notations are slightly simplified here: if the formalism is followed
completely, f should be replaced by a function family, where fn is an instance of size
n.

Based on the composition theorem one can obtain a UOWHF for which the size
of domain and range are two increasing sequences that are polynomially related. This
construction can be extended for the case that f is a one-way injection. The problem
with this construction is that it is not very practical: the size of the hash function is
O(n2

1) where n1 is the size of the input. This can be improved with a factor log(n1) by
using a strongly universallog(n1) hash function. A more efficient approach will be to use
a block hashing technique in a tree configuration: if the primitive function compresses
2t bits to t bits, the size of the function is O(t2 log(n1)) bits. The number of blocks has
to be polynomial in t to keep the proof valid. The original construction requires O(n1)
applications of the one-way function, and the first improvement reduces this with a
factor log(n1). The block hashing technique needs O(n1) applications of the one-way
function. Moreover for every message that has to be hashed a new hash function has
to be generated and stored.

4.3.2.4 The first scheme of Zheng, Matsumoto, and Imai

This construction is based on the combination of a quasi injection, a pair-wise indepen-
dent uniformizer, and a strongly universal hash function [342]. The basic motivation
is to reduce the complexity assumptions.

Theorem 4.4 (Zheng-Matsumoto-Imai) Let f be a quasi injection with input
length n and output length l(n). Define Hn = {h = gn ◦ vn ◦ f | gn ∈ Gn, v ∈ Vn},
where Gn is a strongly universal family from Σl(n) to Σn−1, and Vn is a pair-wise
independent uniformizer. Then U = {Hn}∞n=1 is a UOWHF family compressing n-bit
input strings into n− 1-bit output strings.

4.3.2.5 The schemes of De Santis and Yung

The major contributions of these schemes are the simplification of the original scheme
of Naor and Yung, the improvement of the efficiency, and the reduction of the complex-
ity assumptions. The simplification is based on the composition lemma for strongly
universal hash functions. The construction is given for one-way injections [87].

Theorem 4.5 (De Santis-Yung) Let f be a one-way injection with input length n

and output length l(n). Define Hn =
{
h = gn ◦ gn+1 ◦ · · · ◦ gl(n) ◦ f | gi ∈ Gi

}
, where

Gi is a strongly universal family from Σi to Σi−1. Then U = {Hn}∞n=1 is a UOWHF
family compressing n-bit input strings into n− 1-bit output strings.

4.3. COMPLEXITY THEORETIC CONSTRUCTIONS 77

The authors also give new constructions based on the following weaker complexity
assumptions:

• The existence of a function with small expected preimage size or the property
that the expected size of the preimage of an element in the range is small when
an element in the domain is randomly chosen. An example of such a function is
squaring modulo an RSA modulus.

• The existence of a function where for a given element in the range, an estimate
with polynomial uncertainty on the size of the preimage set is easily computable.
A particular case is a regular function, i.e., a function where every image of an
n-bit input has the same number of preimages of length n. Other examples are
the decoding of random linear codes and the subset sum (cf. section 7.2.8.1).

For the formal definitions and constructions the reader is referred to [87].

4.3.2.6 The scheme of Rompel

J. Rompel [284] describes an interesting scheme to turn any one-way function in a
UOWHF. The idea is to construct a series of functions, each one closer to the goal of a
UOWHF. First a function is constructed for which most siblings are easy to find, but
a non-negligible fraction are provably hard to find. Next a function is constructed such
that most siblings are provably hard to find. Subsequently a length increasing function
is constructed for which it is almost always hard to find any sibling. Finally this is
turned into a length-decreasing function with the same properties. The construction is
only of theoretical interest: it can be shown that one-way functions are necessary and
sufficient for secure digital signatures. The number of applications of f is polynomial
in the size of the input, but the scheme is completely impractical as the exponents are
larger than 30.

4.3.2.7 The second scheme of Zheng, Matsumoto, and Imai

The goal of this construction by Y. Zheng, T. Matsumoto, and H. Imai [341, 343] is to
improve the efficiency rather than to reduce the complexity assumptions. This is the
first construction that does not rely on universal hash functions, which implies that
the description of the hash function is more compact. This construction processes the
message in s-bit blocks. Therefore the l(n)-bit message x has to be divided into s-bit
blocks denoted by x1, x2, . . . , xt, where t = d l(n)

s e and xi ∈ Σs for each 1 ≤ i ≤ t.
(note that if l(n) is not a multiple of s a padding procedure has to be specified, cf.
section 2.4.1).

Theorem 4.6 (Zheng-Matsumoto-Imai) Let f be a one-way permutation with in-
put length n+ s. One can assume w.l.o.g. that the hard core of f are the s rightmost
bits of f . Let l be a polynomial with l(n) > n, and H0 be an initial value ∈ Σn. Then
define

Hi = chopt (f (Hi−1‖xt−i+1)) for i = 1, 2, . . . , t .

78 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

Define Hn = {h | h(x) = Ht}. Then U = {Hn}∞n=1 is a UOWHF family compressing
l(n)-bit input strings into n-bit output strings.

4.3.2.8 The scheme of Sadeghiyan and Pieprzyk

The goal of this scheme is to further increase the efficiency. Assume that one has a
computing resource of k bits (cf. definition 4.10). The idea of this scheme is to construct
from a one-way permutation with k + 1 hard bits a one-way permutation for which
each bit is a hard bit. This can be done through combination with permutations that
have specific properties. The resulting permutation can then be used in an efficient
construction of a UOWHF and of a PSG [289, 290].

Definition 4.16 Let v be a permutation of Σn. Then v is a k + 1-bit perfect per-
mutation iff

• v is complete, or each output bit of v depends on all input bits.

• k + 1 bits of v are pair-wise independent, or their correlation equals zero.

Definition 4.17 A strong one-way permutation w is a permutation with the max-
imal number of t = n− k+ simultaneously hard bits.

Clearly this is equivalent to stating that each bit of w is a hard bit of w and given w(x)
and any t < n− k bits of the preimage x, it is hard to find the complete preimage x.

One can show (cf. section 4.2.3) that given a one-way function f one can find a
function g such that f = O(log n) bits of f ◦ g are simultaneously hard. A simple ex-
ample for g is the inner product with a random string. To turn a one-way permutation
into a strong one-way permutation, it is sufficient to find a permutation for which it
is hard, given t < n− k bits of its input and t′ < n− k bits of its output, to guess any
additional output bit. Such a permutation effectively hides any k bits of its output,
hence it is called a hiding permutation.

Definition 4.18 Let h be a permutation of Σn. Let i1, . . . it and j1 . . . jk be functions
from IN to IN, where 1 ≤ il(n), jl(n) ≤ n. Then h is a hiding permutation iff for
each probabilistic polynomial time algorithm F , for each t ≤ n−k+, for each polynomial
Q, and for sufficiently large n

| Pr
{
F (xit , . . . xi1‖yjn , . . . yjk+) = yjk , . . . , yj1

}
− 1

2k
|< 1

Q(n)
,

where x ∈R Σn, y = h(x), and k = O(log n).

Any one-way permutation that acts on all its bits is a hiding permutation.
The following theorems, given in [289] and [290] respectively, show how to turn a

one-way permutation into a strong one-way permutation. Both constructions use a
hiding permutation. The first construction is based on a k+1-bit perfect permutation,
while the second requires only a linear function over GF (2n).

4.3. COMPLEXITY THEORETIC CONSTRUCTIONS 79

Theorem 4.7 Let f be a one-way permutation, let v be a k+1-bit perfect permutation,
and let h be a hiding permutation. Define w = f◦v◦h. Then w is a strong permutation.

Theorem 4.8 Let f be a one-way permutation, let g = px+ q where p, q ∈R GF (2n),
and let h be a hiding permutation. Define w = f◦g◦h. Then w is a strong permutation.

The concept of a strong one-way permutation can be used to construct a UOWHF
as follows.

Theorem 4.9 (Sadeghiyan-Pieprzyk) Let f be a strong one-way permutation on
Σn. Define Hn = {h = chopt ◦f}, where t = n−k+. Then U = {Hn}∞n=1 is a UOWHF
family compressing n-bit input strings into n− t-bit output strings.

A variant of this method is to replace the chop function by a universal hash function.
Parameterization of this UOWHF is possible through a parameterization of f or of the
chopping function (other bits than the last t bits might be chopped). The efficiency of
this method relies on the fact that it requires only one application of a strong one-way
permutation for the processing of n− k− 1 bits, where a strong one-way permutation
consists of 2 one-way permutations and a k + 1-bit perfect permutation or a linear
function over GF (2n).

A final remark is that if a strong one-way permutation is used as primitive func-
tion f , the second scheme of Zheng, Matsumoto, and Imai reduces to the general
construction method of Damg̊ard [289].

4.3.3 Collision Resistant Hash Functions (CRHF)

The formal definition of a Collision Resistant Hash Function (CRHF) (or Collision
Free Hash Function) has been introduced by I. Damg̊ard [64, 65]. He also suggested
the first provably secure constructions.

4.3.3.1 Definition

A formal definition of a CRHF can be given as follows.

Definition 4.19 A Fixed Size Collision Resistant Hash Function family H′ is
a function family and a function l : IN −→ IN, such that l(n) < n.
A member of H ′

n is a function h′ : Σn −→ Σl(n).
A collision string finder F is a probabilistic polynomial time algorithm that on input

n and a function h ∈R Hn outputs either “?” or a pair x, x′ ∈ Σn with x′ 6= x such
that h(x′) = h(x).
H′ must satisfy the following condition:

for all collision string finders F , for all polynomials Q, and for sufficiently large n
holds that

Pr {F (h) 6= “?”} < 1
Q(n)

,

where the probability is taken over all h ∈ Hn and the random choices of F .

80 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

Definition 4.20 A Collision Resistant Hash Function family H is a function
family and a polynomially bounded function l : IN −→ IN.
A member of Hn is a function h : Σ∗ −→ Σl(n).
H must satisfy the following condition:

for all collision string finders F , for all polynomials Q, and for sufficiently large n
holds that

Pr {F (h) 6= “?”} < 1
Q(n)

,

where the probability is taken over all h ∈ Hn and the random choices of F .

The main difference between definition 4.19 and definition 4.20 is that the second one
imposes no restrictions on the lengths of the inputs of the functions. Of course a
polynomial time algorithm can only hash messages of polynomial length.

The practical advantage of a CRHF over a UOWHF is that in case of a CRHF one
is not forced to generated a new hash function for every input. A CRHF is however
harder to design. From the definition of a CRHF it follows that it is also a UOWHF. A
more difficult question is whether a CRHF is also a one-way according to definition 4.8.
The answer is rather complicated, but a lemma of I. Damg̊ard [66] that was slightly
corrected by J.K. Gibson [119], gives some orientation:

Lemma 4.2 (Damg̊ard) Let H′ be a fixed size collision resistant function family,
and let h be an instance of size n. Let Eh′ be the probability distribution on Σl(n)

generated by selecting x ∈R Σn and outputting h′(x).
Assume that for all but an exponentially small fraction of x ∈ Σn there exists a

x′ ∈ Σn with h′(x) = h′(x′).
Then no algorithm inverting h′ on images selected according to Eh′ succeeds with

probability larger than 1/2 + 1/Q(n) for any polynomial Q.
If Eh′ is the uniform distribution over the image of h′ or if n−l(n) is O(n), then no

inversion algorithm succeeds with probability larger than 1/Q(n), for any polynomial
Q.

Note that in cryptographic applications an opponent will not select an x ∈R Σn

(as required by the definition of a one-way function) but an h′(x) ∈R Rn: the property
that can be proven is not really the property that one would like to have. However,
the selection of an x ∈R Σn will result in a uniform distribution for h′(x) if h′ is a t to
1 mapping for constant t (which is the case for a fixed size one-way function, but not
necessarily for a hash function), or if n− l(n) is O(n). Another solution is to assume
that Eh′ is the uniform distribution over the image of h′.

A general construction is based on a fixed size CRHF. It is believed that the
existence of one-way functions is sufficient for the existence of CRHF’s, but for the
time being a proof is lacking. Currently reductions have been given to claw resistant
functions, distinction resistant permutations, and claw-resistant pseudo-permutations.
Note that in the original papers these were called claw free functions, distinction in-
tractible permutations, and claw free pseudo-permutations. In order to remain consis-
tent, the names had to be changed.

4.3. COMPLEXITY THEORETIC CONSTRUCTIONS 81

4.3.3.2 Fixed size CRHF

First it is noted that the composition theorem for a UOWHF (theorem 4.2) also holds
for a CRHF. One can however also construct of a CRHF based on a fixed size CRHF
family [66].

Theorem 4.10 Let H′ be a fixed size CRHF family mapping n bits to l(n) bits. Then
there exists a CRHF family H mapping strings of arbitrary length (polynomial in n)
to l(n) bit strings.

Because of its practical importance, the construction will be described here. To
simplify notations l(n) will be written as l. Two cases have to be distinguished:

n− l > 1: split the message into t blocks of size n−l−1 bits and apply an unambiguous
padding rule (cf. section 2.4.1). The sequence Hi is then defined by:

H1 = h′(0l+1 ‖ x1)
Hi = h′(Hi−1 ‖ 1 ‖ xi) for i = 2, 3, . . . t .

The hashcode h(x) is equal to Ht.

n− l = 1: here the message is processed bit by bit. First, select uniformly an l-bit
string H0. The sequence Hi is then defined by:

Hi = h′(Hi−1 ‖ xi) for i = 1, 2, 3, . . . t .

The hashcode h(x) is equal to Ht.

The second version will also work if Eh′ is the uniform distribution over the image of
h′ or if n− l(n) is O(n). It is slightly more efficient as it allows hashing an additional
bit per application of h′.

4.3.3.3 Claw resistant permutations

The concept of a function family has to be generalized to allow for an elegant definition
of claw resistant permutations [65]. It will only be used in section 4.3.3.

Definition 4.21 A function family F is an infinite family of finite sets {Fn}∞n=1,
where Fn is the set of instances of size n. An instance f ∈ Fn is a tuple,

S = (f0, . . . frn−1, D
0, . . . , Drn−1, R) ,

where ∀i, 0 ≤ i ≤ rn − 1, fi is a function: fi : Di −→ R, and
⋃rn−1
i=0 Im(fi) = R. Here

rn is called the set size of F . The following requirements have to be imposed:

• rn is polynomially bounded as function of n.

• Fn is accessible, or there is a polynomial time algorithm, which on input n outputs
an instance chosen uniformly from Fn.

82 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

• Di is samplable, or there is a polynomial time algorithm, which on input S and
i selects an element uniformly from Di.
• fi is polynomial time computable, or given S, i, and x ∈ Di there is a probabilistic

polynomial time algorithm (polynomial in i and in |x |) that computes fi(x).

A family of claw resistant functions can now be defined as follows:

Definition 4.22 A claw resistant function family C is a function family with the
property that for any instance S = (f0, . . . frn−1, D

0, . . . , Drn−1, R), fi is a t to 1
mapping for some constant t and Im(fi) = R, ∀ 0 ≤ i ≤ rn − 1.

A claw finder is a probabilistic polynomial time algorithm F that on input S outputs
either “?” or a tuple (x, x′, i, j) such that x ∈ Di, x′ ∈ Dj, 0 ≤ i, j ≤ rn− 1, i 6= j and
fi(x) = fj(x′).
C must satisfy the following condition:
for all claw finders F , for all polynomials Q, and for sufficiently large n holds that

Pr {F (S) 6= “?”} < 1
Q(n)

,

where the probability is taken over all f ∈ Fn and the random choices of F .
If D0 = D1 = · · · = Drn−1 = R, then C is called a family of claw resistant

permutations.

Let Σr be an alphabet with cardinality r. The n-bit input block x is then trans-
formed into a prefix free encoding x over the alphabet Σr. Note that an efficient
algorithm exists to transform x to x such that the length of x is linear in the length
of x.

Theorem 4.11 Let C be a family of claw resistant permutations with set size rn, and
with domain the set of all finite words over Σrn. An instance of size n of h is defined
by

h(x) = fx(I) ,

where I ∈ D and fx(I) is defined as fx1 (fx2 (· · · fxt(I) · · ·)), with x = x1, x2, . . . , xt.
Then H is a CRHF family.

The previous theorem reduces the existence of collision resistant hash functions to
the existence of claw resistant permutations. Several constructions for claw resistant
permutations have been proposed:

• Based on one-way group homomorphisms: the basic idea is, given the one-way
homomorphism f and a set of ai selected uniformly from D, to define the func-
tions fi as

fi(x) = ai · f(x) .

Examples of one-way group homomorphisms can be constructed based on the
hardness of modular exponentiation and the discrete logarithm problem. Note
however that this is an indirect reduction in the sense that finding a claw does
not prove that the one-way function can be inverted in general.

4.3. COMPLEXITY THEORETIC CONSTRUCTIONS 83

• Based on the difficulty of factoring the product of two large primes. Several
schemes have been proposed and will be discussed in more detail in chapter 6.
For these constructions a direct reduction between the assumption and the claw
resistance can be proved.

• Based on a one-way function that permutes the cosets of a subgroup of its domain
[242]. Also in this case more concrete schemes will be discussed in chapter 6.

• Based on computing graph isomorphisms [30].

However, it remains an open problem whether claw resistant permutations can be
constructed based on one-way functions.

I. Damg̊ard gives in his PhD thesis [65] a heuristic argument that shows that the
two flavors of one-way property are equivalent for a CRHF based on a claw resistant
permutations.

4.3.3.4 Distinction resistant permutations

The concept of distinction resistant permutations was introduced by Y. Zheng, T. Mat-
sumoto, and H. Imai [341, 343]. It is slightly more general than the concept of claw
resistant permutations: it should be hard to find two inputs for which the output dif-
fers at a particular position. To simplify notation, the definition is less formal than
definition 4.22.

Definition 4.23 A distinction resistant permutation familyW is a function fam-
ily. A member of Wn is a function w : Σn −→ Σn.

A near string finder algorithm F is a probabilistic polynomial time machine that on
input w outputs either “?” or a pair x, x′ ∈ Σn such that w(x′) = w(x) ⊕ ei(n). Here
ei denotes the ith unit vector [00 . . . 010 . . . 00].
W must satisfy the following condition:
for all near string finders F , for all polynomials Q, and for sufficiently large n holds
that

Pr {F (w) 6= “?”} < 1
Q(n)

,

where the probability is taken over all w ∈Wn and the random choices of F .

If the one-way permutation in the second scheme of Y. Zheng et al. is replaced with
a distinction resistant permutation, the scheme yields a CRHF:

Theorem 4.12 Let w be a distinction resistant permutation with input length n+ 1.
One can assume w.l.o.g. that the rightmost bit of w is a hard bit of w. Let l be a
polynomial with l(n) > n, and H0 be an initial value ∈ Σn. Then define

Hi = chop1(w
(
Hi−1‖xl(n)−i)

)
for i = 1, 2, . . . , l(n) .

Define Hn =
{
h | h(x) = Hl(n)

}
. Then H = {Hn}∞n=1 is a CRHF family compressing

l(n)-bit input strings into n− 1-bit output strings.

84 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

It it easy to show that the existence of distinction resistant permutations implies
the existence of a claw resistant pair of permutations. It is an open problem whether
it is possible to construct a distinction resistant permutation based on a claw resistant
pair of permutations.

4.3.3.5 Claw resistant pseudo-permutations

This concept was introduced by A. Russell [288]. A pseudo-permutation is a function
that is computationally indistinguishable from a permutation: it should be hard to
find a witness of non-injectivity or a collapse for f , i.e., a pair (x, x′) with x 6= x′ such
that p(x) = p(x′).

Definition 4.24 A pseudo-permutation family P is a function family. A member
of Pn is a function p : Σn −→ Σn.

A collapse finder algorithm F is a probabilistic polynomial time machine that out-
puts either “?” or a pair x, x′ ∈ Σn with x 6= x′ such that p(x′) = p(x).
P must satisfy the following condition:
for all collapse finders F , for all polynomials Q, and for sufficiently large n holds that

Pr {F (p) 6= “?”} < 1
Q(n)

,

where the probability is taken over all p ∈ Pn and the random choices of F .

One can now define a function family of claw resistant pseudo-permutations. As
pointed out in [288], the two aspects of these functions balance each other: if the
pseudo-permutations are close to permutations, there will exist more claws.

The main result in [288] is then the following theorem:

Theorem 4.13 There exists a collision resistant function family iff there exists a claw
resistant pseudo-permutation function family.

4.3.4 Sibling resistant functions (SRF)

The concept of a SRF was introduced by Y. Zheng, T. Hardjono, and J. Pieprzyk
[344]. It is a further generalization of a UOWHF.

4.3.4.1 Definition

Informally a Sibling Resistant Function (SRF) is a function family for which it easy
to find a function s under which k given strings xi collide, but for which it is hard to
find an x′ that collides under s with the first k strings.

Definition 4.25 Let k be a fixed integer. A (k, 1) Sibling Resistant Function
family S is a function family that has the weak collision accessibility property, and a
function l : IN −→ IN, such that l(n) < n. A member of Sn is a function s : Σn −→
Σl(n).

4.3. COMPLEXITY THEORETIC CONSTRUCTIONS 85

A sibling finder F is a probabilistic polynomial time algorithm that on input X
= {x1, x2, . . . , xk} a set of k initial strings ∈ Σn and a function s ∈ Sn that maps the
xi to the same string, outputs either “?” or an x′ ∈ Σn such that s(x′) = s(xi).
S must satisfy the following condition:

for all sibling finders F , for all polynomials Q, and for sufficiently large n holds that

Pr {F (s,X) 6= “?”} < 1
Q(n)

,

where s is chosen randomly and uniformly from SXn ⊂ Sn, the set of all functions in
Sn that map X = {x1, x2, . . . , xk} to the same string in Σn, and where the probability
is taken over SXn and the random choices of F .

A SRF is a generalization of a UOWHF, as a UOWHF is a (1, 1)-SRF. Note that a
(k, 1)-SRF is also a (k′, 1)-SRF with k′ < k.

A possible application of a SRF is to authenticate k pieces of information at the
same time: this could be a selection of k computer programs. It is then possible to
authenticate these programs through a single hashcode.

4.3.4.2 Construction

The following theorem [344] shows that a (1, 1)-SRF can be transformed into a (2s −
1, 1)-SRF for any s = O(log n).

Theorem 4.14 Let l1(n), l2(n), and l3(n) be polynomials with l2(n)−l1(n) = O(log n),
and let k = 2l2(n)−l1(n) − 1. Define Sn = {s = u ◦ h | h ∈ Hn, u ∈ Un}, where H
is a (1, 1)-SRF family from Σl1(n) to Σl2(n), and U is a universalk+1 hash function
family from Σl2(n) to Σl3(n), that has the weak collision accessibility property. Then
S = {Sn}∞n=1 is a (k, 1)-SRF from Σl1(n) to Σl3(n).

Combined with the result of J. Rompel, described in section 4.3.2.6, it follows that a
(k, 1)-SRF can be constructed from any one-way function.

4.3.5 Perfect Authentication codes

In chapter 3 it has been shown how unconditionally secure Cartesian authentication
codes can be transformed into complexity theoretic constructions based on pseudo-
random string generators. For authentication codes with secrecy, direct complexity
theoretic constructions have been developed based on the work of M. Luby and C. Rack-
off [198] on randomizers. In [340] it was shown how these randomizers can be used
to construct provably secure block ciphers. If Fn is defined as the set of all functions
from Σn to Σn, then for a function f ∈ Fn, the permutation D ∈ F2n is constructed
as follows:

Df (R,L) = (R,L⊕ f(R)) ,

86 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

where R,L ∈ Σn. For a sequence of functions f1, f2, . . . fi ∈ Fn, the permutation
ψ(f1, f2, . . . , fi) is defined as

ψ(f1, f2, . . . , fi) = Dfi
◦ · · · ◦Df2 ◦Df1 .

It was shown in [198] that if three function f, g, h are selected randomly and uniformly
from Fn, that ψ(f, g, h) can not be distinguished from a random permutation, hence
it is called an L-R randomizer. Note however that the permutation ψ(f, g, h) has no
polynomial description, and hence it is not polynomial time computable. A pseudo-
random permutation can be obtained if f, g, h are pseudo-random functions; in that
case ψ is called an L-R module.

J. Pieprzyk and R. Safavi-Naini show in [248] that if redundancy is added to the
message before encryption with one or more L-R randomizers, one obtains a perfect
authentication code. This implies that these codes are secure even if the opponent
observes a large number of plaintext-ciphertext pairs. Depending on the redundancy,
the following results are obtained under the assumption that f, g, h ∈R Fn and g∗ is a
random permutation ∈ Fn:

• If the redundancy is secret and selected independently for each message:
ψ = ψ1(f, g∗, h).

• If the redundancy is a publicly known fixed quantity that is used as the L-input:
ψ = ψ1(f, g, h) ◦ ψ2(h, g∗, f).

• If the redundancy is a publicly known fixed quantity that is used as the R-input:
ψ = ψ1(f, g, h) ◦ ψ2(h, g∗, f) ◦ ψ3(h, g∗, f).

In order to make the authentication code polynomial time computable, one should
replace f, g, h and g∗ by pseudo-random functions and permutations respectively. In
that case the quality of the authentication codes will depend on the quality of the
pseudo-random functions. The disadvantage of this method is that the size of the
redundancy is at least twice the size of the message.

A second proposal by R. Safavi-Naini [292] consists of replacing the function f in the
Luby-Rackoff construction with a generalized function f ′ or an expansion, which means
that the range is larger than the domain. In this case it can be shown that only three
rounds (or a single L-R randomizer) are sufficient to obtain a perfect authentication
code. This construction has the advantage that it allows for more redundancy to
be added to the information. Based on this construction, the author also suggests a
new design principle for practical authentication systems, namely the combination of
confusion, expansion, and diffusion. It should however be noted that practical systems
rather perform a compression than an expansion.

4.4 Conclusion

The main contribution of the complexity theoretic approach is that it yields good
definitions of concepts that would otherwise remain vague. A second advantage is that

4.4. CONCLUSION 87

this approach yields provably secure constructions based on the hardness of specific
problems like factoring an RSA modulus or the discrete logarithm problem and even on
more general assumptions like the existence of one-way functions. Most constructions
in this chapter are completely impractical, and it is generally not possible to derive
practical schemes from these constructions. However, in some cases one can obtain
interesting design principles for more practical schemes.

88 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

Chapter 5

Hash Functions Based on Block
Ciphers

All cases are unique and very similar
to others. T.S. Elliot

5.1 Introduction

Two arguments can be indicated for designers of cryptographically secure hash func-
tions to base their schemes on existing encryption algorithms. The first argument is
the minimization of the design and implementation effort: hash functions and block
ciphers that are both efficient and secure are hard to design, and many examples to
support this view can be found in this thesis. Moreover, existing software and hardware
implementations can be reused, which will decrease the cost. The major advantage
however is that the trust in existing encryption algorithms can be transferred to a
hash function. It is impossible to express such an advantage in economical terms,
but it certainly has an impact on the selection of a hash function. It is important to
note that for the time being significantly more research has been spent on the design
of secure encryption algorithms compared to the effort to design hash functions. It
is also not obvious at all that the limited number of design principles for encryption
algorithms are also valid for hash functions. The main disadvantage of this approach is
that dedicated hash functions are likely to be more efficient. One also has to take into
account that in some countries export restrictions apply to encryption algorithms but
not to hash functions. Finally note that block ciphers may exhibit some weaknesses
that are only important if they are used in a hashing mode (cf. section 2.5.4).

In the first part of this chapter, some older proposals will be reviewed that combine
encryption with redundancy to protect the integrity. These proposals are not based
on a hash function, but they gave birth to the idea of using hash functions in a
cryptographic context. In the next parts existing proposals for MDC’s and MAC’s

89

90 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

will be reviewed. This review comprises the description in a uniform and compact
notation, a classification of known attacks, a new evaluation of the security, and in
some cases the description of a new attack. In case of an MDC a distinction will be
made between hash functions where the size of the hashcode equals the block length of
the underlying block cipher and hash functions where the size of the hashcode is twice
this length. This is motivated by the fact that most proposed block ciphers have a
block length of only 64 bits, and hence an MDC with a result twice the block length is
necessary to obtain a CRHF. Other proposals are based on a block cipher with a large
key and on a block cipher with a fixed key. Several MAC proposals are reviewed, and
a generalized treatment is presented of the interaction between encryption and MAC
calculation if the same key is used for both operations.

The most important new contribution of this chapter is the synthetic approach
for the case where the size of the hashcode equals the block length of the underlying
block cipher: all existing proposals have been generalized and the secure schemes have
been classified. This result was partially presented in [260]. A second contribution
is the proposal of three new schemes together with a security evaluation. A third
contribution is the application of differential cryptanalysis to hash functions based on
block ciphers. A fourth contribution is a generalized treatment of the addition schemes
and of the interaction between MAC calculation and encryption. Finally seven new
attacks are presented on schemes proposed in the literature.

For a hash function based on a (non-randomized) block cipher, the following nota-
tions have to be fixed. The encryption operation with the underlying block cipher will
be written as C = E(K,P), where P denotes the plaintext, C the ciphertext, and K
the key. The corresponding decryption operation will be denoted with P = D(K,C).
If the emphasis lies on the protection of secrecy and authenticity, the plaintext will
also be denoted with X. The size of plaintext and ciphertext in bits is n, while the size
of the key is k. The description will follow the general model that has been established
in section 2.4.1.

The following definition characterizes the efficiency of a hash function based on a
block cipher.

Definition 5.1 The rate R of a hash function based on a block cipher is the number
of encryptions to process a block of n bits.

5.2 Authentication based on encryption and redundancy

Before the introduction of the concept of one-way hash functions, researchers were
well aware of the fact that encryption with a block cipher does not offer a sufficient
protection against active attacks.

The most natural approach to improve the authenticity protection is to add a
simple form of redundancy to the plaintext. The consequence of this redundancy is
that only a small part of the ciphertext space corresponds to genuine plaintext. It
will however be shown that adding the sum of the plaintext blocks or a secret key is

5.2. AUTHENTICATION BASED ON ENCRYPTION AND REDUNDANCY 91

generally not sufficient. But first two different approaches will be considered, namely
randomized encryption and special modes of use.

5.2.1 Authentication based on randomized encryption

The main goal of randomized encryption techniques is to improve the security of pri-
vacy protecting schemes against chosen plaintext and dictionary attacks. A system
where more than one ciphertext corresponds to a single plaintext is certainly harder
to cryptanalyze. Just like in case of the addition of redundancy to the plaintext, this
yields a ciphertext space that is larger than the plaintext space. However, it will be-
come clear that this redundancy can generally not help to protect the authenticity of
the plaintext. The discussions will be limited to the McEliece public-key cryptosystem
and a new mode of use of a block cipher.

In 1978, R. McEliece proposed a new public-key cryptosystem based on algebraic
coding theory [207]. The system makes use of a linear error-correcting code for which a
fast decoding algorithm exists, namely a Goppa code. The idea is to hide the structure
of the code by means of a transformation of the generator matrix. The transformed
generator matrix becomes the public key and the trapdoor information is the structure
of the Goppa code together with the transformation parameters. The security is based
on the fact that the decoding problem for general linear codes is NP-complete [17].
For each irreducible polynomial g(x) over GF (2m) of degree t, there exists a binary
irreducible Goppa code of length n = 2m and dimension k ≥ n − mt, capable of
correcting any pattern of t or fewer errors. As it is a linear code, it can be described
by its k × n generator matrix G. With the aid of a regular k × k matrix S and an
n× n permutation matrix P , a new generator matrix G′ is constructed that hides the
structure of G:

G′ = S ·G · P .
The public key consists of G′, and the matrices S and P together with g(x) are the
secret key. The new matrix G′ is the generator matrix of another linear code, that
is assumed to be difficult to decode if the trapdoor information is not known. The
encryption operation consists of the multiplication of the k-bit message vector X by
G′ and the modulo 2 addition of an error vector e with Hamming weight t:

C = X ·G′ ⊕ e .

The first step of the decryption is the computation of C · P−1. Subsequently the
decoding scheme makes it possible to recover X · S from

C · P−1 = (X · S ·G)⊕ (e · P−1) .

The plaintext X is finally constructed by a multiplication with S−1. At first sight
one would expect that this scheme offers some protection against active attacks: the
probability that a random ciphertext is decodable is equal to

2k−nσtn with σtn =
t∑
i=0

(
n

i

)
,

92 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

which is about 2.5 · 10−47, for the usual parameters n = 10 and t = 39. If the
variant by F. Jorissen is used [165], a small part of the error correcting capability is
retained at the cost of a decreased security level. This implies that a limited number
of random modifications can still be corrected by the code. However, if an attacker
wants to modify a particular plaintext bit, he simply has to add to the ciphertext the
corresponding row of the public generator matrix G′.

A solution to this problem was given by R. Safavi-Naini and J. Seberry in [291].
The idea is to start from a set of k′-bit messages (k′ < k), and to transform these into
a set of k-bit messages with a systematic linear code that is kept secret:

X = X ′ ·Gs .

Note that this method is a MAC as it is based on a secret key. One can show that
the probability of impersonation is equal to the combinatorial bound: 2k

′
/2k (cf. sec-

tion 3.2.2). If a single cryptogram C1 is observed, an attacker gets some information
on the secret linear code. However, he is not able to exploit this information as he
is not able to compute the corresponding X1, which is equivalent to breaking the
McEliece public-key cryptosystem. If two cryptograms are observed, an attacker has
all information available to generate a new authentic message: it is sufficient to define
X3 = X1 ⊕X2 (the authentic messages form a vector space). However, this assumes
that the attacker is able to obtain X1 and X2, which is again computationally infeasi-
ble. However, it is not mentioned in [291] that it is trivial to perform such a selective
forgery with a known text attack. The protection of authenticity was also suggested
in [189] for the secret key variant of McEliece by T. Rao and K. Nam [275]. However,
it is very likely that this will increase the vulnerability of a scheme that has shown to
be insecure against a chosen plaintext attack [315].

A second scheme that will be discussed is a new mode of use for a block cipher that
was put forward in [188]. The main goal of the “random code chaining” (RCC)
mode is to make it easier to modify part of the plaintext, while keeping the chaining of
blocks and a limited error propagation. The disadvantage is the redundancy of 50%.
The ciphertext corresponding to t n/2-bit plaintext blocks is equal to

Ci = E(K,Xi ⊕Ri−1‖Ri) ,

where Ri (1 ≤ i ≤ t) are random n/2-bit blocks and R0 is a function of K. The
authors however wrongly claim that RCC makes the ciphertext resistant to authenticity
threats: it is true that any modification to the ciphertext will yield random plaintext,
but in spite of the redundancy no mechanism to verify the authenticity is present. The
problem is that the authenticity of the random information can not be checked (by
definition). The same applies for the less secure variations that are discussed in [188].

5.2.2 New modes of use

New modes apart from the 4 standard ones (ECB,CBC,CFB,OFB) (cf. appendix A)
have been introduced to improve characteristics like error propagation and integrity
protection.

5.2. AUTHENTICATION BASED ON ENCRYPTION AND REDUNDANCY 93

A first mode of use was proposed in 1975 by H. Feistel [105] and was called “block
chaining”. The basic idea behind the scheme was already suggested by the same author
in 1973 [104]. The idea is to append n′ bits of the previous ciphertext block to the
plaintext block of n− n′ bits, or:

Ci = E(K, chopn−n′(Ci−1)‖Xi) ,

where C0 is a secret and time dependent IV , and the function chopr drops the r
least significant (or rightmost) bits of its argument (cf. chapter 4). It is suggested
that n′ ≤ n/2, or the redundancy is at most 50%. The designer claims that any
modification will be detected with a probability of 1 − 2−n

′
. It is however clear that

an active attacker will look for two ciphertext blocks with the same n′ most significant
bits. After he has collected 2n

′/2+1 ciphertext blocks, his success probability is about
63%; this is in fact a birthday attack as described in section 2.5.1.3. If he has found
a match, he is able to substitute the corresponding blocks without being detected.
Observe that this attack does not require the knowledge of the plaintext blocks.

The mode proposed by S. Matyas and C. Meyer ([215], pp. 100–105) is called
“plaintext-ciphertext block chaining” (PCBC):

Ci = E(K,Xi ⊕Xi−1 ⊕ Ci−1) .

Some redundancy is added to the plaintext under the form of an additional block
Xt+1. This block allows for the computation of the ‘hashcode’ as the last ciphertext
block, or MDC = Ct+1. The authors suggest that Xt+1 can be either constant, or the
initial value IV , or the first block X1. For completeness it has to be specified that X0

equals the all zero block. The proposers also discuss the security of this mode. It is
stated correctly that if the ciphertext blocks C1 through Ci are garbled, resulting in
C ′

1 through C ′
i and X ′

1 through X ′
i, a correct MDC will be obtained if

Ci ⊕Xi = C ′
i ⊕X ′

i .

They conclude that it is infeasible to find a message X ′ 6= X resulting in the correct
value for Ct+1, as “under normal conditions an opponent will not know the secret cipher
key K, and without knowledge of this key it is computationally infeasible to compute
the authentication code or to make systematic changes to the ciphertext that would
escape detection”. It will be shown that this is not correct: if the message contains
more than n blocks and if the opponent knows the t − n blocks Xi (with n ≤ i < t)
and n plaintext-ciphertext pairs, he can easily modify the message without affecting
the authentication code. The equation to be solved can be rewritten as:

i⊕
j=1

C ′
j ⊕D(K,C ′

j) = Ci ⊕Xi ⊕ IV = Ti .

The attacker will split the n blocks C ′
j ⊕ D(K,C ′

j) in two groups of size n/2 and
generate 2

n
2 − 1 possible linear combinations in every group. From section 2.5.1.3 it

94 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

follows that he is likely to find two values with a difference of Ti (note that he can add
Ti to one of the two groups and look for a match).

A third mode of use was proposed in [163], namely “OFB with a Non-Linear
Function” (OFBNLF):

Ci = E(Ki, Xi) Ki = E(K,Ki−1) .

It yields an infinite forward error extension in case of the deletion or insertion of
a message block, while the modification of a single ciphertext block results in only
one garbage plaintext block. It is clear that this approach depends on the internal
redundancy of the message, as there is no mechanism provided to distinguish between
authentic and garbage plaintext. Moreover, even if redundancy is present, the deletion
of the last blocks would not be detected. This can only be thwarted if a block count
field is introduced, but this prevents insertion or deletion of blocks for all other modes
too.

Finally it is remarked that in case of stream ciphers one can also improve the
protection against active attacks by selecting different modes. This can make it hard
for an attacker to produce the ciphertext corresponding to a specific plaintext [164],
but a receiver has to decide whether the plaintext is authentic based on its internal
redundancy.

5.2.3 Addition schemes

A third type of schemes consist of adding some simple redundancy to the plaintext,
namely the modulo 2 sum of the plaintext blocks. This construction can be considered
as the first simple proposal for a ‘hash function’. According to the general model it
can be described as follows:

f = Hi−1 ⊕Xi ,

with IV = 0. The resulting MDC is appended to the plaintext, which is subsequently
encrypted in CBC (Cipher Block Chaining), CFB (Cipher Feedback), OFB (Output
Feedback), PCBC (Plaintext Ciphertext Block Chaining) mode, or OFBNLF (Output
Feedback with Non-Linear Function) using a secret key. It is clear that this scheme
can only be used if integrity protection is combined with privacy protection. Moreover
its security will depend on the mode of use of the encryption algorithm.

The scheme (combined with the first three modes) was proposed by the U.S. Na-
tional Bureau of Standards and [167] “found its way into a number of publications
(notably a draft of Federal standard 1026) and books [215], and enjoyed considerable
appeal due to its simplicity”. Because of this simplicity the security depends on the
mode of the encryption algorithm, but all proposed modes have been shown to be
totally insecure. The attacks that have been described have all been limited to the
first three modes [6, 166, 167, 209]. Table 5.1 indicates which manipulations can be
carried out at block level. In CFB, insertions are only undetected if the last ciphertext
block and the IV are not affected. Also for the CFB mode, one has to remark that
if the size of the feedback variable is maximal and equal to n, that permutations of

5.2. AUTHENTICATION BASED ON ENCRYPTION AND REDUNDANCY 95

blocks will also be undetected. This was not observed in the extensive treatment of
these schemes in [166, 167]. In case of the two special modes, PCBC and OFBNLF,
substitutions can be carried out if a set of plaintext-ciphertext pairs is known for a
given key. Of course insertion of one or more blocks can always be thwarted with a

mode CBC CFB OFB PCBC OFBNLF
insertion

√ √

permutation
√ √ √

substitution
√ √ √

Table 5.1: Manipulations that are not detectable for different modes of operation.

block count field. Note that these manipulations require no access to the secret key.
If the attacker has access to the key, these schemes can also be broken with a meet in
the middle attack (cf. section 2.5.2.1), as will be discussed in section 5.3.1.1.

For the three conventional modes, only the attack on the CBC mode will be dis-
cussed. For more details the reader is referred to [167]. It is sufficient to observe that
a manipulation of the ciphertext blocks C1 through Ct goes undetected if the sum
modulo 2 of the resulting plaintext blocks remains equal to Ht+1. This can be restated
as follows:

Ht+1 = IV ⊕
n⊕
i=1

Ci ⊕
n⊕
i=1

D(K,Ci) .

It can be seen that permutations of blocks are not detectable, and the same holds for
an even number of insertions of a given block.

For the PCBC mode combined with an addition scheme, the attack described in
the previous section can be extended as follows. The modulo 2 sum of all plaintext
blocks can be written as

t−1⊕
j=1

(
C ′
j ⊕D(K,C ′

j)
)
⊕ IV ⊕D(K,Ct) .

The substitution leaves the first sum unchanged, and Ct is not modified by assumption,
hence Ct+1 will not be altered.

In case of OFBNLF, the modulo 2 sum of the plaintext blocks is equal to

t⊕
j=1

D(Ki, Ci) .

If b plaintext-ciphertext pairs are known for a set of a keys Ki, a birthday attack
can produce a message with a given MDC if a · b ' 2n/2. On the other hand, if the
ciphertext corresponding to a chosen plaintext can be obtained, it is very easy to cancel
any known changes to the sum. If the scheme is used with care, i.e., the starting value
for the key is always different, it is very hard to obtain the required data. On the other

96 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

hand, it should be noted that it is a scheme with rate equal to 2. It will be shown that
more efficient and more secure solutions are available that are based on a secure hash
function.

Soon after the discovery of weaknesses a more secure generalization was proposed
by S. Matyas and C. Meyer:

f = (Hi−1 +Xi) mod 2m m > 1 .

However, it has been pointed out [167] that not all weaknesses are avoided:

• CBC: inserting 2i identical blocks results in a probability of detection of 1/2m−i.
• CFB with maximal size of feedback variables: inserting 2i identical blocks results

in a probability of detection of 1/2m−i (again this was not noticed in [167]).
• OFB: several subtle manipulations are possible if m ≤ n. Two bits that are at

a distance of n and have a different value can be both changed. If their value is
not known, the probability of not being detected equals 1/2 if their position in
the block is smaller than m and 1 else.

Some of these weaknesses can be avoided by selecting a sufficiently large value of m.
However, this class of linear or near-linear schemes is still weak as was observed by
M. Smid [167]. If part of the plaintext is known, it is rather easy to calculate the error
term for the MDC. Subsequently the encrypted value of the new MDC is obtained
using a chosen plaintext attack. An alternative is to insert the ciphertext corresponding
to a correcting plaintext block.

Some proposals were made to replace the addition schemes by a simple CRC (Cyclic
Redundancy Check). Although it is clear that there will not be a comparable inter-
ference with the common modes of block ciphers, we believe that this should not be
recommended, as for these schemes it is very easy to modify the message without
affecting the checksum. Hence the security of the combination of a CRC and an en-
cryption algorithm should be checked for every algorithm, which implies that this can
never be a generally recommended or standardized solution.

5.2.4 A simple MAC

The simplest MAC that one can imagine is used for message authentication in the
military environment and has been described by G. Simmons [310]. The authentication
key is stored into a sealed tamper resistant box and it is used only once. The MAC
is simply equal to a secret key and is appended to the message. The security of
the system depends on the fact that subsequently the extended message is encrypted
with an algorithm that uses cipher or text feedback. Under the assumption that the
encryption algorithm is secure, and that the encryption key is not compromised, the
probability for an opponent to impersonate or substitute a message is 2−n, if the size of
the MAC is n bits. This system is not practical in an industrial environment, because
a different key is required for every message. Moreover its security depends completely
on the subsequent encryption. This is not the case if a MAC is used that satisfies the
definition given in section 2.2.

5.3. OVERVIEW OF MDC PROPOSALS 97

5.3 Overview of MDC proposals

In the first class of proposals, the size of the hashcode is equal to the block length n of
the underlying block cipher algorithm. At the time of their proposal, the requirements
to be imposed on hash function were not as well understood as today. It is not the
goal of this thesis to study the evolution of the concept but to indicate whether these
construction meet the current requirements for a OWHF or a CRHF. It is clear from
the definitions of chapter 2 that a construction where the size of the hashcode equals
the block length will only yield a CRHF if the block length n is at least 128 bits.
This is not the case for the currently proposed block ciphers like DES [8, 108], FEAL
[225, 227, 304, 305], and LOKI [33, 34]. The designers of these scheme had the intention
to produce a OWHF with the available block ciphers, and it should be carefully checked
whether or not these proposals do or do not yield a CRHF if n ≥ 128. A second class
of proposals describes how to construct a CRHF with size of hashcode equal to 2n bits
based on a block cipher with block length equal to n bits. A third class of schemes
constructs a OWHF and a CRHF based on block ciphers with block length equal to
64 bits and key size twice as large. Examples of such ciphers are PES [181], IPES or
IDEA [182, 184], and FEAL-NX [228]. Finally a new class of proposals is made where
the key is chosen to be constant.

In order to avoid confusion, the attention of the reader is drawn to the fact that in
this chapter n is used for the block length of the block cipher, while this symbol was
used previously to denote the size of the hashcode. This is certainly no problem if both
are equal, and if two different symbols are required, which is the case in section 5.3.4,
the size of the hashcode will be denoted with h.

5.3.1 Size of hashcode equals block length

Three types of schemes can be distinguished: the first class is based on the simple
modes of use, the second class uses a chaining of blocks that allow an attacker to
go backwards in the chain, while the third class of schemes will not allow such an
operation. Subsequently a synthetic approach will be discussed, that explores a large
number of schemes and allows to identify a subset of these schemes that are secure.

5.3.1.1 Conventional modes of use

In fact these schemes were never proposed as such, but some confusion arose in some
overview papers [230, 254] because of the attacks described in [6]. These attacks are
in fact attacks on a MAC using these modes, where the attacker is privy to the key.
However, it is of interest to understand why these schemes are insecure if they are used
to generate an MDC.

The two modes that exhibit the required error propagation for the generation of
an MDC are the CBC and the CFB mode. As the computation may not involve any
secret quantities, it has to be assumed that both key and initial value are public.

CBC : f = E(K,Hi−1 ⊕Xi) .

98 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

In case of the CBC mode, it is very easy to change all blocks but the first one, compute
the new value H ′

1, and take X1 = D(K,H ′
1) ⊕ IV . This is a correcting block attack

(cf. section 2.5.2.4). For the CFB the following description can be given:

CFB : f = E(K,Hi−1)⊕Xi .

After encryption of the last block, the outputHt is encrypted with keyK and the last n
bits of ciphertext Hi are obtained. The last step is added to avoid a linear dependence
of the MDC on the last plaintext block. If the feedback value is n bits long, the last n
bits are simply E(K,Ht), but if it is shorter the hash value will comprise more than
one ciphertext block. Here a similar attack applies: modify all blocks but the first one,
compute the new value H ′

1, and take X1 = E(K, IV) ⊕ H ′
1. The limitation of these

attacks is that at least one block of the second plaintext will be random. This can be
solved by applying a meet in the middle attack (cf. section 2.5.2.1).

5.3.1.2 Invertible key chaining

This type of hash functions is based on the fact that a good block cipher can withstand
a chosen plaintext attack: this implies that it is computationally infeasible to determine
the key even if a large number of adaptively chosen plaintext and ciphertext pairs are
known. For a larger class of schemes, the function f can be defined by

f = E(Xi ⊕ s(Hi−1),Hi−1) ,

with s a public function that maps the ciphertext space to the key space (in the case
of DES a simple example is the discarding of the parity bits). The first proposals for
s were the zero function [274] and the identity, attributed to W. Bitzer in [71, 86]. In
the first case, it is easily seen that the scheme is vulnerable to a meet in the middle
attack (cf. section 2.5.2.1), as was pointed out by R. Merkle.

However, R. Winternitz [327] has shown that this is also the case for s the identity
function: the idea is to assume a value of K = Xi ⊕ Hi−1. The plaintext resulting
from the decryption of Hi with key K is equal to Hi−1, and Xi can subsequently be
computed as K ⊕ Hi−1. Finally, it was remarked that any choice of s results in the
same attack [230].

Because all these schemes were considered to be insecure, the proposals were
amended to thwart the attacks. It will however be shown that all these proposals
are vulnerable to an extended meet in the middle attack. The first idea [70] was re-
peating the message p times, another one was repeating the whole scheme for p different
initial values. The first suggestion is very weak, as the meet in the middle attack will
still work if Hit = IV , for 1 ≤ i ≤ p. However this implies that one can only produce
a collision and not a preimage of a given value. In [56] it was explained how the meet
in the middle attack can be extended to attack both suggestions for p = 2 and p = 3,
while a further generalization in [123] shows that an attack on a p-fold iterated scheme
would not require O(2

pn
2) but only O(10p ·2

n
2) operations. For n = 64 this is infeasible

for p ≥ 8, but this would mean that the scheme becomes very inefficient.

5.3. OVERVIEW OF MDC PROPOSALS 99

A third proposal (attributed to R. Merkle in [70]) is first encrypting the message
in CBC or CFB mode (with a random non-secret key K and initial value IV) before
applying the hash function. This implies a reduced performance: the rate equals
2. The idea is to thwart a meet in the middle attack by introducing a dependency
between the blocks that enter the hash function. We were able to extend the meet in
the middle attack to a constrained meet in the middle attack (cf. section 2.5.2.2) to
take into account this extension.

• Generate a set of r messages for which the last ciphertext block of the CBC
encryption with initial value IV and key K is equal to IV ′ ; this can be done
easily with an appropriate selection of the last plaintext block (or with a meet
in the middle attack).

• Generate a second set of r messages and encrypt these messages in CBC mode
with initial value IV ′ and key K.

• As the two message parts are now independent, one can use the set of two
‘encrypted’ messages in a simple meet in the middle attack.

It should be remarked that for all previous schemes the fact that one can go backwards
implies that it is trivial to produce a “pseudo-preimage” for a random initial value.

A fourth possibility suggested in the book of J. Seberry and J. Pieprzyk [299] is to
introduce additional redundancy Xt+1 in the message under the form of the modulo 2
sum of X1 through Xt. However, a constrained meet in the middle attack can take into
account the redundancy. It is sufficient to require that the sum of all first variations is
equal to T1 and the sum of all second variations is equal to T2, with Xt+1 = T1 ⊕ T2.

Finally note that when DES is used as the underlying block cipher, every scheme
of this type is vulnerable to an attack based on weak keys [327] (cf. section 2.5.4.2): for
a weak key Kw DES is an involution which means that E(Kw, E(Kw, X)) = X, ∀ X.
Inserting twice a weak key as a message block will leave the hashcode unchanged in
all the schemes (even the modulo 2 sum of the blocks remains the same). Note that in
the proposal of R. Merkle the actual message block has to be computed by decryption
of the weak keys [6]. This attack can be thwarted by putting the second and third
key bits to 01 or 10: for all weak keys these bits are equal. As a consequence the rate
increase from 1.14 to 1.19, and the security level is at most 54 bits.

5.3.1.3 Non-invertible key chaining

The next type of hash functions is also based on key chaining, but tries to avoid the
backward recurrence. To simplify the notation, we define

E⊕(K,X) = E(K,X)⊕X

and
E⊕⊕(K,X) = E(K,X)⊕X ⊕ s′(K) .

Here s′ is a public function that maps the key space to the ciphertext space.

100 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

One scheme is proposed by S. Matyas, C. Meyer, and J. Oseas in [203], and referred
to as “Key Block Chaining” in [168]:

f = E⊕(s(Hi−1), Xi) ,

with s a public function that maps the ciphertext space to the key space. A second
scheme is attributed to D. Davies in [327, 328], and to C. Meyer in [73]. Therefore it
is denoted with the Davies-Meyer scheme in [223, 269]:

f = E⊕(Xi,Hi−1) .

Also in [203], interleaving of the first two schemes is proposed. A third scheme was
proposed by the author and studied by K. Van Espen and J. Van Mieghem in [318].
It appeared independently in [226] as a mode of use for the N-hash algorithm. N-hash
is a dedicated hash function that has a Feistel structure [104, 105] and is based on
the same design principles as FEAL. It will be discussed in more detail in chapter 7.
In 1990 the same scheme was proposed by Japan as a contribution to DP 10118-2,
the ISO document that specifies a hash function based on a block cipher [161]. The
function can be described as follows:

f = E⊕⊕(Hi−1, Xi) .

Another variation was proposed as a mode of use for the block cipher LOKI [33]:

f = E⊕(Xi ⊕Hi−1,Hi−1) .

The goal of adding Hi−1 is to prevent the key from being weak if Xi is equal to the
all zero or all one block. It was shown independently by E. Biham and A. Shamir
[22] and by B. den Boer [82] that weaknesses of LOKI (cf. section 2.5.4) can be used
to produce a second preimage (in fact 15 different preimages) in constant time. The
security of these schemes will be discussed in more detail in the next section.

5.3.1.4 A synthetic approach

A natural question that arises when all the previous schemes are considered is the
following: is it possible to find other schemes based on the same principles, or are the
described proposals the only ones that are secure? To limit the number of possibilities,
it will be assumed that the size of the key is equal to the block length of the algorithm.
This is not true for DES, but it could be easily satisfied if the first step of the key
scheduling is the discarding of the parity bits.

The block cipher has two inputs, namely the key input K and the plaintext input
P , and one output C. One can select for the inputs one of the four values: Xi, Hi−1,
Xi ⊕ Hi−1 and a constant value V . It is also possible to modify with a feedforward
FF the output C by addition modulo 2 of one of these four possibilities. This yields
in total 43 = 64 different schemes.

If the function Hi = f(Xi,Hi−1) is considered, five types of attacks have been
identified, extending the classification of section 2.4.2:

5.3. OVERVIEW OF MDC PROPOSALS 101

E
��

i+
?

?

P

-
K

-
FF ?

C

-

-

-

-

Xi ⊕Hi−1

Hi−1

Xi

V

Figure 5.1: Configurations for an MDC where the size of the hashcode is equal to the
block length. P , K, and FF can be chosen from the set {V,Xi,Hi−1, Xi ⊕Hi−1}.

Direct Attack (D): given Hi−1 and Hi, it is easy to find Xi. All schemes that are
vulnerable to a direct attack can in principle be used for encryption, where the
encryption of Xi is given by block Hi. Of course the CBC and CFB mode belong
to this class.

Permutation Attack (P): in this case Hi can be written as Hi−1 ⊕ f ′(Xi), where
f ′ is a one-way function: Xi can not be recovered from Hi and Hi−1, but the
hashcode is independent of the order of the message blocks, which means that a
second preimage or collision can be found easily. Moreover one can also insert
the same message block twice. These attacks are in fact trivial, as Hi depends
only linearly on Hi−1.

Forward Attack (F): given Hi−1, H ′
i−1, and Xi (note that this means that Hi is

fixed), it is easy to find an X ′
i such that f(X ′

i,H
′
i−1) = f(Xi,Hi−1) = Hi.

Backward Attack (B): given Hi, it is easy to find a pair (Xi,Hi−1) such that
f(Xi,Hi−1) = Hi.

Fixed Point Attack (FP): find Hi−1 and Xi such that f(Xi,Hi−1) = Hi−1. As was
already pointed out, this attack is not very dangerous: if the OWHF is secure,
it is hard to produce a message yielding this specific value Hi−1 as chaining
variable.

The order of these attacks has some importance: the possibility of a direct attack
means that a forward and a backward attack are also feasible, but the converse does
not hold. In case of a permutation attack, one can also apply a backward attack by first
selecting Xi and subsequently calculating Hi−1. If a forward attack is possible, one
can easily construct a second preimage for a given hashcode, but it is not necessarily
easy to construct a preimage of a given element in the range. In case of a backward
attack, a preimage (or a second preimage) can be found with a meet in the middle
attack. It is easy to show that if both a forward and a backward or permutation attack

102 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

are possible, a direct attack is also feasible. Indeed, let us assume that a direct attack
does not work. In that case, the feasibility of a forward attack implies that the three
inputs are either constant or equal to Xi ⊕ Hi−1. On the other hand, if one can go
backwards, or if a permutation attack applies, one is able to find a pair (Xi,Hi−1)
such that f(Xi,Hi−1) = Hi. In fact one will in this case only determine Xi ⊕ Hi−1,
and hence given Hi−1, one is able to find the corresponding Xi, which contradicts our
assumption.

A table has been compiled that shows which attacks are possible for a feedforward
of a constant (w.l.o.g. V is assumed to be equal to 0), Xi, Hi, and Xi⊕Hi. The attacks
are indicated with their first letter(s), while a “–” means that the function f is trivially
weak as the result is independent of one of the inputs. If none of these five attacks
applies, a

√
is put in the corresponding entry. An attack on the scheme in table 5.2

with a constant key and feedforward and plaintext equal to Xi ⊕Hi−1 (denoted with
a (∗) in the table) has also been discussed in [203].

choice of P
choice of FF choice of K Xi Hi−1 Xi ⊕Hi−1 V
V Xi – B (Rabin) B –

Hi−1 D – D –
Xi ⊕Hi−1 B B (Bitzer) F F
V – – D (CBC) –

Xi Xi – B B –
Hi−1

√
(Matyas et al.) D

√
D

Xi ⊕Hi−1 FP FP B B
V – D (CFB) B –

Hi−1 Xi P FP (Davies-Meyer) FP P
Hi−1 D – D –
Xi ⊕Hi−1 FP FP (Brown et al.) B B
V D – D –

Xi ⊕Hi−1 Xi P FP FP P
Hi−1

√
(Miyaguchi-Preneel) D

√
D

Xi ⊕Hi−1 B B F F
V P D F (∗) D

Table 5.2: Attacks on the 64 different schemes.

This large number of schemes can be reduced by considering linear transformations
of the inputs. A class of schemes that is derived from a single scheme by linear
transformation of variables will be called an equivalence class.

• In 7 equivalence classes the function depends on two independent inputs (Xi

and Hi−1), and 6 transformations are possible, as there are 6 invertible 2 × 2
matrices over GF (2). It can be shown that in 2 cases the function is secure or is

5.3. OVERVIEW OF MDC PROPOSALS 103

vulnerable to a fixed point attack, and in 5 cases the function is vulnerable to a
direct attack, a permutation attack, or a backward attack.

• In 7 equivalence classes the function depends on a single independent input.
Hence one has three possible inputs, namely Xi, Hi−1, and Xi ⊕ Hi−1, cor-
responding to the 3 nonzero vectors of length 2 over GF (2). If the function
depends on the sum of the two inputs, it is not trivially weak. However, it is
vulnerable to a direct attack (2 cases out of 7) or to a forward attack (5 cases
out of 7).

• In 1 equivalence class the function is simply constant.

In table 5.3 an overview of the equivalence classes is given. A further classification is
made based on the number of constants in the choices CI. To characterize a class, a
relation is given between plaintext P , key K, and feedforward FF .

CI characterization class size – D P B F FP
√

0 FF = P , (P 6= K) 6 4 2
FF = P ⊕K, (P 6= K) 6 4 2
FF = K, (P 6= K) 6 2 4
P = K, (FF 6= P) 6 2 2 2
FF = P = K 3 2 1

1 FF = V , (P 6= K) 6 2 4
P = V , (FF 6= K) 6 2 2 2
K = V , (FF 6= P) 6 4 1 1
FF = V , (P = K) 3 2 1
P = V , (FF = K) 3 2 1
K = V , (P = FF) 3 2 1

2 FF = P = V 3 2 1
FF = K = V 3 2 1
P = K = V 3 2 1

3 FF = P = K = V 1 1
Total 64 15 14 5 13 5 8 4

Table 5.3: Overview of the 15 variants, sorted according to the number of constant
inputs, denoted with CI.

One can conclude that only 4 schemes of the 64 are secure, and that 8 insecure
schemes are only vulnerable to a fixed-point attack. These 12 schemes are listed in
table 5.4 and graphically presented in figure 5.2. The roles of Xi and Hi−1 in the input
can be arbitrarily chosen, and the dotted arrow is optional (if it is included, the key is
added modulo 2 to the ciphertext). For the dash line, there are three possibilities: it
can be omitted or it can point from key to plaintext or from plaintext to key. There
are two equivalence classes that are secure, and their simplest representatives are the

104 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

scheme by Matyas et al. (no. 1 in the table) and the scheme by Miyaguchi and Preneel
et al. (no. 3 in the table). The properties of these 12 schemes are given in table 5.5
together with fixed points and some properties if the underlying block cipher is DES.
For each of these schemes it is possible to write a “proof” of their security based on a
black box model of the encryption algorithm, as was done for the Davies-Meyer scheme
(number 5 in the table) in [328]. The basic idea is that finding a (pseudo)-preimage
for a given hash value is at least as hard as solving the equation Hi = f(Xi,Hi−1) for
a given value of Hi. The expected number of evaluations of f() is shown to be 2n−1.

The schemes will now be compared in more detail based on their vulnerability to
fixed point attacks, to attacks based on weak keys and on the complementation prop-
erty, and to differential attacks. The efficiency of the schemes will also be compared.

E
��

?i+
?

?

r

�

-

-

Figure 5.2: Secure configuration for an MDC based on an encryption algorithm and a
feedforward (size of hashcode = block length).

Fixed points Fixed points for the function f can only be found easily if Xi is used
in the key port. A large set of fixed points can be found in that case, by varying the
parameter K. This implies that starting from any initial value, one can easily produce
a collision with a birthday attack. The equations are given for scheme 5, as discussed
in [227], but can be extended to schemes 5 to 12.

• Generate r values of D(K, 0), by randomly selecting K.

• Generate r values of E(X1, IV)⊕ IV , by randomly selecting X1.

• The probability of finding a match is about 0.5 if r ' 2n/2.

This attack provides an efficient way to produce a preimage for the value D(K, 0). If
only a pseudo-preimage is required, only constant time is necessary. However, if the
attacker gets a randomly selected Ht, he will be unable to find the corresponding
value of K (this would mean that he can break the cryptosystem), and hence this

5.3. OVERVIEW OF MDC PROPOSALS 105

no. function expression
1 E(Hi−1, Xi)⊕Xi

2 E(Hi−1, Xi ⊕Hi−1)⊕Xi ⊕Hi−1

3 E(Hi−1, Xi)⊕Xi ⊕Hi−1

4 E(Hi−1, Xi ⊕Hi−1)⊕Xi

5 E(Xi,Hi−1)⊕Hi−1

6 E(Xi, Xi ⊕Hi−1)⊕Xi ⊕Hi−1

7 E(Xi,Hi−1)⊕Xi ⊕Hi−1

8 E(Xi, Xi ⊕Hi−1)⊕Hi−1

9 E(Xi ⊕Hi−1, Xi)⊕Xi

10 E(Xi ⊕Hi−1,Hi−1)⊕Hi−1

11 E(Xi ⊕Hi−1, Xi)⊕Hi−1

12 E(Xi ⊕Hi−1,Hi−1)⊕Xi

Table 5.4: A list of the 12 secure schemes for a one-way function based on a block
cipher.

no. fixed points properties if E = DES differential
Xi Hi−1 rate Kw compl. attack

1 − − 1 0
√

Xi

2 − − 1 0
√

Xi

3 − − 1 Kw - Xi

4 − − 1 Kw - Xi

5 K D(K, 0) n/k 0
√

Hi−1

6 K D(K,K)⊕K n/k 0
√

Hi−1

7 K D(K,K) n/k Kw - Hi−1

8 K D(K, 0)⊕K n/k Kw - Hi−1

9 D(K,K) D(K,K)⊕K 1 0
√

Xi,Hi−1

10 D(K, 0)⊕K D(K, 0) n/k 0
√

Hi−1

11 D(K, 0) D(K, 0)⊕K 1 Kw - X,Hi−1

12 D(K,K)⊕K D(K,K) n/k Kw - Xi,Hi−1

Table 5.5: Properties of the 12 secure schemes: fixed points, properties if DES is used
as the underlying block cipher, and variables to be modified in case of a differential
attack.

106 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

weakness is of no use to him. In case of collisions, the situation is different. This
attack yields in constant time collisions if the initial value can be selected by the
attacker. For a given initial value, this attack is not more efficient than a birthday
attack on the hashcode. A way to thwart a fixed point attack that was used in the
proofs for complexity theoretic constructions is the use of a prefix-free encoding of
the message. A more practical approach is adding the length of the message in the
padding scheme. The conclusion is that the fixed point attack is in practice not very
dangerous.

Weak keys and complementation property A second issue is attacks based
on (semi)-weak keys (cf. section 2.5.4.2) and on the complementation property (cf.
section 2.5.4.1). They are only relevant if the underlying block cipher is DES or if
it has similar properties. An attacker will try to use a weak key and one of the 232

corresponding fixed points. Note that these are fixed points for the block cipher and
not for the hash function. This implies that he has to be able to control the key input,
which is in general not possible for schemes 1 through 4. Secondly, the plaintext has to
be one of the 232 fixed points: this will happen after on average 229 iterations. Indeed,
the probability that a random plaintext is a fixed point for a weak key is equal to 2−32,
and there are 4 weak keys. In case of a pseudo-preimage attack, one can easily control
both key and plaintext, and hence this attack is directly applicable to the 12 schemes.
Table 5.5 indicates whether the output will be equal to 0 or to the weak key Kw. For
the anti-palindromic keys, a similar attack can be applied using the anti-fixed points.
The output will then be 1 or the complement of the anti-palindromic key. This attack
is not very dangerous: it only shows that it is relatively easy to find many pseudo-
preimages and preimages of these values. It is also possible to extend the pseudo-
collision attack in [227] that uses the existence of (semi)-weak key pairs K1,K2 such
that E(K2, E(K1, P)) = P . Due to the complementation property one can construct
a second input that yields the same output (

√
in table 5.5) or the complement of that

output (- in table 5.5). In the case of DES, the problems with (semi)-weak keys and
the complementation can easily be solved [216]: fix bits 2 and 3 of the key to “01” or
“10”. The price paid for this modification is that k will decrease from 56 to 54. This
will also limit the security level against random attacks, as will be shown below. The
vulnerability to weak keys was remarked by the author (in a 1988 proprietary report)
and independently in [216]. In 1990 an extensive study of the use of the combination
of (semi)-weak keys and the complementation properties was published [227]. For the
Matyas-Meyer-Oseas and the Davies-Meyer scheme they construct collisions for the
function f . However, this means no threat to these functions: these constructions only
yield a second pseudo-preimage in case of a OWHF or a pseudo-collision for a CRHF.

Differential attacks A third element is the resistance to differential attacks (cf.
section 2.5.2.7). The basic idea is to look for differences between the functions that
yield the same output with a high probability. The use of differential attacks on this
type of hash functions was suggested to the author by I. Damg̊ard [67]. Similar ideas

5.3. OVERVIEW OF MDC PROPOSALS 107

were developed by E. Biham [24], without looking into a detailed optimization. For a
more detailed treatment the reader is referred to appendix C. An attacker will look for
a characteristic for the hash function that yields a collision, i.e., an output exor of zero.
This will have to be translated into properties for the characteristics of the underlying
block cipher. For all 12 schemes that are given in table 5.5, a characteristic is necessary
where the exor of the input is equal to the exor of the output. In the last column of
the table it is indicated which variables have to be modified. It is clear that it is easier
for an attacker to come up with two blocks Xi with a given difference than to find two
messages for which the hash value after i − 1 blocks has a given difference. One can
conclude that the first four schemes are more vulnerable to differential attacks.

The following differences with differential cryptanalysis of a block cipher used in
ECB mode can be indicated:

• The key is known (in some cases it can be even chosen by the attacker), which can
be used in several ways. First, the input data can be selected in such a way that
the characteristic will be satisfied trivially in the first 3 rounds (this argument
holds only for collisions and not if a second preimage is constructed). A second
element is that an early abort strategy will reduce the number of computations:
it can be checked after every round whether the characteristic is still satisfied. A
third element is that the characteristics with enhanced probability can be used:
in the case of DES one can show that if certain relations between key bits are
present, the probability of the best known iterative characteristic will increase
with a factor 1.6. Finally the attacks can be performed off-line and in parallel,
which renders them much more realistic.

• A single right pair is sufficient, i.e., a pair that follows the characteristic. Most
differential attacks on block ciphers need a large set of right pairs.

• It is not possible to use a 1R-, 2R- or 3R-attack: in these attacks the charac-
teristic is 1, 2, or 3 rounds shorter than the block cipher. This means that the
characteristic has to be 1, 2, or 3 rounds longer and will have a lower probabil-
ity. Moreover, a characteristic with an even number of rounds (namely 16) is
necessary to attack the scheme based on DES, but for the time being no good
characteristics with an even number of rounds are known.

The number of operations to construct a collision and a second preimage for one of
the 12 hash functions based on DES with t rounds (t odd) is indicated in table 5.6.
The second column should be compared to a birthday attack that requires about 233

encryptions, while the third column should be compared to 256, the expected number
of operations to find a second preimage. Note that in case of a birthday attack the
number of solutions increases quadratically with the number of trials.

The attacks indicated can further be optimized by a more careful selection of the
inputs: if one only tries to look for a second preimage if the input satisfies certain
constraints, the number of operations will be comparable to the number of operations
to construct a collision. Another possibility is to start the attack in the middle, and to

108 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

number of rounds collision second preimage
log2(# encryptions) log2(# encryptions)

7 14.4 21.6
9 19.6 26.8
11 26.6 33.8
13 34.0 41.2
15 41.2 48.4
17 48.3 55.5

Table 5.6: The number of encryptions for a differential attack on one of the 12 DES-
based hash functions if DES had an odd number of rounds.

work forwards and backwards: this could reduce the workload to produce a collision
with a factor 146. The major problem however is the search for good characteristics
with an even number of rounds. It would be interesting to prove a lower bound on the
probability of such characteristics, which could show that differential attacks are not
feasible.

A second remark is that by symmetry arguments this attack is also applicable to
functions where the message block is entered through the key port: keys with a specific
difference can be chosen to yield specific outputs to the F -function. However, in the
case of DES this will not be very useful, as the same key bit appears at different places
in the F -function in every round. Therefore it is expected that only a very small
number of rounds can be attacked in this way. A further extension could be an attack
where both key and plaintext differences are used.

A third remark is that if FEAL [225] or FEAL-NX [228] are used as the underlying
block cipher, schemes 1 to 4 become very weak. In [21] a 4 round iterative characteristic
is shown with probability 1/256, for which lower and upper halves of the difference
pattern are equal. This means that for FEAL or FEAL-NX with 4r rounds, a single
encryption will yield a second preimage with a probability of 2−8r. For more details
the reader is referred to section 4 of appendix C.

The main conclusion is that if DES is used as the underlying block cipher, for the
time being differential attacks pose no serious threat to this type of scheme.

Efficiency A final element in the comparison of the different schemes is the efficiency.
If the message is used only in the key port, the rate will be equal to n/k, which is
equal to 1.14 in case of DES. If precautions against weak keys and the complementation
property have been taken, this increases to 1.19. A second less important issue is the
number of additional exors. Scheme 1 and 5 require only a single additional exor, while
all other schemes require 2 additional exors (note that in scheme 2 and 6 Xi ⊕Hi−1

has to be computed only once).
As a conclusion, one can state that the best solution is to avoid the situation where

an attacker can control the key input. This requires that the key input be fixed to

5.3. OVERVIEW OF MDC PROPOSALS 109

Hi−1, and leaves the possibilities 1 to 4: the plaintext and the feedforward value can be
either Xi or Xi⊕Hi−1. The advantage is that it becomes hard to force the key to be a
weak key, and block ciphers are designed to be secure for all possible plaintexts (there
should be not something like a “weak plaintext”). Hence precautions to avoid weak
keys are not very important: it should be difficult for an attacker to find a message
for which Hi is a weak or a semi-weak key. Moreover in this case it is not possible
to construct fixed points. If k < n, like for DES, there is another argument to select
as key input Hi−1: the rate equals 1 instead of n/k. The main disadvantage of these
schemes is that they are more likely to be vulnerable to a differential attack. Finally
it should be remarked that scheme 1 is considered for ISO standardization [159], but
we feel that the other 3 schemes certainly have the same strength, namely a security
level of k bits. In the case of a block cipher that is vulnerable to differential attacks,
one of the other schemes should be selected.

If k 6= n, the question arises whether it is possible to use variables Xi and Hi−1 of
length max (n, k), in order to maximize the security level. The idea is that bits that
are not used in the key or as plaintext might influence the output through some exors.
The following proposition shows that this is not possible:

Proposition 5.1 The security level of the OWHF is determined by the minimum of
k and n, with k the size of the key and n the block length.

Proof: This can be shown by checking systematically all 12 functions.

• For schemes 1 through 4 the situation is simple when k > n: as Xi is not added to
the key in these schemes, additional bits of Xi do not influence the output. They
could be concatenated to the ciphertext, but this yields only a linear dependence
of the output on these bits. Therefore n gives an upper bound to the security
level. If k < n the situation is more complicated.
For scheme 1 it is sufficient to find a match for one of intermediate k-bit Hi−1’s
even if the hashcode has a size of n bits. It is not possible to use a larger chaining
variable as Hi−1 is used only as the key.
For scheme 2 it is possible to feed the n − k bits of Hi−1 that are not used as
key bits to the input and output of the block cipher. If one of these bits is
modified, the plaintext could be kept constant through appropriate changes in
Xi. Owing to the feedforward of both Hi−1 and Xi to the ciphertext, changes
will be cancelled out. This yields 2n−k pairs (Xi,Hi−1) with the same image!
For scheme 3 the cancellation argument no longer holds, but the plaintext will
remain constant and the output will depend only linearly on the additional bits
of Hi−1. Therefore this can not be considered to be sufficiently secure.
For scheme 4 it is possible to keep the plaintext constant through appropriate
changes in Xi. This yields again a linear dependence of the outputs on the
additional bits of Hi−1.

• For schemes 5 through 8 the proofs can be copied by interchanging the role of
Xi and Hi−1 in the previous arguments.

110 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

• For scheme 9 the situation is simple if k > n. The additional bits of the plaintext
Xi could be added to the key and concatenated to the ciphertext. However,
finding a preimage is not harder, as these bits can be easily obtained from the
output. If k < n, the security level can not be increased as the bits of Hi−1 are
used only in the key port. A similar proof holds for scheme 10.
For scheme 11, if k > n, additional bits of Xi are added to the key. However,
the key can be kept constant by appropriate changes in Hi−1. As Hi−1 is added
to the ciphertext, the output will depend only linearly on the additional bits of
Xi. On the other hand if k < n, it is clear that the additional bits of Hi−1 will
be added to the ciphertext, yielding again a linear dependence. The arguments
for scheme 12 are similar to those for scheme 11.

Note that this proof only discusses the number of operations for a second preim-
age. It is clear that if one does not know a preimage for instance for scheme 1, that
determining Hi−1 and a corresponding Xi will require 2n operations (one can do no
better than guess with a success probability of 2−n).

To conclude this section, it will be discussed what the limitations are of the 12
secure functions. If they are used with a 64-bit block cipher (n = 64), it is clear that
they can only result in a OWHF. This means that it is always easy to produce for a
given IV two inputs yielding the same output. This can be done with a conventional
birthday attack or with the more sophisticated collision search attack proposed by J.-
J. Quisquater (cf. section 2.5.1.3). In [227] it is shown how the key collisions described
in [267, 270] can be used to produce a pseudo-collision for scheme 1. However, this is
trivial in the sense that the number of operations for a key collision search attack is
comparable to the number of operations for a collision search based on the birthday
attack (that requires more storage). Moreover the key collision search algorithm can
as well be applied directly to the hash function.

The limitations of a OWHF have been discussed in chapter 2: repeated use of these
functions will weaken them. Moreover if they are based on an iterative construction, it
is sufficient to find a preimage for one of the chaining variables. Hence if the function
has been applied to r t-block messages, the success probability of an attacker will
increase with a factor rt. The speed-up with the factor r could be avoided by selecting
a different IV for every message, but this requires that the authenticity of the different
IV ’s is protected. As discussed in chapter 2, the speed-up with the factor t could be
thwarted by adding the message length in bits at the end of the message. This is
clearly more efficient than the proposal in [328] to add a running count to one of the
arguments of f that is increased at every iteration [328], and protected together with
the hashcode. This running count should not be reset for a new message, which means
that in practice it will have to be at least 28 or 32 bits. If DES is used as the underlying
block cipher this would not work since the chaining variable would become too small.

The second question that remains to be resolved is whether these schemes yield a
CRHF in case n, k ≥ 128. For all methods that allow a backward attack, it will be
trivial to produce pseudo-collisions. Although these collisions do not form a real threat

5.3. OVERVIEW OF MDC PROPOSALS 111

to the system, it would be preferable to select constructions for which the function f
is not easily invertible. Otherwise it is possible with a meet in the middle attack to
produce the preimage for a given hashcode in O(2n/2) operations, where this is O(2n)
operations in the ideal case. Attacks based on fixed points are not so relevant: for
an initial value selected by an attacker they yield a collision in constant time, but for
a fixed initial value the construction of a collision is not more efficient than a simple
birthday attack. As a conclusion one can state that the best solution is to use one of
the schemes that is recommended for a OWHF in case n = 64.

5.3.2 Size of hashcode equals twice the block length

This type of functions has been proposed to construct a CRHF based on a block cipher
with a block length of 64 bits like DES. Therefore the functions in this section will be
intended for CRHF and not as a OWHF: for this class of functions the constructions
of the previous section offer a better solution.

5.3.2.1 Iteration of a OWHF

A very weak solution that is discussed in [6] is to keep as the result not only Ht but also
Ht−1. The scheme can be broken easily by fixing the last block and by subsequently
generating collisions for Ht−1. A second class of proposals is based on the iteration of a
scheme with an n-bit result for two different values of a parameter. All these solutions
are straightforward and very appealing, but the vulnerability of the iterated schemes
to generalized meet in the middle attacks (cf. section 2.5.2.3) renders them suspected.

• In the first scheme the parameter is the key, as is discussed in [6] for the addition
scheme followed by CBC encryption. This scheme will succumb to a generalized
meet in the middle attack.

• A second proposal is the initial value, as suggested in [168, 347] for the Matyas-
Meyer-Oseas scheme. In this case, one can find a preimage for a given value in
only 2 · 264 operations, and a second preimage in 2 · 256 operations if DES is used
as the underlying block cipher. The left and right halves of the hashcode will be
denoted with H1 and H2 respectively, and s is a mapping from the ciphertext
space to the key space. The first message block X1 is obtained from solving the
equation s(E(IV1, X1)⊕X1) = s(H1), which requires 256 encryptions. The next
message block X2 is obtained from the equation E(s(H1), X2)⊕X2 = H1; here
finding a solution requires about 264 encryptions. All subsequent message blocks
will then be chosen equal to X2, which implies that the left half of the hashcode
will always be equal toH1. Finding a match forH2 requires only 264 encryptions.
There is however a twist in this method: the value of H2i is obtained from an
injective mapping, namely E(s(H2i−1), X2)⊕X2). This means that after about
228 operations the values of H2i will be repeating. If the whole procedure would
be restarted, the efficiency of the attack would decrease. If however a second
solution is found for X2, denoted with X ′

2, a sufficient number of values of H2i

112 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

can be obtained from several combinations of X2 and X ′
2. In case of a second

preimage, it is sufficient to look for a match of the 112-bit chaining variables,
which requires only 256 operations.

If one of the IV ’s is a weak key, it is known that finding a fixed point X1 for
the block cipher is easy (cf. section 2.5.4). In this case one obtains H1 = 0,
which is again a weak key in the case of DES. The fact that the value of H2i
will be repeating fast can now be exploited to construct a collision in about 228

operations.

This scheme was replaced by a more secure scheme MDC-2, where an interaction
between the chains is introduced. Therefore it will be called MDC-1. In the next
section its security will be compared to the security level of MDC-2 and MDC-4.

• A third proposal is BMAC, that was originally described in Internet RFC 1040
[193]. It uses the CBC mode (without the addition), and for the generation
of the second part of the hashcode the order of the message blocks is reversed.
A constrained meet in the middle attack (cf. section 2.5.2.2) is described in
[223, 224]. Let Ht and H ′

t be the outcome of the CBC calculations if the message
is considered in normal and reverse order respectively. The message is split in
two parts: r variations on the first part are constructed such that they yield
with initial value IV ′ a reverse CBC hashcode of H ′

t, and r variations on the
second part are constructed such that they yield with initial value zero a reverse
CBC hashcode of IV ′. This guarantees that the reverse CBC condition will be
fulfilled if a message from the first set is concatenated to one of the second set.
Finally an ordinary meet in the middle attack is applied: one looks for matching
values of the chaining variable in between the two blocks for the forward CBC
calculation. The probability of a match is sufficiently high if r = 2

n
2 .

-

��

0 Ht

0IV ′H ′
t

Figure 5.3: Intermediate variables in the CBC computation for the attack on BMAC.

5.3.2.2 Schemes with rate greater than or equal to 2

The following schemes will be reviewed in this section: the proposal by Merkle, MDC-
2, MDC-4, the scheme by Zheng, Matsumoto, and Imai, and the Algorithmic Research
(AR) hash function.

5.3. OVERVIEW OF MDC PROPOSALS 113

The proposal by Merkle (Crypto’89) A first proposal [213] has the property that
its cryptanalysis requires at least 256 operations (in case of DES). Its construction is
based on the ‘meta-method’ that has been described in section 2.4.3. As a consequence,
it can be shown that the scheme is as secure as the underlying block cipher under
the assumption that this is a random function (black box model). Of course this
assumption does not hold if a specific block cipher is used: several deviations of random
behavior have been noted for e.g., the DES. The validity of the proof is limited by the
impact of these deviations on the security of the hash function. When the key length
equals k bits, the proposed function f reduces the input length of n+ k− 1 bits to 2k
bits. To simplify notation the expression E⊕(X) will be used, where the first k bits of
X will be used for the key and the next n bits for the plaintext. The function chopr
drops the r least significant (or rightmost) bits of its argument. Then the function f
is defined as follows:

f = chop16

[
E⊕(0 ‖ Xi) ‖ E⊕(1 ‖ Xi)

]
.

The rate of this hash function is very large, namely 2n/(n− k − 1), which is equal to
18.3 for DES. Another disadvantage in case of DES is the processing of data in blocks
of 119 bits.

The performance can be improved by working out the ideas. The security level
remains the same (2k operations), but the security proof becomes much more compli-
cated. A first improvement requires 4 DES applications for hashing 2k+ n− 4 bits to
2n bits, resulting in a rate of 4n/(2k − n− 4), which is 5.8 for the DES. Xi is split in
2 parts of length k + n− 2 and k − 2, that are denoted with X0

i and X1
i respectively.

f = E⊕(00 ‖ E⊕(10 ‖ X0
i) ‖ X1

i) ‖ E⊕(01 ‖ E⊕(11 ‖ X0
i) ‖ X1

i)

A second variation reduces a 2(n+ k − 3)-bit input (234 for DES) to a 2n-bit output
with 6 applications of DES. It can be described as follows: split Xi in 2 parts of length
n+ k − 3, denoted with X0

i and X1
i respectively.

f = a : E⊕
(
00 ‖ c : chop5

[
E⊕

(
100 ‖ X0

i

)]
‖ e : chop5

[
E⊕

(
101 ‖ X1

i

)])
‖

b : E⊕
(
01 ‖ d : chop5

[
E⊕

(
110 ‖ X0

i

)]
‖ f : chop5

[
E⊕

(
111 ‖ X1

i

)])
The rate equals 3n/(k − 3), in case of DES about 3.62. The letters a, b, c, d, and f
denote intermediate values that will be used in the security proof.

The analysis of this scheme is rather involved. The security proof of the scheme will
be sketched, and it will be shown how the results described in appendix B on multiple
collisions allow us to tighten Merkle’s original bound for the security level from 52.5
to 56 bits. The proof is based on two definitions:

Random linkage map (rlm): two sets of 256 tuples, where every tuple has 2 59-bit
elements. The tuple from the first sets are values {c, d} generated from a random
X0, and the tuple {e, f} are values generated from a random X1.

114 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

Doubly linked quadruple with respect to an rlm is a tuple {c, e, d, f}, where {c, d}
appears in the first set of the rlm, and {e, f} appears in the second set.

The philosophy behind the proof is that the collision finder algorithm gets an rlm for
free. This consists intuitively of all the useful information that any algorithm can ever
hope to obtain about the 4 intermediate values. The generation of an rlm requires
258 computations. The algorithm is subsequently only allowed to use function calls to
produce values for either a or b. Under these conditions it is shown that the expected
running time for an optimal algorithm F to produce a collision for f is as least as
long as the expected running time for an algorithm F ′ to find a pair of doubly linked
quadruples such that both quadruples generate the same output.

The next step is to estimate the success probability of an algorithm F ′. The idea
is first to produce a k-fold collision for the value of b, i.e., k inputs {d, f} that yield
the same value of b. If this can be done, the success probability of a collision for a
is equal to k/264. The security level of 256 is achieved if k < 256. A k-fold collision
for b can be produced in two ways: a value of d or f might occur more than once in
the same set and in the same position of an rlm, and identical inputs yield of course
the same value for b; a second possibility is that the same value for b is obtained with
either d 6= d′ or f 6= f ′.

R. Merkle uses in his proof the following crude upper bound for the number of
k-fold collisions: if r balls are drawn with replacements from a set of n balls (n > r),
the number of balls that occurs k times is upper bounded by 2n−k(n−r). For collisions
of d and f (r = 256, n = 259), he obtains k ≤ 20 and for collisions for b (r = 256,
n = 264), this gives k ≤ 7. The number of inputs that yield this value of b is then
given by 202 + 7 · 202 = 2800. The corresponding security level is only 52.5 bits.

A better approximation of the number of k-fold collisions has been derived in
appendix B. The expected number of collisions is given by equation (B.17):

λk = n
exp

(
− r
n

)
k!

(
r

n

)k
.

The numerical results for the parameters of the Merkle scheme can be found in ta-
ble 5.7.

k 2 3 4 5 6 7 8 9 10 11
n r

259 256 51.82 47.23 42.23 36.91 31.33 25.52 19.52 13.35 7.03 0.57
264 256 46.99 37.41 27.41 17.09 6.50 −4.30
264 255 45.00 34.41 23.41 12.09 0.51 −11.30

Table 5.7: Binary logarithm of the expected number of k-fold collisions for drawings
of r out of n with replacements.

If one wants to prove that the security level is at least 56 bits, any algorithm
is limited to 256 computations of a or b. The following strategy is now suggested:

5.3. OVERVIEW OF MDC PROPOSALS 115

select 227.5 values of d and f for which the largest number of collisions can be found
in the rlm. From table 5.7 it can be seen that 20.57 11-fold collisions are expected,
27.03 10-fold collisions, etc. This continues, until one completes the set with 227.07

6-fold collisions. The average number of collisions in this set is equal to 6.26. Now all
values of d and f are combined to produce 255 b-values, and with each value for b will
correspond 6.262 = 39.2 trials for a1. This operation is repeated with the roles of a and
b interchanged such that the total number of function evaluations is equal to 256. The
next step is to look for collisions among the b values. If for a certain b-value a k-fold
collision is obtained, the corresponding number of trials for a is equal to k · (6.26)2.
Indeed, one can write for this value of b

b(d1, f1) = b(d2, f2) = . . . = b(dk, fk) .

With every value of di and fi correspond on average 6.26 other values in the rlm. The
maximal number of trials for a will be obtained if k = 6, and this number is equal to
235; this will occur only once. The expected number of collisions for b is approximately
equal to

2−55
∞∑
k=1

k2(6.26)2λk .

This is equal to 1.00195 · 6.262 = 39.26. If the symmetry between a and b is not
used (which means that 256 computations for b are made and none for a), the average
number of collisions for d and f is equal to 6.18, and the average number of collisions for
b is equal to 1.00391 ·6.182 = 38.41. Note that the maximal number of collisions here is
230, and this occurs for 91 values of b. The conclusion is that this attack corresponds
to a security level of 64− log2(39.26) = 64− 5.3 = 59.7 bits. Hence the security level
of the scheme is lower bounded by 56 bits. Other suggestions by R. Merkle to tighten
the proof are to distribute the 256 operations over all computations, and to limit the
information that is given for free. It is important to remark that this scheme should be
modified to take into account attacks based on weak keys and on the complementation
property.

MDC-2 and MDC-4 The authors of the first papers that referred to these hash
functions are C. Meyer and M. Schilling, C. Meyer, and S. Matyas [216, 217, 204], while
the patent for MDC-2 and MDC-4 is on the names of B. Brachtl, D. Coppersmith,
M. Hyden, S. Matyas, C. Meyer, J. Oseas, S. Pilpel, and M. Schilling [28]. No security
proof has been given for either scheme, but on the other hand no attacks have been
demonstrated. The basic philosophy is to extend the Matyas-Meyer-Oseas scheme
(cf. section 5.3.1.3). MDC-2 is currently under consideration for standardization as
a collision resistant hash function based on a block cipher in ISO-IEC/JTC1/SC27
[159]. Note that a variant on MDC-2 was proposed in [161]. It will be discussed in
appendix C.

1This is in fact an approximation, as the average of the squares is not equal to the square of the
average.

116 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

MDC-2 can be described as follows:

T1i = E⊕(H1i−1, Xi) = LT1i ‖ RT1i
T2i = E⊕(H2i−1, Xi) = LT2i ‖ RT2i

H1i = LT1i ‖ RT2i
H2i = LT2i ‖ RT1i .

The chaining variable H10 and H20 are initialized with the values IV1 and IV2 respec-
tively, and the MDC is equal to the concatenation of H1t and H2t. A similar notation
will be used for the next schemes. A graphical representation is given in figure 5.4.
The rate of this scheme is equal to 2. In order to protect this scheme against attacks
based on semi-(weak) keys (cf. section 2.5.4.2), the second and third key bits are fixed
to 10 and 01 for the first and second encryption.

-H1i−1
� H2i−1

?

E⊕��
?

E⊕ ��
?

Xi

?

? ?

?

??

? ?

H1i H2i

Figure 5.4: One iteration of the MDC-2 hash function.

Part of the following evaluation of MDC-2 and MDC-4 is based on the work by
I. Damg̊ard [67] on this scheme. The basic step of MDC-2 is certainly not collision
resistant: for any fixed choice of Xi, one can find collisions for both H1i and H2i
independently with a simple birthday attack. As this scheme is based on the Matyas-
Meyer-Oseas scheme, all remarks on this scheme concerning efficiency, weak keys, and
complementation property can be transferred to this scheme. If the feedforward would
be omitted (the basic scheme would then be the dual of the Rabin scheme [274]),
the scheme would become invertible: producing a pseudo-preimage requires constant
time, hence a (second) preimage requires only about 254 operations (this follows from

5.3. OVERVIEW OF MDC PROPOSALS 117

proposition 2.2). If the switch of the left and right part would be omitted, one would
have two independent chains and the following attack would apply: compute a large
number of inverses for both chains (which requires at least 2 message blocks)—for the
time being no feasible algorithm is known to do this—and look for a match between
the preimages of the two chains. Switching left and right halves thwarts this attack, as
both chains get mixed. Finally one can remark that fixing the key bits does not only
avoid weak keys, but this also guarantees that the two encryption keys are different.
This would be a serious problem if IV1 = IV2.

The number of operations (without taking into account constant factors) for several
attacks on MDC-1, MDC-2, and MDC-4 (cf. infra) have been indicated in table 5.8.
The factors 2 and 4 indicate how many encryptions are required for every step, or how
many separate steps have to be performed. If one is looking for a preimage, one has a
trade-off between storage and computations: this is the case if a large number of values
can be attacked at the same time, or if some precomputations can be done. The number
of encryption operations is then the original number divided by the number of stored
variables (at most 255). Note that in case of MDC-2 the size of these variables is 54 bits
and not 64 bits as claimed in [216]. The number of operations for a (second) preimage
for MDC-2 and MDC-4 is infeasible, but significantly lower than was estimated by the
designers.

A pseudo-collision can be found for MDC-1 and MDC-2 by choosing X1 randomly,
taking IV2 equal to the specified value and independently trying values for IV1. For a
pseudo-preimage one can choose a random X1 and perform independent trials for IV1

and IV2. A pseudo-preimage can be used to compute a preimage faster than exhaus-
tive search based on proposition 2.2. A different way to construct pseudo-collisions
for MDC-2 was reported in [227]. First an attacker constructs key collisions (cf. sec-
tion 2.5.2.6) for a random plaintext P , that satisfy at the same time the constraints
on the second and third bit. The one-block message P with initial value K1,K2 will
yield the same hashcode as the message P with initial value K1,K2. B. den Boer
remarked that if IV2 = IV1, collisions can be produced in the following way: let P be
a plaintext such that E(IV1, P) = E(IV2, P) on the 54 positions that are selected from
the output (finding such a P requires about 255 encryptions). In that case P and P
hash to the same value. Collisions with random IV for MDC-1 can be found with less
effort because it is not guaranteed in this scheme that the two chains have different
keys. If IV1 is chosen equal to IV2, both chains are identical.

The differential attacks against the Matyas-Meyer-Oseas scheme have been ex-
tended to MDC-2. In this case the input pair has to be a good pair for both char-
acteristics. Essentially all properties can be transferred, but the overall probability
of success will be the product of the probabilities, under the reasonable assumption
that both key values are independent. The only step where the approach is more
complicated is to satisfy the characteristic automatically in the second round of both
encryption instances. Here a careful selection of the inputs is necessary to produce an
input that is a right pair for both key values with probability 1. For more details the
reader is referred to appendix C. The final results are indicated in table 5.9.

118 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

MDC-1 MDC-2 MDC-4
preimage 2 · 264 2 · 282 1 · 2109

2nd preimage 2 · 256 2 · 282 1 · 2109

pseudo-preimage 2 · 256 2 · 254 1 · 290

collision (fixed IV) 2 · 256 2 · 254 4 · 254

collision (random IV) 2 · 228 2 · 254 2 · 254

pseudo-collision 2 · 228 2 · 227 1 · 241

Table 5.8: Number of operations for preimage and collision attacks on MDC-1, MDC-2,
and MDC-4.

number of rounds collision second preimage
log2(# encryptions) log2(# encryptions)

7 29.8 44.2
9 42.2 56.6
11 55.4 69.8
13 71.0 85.4
15 87.4 101.8
17 99.6 114.0

Table 5.9: The number of encryptions for a differential attack on MDC-2 for an odd
number of rounds.

The conclusion of appendix C is that only for 11 rounds or less the collision search is
faster than a birthday attack. A second preimage can be found faster than exhaustive
search if the number of rounds is less than 17. In order to be of the same order of
magnitude as a birthday attack for 15 rounds, a characteristic with probability of
2−32 or better would be required (this would be 1/40 per two rounds for an iterative
characteristic). Again it should be remarked that no good characteristics are known
for an even number of rounds.

The following observation was made on the initial values that are proposed by
the designers (the hexadecimal values 2525252525252525x and 5252525252525252x):
they are chosen in such a way that differential attacks on the first iteration of MDC-
2 require 128 more operations than the optimal situation (for an attacker) that is
exploited in our attack.

One iteration of MDC-4 is defined as a concatenation of two MDC-2 steps, where
the plaintexts in the second step are equal to H2i−1 and H1i−1:

T1i = E⊕(H1i−1, Xi) = LT1i ‖ RT1i
T2i = E⊕(H2i−1, Xi) = LT2i ‖ RT2i

5.3. OVERVIEW OF MDC PROPOSALS 119

U1i = LT1i ‖ RT2i
U2i = LT2i ‖ RT1i

V 1i = E⊕(U1i,H2i−1) = LV 1i ‖ RV 1i
V 2i = E⊕(U2i,H1i−1) = LV 2i ‖ RV 2i

H1i = LV 1i ‖ RV 2i
H2i = LV 2i ‖ RV 1i .

The rate of MDC-4 is equal to 4. It is clear that the “exchange” of H1i−1 and H2i−1

in the second step does not improve the algorithm: after the exchange of right halves,
U1i and U2i are symmetric with respect to H1i−1 and H2i−1.

Both finding a preimage and finding a pseudo-collision is harder than in the case of
MDC-2, as indicated in table 5.8. On the other hand, collisions for the basic compres-
sion function of MDC-2 with the same value of (H1i−1,H2i−1) will also yield collisions
for MDC-4, but generally this property does not hold for other collisions for the basic
function like pseudo-collisions. Hence differential attacks that produce a collision for
MDC-2 will also produce a collision for MDC-4, but finding a second preimage with a
differential attack will be much harder: the probability that a single message block is
sufficient to find a second preimage is very small.

The improved pseudo-preimage attack is based on the fact that V 1i depends only
on H1i−1 through 26 bits of LT1i, and that 10 bits of H1i−1 (namely the 8 parity bits
and the 2 bits that are fixed in the key port) only influence the output in the second
half of the algorithm (this observation was suggested to the author by B. den Boer).

1. Choose a random value of Xi and a 26-bit constant S.
2. Calculate T1i for all 254 relevant values of H1i−1 (only the bits that are used in

the first half). It is expected that in 228 cases the 26 relevant bits of LT1i will
be equal to S (indeed, 4 parity bits in the first half are ignored and 2 more bits
are fixed).

3. Calculate T2i for all 254 relevant values of H2i−1. Next, extend H2i−1 with all
possible values for the 10 unused bits, and compute V 1i, under the assumption
that LT1i = S (this blocks the influence of H1i−1 on this calculation). This
requires in total 264 +254 DES encryptions, hence one expects to find the correct
value of V 1i. In this way H2i−1 is determined.

4. For the 228 cases with LT1i = S, extend H1i−1 with all possible values for the
10 unused bits, and compute V 2i. This requires in total 238 DES encryptions,
and the correct value is obtained with probability 2−26.

5. If no match is obtained, one chooses a new value of X or for S; in the latter case,
one can avoid recomputing T1i and T2i at the cost of more storage.

One can conclude that finding a preimage requires 264 · 226 = 290 DES encryptions
and a storage of 228 54-bit quantities (if for every trial a new value for X is chosen).
With proposition 2.2, one finds that a (second) preimage requires about 2109 DES
encryptions.

120 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

The improved pseudo-collision attack is based on the same principles:

1. Choose a random value of Xi and of H2i−1 (this can be the specified value).

2. Calculate T1i for 240.5 values of H1i−1. It is expected that there will be a 26-bit
integer S such that in 214.5 cases the 26 relevant bits of LTi will be equal to S
(in fact for 50% of the integers S there will be 214.5 cases or more).

3. For these 214.5 cases with LT1i = S, extend H1i−1 with all possible values for
the 10 unused bits, and compute V 2i for the 214.5+10 = 224.5 different inputs.
The probability to find a collision for V 2i is equal to 22·24.5/265 = 2−16 (cf.
section 2.5.1.3).

4. If no match is obtained, one chooses a new value for S; one can avoid recomputing
T1i if one stores 216 · 214.5 = 230.5 54-bit quantities (about 10 Gigabytes).

One can conclude that finding a pseudo-collision requires 241.5 DES encryptions and a
storage of 230.5 54-bit quantities.

The scheme by Zheng, Matsumoto, and Imai Another scheme based on a
collision resistant function was suggested with some theoretical arguments in [339, 343]
(cf. section 4.3.2.7). The weaknesses that have been identified in this scheme have been
presented at Auscrypt’92 [263]. The primitive function compresses a 224-bit input to
a 128-bit output and is based on xDES1. This block cipher is one of the extensions of
DES that has been proposed in [340]. xDES1 is a three round Feistel cipher [104, 105]
with block length 128 bits, key size 168 bits, and with the F function equal to DES.
One round is defined as follows:

C1i+1 = C2i
C2i+1 = C1i ⊕DES(Ki, C2i) , i = 0, 1, 2 .

Here the variables C1i and C2i are 64-bit blocks, and the variables Ki are 56-bit keys.
The block cipher is then written as

C23 ‖ C13 = xDES1(K1‖K2‖K3, C10‖C20) .

Here C10 and C20 are the first and second part of the plaintext, and C23 and C13 are
the first and second part of the ciphertext. The round function that is claimed to be
collision resistant consists of 2 xDES1 operations:

f(Y 1‖Y 2) = xDES1
(
chop72

(
xDES1(IV ‖Y 1, α)

)
‖Y 2, α

)
.

Here Y 1 and Y 2 are 112-bit blocks, α is a 128-bit constant, and IV is a 56-bit initial-
ization variable. This variable has been added to clarify the description of the scheme.
The complete hash function has the following form:

Hi = f(Hi−1‖Xi) ,

5.3. OVERVIEW OF MDC PROPOSALS 121

where Hi−1 is a 128-bit block, and Xi is a 96-bit block. The rate of this scheme is
equal to 4. Note that one could also start from xDES1 and classify this as a single
length hash function.

If IV = K1 and Y1 = K2‖K3, it is very easy to produce collisions for the atomic
operation: every data bit is used only once in the key input of DES, which means that
it can be simply replaced by a key collision for the DES plaintext equal to the second
part of α with the algorithm described in [267].

A stronger scheme is obtained if IV is equally distributed over K1, K2, and K3,
and if the size of IV is increased [345]. However, it will be shown that independently
of the size of IV , the security level can not be larger than 44 bits. If the size of IV is
equal to v bits (in the original proposal v = 56), the number of fixed bits of IV that
enter the key port of a single DES block is equal to v/3 (it will be assumed that v is
divisible by 3). It can be shown that the rate of this scheme is then equal to

R =
6 · 64

208− 2v
.

The number of bits of Y1 that enter the key port will be denoted with y, hence y+v/3 =
56. The following attacks are now considered:

• For the fixed value of the right part of α and of the first v/3 bits of IV , one
can calculate and store a set of 2z different ciphertexts. The expected number of
collisions in this set is approximately equal to 22z−65 (cf. appendix B). If y > 32,
implying v < 72, a value of z = 33 is clearly sufficient to obtain a collision. If
on the other hand y ≤ 32, one will take z = y, and the probability of success is
smaller than one. One can however repeat this procedure, (e.g., if one attacks a
DES block different from the first one, a different value can be chosen for the value
of the bits of Y1 that enter the first DES), and the expected number of operations
for a single collision is equal to 265−y, while the required storage is equal to 2y.
An extension of the Quisquater algorithm could be used to eliminate the storage.
If the security level S is expressed in bits, it follows that S = max {65− y, 33}.
With the relation between y and v, one obtains S = max {9 + v/3, 33}.

• A second attack follows from the observation that only v bits are kept from the
output of the first xDES1 operation (hence the chop operation is chopping 128−v
bits). It is clear that finding a collision for the remaining v bits requires only
2v/2+1 operations, or S ≤ v/2 + 1 bits. This attack is more efficient than the
first attack if v < 64 bits.

The relation between S and v can be summarized as follows:

v < 64 : S = v/2 + 1
64 ≤ v < 72 : S = 33

72 ≤ v < 104 : S = v/3 + 9 .

The following table indicates the relation between S and the rate R. One can conclude

122 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

v 56 64 72 84 96 102
S 29 33 33 37 41 43
R 4 4.8 6 9.6 24 96

Table 5.10: Relation between v (the number of bits of IV), the security level S and
the rate R.

that producing a collision for the proposed compression function (with fixed size input)
requires significantly less than 264 operations. Depending on the allocation of the bits
of Xi and Hi−1 to Y1 and Y2, it might also be feasible to produce a collision for the
hash function with a fixed initial value: it is certainly possible to produce a collision
for the hash function if there is a single DES block where all key bits are selected from
Xi.

Note that the scheme proposed by R. Merkle based on a large block cipher (cf.
section 5.3.1.3) will succumb to a similar attack if xDES1 is used as the underlying
block cipher.

The Algorithmic Research (AR) hash function The AR hash function was
proposed by Algorithmic Research Ltd. and is currently used in the German banking
community. It has been circulated as a contribution within ISO [162]. The basic
mode of operation is an extension of the CBC mode: the last two ciphertext blocks are
added modulo 2 to the message block. This chaining is not secure, but two independent
iterations with two different keys are computed in parallel. The hashcode is computed
from the outcome of both iterations. The operation of a single chain can be described
as follows:

f = E(K,Xi ⊕Hi−2 ⊕Hi−1 ⊕ η)⊕Xi .

Here η = 0123456789ABCDEFx (hexadecimal), and H−1 and H0 are equal to the all
zero string. The keys for both iterations are equal to K = 0000000000000000x and
K ′ = 2A41522F4446502Ax respectively. The chaining variables of the second iteration
will be denoted with H ′

i. Two mappings are then defined to combine the output of
both iterations:

g(K,H1,H2) = E(K,H1⊕H2)⊕ E(K,H1)⊕ E(K,H2)⊕H2

and
v(K,H1,H2,H3,H4) = g(g(K,H1,H2), g(K,H3,H4)) .

Then the hashcode is computed as follows:

v(K,Ht−1,Ht,H
′
t−1,H

′
t) ‖ v(K ′,Ht−1,Ht,H

′
t−1,H

′
t) .

Although the rate is equal to 2, this scheme will in practice be faster than other
schemes with the same rate, as the key remains fixed. In the case of DES, which has

5.3. OVERVIEW OF MDC PROPOSALS 123

been proposed as the underlying block cipher, this scheme will be 2 to 4.5 times faster
in software than MDC-2 (see also section 5.3.4.1).

Several weaknesses have been identified in this scheme. The choice to initialize
the 4 chaining variables with 0 will facilitate certain attacks. Another problem is the
choice of the all zero key for K, which is a weak key for DES. For a weak key 232 fixed
points can be easily found (cf. section 2.5.4.3), and these can be used in the following
attacks:

Collision attack: if Xi is chosen such that the input to DES is one of those fixed
points, the new value of the chaining variable will be equal to Hi−2 ⊕Hi−1 ⊕ η,
and thus independent of the fixed point. It is now very easy to use the 232

fixed points to produce a collision for the round function (and hence for the hash
function) in the other iteration. The success probability of this attack is 0.39 (cf.
section 2.5.1.3); if the attack fails, it can be repeated at a different position in
the message. Observe that this attack is independent of the initial values.

Fixed point attack: the fixed points of DES can be used to construct fixed points
for the round function after 3 iterations. The chaining variables for the iteration
with the weak key will be as follows: H−1, H0, H−1⊕H0⊕ η, H−1, H0. In order
to obtain a fixed point for the second iteration (or H ′

2 = H ′
−1 and H ′

3 = H ′
0), the

following equations have to be solved:

H ′
1 = X1 ⊕ E(K ′, X1 ⊕H ′

−1 ⊕H ′
0 ⊕ η)

H ′
−1 = X2 ⊕ E(K ′, X2 ⊕H ′

0 ⊕H ′
1 ⊕ η)

H ′
0 = X3 ⊕ E(K ′, X3 ⊕H ′

−1 ⊕H ′
1 ⊕ η) .

Here X1, X2, and X3 are selected such that the plaintexts in the first iteration
are the 232 fixed points corresponding to the weak key K. The unknown H ′

1

can be solved from the three equations, and every equation will yield 232 values.
Under the assumption that DES is a random mapping, a common solution will
exist with a very small probability (approximately 1/232). If however H−1 = H0

and H ′
−1 = H ′

0 (as specified), the second and third equation are equivalent, and
the probability for a common solution is about 1 − e−1. The total number of
operations for this attack equals 233 encryptions. The solution can be used to
construct collisions, but also to construct a second preimage for any message (in
fact an infinite number of preimages).

One could try to thwart this attack by specifying different initial values; however,
finding message blocks such that the chaining variables become equal requires
only 234 encryptions. The fixed points can then only be used to produce collisions.
Assume that H ′

−1 and H ′
0 are different. Then one can choose X1, X2, and X3

such that H ′
3 = H ′

2. The equations to be solved are the following:

H ′
1 = X1 ⊕ E(K ′, X1 ⊕H ′

−1 ⊕H ′
0 ⊕ η) (5.1a)

H ′
2 = X2 ⊕ E(K ′, X2 ⊕H ′

0 ⊕H ′
1 ⊕ η) (5.1b)

H ′
2 = X3 ⊕ E(K ′, X3 ⊕H ′

1 ⊕H ′
2 ⊕ η) . (5.1c)

124 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

Choose for X1 the 232 values that are allowed, and compute from (5.1a) the
corresponding value of H ′

1. Equation (5.1c) can be rewritten as follows:

D(K ′, X3 ⊕H ′
2)⊕X3 ⊕H ′

2 = H ′
1 ⊕ η .

Choose 232 values of X3 ⊕ H ′
2 and use this equation to obtain a second set of

values of H ′
1. A matching value for H ′

1 will be obtained with probability 1− e−1;
this also fixes X1 and X3⊕H ′

2. Then one chooses for X2 the 232 possible values,
and one computes with (5.1b) the 232 corresponding values of H ′

2. This also
yields 232 values of X3, and with high probability one of these values will be a
value that is allowed. If this is not the case, one has to choose more values of
X3 ⊕H ′

2 in the second stage, which will yield more solutions.

In this way one can increase the success probability of the fixed point attack at
the cost of increasing the number of operations to 234 . . . 236: if the first attack
fails, one looks for identical values of the chaining variables, and one repeats the
attack. The solution can now only be used to produce collisions.

I. Damg̊ard and L. Knudsen [68] have identified weaknesses in the g and v function:
they become very weak if certain arguments are equal or are equal to 0. They can
exploit this weakness together with the fixed points of DES to find 232 messages hashing
to the same value (finding a single collision requires only one DES encryption, i.e., the
time to find two fixed points of DES). They also have presented different preimage
attacks; in order to obtain a success probability that is very close to 1, the attack
requires about 266 encryptions.

The AR hash function can be strengthened in several ways: fixed points attacks can
be blocked by including the message length in the padding scheme; the key K should
be replaced by a different key, that is not weak or semi-weak; four different initial
values have to be specified, and g and v should be replaced by stronger mappings.
Even with all these modifications the security of the scheme is questionable: the basic
chaining mode is very weak, and it is not clear that having two parallel versions of an
insecure scheme will yield a secure scheme.

5.3.2.3 Schemes with rate equal to 1

The following schemes will be reviewed in this section: the proposals by Quisquater-
Girault, Brown-Seberry-Pieprzyk, and Preneel-Govaerts-Vandewalle.

The scheme by Quisquater and Girault A scheme with rate 1 was proposed in
the abstracts of Eurocrypt’89 by J.-J. Quisquater and M. Girault [268]. It was also
submitted to ISO as a contribution to DP 10118. It allows no parallel evaluation of
the two encryptions:

T1i = E(X1i,H1i−1 ⊕X2i)⊕X2i
T2i = E(X2i, T1i ⊕H2i−1 ⊕X1i)⊕X1i

5.3. OVERVIEW OF MDC PROPOSALS 125

H1i = H1i−1 ⊕H2i−1 ⊕ T2i
H2i = H1i−1 ⊕H2i−1 ⊕ T1i .

If DES is used as the underlying block cipher, one still has to specify a mapping from
56 to 64 bits. A weakness of this scheme that was pointed out by the author is that
if the scheme is used with DES, complementing X has no effect on the hashcode (due
to the complementation property). Independently, the same weakness was reported
in [227], together with a number of pseudo-collisions. A more serious problem was an
attack by D. Coppersmith [271], that was only published recently in [59]. It resulted
in a new version in the proceedings of Eurocrypt’89 [269]. A different attack on the
first version by X. Lai and J. Massey [183] shows that finding a preimage with random
IV requires only 233 encryptions.

The attack by D. Coppersmith is limited to the case where DES is used as the
underlying block cipher. It exploits the existence of 232 fixed points for a weak key (cf.
section 2.5.4.3) to produce a collision in about 233 encryptions. The basic observation
behind the attack is the following: if X1i is chosen to be a weak key (e.g., X1i = 0),
and X2i is chosen such that H1i−1 ⊕X2i is a fixed point corresponding to that weak
key, T1i will be equal to H1i−1 and hence H2i = H2i−1. The attack can be described
as follows. Choose X11 = X12 = 0 (or any other weak key) and choose 29 values of
X21 such that H10 ⊕ X21 is a fixed point. For each of the resulting values of H11,
on takes 224 values of X22 such that H11 ⊕ X22 is a fixed point. It follows that
H22 = H21 = H20, and one expects to find two identical values among the 233 values
for H12 (cf. section 2.5.1.3). One still has to prove that one can obtain a sufficient
number of values of X22 and X23 in the second step. There are 232 fixed points, but
because of the mapping from the key space to the plaintext space, on average only one
in 28 can be obtained. This means that one expects to find 224 fixed points.

D. Coppersmith [59] presents the attack as a correcting block attack with 6 cor-
recting blocks (cf. section 2.5.2.4) that requires 235 encryptions. Assume one starts
with 2 t-block messages X and X ′. The first step is now to choose 232 plaintext block
pairs (X1t+1, X2t+1) and (X1′t+1, X2′t+1) such that H2t+1 = H2′t+1. The rest of the
attack is similar; the main difference is that here one looks for matches between two
sets.

The pseudo-preimage attack by X. Lai and J. Massey will now be described. The
basic equations for the scheme are the following (the index i will be omitted in X1i
and X2i):

H1i = H1i−1 ⊕H2i−1 ⊕X1⊕ E(X2, X1⊕X2⊕H2i−1 ⊕ E(X1, X2⊕H1i−1))
H2i = H1i−1 ⊕H2i−1 ⊕X2⊕ E(X1, X2⊕H1i−1) .

First the equations are simplified with the substitution

S = X1⊕ E(X1,H1i−1 ⊕X2) , (5.2)

which leads to:

H1i = H1i−1 ⊕H2i−1 ⊕X1⊕ E(X2, X2⊕H2i−1 ⊕ S)
H2i = H1i−1 ⊕H2i−1 ⊕X1⊕X2⊕ S .

126 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

Subsequently the second equation is added to the first, and X2⊕H1i−1 is eliminated
from the second equation using (5.2):

H1i ⊕H2i = S ⊕X2⊕ E(X2, S ⊕X2⊕H2i−1)
H2i = S ⊕X1⊕D(X1, S ⊕X1)⊕H2i−1 .

Both equations can now easily be solved for H2i−1:

H2i−1 = S ⊕X2⊕D(X2, S ⊕X2⊕H1i ⊕H2i)
H2i−1 = S ⊕X1⊕D(X1, S ⊕X1)⊕H2i .

A common solution for H2i−1 can be obtained by choosing S and selecting 232 random
values of X2 and X1 to evaluate the first and second equation respectively. The proba-
bility for a matching value for H2i−1 will then be sufficiently large (cf. section 2.5.1.3).
Finally H1i−1 can be calculated from (5.2). As this attack yields only random IV ,
it can only produce a pseudo-preimage, or a pseudo-collision. Producing a preimage
with this attack requires 281 operations (cf. proposition 2.2), which is still completely
infeasible. Finally it is noted that both equations become equivalent if and only if
H1i = H2i = 0. In this case a pseudo-preimage can be found with a single decryption
and a preimage in 264 operations, by solving:

E(Xi, Xi ⊕H1i−1)⊕Xi ⊕H1i−1 ⊕H2i−1 = 0 ,

with X1i = X2i = Xi. If one chooses Xi and H1i−1, this equation yields a random
H2i−1 (pseudo-preimage attack); a preimage can be found if the correct value of H2i−1

is obtained.
The improved scheme takes a different approach: the equations are much simpler,

but the construction of collisions or of a preimage is made more difficult by inserting
additional redundancy to the message: one adds the message blocks Xt+1 =

⊕t
i=1Xi

and Xt+2 =
(∑t

i=1Xi

)
mod 2k − 1. The iteration procedure can be described as

follows:

T1i = E(X1i,H1i−1)
T2i = E(X2i, T1i ⊕H2i−1)

H1i = H1i−1 ⊕H2i−1 ⊕ T2i
H2i = H1i−1 ⊕H2i−1 ⊕ T1i .

For this algorithm pseudo-collisions were reported as well in [227]. However, only
under special conditions these collisions are real collisions. It is sufficient to construct
key collisions for a plaintext IV , i.e., a pair of keys (K1,K2) such that E(K1, IV) =
E(K2, IV) (cf. section 2.5.2.6). If the second initial value IV2 is equal to E(K1, P)⊕P
and the first two message blocks are K1 and K2, swapping those two blocks does not
affect the hashcode. The restriction is that the attacker should be able to choose
the second half of the initial value. However, if a random initial value is given the
probability that this attack will work is of the order of 2−64.

5.3. OVERVIEW OF MDC PROPOSALS 127

Without redundancy, the scheme has several weaknesses. Finding a preimage with
chosen H1i−1 requires only 233 operations. This follows from the equations:

H1i ⊕H2i = E(X1,H1i−1)⊕ E(X2,H2i ⊕H1i−1)
H2i−1 = H2i ⊕H1i−1 ⊕ E(X1,H1i−1) .

After selecting H1i−1, one can solve the first equation for X1 and X2 with a birthday
attack. The value of H2i−1 follows then from the second equation. A preimage can
be found in 257 encryptions, but with a success probability of only 2−16: first X1 is
determined from the second equation, and subsequently X2 can be determined from
the first equation. In order to find a collision, one has to solve the following equations
for (X1, X2) and (X1′, X2′):

E(X2, E(X1,H1i−1)⊕H2i−1) = E(X2′, E(X1′,H1i−1)⊕H2i−1)
E(X1,H1i−1) = E(X1′,H1i−1) .

With a birthday attack, key collisions for the second and subsequently the first equation
can be found in only 234 encryptions. However, because of the additional redundancy,
this is not sufficient for a collision for the complete hash function. From these equations
it can be seen that a pseudo-collision or a second pseudo-preimage can even be found
with only 2 decryptions, in which X1′ and X2′ can be chosen freely. If DES is used
as the underlying block cipher, one can again make use of fixed points. Here one will
choose blocks X11 and X21 such that H11 is a fixed point for a weak key; this requires
on average 229 operations (cf. section 5.3.1.4). If X12 is the corresponding weak key,
one finds again that H22 = H21. Note that here a single block will be sufficient to
produce a collision for H12, since no restrictions are imposed on X22.

However, D. Coppersmith has recently published in [59] an attack to produce col-
lisions for the second scheme with redundancy in about 239 operations. The idea is to
produce key collisions as indicated above for 43 values of i. This means that one has 43
pairs (X1i, X1′i) and 43 pairs (X2i, X2′i), where each alternative can be replaced by the
other one without affecting the hashcode. This yields in total 286 possible messages.
Then one chooses Xt+1; in this way only 286/256 = 230 combinations will remain. They
can be described as a 30-dimensional affine subspace of GF (286). Within this subspace,
one has a sufficiently large probability of finding two matching values of Xt+2. Again
this attack can be extended to a correcting block attack (cf. section 2.5.2.4). With
2 blocks one can make the chaining variables for both messages equal, from which it
follows that in total 88 correcting blocks are necessary.

The scheme by Brown, Pieprzyk, and Seberry A variation on the first scheme
of J.-J. Quisquater and M. Girault was proposed by L. Brown, J. Pieprzyk, and J. Se-
berry, the designers of the block cipher LOKI [33], who called it LOKI Double Hash
Function (DBH). They took the scheme from the abstracts of Eurocrypt’89 [268], and
modified the two keys with the chaining variables:

T1i = E(H1i−1 ⊕X1i,H1i−1 ⊕X2i)⊕X2i

128 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

T2i = E(H2i−1 ⊕X2i, T1i ⊕H2i−1 ⊕X1i)⊕X1i

H1i = H1i−1 ⊕H2i−1 ⊕ T2i
H2i = H1i−1 ⊕H2i−1 ⊕ T1i .

This scheme is also vulnerable to a complementation attack, if DES, LOKI, or LOKI912

are used as the underlying block cipher. Moreover, weaknesses of LOKI (cf. sec-
tion 2.5.4) can be exploited to produce pseudo-collisions [22] and even collisions [82].

In [183] an attack that is independent of the block cipher was described to find a
pseudo-preimage in 233 operations. The scheme is simplified by means of several linear
transformations. We will show however that it follows directly from the equations that
this attack applies.

Starting from (again the index i will be omitted in X1i and X2i)

H1i = H1i−1 ⊕H2i−1 ⊕X1⊕ E(X2⊕H2i−1, X1⊕H1i−1 ⊕H2i)
H2i = H1i−1 ⊕H2i−1 ⊕X2⊕ E(X1⊕H1i−1, X2⊕H1i−1) ,

one chooses S = X1⊕H1i−1, which results in

H2i−1 = H1i ⊕ S ⊕ E(X2⊕H2i−1, S ⊕H2i)
H2i−1 = H2i ⊕X2⊕H1i−1 ⊕ E(S,X2⊕H1i−1) .

A solution for H2i−1 can be found with a birthday attack: choose 232 values of X2⊕
H2i−1 and 232 values of X2⊕H1i−1, and look for a matching value. Once a solution
for H2i−1 is determined, one finds X2, H1i−1, and finally X1. In a similar way, both
equations will become equivalent if and only if H1i = 0. In that case one can find a
pseudo-preimage with a single encryption, while a preimage requires 265 encryptions.

The attack by D. Coppersmith [59] that exploits the existence of weak keys and the
corresponding fixed points can be extended to this scheme. Note that LOKI has more
fixed points than DES, and LOKI91 has the same number of fixed points as DES (cf.
section 2.5.4.3). If one chooses X1i such that H1i−1⊕X1i is a weak key, and X2i such
that H1i−1⊕X2i is a corresponding fixed point, one obtains again that H2i = H2i−1.
The rest of the attack is similar to the attack on the first Quisquater-Girault scheme.

The scheme by Preneel, Govaerts, and Vandewalle This scheme was published
in [253]:

H1i = c3
[
X1i, E⊕⊕ (c1 [X1i, X2i] , c2 [H1i−1,H2i−1])

]
H2i = c4

[
X2i, E⊕⊕ (c2 [X1i,H1i−1] , c1 [X2i,H2i−1])

]
.

The functions c1, c2, c3, and c4 have to satisfy the following conditions:

1. they have to compress two n-bit variables to one n-bit variable,
2. their result must be uniformly distributed,
2Note that no hash mode was specified for LOKI91 [34].

5.3. OVERVIEW OF MDC PROPOSALS 129

3. at least one of their output bits must change if a single input bit is modified.

The choice of particular functions thwart attacks that exploit special properties of the
block cipher E. A different choice for c1 and c2 and for c3 and c4 can avoid certain
symmetries. A possible choice for the ci is the function E⊕(), resulting in a rate of 4.
A second proposal is to choose the addition modulo 2 for all ci. This results in the
following scheme:

H1i = X1i ⊕H1i−1 ⊕H2i−1 ⊕ E(X1i ⊕X2i,H1i−1 ⊕H2i−1)
H2i = X2i ⊕H1i−1 ⊕H2i−1 ⊕ E(X1i ⊕H1i−1, X2i ⊕H2i−1) .

This scheme is not vulnerable to attacks based on the complementation property.
Its analysis is simpler because the two operations are independent: the goal was to
allow for an efficient parallel implementation. Several attacks, mainly attacks to find
collisions were tried during the design phase (and many other schemes were rejected),
but later it was shown that the parallel operation introduces several weaknesses. A
first attack finds a pseudo-preimage with a single decryption: the two equations will
be identical if and only if X1i = H1i−1 ⊕H1i ⊕H2i, and X2i = H1i−1. In this case
the relation between the chaining variables is given by:

E(H1i ⊕H2i,H1i−1 ⊕H2i−1)⊕H2i−1 = H2i .

For a chosen value of H2i−1, one obtains quickly H1i−1. If the attacker wants to find
a preimage, he will choose H2i−1 equal to the specified value. If he is very lucky, he
obtains the correct value for H1i−1 (the probability of this event is 2−64).

A different method will find a preimage in 264 operations: choose X1i⊕X2i, then
X1i (and hence X2i) can be obtained easily from the first equation. A match for
the second equation will then be found with probability 2−64. Unfortunately, together
with proposition 2.5 this fact can be used to produce a collision in only 233 operations.
The values of X1i and X2i corresponding to a choice of H1i can be obtained with a
single decryption (s = 0), which means that n′ = 64. If this is repeated 233 times, a
matching value for H2i will be found with very large probability (cf. section 2.5.1.3).

A weaker attack on this scheme, that requires 233 operations for a pseudo-preimage
was described in [183]. With the substitutions X = X1 ⊕ X2, S = X2 ⊕H2i−1, and
T = H1i−1⊕H2i−1⊕X1⊕X2, one obtains the following simplified equations (omitting
the subscript i for X1 and X2):

H1i = X2⊕ T ⊕ E(X,X ⊕ T)
H2i = X2⊕ T ⊕X ⊕ E(T ⊕ S, S) .

It is possible to eliminate X2, by adding the two equations, which yields:

E(X,X ⊕ T)⊕X ⊕H1i = E(T ⊕ S, S)⊕H2i .

This equation can be solved easily by fixing T , and subsequently choosing 232 values
for X and S to find a match. Finally X2 can be computed from one of the above

130 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

equations. With the expressions for X, S, and T one finds X1, H2i−1, and H1i−1

respectively.
The main reason why these weaknesses were not identified in the design stage,

is that we concentrated on protection against collision attacks: we believed that a
preimage attack would automatically be hard. This scheme however shows how a
partial preimage attack can be used to produce collisions based on proposition 2.5.
The lesson learned from this attack is that finding a solution (X1i, X2i) for one of the
equations should require at least 232 operations (and preferably 264).

Finally it is mentioned that the attack by D. Coppersmith [59] that exploits the
existence of weak keys and the corresponding fixed points can be extended to this
scheme. If one chooses X1i such that X1i ⊕H1i−1 is a weak key, and X2i such that
X2i ⊕H2i−1 is a corresponding fixed point, one obtains that H2i = H1i−1. The rest
of the attack is similar to the attack on the first Quisquater-Girault scheme.

Conclusion To conclude this section, the attacks on the three schemes (excluding the
second scheme by J.-J. Quisquater and M. Girault) will first be compared in table 5.11.
For the two first schemes, the following remarks have to be made: if DES, LOKI or
LOKI91 are used as the underlying block cipher, collisions can be found immediately
with the complementation property, and for special values of H1i and H2i (depending
on the scheme), a pseudo-preimage can be found in time O(1), and a (2nd) preimage
can be constructed in time 264. Moreover for the three schemes a collision can be
produced in about 233 encryptions with an attack based on fixed points.

Q-G LOKI-DBH P-G-V
(2nd) preimage 2 · 281 2 · 281 2 · 264

pseudo-preimage 2 · 232 2 · 232 1
collision (fixed IV) 2 · 264 2 · 264 2 · 233

collision (random IV) 2 · 232 2 · 264 2 · 233

pseudo-collision 1 2 · 232 1

Table 5.11: Number of operations and storage for preimage and collision attacks on
the three schemes studied in this section.

The main problem with these schemes with rate 1 is that their analysis is very
involved: one can try to verify that all 4 criteria of section 2.4.3 are satisfied, but there
does not seem to be a way to prove this. On the other hand, one should specify against
which attacks one wants to be protected: an attack on a single round implies solving 2
simultaneous equations. In case of a preimage attack, one can choose 2 variables (X1i
and X2i), while in the case of a pseudo-preimage, one can choose 4 variables (X1i,
X2i, H1i−1, and H2i−1). For a collision, the equations are different and will contain
at least 4 E() operations. If one searches for a collision, one can choose 4 variables
(X1i, X2i, X1′i, X2′i), for a collision with a random IV one can additionally choose

5.3. OVERVIEW OF MDC PROPOSALS 131

H1i−1 and H2i−1, and in the case of a pseudo-collision one can also select H1′i−1 and
H2′i−1, hence one has in total 8 variables.

We believe that it is not possible to come up with an efficient scheme with rate
1 that is ideally secure against all these attacks. One suggested line of research is to
come up with a synthetic approach like for the single length hash function, in order
to find the best scheme under these constraints. The problem here is not easy, as the
number of possibilities is equal to

(
24 − 1

)6 = 11, 390, 625 if no interaction between
the chains is considered, and

(
(24 − 1)(25 − 1)

)3 = 100, 544, 625 with interaction. The
problem size can of course be reduced significantly by excluding trivially weak schemes
and by considering linear transformations of input and output, as suggested in [183].
The only result one can hope to achieve is to identify certain patterns that lead to
specific weaknesses. A first attempt could be the following:

• Individual functions should be complete.

• It should not be possible to completely separate the chains.

• One of both equations should not be easily solvable for the two data blocks.

• The equations should not be easily solvable if symmetry between the two parts
is introduced.

• It should not be possible to make use of key collisions: a simple case is where a
message block is just entered once in the key port. It seems that adding some
redundancy is not sufficient to thwart this attack.

• It should not be possible to exploit the complementation property and the ex-
istence of weak keys and their corresponding fixed points. On the other hand
one should note that it seems better to block these possibilities: in the case of
DES it is sufficient to fix two key bits (cf. MDC-2). Moreover, for any scheme of
this type one can come up with a variant of a complementation property (such
as E(K,P) = E(K,P)) that will yield collisions.

• It should not be easy to go backwards (pseudo-preimage).

It would be very interesting to develop a computer program that identifies these pat-
terns in all possible schemes. For several criteria this is certainly rather complicated.
Moreover one should keep in mind that it will only be possible to verify attacks that
have been considered by the author of the program. The complexity of the evaluation
of this type of schemes suggests that further work has to be done in this area.

A second line of research is to check whether the most efficient schemes can be made
secure against all these attacks by adding a limited number of redundancy blocks,
which influences the rate only marginally. At the end of the message, one can add
the message length (as discussed in section 2.4.1), and the addition modulo 2 and/or
modulo 2k of the message bits, as suggested by J.-J. Quisquater and M. Girault. It has
however become clear that this will not help against collision attacks. At the beginning
of the message, one can derive the first message block from IV , or X1 = g(IV) (cf.
section 2.4.1): then finding a pseudo-preimage is not easier than finding a preimage.

132 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

5.3.3 Size of key equals twice the block length

Some block ciphers have been proposed for which the key size is approximately twice
the block length. Examples in this class are FEAL-NX [228] (a FEAL version with a
128-bit key) and PES/IDEA [181, 182, 184]. Triple DES with 2 keys has a key size of
112 bits and a block length of 64 bits and could hence also be considered to belong
to this class. Note that xDES1 discussed in section 5.3.2.2 is not of this type, as the
key size is equal to 168 bits and the block length is 128 bits. Again one has to make a
distinction between single and double length hash functions.

5.3.3.1 Size of hashcode equals block length

A scheme in this class was proposed by R. Merkle in [211]. It can also be classified as
“non-invertible chaining”:

f = E(Hi−1 ‖ Xi, IV) .

A parameterized version was proposed by the same author [212]:

fj = E(IV ′ ‖ Hi−1 ‖ Xi ‖ i ‖ j , IV) .

Here IV and IV ′ are two constants that can be zero, and i and j are numbers with
about 64 bits: j is a parameter of the hash function and i results in a different function
for every iteration. An alternative scheme was suggested by X. Lai and J. Massey in
[183]:

f = E(Hi−1 ‖ Xi,Hi−1) .

These constructions can only yield a CRHF if the block length is larger than 128 bits
(R. Merkle suggested 100 bits in 1979), and if the key size is equal to 256 bits for the
first and third scheme and 384 bits for the second scheme. For smaller block lengths,
a OWHF can be obtained. The security depends strongly on the key scheduling of the
cipher. If triple DES is used with three different keys, which is a block cipher with a
168-bit key size and a 64-bit block length, this construction can only yield a OWHF.
This scheme would have a rate of 1.85 (the size of the chaining variable is 64 bits and
104 message bits are processed after 3 encryptions), which is not very efficient. In this
case the first scheme by R. Merkle can be broken with a key collision attack on double
DES (cf. section 2.5.2.6). If Hi−1 is used as key for the first DES and as first part of
the key of the second DES, a key collision search can be applied to the second and
third DES, under the constraint that the first 8 bits of the second key agree with the
corresponding value for Hi−1.

5.3.3.2 Size of hashcode equals twice the block length

In order to obtain a CRHF based on a 64-bit block cipher, a different construction
is required. The first two schemes in this class were recently proposed by X. Lai and
J. Massey [183]. Both try to extend the Davies-Meyer scheme. One scheme is called

5.3. OVERVIEW OF MDC PROPOSALS 133

“Tandem Davies-Meyer”, and has the following description:

Ti = E(H2i−1‖Xi,H1i−1)

H1i = Ti ⊕H1i−1

H2i = E(Xi‖Ti,H2i−1)⊕H2i−1 .

The second scheme is called “Abreast Davies-Meyer”:

H1i = E(H2i−1‖Xi,H1i−1)⊕H1i−1

H2i = E(H2i−1‖Xi, H2i−1)⊕H2i−1 .

Both schemes have a rate equal to 2, and are claimed to be ideally secure, or finding
a pseudo-preimage takes 22n operations and finding a collision takes 2n operations.
The security of this scheme has to be evaluated: e.g., certain weaknesses might occur
depending on the underlying block cipher.

5.3.4 A new scheme based on a block cipher with fixed key

In this section a new hash function will be presented that offers a trade-off between
security and performance. The scheme was published at Auscrypt’92 [262]. After
motivation of the most important design principles, the function will be described,
followed by a description of attacks, and a detailed security evaluation. Subsequently
some extensions are discussed, and the results are summarized. Note that in the
previous sections several schemes with a fixed key have already been discussed, since
it was more natural to treat them there.

5.3.4.1 Background and design principles

It is recalled that the rate of the scheme indicates the number of encryption operations
to process a number of bits equal to the block length. An encryption operation consists
of two steps: first the installation of a new key and subsequently an encryption with
that key. Several reasons can be indicated to avoid a modification of the key during
the hashing process:

Performance: in general, the key scheduling is significantly slower than the encryp-
tion operation. A first argument to support this is that the key scheduling can
be designed as a very complex software oriented process to discourage exhaustive
attacks. Here software oriented means that the variables are updated sequen-
tially, which reduces the advantages of a parallel hardware implementation. The
advantage of this approach is that the key can remain relatively small (e.g.,
64 bits), while an exhaustive attack is still completely infeasible. Even when the
key schedule is simple, it can be harder to optimize its implementation. For DES
software, the fastest version (code size 100 Kbytes) for the IBM PS/2 Model 80
(16 MHz 80386) runs at 660 Kbit/s without key change and 146 Kbit/s with
key change (a factor 4.5 slower). If the code size is increased to 200 Kbytes, a

134 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

speed of 200 Kbit/sec is obtained (a factor 3.3 slower). For smaller versions this
factor is lower bounded by 2.5. Moreover, encryption hardware is in general not
designed to allow fast modification of the key. A key change can cause loss of
pipelining, resulting in a serious speed penalty.

Security: another advantage of keeping the key fixed is that an attacker has no con-
trol at all over the key. Hence attacks based on weak keys can be eliminated
completely in the design stage.

Generality: the hash function can be based on any one-way function with small
dimensions (e.g., 64-bit input and output).

The following design principles form the basis of the system:

Atomic operation: the one-way function that is used will be E⊕(K,X). It has
shown to be very useful for the single length hash functions and was also used in
MDC-2, MDC-4 and by R. Merkle in his construction for a double length hash
function (cf. section 5.3.2.2).

Parallel operation : the one-way function will be used more than once, but the
function can be evaluated in parallel; this opens the possibility of fast parallel
hardware and software implementations. It is also clear that a scheme in which
several instances are used in a serial way is much harder to analyze.

Trade-off between memory, rate, and security level : the rate of the system can
be decreased at the cost of a decreasing security level; it will also be possible to
decrease the rate by increasing the size of the hashcode. This could also be for-
mulated in a negative way, namely that the security level will be smaller than
what one would expect based on the size of the hashcode. Observe that this prop-
erty is also present in a limited way in MDC-2, MDC-4, and the third scheme of
R. Merkle (cf. section 5.3.2.2).

The basic function is not collision resistant: the construction is not based on a
collision resistant function, because it can be shown that this would not yield
an acceptable performance (the efficiency will decrease with a factor 4 or more).
This means that producing collisions for different values of the chaining variable
or producing pseudo-collisions is easy. Based on intuitive arguments indicated in
section 2.4.3, the data input to the elementary operation will be protected more
strongly than the chaining variable.

5.3.4.2 Description of the new scheme

One iteration step consists of k parallel instances of the one-way function, each pa-
rameterized with a fixed and different key. In the following, these instances will be
called ‘blocks’. These k keys should be tested for specific weaknesses: in the case of
DES it is recommended that all 16 round keys are different, and that no key is the
complement of any other one. If the block length of the block cipher is equal to n, the
total number of input bits is equal to kn. These inputs are selected from the x bits of
the data Xi and from the h bits of the previous value of the chaining variable Hi−1.

5.3. OVERVIEW OF MDC PROPOSALS 135

Every bit of Xi will be selected α times, and every bit of Hi−1 will be selected β times
which implies the following basic relation:

α · x+ β · h = k · n . (5.3)

A simple consequence of this equation is that h < kn/β. The rate R of this scheme is
given by the expression:

R =
n · k
x

. (5.4)

The following considerations lead to additional restrictions on α and β:

• it does not make sense to enter the same bit twice to a single block,
• the data bits should be protected in a stronger way than the chaining variable,

which has been discussed as the fourth design principle.

This results in the following constraints:

2 ≤ α ≤ k and 1 ≤ β ≤ α . (5.5)

In the largest part of the discussion, the parameter β will be limited to 1.
The output of the functions has also size kn. This will be reduced to a size of h by

selecting only h/k bits from every output. Subsequently a simple mixing operation is
executed, comparable to the exchange of left and right halves in MDC-2. The goal of
this operation is to avoid that the hashing operation consists of k independent chains.
If h is a multiple of k2, this mixing operation can be described as follows. The selected
output block of every function (consisting of h/k bits) is divided into k parts, and part
j of block i is denoted with H ij (1 ≤ i, j ≤ k). Then Hji

out ←− H
ij
in. Figure 5.5 depicts

one iteration for the case k = 4 and α = 4.
As has been discussed in section 2.4.1, a fixed initial value has to be chosen, the

message length in bits has to be added at the end, and an unambiguous padding rule
has to be specified.

It will become clear that the complexity of the scheme does not depend on α, but
on the difference between k and α. Therefore, the following parameter is defined:

φ
def= k − α . (5.6)

The next step in the design is the decision on how the data bits are to be distributed
over the different blocks if φ > 0. If β > 1 a similar construction can be applied to the
chaining variables. The construction is obtained by considering the following attack.
Let S be a subset of the blocks. For a given value of Hi−1, fix the data input of the
blocks in S, which means that the output of these blocks will be the same for both
input values. Subsequently, match the remaining outputs with a birthday attack (cf.
section 2.5.1.3). In order to maximize the effort for this attack, it is required that after
fixing the input of the blocks in S, the number of bits that can still be freely chosen by
an attacker is minimal (this will be explained in more detail in section 5.3.4.3). This
number will be denoted with A(S).

136 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

E⊕(K1) E⊕(K2) E⊕(K3) E⊕(K4)

? ? ? ?

? ? ? ?

? ? ? ?

mixing stage

Xi Hi−1

Hi

Figure 5.5: One iteration of the new hash function proposal.

Theorem 5.1 If the data is divided into
(k
φ

)
parts, and every part goes to a different

combination of
(k
φ

)
blocks, an optimal construction is obtained. Let As be defined as

max|S|=sA(S), then this construction results in the following expression for As:

As =

(k−s
k−φ

)(k
φ

) · x =
(φ
s

)(k
s

) · x 1 ≤ s ≤ φ (5.7a)

= 0 else . (5.7b)

This construction is optimal in the sense that for a given s =| S | A(S) is independent
of S, and for any other construction there will be an s (with 1 ≤ s ≤ k) such that
A′
s ≥ As. If equality holds for all values of s both constructions are isomorphic.

Proof: The optimality follows from the symmetry of the allocation. Because of
this optimality, in the following it can be assumed w.l.o.g. that the set S consists of
the first s blocks. Define aj as the number of bits that are used for the first time in
block number j. It will be shown that

aj =

(k−j
k−φ−1

)(k
φ

) · x 1 ≤ j ≤ φ+ 1 (5.8a)

= 0 else. (5.8b)

Assume that the k blocks are numbered starting with 1, then the selection of α blocks
out of k correspond to an index that is an r digit number in base k + 1. In order to

5.3. OVERVIEW OF MDC PROPOSALS 137

make this index unique, it is specified that its digits are in increasing order. Sort the
selection based on their index (also in increasing order). Divide the data input into(k
φ

)
parts that are numbered starting with 1. The bits of data part q will be used in

the selection of which the index has number q in the sorted list. The first digit of the
index indicates in which block this data part will be used first. It is now easy to see
that the number of data parts that are used for the first time in block j (1 ≤ j ≤ φ+1)
is given by (

k − j
α− 1

)
=

(
k − j

k − φ− 1

)
.

As the number of bits in a single data part is given by x/
(k
φ

)
, the expression for as was

proven.
Subsequently, As can be computed based on the following relation:

As = x−
s∑
j=1

aj .

The expression for As will be proven by induction on s. It is clearly valid for s = 1:

a1 =
k − φ
k
· x and A1 =

φ

k
· x .

Assume that (5.7) is valid for s (with s < φ). The expression for s+ 1 is then:

As+1 =

(k−s−1
k−φ

)(k
φ

) · x .

First As will be written as

As = x−
s+1∑
j=1

aj = x−
s∑
j=1

aj − as+1 .

With the induction assumption, and the expression for as+1 this can be reduced to

(k−s
k−φ

)(k
φ

) · x− (k−s+1
k−φ−1

)(k
φ

) · x .

Using the basic identity in Pascal’s triangle, this reduces to the correct expression for
As+1. In order to complete the proof, it is sufficient to note that if s > φ, it follows
from the expression for as that As is equal to 0.

An example of the allocation will be given for the case k = 4. All relevant param-
eters are summarized in table 5.12.

138 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

φ s 1 2 3 4 block 1 2 3 4
0 As/x 0 0 0 0 # parts = 1

as/x 1 0 0 0 allocation 1 1 1 1
1 As/x 0.25 0 0 0 # parts = 4

as/x 0.75 0.25 0 0 allocation 123 124 134 234
2 As/x 3/6 1/6 0 0 # parts = 6

as/x 3/6 2/6 1/6 0 allocation 123 145 246 356

Table 5.12: Overview of all parameters of the optimal allocation for the case k = 4
and φ = 0, 1, and 2.

5.3.4.3 Attacks on the scheme

For the time being, it is not possible to give a security proof for the scheme. This
disadvantage is shared with all other schemes (including MDC-2 and MDC-4); the
only exceptions are the Merkle schemes. The difference with the other schemes is that
the system is parameterized, and that the security level depends on the size of the
hashcode h. In the following, a number of attacks will be considered that are faster
than the birthday attack. This is possible as it is not the case that all output bits
depend in a strong way on the inputs of a single iteration step. Indeed, the data only
enter α blocks, and hence if α < k, the output of k−α blocks does not depend on these
input bits. Even if α = k, the fact that β = 1, implies that the diffusion of the Hi−1

is limited to one block. Note that this property is shared with MDC-2. This limited
dependency is solved by increasing the size of the hashcode. The required number of
bits for the hashcode is estimated from studying a set of birthday attacks that exploit
the structure of the scheme. The generality of the proposed attacks should form an
argument for the security. However, for the time being it is not possible to prove that
there does not exist a more sophisticated attack. The advantage of the scheme is that
the security level can always be increased at the cost of an increased memory.

It will also be checked whether this type of functions is one-way, and the applica-
bility of differential attacks will be discussed briefly. By construction the scheme is not
vulnerable to attacks based on weak keys or based on the complementation property.

For more details on birthday attacks and collisions, the reader is referred to Ap-
pendix B. Before discussing the attacks in detail, an additional remark will be made
on the number of operations to generate a collision. Assume one has a random func-
tion with B output bits and A input bits that can be chosen arbitrarily. The function
might have C inputs bits that can not be chosen freely; these input bits will be called
parameters. If a collision is to be produced for this function for a certain value of
a parameter, i.e., two inputs that result in the same output, two cases have to be
distinguished:

A > B/2: in this case producing a collision requires 2B/2 function evaluations.

5.3. OVERVIEW OF MDC PROPOSALS 139

A < B/2: in this case, the number of expected collisions after a single trial is equal to
p = (2A)2/2B. This process will be repeated for several values of the parameter
(it is assumed that C is sufficiently large). The expected number of trials is
given by 1/p and the effort for a single trial is 2A function evaluations. Hence
the expected number of function evaluations is equal to 2B/2A, which is always
larger than 2B/2.

Note that abstraction has been made from the constant in the exponent. The number
of operations is graphically depicted in figure 5.6. Note that this argument can be

Binary logarithm of
the number of

operations

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

@
@

@
@

@
@
@

Number of input bits

Figure 5.6: The binary logarithm of the number of function evaluations as a function
of the number of input bits for the case B = 64.

simply extended if one needs more than one collision. However, if multiple collisions
are required, the behavior will be different. A detailed discussion of the number of
operations is given in section 4 of Appendix B. It should be added that if a k-fold
collision is required, with k large (say > 32), the number of operations will grow much
faster if the number of inputs in a single trial is smaller than required.

Four types of birthday attacks that exploit the structure of the scheme will be
discussed. They are only valid if φ > 0. More details on the relative efficiency of the
different attacks together with a discussion of the case φ = 0 are given in the next
section.

Attack A: this attack has already been discussed when introducing the optimal al-
location of the data bits. It consists of fixing the input bits to the first s blocks
and matching the output of the remaining k − s blocks with a birthday attack.
The number of output bits of these blocks is denoted with Bs. It is clear that

Bs =
k − s
k
· h .

140 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

The binary logarithm of number of operations for this attack is now given by the
following expression:

Bs
2

+ 1 + log2(k − s) if As ≥
Bs
2

(5.9a)

Bs −As + 1 + log2(k − s) if As <
Bs
2
. (5.9b)

With the expressions (5.3), (5.7), and (5.9) for respectively x, As, and Bs, this
can be written as:

k − s
2k

+ 1 + log2(k − s) if As ≥
Bs
2

h

k − s
k

+
β

k − φ
·
(k−s
k−φ

)(k
φ

)
− k

k − φ
·
(k−s
k−φ

)(k
φ

) · n+ 1 + log2(k − s) if As <
Bs
2
.

Here the term 1 comes from the drawings within one set (equation (B.4) in
Appendix B), and the term log2(k − s) appears because the match has to be
performed on k − s blocks. Note that this term could be eliminated by first
looking for a match for the first block, and subsequently looking for matches for
the next blocks in this set, but this would require more memory. For every value
of s, first the relative size of As and Bs/2 have to be compared. Subsequently
this yields a linear relation between memory h and security level S. This will
be the case for almost all subsequent attacks. Because of expressions (5.3) and
(5.4), there will be a hyperbolic relation between the rate R and the security
level S.

As an example, the case k = 5, φ = 3, β = 1, and n = 64 will be considered.
The results are summarized in table 5.13. It can be seen that the most effective
attack is the attack with the maximal value of s, namely s = φ. It will not be
proven that this is always true, as more efficient attacks have been developed.

Attack B: a more effective attack consists of generating a multiple collision for the
first s blocks. The number of collisions is denoted with 2c; it does not have to
be a power of two, but this will simplify notation. In the next step, one has
As + c degrees of freedom available to match the remaining k − s blocks. This
attack has already two parameters: s and c. Moreover, the logarithm of the
number of operations to generate a 2c fold collision is a non-linear function of
c, for small values of c (1 ≤ c ≤ 15, cf. Appendix B). Therefore it was decided
to write a computer program to perform a numerical calculation. It was also
extended to explore the efficiency of the subsequent more complicated attacks.
A problem that should not be overlooked is the following: for large values of c,
an attacker needs about h sk + c degrees of freedom to produce such a multiple
collision. In most cases, there are not that many data bits that enter the first
block(s). However, one can assume that an attacker can also introduce variations
in the previous iteration steps. If a collision resistant function would have been

5.3. OVERVIEW OF MDC PROPOSALS 141

s 1 2 3
As/x 6/10 3/10 1/10
Bs/h 4/5 3/5 2/5

s 1 2 3

As < Bs/2 if h > 137.1 h > 106.7 h > 64

As ≥ Bs/2 h2
5 + 3 h 3

10 + 2.6 h1
5 + 2

As < Bs/2 h11
10 − 93 h3

4 − 45.4 h 9
20 − 14

S for h = 128 54.2 50.6 43.6
S for h = 192 118.2 98.6 72.4

Table 5.13: Values of As/x and Bs/h and relations between the security level S and
the size of the chaining variable h for the case k = 5, φ = 3, β = 1, and n = 64. The
number of operations for the three different attacks is indicated for the case h = 128
and h = 192.

designed, this assumption would not have been valid. In that case any attack
has to produce a collision for a single iteration step.

Attack C: under certain circumstances, attack B can be optimized by exploiting the
block structure: first a 2c1-fold collision is produced for the output of the first
block (possibly using variations in previous rounds), subsequently a 2c2-fold col-
lision is produced for the output of the second block. This continues until a
2cs-fold collision is produced for the output of block s. Finally the last s blocks
are matched with a birthday attack with As+ cs degrees of freedom. The attack
is optimized with respected to the parameter cs; the choice of cs fixes the other
ci’s as follows: in order to produce a 2cs-fold collision for block s, h/k+ cs trials
are necessary (assuming cs is not too small). There are only as bits available at
the input of block s, which means that a 2cs−1-fold collision will be required at the
output of block s−1, with cs−1 = h/k+cs−as. If cs is small, h/k+cs can be re-
placed by the number of operations to produce a cs-fold collision. This procedure
is repeated until the first block is reached. It is assumed that there are sufficient
degrees of freedom available through variations in the previous iterations.

Attack D: This attack is different from attacks B and C because it makes a more
explicit use of interaction with the previous iteration step. It is based on the
observation that if h is significantly smaller than the value that is being evalu-
ated, it should be easy to produce collisions or even multiple collisions for Hi−1.
Therefore it should also be easy to produce multiple collisions for the first s′

blocks of Hi−1, that contain h′ = s′/h bits. The data bits that enter the first
s′ block are now fixed, and this implies that the output of these blocks will be
identical. From block s′ + 1 on, the attack continues with a type C attack.

The problem that remains to be solved is how to evaluate the number of opera-
tions to produce a multiple collision for the first s′ blocks of Hi−1. This number

142 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

is estimated by calculating the number of operations for a collision S′; in general
S′ will be smaller than h′/2. Subsequently, the expression for the number of
operations for a multiple collision is used where the size of the block is replaced
by the effective block length 2S′. The number S′ can be found by comparing the
efficiency of attacks A, B, C, and D for a scheme with the same configuration as
the original one (this means the number of data bits has not been modified), but
with h replaced by h′. If attack D is optimal, the program works in a recursive
mode. It has been verified empirically that for values of k ≤ 6 increasing the
number of recursion steps above 2 does not influence the result. This can be ex-
plained by the fact that the value of h′ gets smaller very quickly. If the recursion
is halted, this means essentially that an attacker gets the multiple collisions for
the first s′ blocks for free.

Another problem is whether the function is one-way. This means that it should be
hard to find the preimage for a given output. A first remark is that the input should be
at least S bits long. If this is not the case for a single iteration, it should be specified
that more iterations are mandatory, in order to guarantee that the overall size of the
input is at least S bits. A second remark is that the function is not complete, i.e.,
not every output bit depends on every data bit. The number of output bits that is
influenced by a single input bit is equal to

(k − φ)
k

· h . (5.10)

It is clear that this implies that if φ > 0 producing a preimage for a given hashcode will
require less than 2h operations. A simple attack, comparable to attack A consists of
looking for inputs that yield the correct output for the first s blocks and subsequently
using the As bits that are left to match the output of the k − s blocks. However,
we believe that finding a preimage for a given hash value will always be harder than
producing a collision, and the parameters will be selected to ensure that the number
of operations to produce a collision is sufficiently large. This can be supported with
an intuitive argument: for a security level of S bits it has been verified that every
data bit influences at least S output bits. Again here one can remark that finding a
pseudo-preimage will be much easier, as every bit of the chaining variable affects only
h/k output bits.

Finally a short remark on differential attacks. The main reasons why differential
attacks will not work if DES is used as the underlying block cipher is that there has
not been found a good characteristic with an even number of rounds. Differential
attacks on this scheme are harder because the attacker has no complete control over
the plaintext, and because the keys can be selected in a special way to minimize the
probability of iterative characteristics (which is not possible for MDC-2). On the other
hand, the characteristic has only to hold for the subset of the output bits that has been
selected. This means that in the last round the characteristic must not be completely
satisfied. However, it should be noted that the success probability will decrease very
fast if the characteristic is not satisfied in earlier rounds. Like in the case of MDC-2,

5.3. OVERVIEW OF MDC PROPOSALS 143

every data bit is used at least twice, which implies that a characteristic with a high
probability is required for an attack faster than exhaustive search. Once a detailed
scheme has been fixed, more work can be done on selecting the keys in such a way that
differential attacks are less efficient.

5.3.4.4 A detailed study of the security level

In this section the security level of schemes with φ between 0 and 4 will be discussed.
In order to keep the schemes practical, the value of k will be limited to 6. If φ = 0
it can be shown that for practical values of the security level the schemes with small
values of k are more efficient. For all other schemes, larger values of k would imply that
there are too many small parts (recall that the number of parts is equal to

(k
φ

)
), which

would increase the overhead of bit manipulations to an unacceptable level. Finally
note that the restriction α ≥ 2 (5.5) is equivalent to k ≥ φ+ 2.

For different values of φ, a linear or a piecewise linear relation between the security
level S and the size of the hashcode h will be obtained. The expression for the rate
can then be written as:

R =
k − φ
1− h

kn

. (5.11)

If h is substituted by a linear expression in S, this yields a hyperbolic relation between
R and S. In the practical calculations below, the block length n will be fixed equal to
64.

The case φ = 0 In this case α = k, which means that every data bit goes to every
block. There are no problems in determining an optimal configuration of the scheme.
As indicated above, at first sight none of above attacks applies, which means that the
security level is equal to its upper bound S = h/2. Note however that for k even,
attack B might be slightly more efficient. First one generates a 2c fold collision for
the first half of the output. For the case c = 3 and h = 128 this requires about
258 operations. Subsequently a birthday attack with c degrees of freedom is launched
against the second half of the output. This will require 264−3+1+1 operations. This
means an improvement with a factor 2. Note however that this is certainly equal to the
error in all our results because of the limited accuracy of our models. The expression
for the rate of this scheme reduces to

R =
k

1− 2S
kn

.

It can be seen that it becomes advantageous to increase k by one if the security level
is given by

S = n · k(k + 1)
2k + 1

.

This means that k = 4 will be the optimal solution for a security level between 54.9
and 71.1 bits. A graphical representation of the relation between R and S is given in
figure 5.7.

144 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

Rate

k = 3

k = 4

k = 5
k = 6

4

12

5

6

7

8

9

10

11

50 55 60 65 70 75 80

p p
p p p p p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p

p p p p p p p p p p p p
p p pppppppppppppppp

ppppppppppppppppp
ppppppp

p p
p p

p p
p p

p p p p p p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p p p p

p p
p p

p p
p p

p p
p p

p p
p p p p p

Security level
(bits)

Figure 5.7: Relation between the rate R and the security level S for φ = 0 and k
between 3 and 6. The optimal value of k increases with S.

5.3. OVERVIEW OF MDC PROPOSALS 145

The case φ = 1 In this case the data input is split into k parts, and every part
goes to k − 1 blocks. Computer calculation has shown that the most efficient attack
is attack D with s = s′ = 1. The number of operations can be approximated by the
following expressions:

1. Number of operations to produce a collision for blocks 2 to k:

k − 1
k

h− x

k
+ 1 + log2(k − 1)− c .

2. Number of operations to produce a 2c-fold collision for the first block of Hi−1:

k − 1
k

h

k
+ 2(1 + log2(k − 1)) + c .

The approximation lies in the fact that the logarithm of the number of operations to
produce a 2c-fold collision is not a linear function of c for small values of c. The total
number of operations should be minimized with respect to c, which implies that both
terms should be made equal. Indeed, the total number of operations can be written as
2a−c + 2b−c, which is minimal for c = (b− a)/2. The minimal value is equal to

2
a+b+2

2 .

This yields the following expression for the security level:

S =
h

2

[
k2 − 1
k2

+
1

k(k − 1)

]
− n 2

k − 1
+

5
2

+
3
2

log2(k − 1) .

For k between 3 and 5, the relation between h and S is indicated in table 5.14. For
k ≥ 6, the resulting expression is larger than h/2 for all values of h, which means
that a simple birthday attack is more efficient. The theoretical results agree very well
with the result obtained from computer calculations. Only for k = 3 and S > 64, a
significant deviation can be observed for rates larger than 8. It can be explained by
the fact that the program takes into account operations that are assumed to be free
in our simplified model of the attack. This can be verified by limiting the recursion
depth of the calculation program. The program shows that k = 4 is the best choice
for S between 51 and 72 bits.

The case φ = 2 In this case the data input is split into k(k − 1)/2 parts, and every
part goes to k−2 blocks. Computer calculation has shown that the most efficient attack
is attack D with s = 2 and s′ = 1. The number of operations can be approximated by
the following expressions:

1. Number of operations to produce a collision for blocks 3 to k:

h

[
k − 2
k

+
2

k(k − 1)(k − 2)

]
− n 2

(k − 1)(k − 2)
+ 1 + log2(k − 2)− c .

146 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

k Security level S (bits)

3 19
36h− 12.0

4 49
96h− 5.8

5 101
200h− 2.5

Table 5.14: Relation between h and S for φ = 1 and k = 3, 4, and 5.

2. Number of operations to produce a 2c-fold collision for block 2:

h

k
+ c .

3. Number of operations to produce a 2c-fold collision for the first block of Hi−1:

h

[
1
k

+
k − 2
k2

+
2

k(k − 1)

]
− n 2

k − 1
+ 2(1 + log2(k − 3)) + c .

This number of operations should be minimized with respect to c. For smaller values of
h, the third term is negligible, while for larger values of h, the second term is negligible.
For k between 4 and 6, the relation between h and S is indicated in table 5.15. The
theoretical results agree very well with the result obtained from computer calculations.
The program shows that k = 4 is the best choice for S smaller than 69 bits.

k Security level S (bits)

4 h ≥ 132 27
48h− 28.0 h ≤ 132 10

24h− 8.7

5 h ≥ 122 79
150h− 16.5 h ≤ 122 5

12h− 3.0

6 h ≥ 110 37
72h− 10.5 h ≤ 110 17

40h− 0.7

Table 5.15: Relation between h and S for φ = 2 and k = 4, 5, and 6.

The case φ = 3 In this case the data input is split into
(k
3

)
parts, and every part

goes to k − 3 blocks. Computer calculation has shown that the most efficient attack
is attack D with s = 3 and s′ = 1. The number of operations can be approximated by
the following expressions:

1. Number of operations to produce a collision for blocks 4 to k:

h

[
k − 3
k

+
6

k(k − 1)(k − 2)(k − 3)

]
−n 6

(k − 1)(k − 2)(k − 3)
+1+log2(k−3)−c .

5.3. OVERVIEW OF MDC PROPOSALS 147

2. Number of operations to produce a 2c-fold collision for block 3:

h

k
+ c .

3. Number of operations to produce a 2c
′
-fold collision for block 2 (with c′ = h/k+

c− a3):

h

[
2
k

+
6

k(k − 1)(k − 2)

]
− n 6

(k − 1)(k − 2)
+ 2(1 + log2(k − 3)) + c .

4. Number of operations to produce a 2c
′′
-fold collision for the first block of Hi−1

(with c′′ = h/k + c′ − a2). It can be shown that this number is significantly
smaller than h

k + c.

This number of operations should be minimized with respect to c. The second term
is always smaller than the third term. This results in the following expression for the
security level:

S =
h

2

[
k − 1
k

+
6

k(k − 1)(k − 3)

]
− n 3

(k − 1)(k − 3)
+

3
2

+
1
2

log2(k − 3) .

For k equal to 5 and 6, the relation between h and S is indicated in table 5.16. The
theoretical results agree very well with the result obtained from computer calculations.
The program shows that k = 5 is the best choice for S smaller than 82 bits.

k Security level S (bits)

5 19
40h− 22.0

6 9
20h− 10.5

Table 5.16: Relation between h and S for φ = 2 and k = 4, 5, and 6.

The case φ = 4 The only case that has been studied is k = 6. Here it is not possible
to derive simple analytic expressions that are sufficiently accurate. This is because
the result obtained by the different attacks lie very closely together; depending on the
value of h, the best attack is attack D with s = 4 and s′ = 2 or 4. Moreover, the
optimal values of c are very small, which means that the system is non-linear, and the
attacks are strongly dependent on the use of recursion. An upper bound on S can be
easily obtained using method A:

S ≤ 11
30
h− 10.8 .

148 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

A least squares fitting the computer evaluation yields a correlation coefficient of 0.99958
with the following expression:

S = 0.3756h− 14.974 .

This can be approximated very well by S = 3/8 h− 15.

5.3.4.5 Extensions

The study of the previous scheme assumed that h and x are continuous variables.
However, in practice they will have to be integers that satisfy certain constraints:

1. x has to be an integer multiple of
(k
φ

)
. Therefore define x′ = x/

(k
φ

)
.

2. nk − h has to be an integer multiple of k − φ.

3. h has to be an integer multiple of k. Therefore define h′ = h/k.

Note that in order to perform the mixing stage on the output of the k blocks, one
needs in fact the requirement that h is an integer multiple of k2. However, this mixing
stage is not critical in the security analysis of the scheme. The following algorithm
steps through all values of x and h that satisfy the constraints, for which h > h0. First
the starting values are generated:

x′1 =


n−

⌈
h0
k

⌉
(k−1
φ

)
 (5.12)

x1 =

(
k

φ

)
x′1 (5.13)

h1 = k

(
n−

(
k − 1
φ

)
x′1

)
. (5.14)

Here dxe denotes the smallest integer greater than or equal to x. The next values are
calculated as follows:

xi+1 = xi +

(
k

φ

)
(5.15)

hi+1 = hi + k

(
k − 1
φ

)
. (5.16)

In the overview of the results it will be graphically indicated which schemes satisfy the
requirements. It is of course always possible to think of schemes for which the parts
differ 1 or 2 bits in size just to match the constraints. This will affect the security
level compared to the ideal situation, but the decrease will certainly be only marginal.
These schemes are less elegant, but as long as the asymmetry in the bit manipulations
has no negative influence on the performance, this is not so important.

5.3. OVERVIEW OF MDC PROPOSALS 149

If the schemes are extended for β > 1, the following elements have to be considered.
First, the allocation of the bits of Hi−1 to the different blocks will have to be made
in a similar way as for the data bits. However, some additional work has to be done
because both allocations should be as independent as possible, i.e., the bits of Hi−1

and Xi will have to occur in as many combinations as possible. It is clear that the rate
of the scheme will increase with increasing β. The study of attacks on this scheme is
more complicated, especially for type D attacks.

Another issue is how to extend this method to construct a collision resistant func-
tion. In this case the attacks to be considered would be simpler, because the interaction
with the previous iteration steps can be neglected. This is not completely true how-
ever, because an attacker could exploit the fact that the function is not complete (not
all output bits depend on all input bits), by producing collisions for part of the output
blocks. However, if the program is adapted to evaluate this type of schemes, it becomes
clear that they will never be very efficient: the best scheme with a security level of 56
bits under the constraint k ≤ 16 has a rate of 20 (which is in case of software a little
worse than MDC-4). It is a scheme with α = 3 or φ = 12. The size of the hashcode
would be 272 bits, and every iteration processes 48 bits. The scheme is however very
impractical becauseXi has to be split into 455 blocks of 2 or 3 bits. We believe that it is
certainly possible to produce more efficient collision resistant functions with a different
approach, where all inputs are mixed faster from the beginning of the calculations.

The basic principles used here can also be applied to other hash functions based
on block ciphers where the key is modified in every iteration step. As an example
it is indicated how MDC-2 could be extended in two ways to obtain a security level
larger than 54 bits. The 2 parallel DES operations will be replaced by 3 parallel DES
operations (k = 3).

• A trivial way would be α = 3: every data bit is used 3 times as plaintext. The
size of the hashcode would be 192 bits, and the effective security level is equal
to 81 bits. The rate of this scheme is equal to 3 (comprising a key change).

• A second scheme can be obtained by selecting α = 2: the data input of 96 bits is
divided into 3 32-bit parts, that are allocated in the optimal way to the 3 blocks.
The rate of this scheme is equal to 2 (the same as MDC-2), but the security level
is slightly larger than 60 bits.

Of course it is possible to extend this for k > 3, which will result in faster schemes
that require more memory.

The fact that the keys are fixed opens a different possibility: if the keys are kept
secret, the scheme gives a construction for a MAC for which it is hard to produce a
collision even for someone who knows the secret key. This is not possible with the
widespread schemes for a MAC. Applications where this property might be useful are
discussed in section 2.3. Precautions should be taken to avoid that someone chooses
weak keys, identical keys, or keys that are the complement of each other. This can be
done by selecting a single key and by specifying a way to derive all these keys from this
“master key”. An example is to encrypt with the master key a string that contains the

150 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

number of the block. A more secure scheme can be obtained if two keys are specified
and if triple DES encryption is used in this procedure. Note again that a given output
bit will not necessarily depend on all key bits: therefore at least two iterations are
required.

A disadvantage of all these new schemes is that the decreased rate has to be paid
for by increasing the memory. The additional 64 to 80 bits are no problem for the
chaining variables (certainly not when the computations are performed in software),
but the increased size of the hashcode might cause problems. This is not the case
for digital signatures, as most signature schemes sign messages between 256 and 512
bits long. Exceptions to this rule are the scheme by Schnorr [296] and DSA, the draft
standard proposed by NIST [111], where the size of the argument is 160 bits. If the
hash function is used for fingerprinting computer files, an increased storage can pose
a more serious problem. However, it can be solved by compressing the result to a
number of bits equal to twice the security level S. This can be done with a (slow) hash
function with φ = 0, security level S, and size of the hashcode 2S.

5.3.4.6 Overview of results

This paragraph will give an overview of some of the results that have been obtained.
First the best schemes are given for a given value of φ and a given security level in
table 5.17. Note that it is not possible to obtain a specific security level, because the
discrete character of the variables has been taken into account.

The relation between the rate R and the security level S with parameter φ, with
0 ≤ φ ≤ k − 2 will be shown in the figures 5.8 to 5.11. The solutions that take into
account the discrete character are marked with a 3. For a fixed k one can conclude
that the trade-off between speed and security level becomes better for larger values of
φ. For a fixed φ the situation is more complicated: the optimal k will increase with
increasing security level. For a security level between 50 and 70 bits, the best choice
is k = 4 for φ ≤ 2, and k = φ + 2 if φ > 2. The irregular behavior of the curves in
case k = 4 and φ = 1 and 2 (figure 5.9) is caused by the combination of the continuous
approximation of the discrete input with the discrete character of the function that
gives the number of operations for a 2c-fold collision for c ≈ 1 (figure B.1). If in the
attack a c occurs that is slightly smaller than 1, it is not possible to use an extended
attack where c = 1. When h increases (and hence R), c will also increase and if c
becomes larger than 1, a more sophisticated attack can be applied, which results in a
small decrease of the security level. Of course, in fact the input consists of an integer
number of bits and this situation should not occur. Note however that the overall
accuracy of the estimates is certainly not better than 1 bit, which means that this
error is relatively small.

5.3. OVERVIEW OF MDC PROPOSALS 151

security level ' 54 bits security level ' 64 bits
φ k R h S h(k − φ)/φ R h S h(k − φ)/φ
0 4 6.92 108 54 108 8.00 128 64 128
1 4 5.82 124 58 93 6.40 136 64 102
2 4 4.74 148 55 74 6.10 172 69 86
3 5 4.00 160 53 64 4.57 180 62 72
4 6 4.27 204 62 68

Table 5.17: Overview of best results for small values of φ and k. The quantity h(k −
φ)/φ indicates how many output bits depend on a single input bit.

Rate

4

12

5

6

7

8

9

10

11

50 55 60 65 70 75 80

p p
p p

p p p p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p

p p p p p p p p p pppppp
ppppppppppppppppppppp

ppppppppppppp

p p p p ppp p p pp p p pp p p pp p p pp p p p p p p p p p p p pp p
p pp p p pp p p pp p p pp p p p p p p p p p p p p p p p

p p ppp p p pp p p p p p pp p p pp p
p p p p pp p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p

p p p p p p pppppppp
pppp p p p p pp p p p

p p

3
3

3
3

3
3

3
3

3
3

3

3

3

3

3
3

3

3

3

3

3

Security level
(bits)

Figure 5.8: Relation between the rate R and the security level S for k = 3 with
parameter φ = 0 and 1.

152 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

Rate

4

12

5

6

7

8

9

10

11

50 55 60 65 70 75 80

p p
p p

p p
p p

p p p p p p p p p p p p p p p p p p p p
p p p p p p p p

p p p pp p p pp p p pp p p p p p pp p p p p p p p p pp p p pp p p pp p p pp pppp p p p p p p p p
p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p p p p pp p p p p p p p p pp p p p

p p pp p p p p p pp p p pp p p pp p p p p p pp p p pp p p pppppp p p pp p p pp
p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p

pp p p pp p p pp p p p

p ppp p p pp p p pp p p p p p
pp p p p p p pp p p p p p pp pp p

p pp p p p p p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p
p p p pp p p pp p p pp p p pp p p pp p p p p pp p p

pp p p pp p p p
3 3 3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3

3

3

3

3

3

3

Security level
(bits)

Figure 5.9: Relation between the rate R and the security level S for k = 4 with
parameter φ = 0, 1, and 2.

5.3. OVERVIEW OF MDC PROPOSALS 153

Rate

4

12

5

6

7

8

9

10

11

50 55 60 65 70 75 80

p p
p p

p p
p p p p p p p p p p p p p p p p p p p

p p p p p p p p p pp p p pp p p p p p pp p p p p p p p p p p p p p p pp p p pp p p pp p p p p p pp p p pp p p p p p pp p p p p p p p p p p p pp p p p p p p p p pp p p
p p p p p p p p p pp p p p p p p p p p p p pp p p p p p pp p p pp p p p p p pp p p pp p p pp p p p p p pp p p pp p p pp p p pp p p pp p

p pp p p p p p pp p p pp p p pp p p pp p p pp p p p p p pp p p pp p p p p p pp p p pp p p p p p p

p p p p p p p p p pp p p pp p p pp p p p p p pp p p p p p p p p pp p p pp p p p p p pp p p pp p p pp p p p p p pp p p p p p p p p pp p p p p p p p p p p p pp p p p p p p p p p p p
pp p p p p p p p p p p p pp p p p p p p p p p p p p p p pp p p pp p p pp p p pp p p p p p pp p p pp p p pp p p p p p pp p p pp p p pp p p

pp p p p p p pp p p pp p p p p pp p p pp p p pp p p p p p pp p p pp p p p

p pp pp ppppppp ppp pp ppppppp pp pp ppp pppppp pp ppp ppp pp pp p p p pp p p p pp ppp p p p p p pp p p p p p p p p p p p p p p pp p p p p p p p p p p
p pp p p p pp p p p p p p p p pp p p pp p p pp p p pp p p pp p p pp p p p p p pp pp pp p p ppppp p p pp p p pp p p ppppp

pppppppppp p pppppppp p ppppppppppppppp p ppp
3 3 3

3
3

3
3

3
3

3
3

3

3

3

3

3

3

3

3

Security level
(bits)

Figure 5.10: Relation between the rate R and the security level S for k = 5 with
parameter φ = 0, 1, 2, and 3.

154 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

Rate

4

12

5

6

7

8

9

10

11

50 55 60 65 70 75 80

p p
p p

p p

p p p p p p pp p p p p p p p p p p p pp p p pp p p p p p pp p p pp p p pp p p pp p p p p p pp p p pp p p pp p p p p p pp p p p p p pp p p p p p pp p p p p p pp p p pp p p p p p pp p p pp p p p p p
p p p pp p p pp p p p p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p p p p pp p p pp p p p p p pp p p pp p p pp

p p pp p p pp p p pp p p pp p p pp p p p

p p p pp p p p p p pp p p p p p p p p p p p pp p p p p p pp p p p p p pp p p pp p p p p p pp p p pp p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p pp p p p p p p p p p p p pp p p p p p p p p pp
p p p p p p p p p p p pp p p pp p p pp p p p p p pp p p pp p p p p p pp p p pp p p pp p p p p p pp p p pp p p p p p pp p p pp p p pppppp p p pp p p p p p pp p p pp p p pp

p p pp p p p

pp pp ppppp pp
pp ppp pp pp p p pp p p p p p pp p p pp p p p p p pp p p pp p p p p p pp p p pp p p p p p pp p p pp p p pp p p p p p pp p p pp p p pp p p p p p pp p p pp p p pp p p p p p pp p p p

p p
p p

p p p p p p p p p p p p p p p p p p p
3 3 3

3
3

3
3

3
3

3
3

3

3

3

3

3

3

Security level
(bits)

Figure 5.11: Relation between the rate R and the security level S for k = 6 with
parameter φ = 0, 1, 2, 3, and 4.

5.4. OVERVIEW OF MAC PROPOSALS 155

5.4 Overview of MAC proposals

In contrast with the variety of MDC proposals, very few algorithms exist. This can
perhaps be explained by the fact that the first proposals for standardization that
originated in the banking community are still widely accepted. The ANSI banking
standard [9] specifies that the resulting MAC contains 32 bits, while the corresponding
ISO standard [152] leaves open how many bits should be selected. A CBC-based MAC
has also been standardized within ISO/IEC JTC1 (Information Technology) in [156].

It is clear that a result of 32 bits can be sufficient if a birthday attack (cf. sec-
tion 2.5.1.3) is not feasible and if additional protection is present against random
attacks (cf. section 2.5.1.1), which is certainly the case in the wholesale banking envi-
ronment. In other applications, this can not be guaranteed. Therefore, certain authors
recommend also for a MAC a result of 128 bits [169, 170]:

The use of the 64-bit MAC technique of FIPS and ANSI can not be consid-
ered sufficiently strong, and is not recommended if there is any possibility
that the originator may attempt to defraud the message recipient, or if a
Trojan horse could circumvent security controls through such a mechanism.
In addition, the use of a MAC in certain command and control situations
where the attacker may attempt to spoof computer-controlled equipment or
processes is also not recommended.

In a first section the CBC and CFB modes of a block cipher will be discussed, and
in a second section two new schemes will be proposed.

5.4.1 CBC and CFB modes of a block cipher algorithm

A widespread method for computing a MAC are the CBC and CFB modes of a block
cipher algorithm [9, 85, 109, 110, 152, 154, 156, 215]. The descriptions and standards
differ because some of them select one of the two modes, suggest other padding schemes
or leave open the number of output bits that is used for the MAC. If the length of
the data is known on beforehand by both parties, an ambiguous padding rule can
be acceptable (e.g., filling out with zeroes). The authentication of Electronic Funds
Transfer in the US Federal Reserve System uses a 64-bit CBC, and additionally a secret
value for IV that is changed daily and kept secret by the member banks [310]. In case
of the CBC mode, the MAC consists of the last 64 bits of the ciphertext (or the n
most significant bits of it) where in the CFB mode after processing the information
the DES engine is operated one more time: if this step would be omitted, the MAC
would depend in a linear way on the last data block. The MAC is selected from the
high order end of the final output. The security relies on the well established forward
error propagating properties of both modes of operation. However, in practice one
faces several problems.

The attacks on the MDC schemes where the CBC mode or CFB mode are used
(with a non-secret key) show that these functions are not one-way or collision resistant

156 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

for someone who knows the secret key. Therefore these schemes can not be used for
certain applications (cf. section 2.3).

Three types of attacks are important for these schemes:

Exhaustive key search (cf. section 2.5.1.2): if DES is used as the underlying block
cipher, exhaustive key search attacks are becoming certainly more feasible and
less expensive [91, 117, 272]. It is clear that the use of triple DES with two keys
can solve this problem. A different way to make exhaustive attacks infeasible
is to perform an additional process [156]: after the CBC encryption, the result
is deciphered with a key K ′ 6= K and subsequently enciphered with the key K.
In this way, compatibility with the simple scheme can be obtained by selecting
K ′ = K. Another way to look at this suggestion is that only the last block is
encrypted with triple DES using two keys.

An argument that has been suggested to keep less than 64 bits of the final
result is that this would increase the “one-way” character of the MAC, i.e., the
MAC would contain less information on the key. This is true because if a 64-
bit result is known, one can in principle recover the key with an exhaustive
attack. However, in some cases more than one key matches a single plaintext-
ciphertext pair (cf. section 2.5.2.6). The probability that a single key corresponds
to a given plaintext-ciphertext pair is 0.99610. The probability that 2 keys are
possible is equal to 0.00389, and for 3 keys the probability is close to 0.00001.
A second plaintext-MAC pair would however reveal the correct key with almost
certainty. A general discussion of exhaustive attacks on a MAC has been given
in section 2.5.1.2. From (2.2) it follows that if only 32 bits of the result are given,
a single plaintext-MAC pair suggests approximately 224 keys. It is however clear
that in this case the key can be determined in most cases with two plaintext-MAC
pairs.

Differential attacks (cf. section 2.5.2.7): for a DES-based MAC this new cryptana-
lytic technique requires currently 247 chosen plaintexts to find the key. If the key
is changed frequently, the attack will still find one of the keys. This is for the
time being totally impractical, but it suggests that realistic attacks on single DES
encryption will be developed before the end of the century. In this context it is
important to note that the use of a secret IV in CBC mode does not help against
differential attacks. Effective countermeasures are the addition of redundancy to
every plaintext block or the use of triple encryption with two keys.

Chosen plaintext attack: this attack —suggested to us by B. den Boer— allows an
existential forgery based on 3 plaintext-MAC pairs. Two of these plaintexts are
known plaintexts, while the third one is a chosen plaintext. The attack can be
described as follows: let H and H ′ be the CBC-MAC corresponding to key K
and plaintext X and X ′ respectively. The attacker appends a block Y to X and
obtains with a chosen plaintext attack the new MAC, that will be denoted with
G. It is then clear that the MAC for the concatenation ofX ′ and Y ′ = Y ⊕H⊕H ′

will also be equal to G (the input to the block cipher in the last iteration will in

5.4. OVERVIEW OF MAC PROPOSALS 157

both cases be equal to H ⊕ Y). A similar attack holds for the CFB mode. This
attack can be thwarted in several ways:

• The use of a post-fix free encoding, which means in practice to prepend
the length to the message. This might be difficult for certain applications,
where the size of the message is not known on beforehand. Note that the
attack will not work in the case of fixed message size. Adding the length
at the end is not completely effective: both Y and Y ′ could represent the
length of the message.

• Apply a one-way function to the MAC after the CBC or CFB calculation.
A possible function is MAC ′ = E⊕(K,MAC).

• Apply an encryption with a different key K ′ to the MAC. An example of
such a scheme is specified in [156] and was discussed before. If one desires
to increase the key space to thwart exhaustive attacks, one can choose an
independent key K ′ and perform a double encryption (i.e., decrypt with
K ′ and encrypt with K). If this is not required, one can derive K ′ from
K (e.g., by complementing every other nibble or half-byte), and perform a
single encryption with K ′.

If the message will also be encrypted, it is mandatory that different keys are used
for authentication and for encryption. This has been illustrated for a limited number
of cases in [167, 215]. A more general treatment will be given here, resolving some
open problems posed in [167]. The conclusion is that this approach is very likely to
introduce vulnerabilities.

Three different options can be distinguished:

1. The plaintext X is encrypted with the key K and initial value IV1, resulting in
the ciphertext Y . The MAC is computed on the ciphertext Y with the key K
and initial value IV2.

2. The MAC is computed on the plaintext X with the key K and initial value IV2.
Subsequently, the plaintext X is encrypted with the key K and initial value IV1,
resulting in the ciphertext Y .

3. The MAC is computed on the plaintext X with the key K and initial value IV2.
Subsequently, the concatenation of the plaintext X and the MAC is encrypted
with the key K and initial value IV1, resulting in the ciphertext Y .

Moreover, one has to specify the mode both for the encryption and for the MAC
scheme, and whether it is allowed or not to use the same initial values. Even if only
two modes are considered (namely CBC and CFB), this results in a large number of
possible schemes. In case of the CFB mode, one has to specify the size of the feedback
parameter. To simplify the calculations, the largest possible value for this parameter
will be selected, resulting in the most efficient scheme.

The simplest issue to discuss is the influence of the initial value. If a specific relation
exists between IV1 and IV2, the schemes of option 2 and 3 will mostly become very

158 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

weak. As will become clear from the following paragraph, the choice of the initial
values is not so important in case of option 1. An overview is given in table 5.18 of
the influence of a specific relation between the initial values on the MAC.

encryption MAC relation between IV ’s MAC for option 2 MAC for option 3
CBC CBC IV1 = IV2 Yt E(K, 0)
CFB CFB IV1 = IV2 Yt 0
CBC CFB IV1 = E(K, IV2) Yt E(K, 0)
CFB CBC E(K, IV1) = IV2 E(K,Yt) 0

Table 5.18: Relation between initial values for encryption (IV1) and MAC calculation
(IV2) with the same key K that yield a possibly weaker scheme. The last block of the
ciphertext is denoted with Yt.

The following conclusions can be drawn from table 5.18:

• The specific relation to be imposed on the initial values is dependent on the secret
key K if the mode for encryption differs from the mode of the MAC calculation.

• If option 3 is selected, the MAC is independent of both plaintext and ciphertext,
and will depend on the key if the encryption is done in CBC mode. This means
that under these conditions option 3 is completely insecure. For the case of the
CBC mode in encryption and MAC calculation, R. Jueneman ([167], p. 38) also
reaches the conclusion that option 3 is insecure, but he uses a wrong argument
to support this.

• If option 2 is selected, the MAC depends on the ciphertext (and thus on the
plaintext). Moreover it also depends directly on the key (the MAC can not be
computed from plaintext and ciphertext only) if the encryption is done in CFB
mode and the MAC calculation is done in CBC mode. It is clear that a simple
chosen plaintext attack is sufficient to obtain the MAC corresponding to a given
ciphertext. In the next paragraph this type of attack will be generalized to all
cases.

Even if no special relation between the two initial values exists, it is possible to
break the schemes. In case of option 3 and the CBC mode for both encryption and
MAC, a known plaintext attack has been demonstrated by D. Coppersmith [167]. The
idea is that if the attacker knows a plaintext-ciphertext pair (P,C), he can easily
append the following blocks to the ciphertext:

MAC ⊕ P,C ⊕ P,C ⊕ P, . . . , C ⊕ P,C .

The MAC will still be correct and the corresponding plaintext will be random (“au-
thenticated garbage”). This attack can be extended to all other cases if more plaintext-
ciphertext pairs are known.

As a conclusion one can recommend that always two different keys should be used.
This can be compared to the public-key systems, where protection of both secrecy

5.4. OVERVIEW OF MAC PROPOSALS 159

and authenticity requires two different operations. However, a very pragmatic solution
could be to derive the key for authentication from the key for secrecy in such a way that
both encryption operations will become totally unrelated: in case of DES one should
not use the complement, but complementing every other nibble (half-byte) would yield
a good solution. If a hierarchical key structure is present, it is always possible to derive
two unrelated keys from a single master key. A similar procedure could be applied to
the initial values.

5.4.2 Invertible chaining for a MAC

In this section an alternative scheme for a MAC is proposed, that has the advantage
that even for someone who knows the secret key, it requires O(2n/2) operations to find
a preimage of a given value. Based on the synthetic approach of section 5.3.1.4 it can
be shown that this is best possible for a scheme with rate 1. From the 16 schemes with
a constant key that are listed in table 5.2, 7 are trivially weak, 6 succumb to a direct
attack (among those the CFB and the CBC mode), and there is 1 scheme vulnerable
to a permutation attack, to a forward attack, and to a backward attack respectively.

The scheme vulnerable to a backward attack can be described as follows:

f = E(K,Xi ⊕Hi−1)⊕Xi .

It is recalled that vulnerability to a backward attack implies that it is trivial to produce
a pseudo-preimage, and a preimage (or second preimage) of a given hashcode can be
computed with a meet in the middle attack (cf. section 2.5.2.1) in O(2n/2) operations.
Note that this is comparable to BMAC (with a secret key), but with the difference
that this scheme is twice as efficient. If the size of the block cipher is sufficiently large,
this scheme can yield a MAC that is collision resistant for someone who knows the key.

On the other hand, the scheme vulnerable to a forward attack is also of interest:

f = E(K,Xi ⊕Hi−1)⊕Xi ⊕Hi−1 = E⊕(K,Xi ⊕Hi−1) .

Here it is trivial to find a second preimage, but hard to find a preimage or pseudo-
preimage of a given value in the range. It is only useful for (exotic) applications
where the attacker knows the secret key and the MAC, but does not know the message
corresponding to the MAC. A disadvantage of this scheme is that for a fixed Xi the
function f is injective. This implies that the “loss of memory” problem that was
described in section 2.4.1 will occur. An overview of the number of operations for
several attacks is given in table 5.19. Note that the three attacks described for the
CBC-MAC are still valid. The only difference is that in case of a chosen plaintext
attack the MAC corresponding to the new message will be equal to G⊕H ⊕H ′. The
proposed counter-measures can thwart these attacks.

An alternative solution to the construction of a one-way and/or collision resistant
MAC is to encrypt the hashcode of an MDC.

160 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

mode Backward Forward Direct (CBC/CFB)
pseudo-preimage 1 264 1
preimage 232 264 1
second preimage 232 1 1

Table 5.19: Number of operations to produce a pseudo-preimage, preimage and second
preimage for several MAC schemes.

5.5 Conclusion

This chapter has attempted to develop a framework for the study of hash functions
based on block ciphers. First it has been shown how the idea of using a hash func-
tion in cryptography emerged from the redundancy that was added to the plaintext
before encryption. The treatment of the addition schemes has been generalized. Sub-
sequently an attempt has been made to classify the large number of proposals. For the
MDC schemes where the size of the hashcode is equal to the block length, a synthetic
approach was suggested. For the other MDC schemes, a thorough evaluation was pre-
sented, which has resulted in the cryptanalysis of seven schemes, and a new scheme
was proposed. For the MAC schemes, the interaction between encryption and MAC
calculation with the same key has been studied in more detail, and two new schemes
were discussed that have some interesting properties. The main open problem is an
optimal construction for a CRHF based on a block cipher with “small” block length
and key.

Chapter 6

Hash Functions Based on
Modular Arithmetic

But who shall watch over the guard?

6.1 Introduction

The motivation to use schemes based on modular arithmetic is comparable to the
motivation for schemes based on block ciphers. A variety of cryptographic schemes
have been based on number theoretic problems: public-key cryptosystems (like RSA
[278] and ElGamal [100]), digital signature schemes, and pseudo-random bit generators.
The idea is to reduce the security —provably or intuitively— to the hardness of number
theoretic problems. The availability of an implementation of modular arithmetic is a
second argument to design a hash function based on these operations, especially in
an environment where resources like chip area or program size are limited. A third
argument is that these hash functions are easily scalable, i.e., the size of the result can
be chosen freely. The disadvantage is that precautions have to be taken against attacks
that exploit the mathematical structure like fixed points of modular exponentiation
(trivial examples are 0 and 1), multiplicative attacks, and attacks with small numbers,
for which no modular reduction occurs.

In a first section, an overview will be given of MDC proposals. Two types will be
identified: schemes based on 32-bit integer operations, and schemes with large integer
arithmetic, where the operations are defined on integers of size 512 bits or more. In the
latter case the operands are elements of the ring corresponding to an RSA modulus,
i.e., the product of two large primes, or of a Galois Field GF (p) or GF (2n). For
convenience we will refer to these schemes as schemes with large modulus, although
this terminology applies strictly speaking only to RSA-based schemes. In a second
section it will be shown how the MAC scheme by F. Cohen and Y.J. Huang based on
modular arithmetic can be broken with an adaptive chosen message attack. Finally

161

162 CHAPTER 6. HASH FUNCTIONS BASED ON MODULAR ARITHMETIC

the conclusions will be presented.
The main contributions of this chapter are the extension of the synthetic approach

to the schemes based on modular exponentiation and the new attacks on the scheme by
Y. Zheng, T. Matsumoto, and H. Imai and on the scheme by F. Cohen and Y.J. Huang.

6.2 Overview of MDC proposals

This section will discuss the large number of MDC schemes based on modular arith-
metic. For schemes with small modulus, it will be shown that several attempts to
design such a scheme were not successful. For the schemes with large modulus, one
can essentially distinguish between two types of schemes: fast schemes that make use
of modular squaring or exponentiation, that have however several security problems,
and provably secure schemes that are rather inefficient.

6.2.1 Schemes with a small modulus

In order to improve the addition schemes (cf. section 5.2.3), R. Jueneman, S. Matyas,
and C. Meyer attempted to construct a fast MDC using only single precision arith-
metic (32-bit multiplications). The idea was to implement these operations on the
coprocessor of a personal computer in order to obtain an MDC that is faster than a
DES-based algorithm. A first scheme has a block length of only 32 bits, and was called
Quadratic Congruential MDC (QCMDC) [166, 167]:

f = (Xi +Hi−1)2 mod N ,

where N is the Mersenne prime 231 − 1, and IV = 0. The goal of this scheme was to
protect the authenticity of information that is generated by the “user” and that will
be encrypted in a later stage by a separate entity, the “sender”. It was intended for
environments where the secrecy protection is independent from the authenticity pro-
tection, and where the use of a separate MAC is too expensive in terms of computation
and key management. The designers realized that the protection offered by this MDC
is too weak in certain cases. Therefore it was recommended in [166] to let X1 be a
secret random seed (not known to the user) that is different for every message and that
is sent together with the message. As it should not be known in advance by sender
and receiver, it is not considered to be a secret key. However, in [167] it is stated that
this protection is not sufficient if the user attacks his own messages:

• In a first attack, the user simply discards X1, and the corresponding ciphertext,
and constructs a message with the same MDC under the condition that the
random seed is equal to X2 (this block is known by the user). This can be
done with a meet in the middle attack (cf. section 2.5.2.1) that requires only 18
plaintext-ciphertext pairs, if the variations are constructed by permuting blocks
(indeed 9! > 216). This attack can be thwarted by increasing the size of the
MDC to 128 bits (although 80 bits are suggested in [167]).

6.2. OVERVIEW OF MDC PROPOSALS 163

• The second attack applies in case of encryption with an additive stream cipher or
with a block cipher in OFB mode. The user can then determine the key stream
sequence and perform subsequently a substitution, as discussed in section 2.3.1.2.
To thwart this attack, the MDC should depend on a secret key that is not known
to the user. A possibility is to choose IV to be equal to E(K, 0), where K is the
secret key used for the secrecy protection: in this case one clearly has a MAC
where the key is derived from the encryption key. However, in order to increase
the protection, it is recommended that the secret seed is also used. Moreover,
the overall security level is still restricted to 32 bits.

These considerations lead to a second version, where the size of the result was
extended to 128 bits by taking four passes over the message [168], while the result of
an iteration is used as IV for the next one. Shortly after publication of this scheme,
D. Coppersmith showed that with the generalized meet in the middle attack (cf. sec-
tion 2.5.2.3) finding a collision in the second version requires about 245 operations,
instead of 232 for the first version. This forced the author to design the third version.

In this version each message block Xi and chaining variable Hi of 128 bits are split
into four 32-bit blocks that will be denoted with Xij and Hij respectively (0 ≤ j ≤ 3).
To simplify notations, the index i will be omitted from hereon. One then defines four
functions fj as follows:

fj =
[
(Hj mod 4 ⊕X0)− (H(j+1) mod 4 ⊕X1) + (H(j+2) mod 4 ⊕X2)

− (H(j+3) mod 4 ⊕X3)
]2

mod N .

When a message block is processed, the value of Hj is updated with fj , and the new
value is used immediately to update the other chaining variables. However, D. Cop-
persmith pointed out that the choice of the modulus results in a particular weakness:
exoring the string 80 00 00 01x has the effect of inverting the sign and the low order bit
(in two’s complement), which can be equivalent to adding or subtracting the modulus.
This resulted in the fourth and final version, that was called QCMDCV4.

The QCMDCV4 algorithm uses four different moduli Nj , namely the four largest
prime numbers smaller than 231 − 1: 231 − 19, 231 − 61, 231 − 69, and 231 − 85. To
avoid attacks where the modulus is added or subtracted, a 5th block is constructed

X4 = (00 ‖ X0[31− 26] ‖ X1[31− 24] ‖ X2[31− 24] ‖ X3[31− 24]) ,

and bit Xj [30] (0 ≤ j ≤ 3) is forced to 0. Here X[i − j] denotes the consecutive bits
i, i + 1, . . . , j of the integer X, and the most significant bit has number 31. The four
functions fj are defined as follows:

fj =
[
(Hj mod 4 ⊕X0)− (H(j+1) mod 4 ⊕X1) + (H(j+2) mod 4 ⊕X2)

−(H(j+3) mod 4 ⊕X3) + (−1)jX4

]2
mod Nj .

In [57] D. Coppersmith showed that this scheme can be broken in about 218 operations
by combining a correcting block attack (cf. section 2.5.2.4) with a birthday attack (cf.

164 CHAPTER 6. HASH FUNCTIONS BASED ON MODULAR ARITHMETIC

section 2.5.1.3). First the attacker selects an arbitrary message and calculates the
corresponding values for the chaining variables. Now he needs a single block to obtain
a chosen value of Ht0, Ht1, and Ht2 (on almost all positions), and subsequently he
obtains a collision for the remaining 35 bits with a birthday attack. This means that
finding a preimage will require about 235 operations. Finding a match on almost all
bits of Ht0, Ht1, and Ht2 is easy: one takes the square root of the chosen values, and
subsequently solves for X0 through X3, starting with the least significant bits, that
are independent of the higher order bits: after taking square roots the function is not
complete (the output bits do not depend on every input bit). The only complication
is caused by the additional block X4. The efficiency of this attack suggests that the
approach is clearly not adequate, and that modifications of this scheme will probably
succumb to a similar attack.

To conclude this section, it is mentioned that recently a hash function and a MAC
were proposed by C. Besnard and J. Martin [19]. Both schemes are mainly based on
squaring modulo 231−1. It is suspected that they will succumb to a divide and conquer
approach.

6.2.2 Schemes with a large modulus

Most schemes in this section are based on a RSA modulus that is the product of two
large primes p and q, and that satisfy some additional requirements [132]. The modulus
will be denoted with N , and its size in bits is written as n, or n = dlog2Ne. Other
schemes are based on operations in GF (2n) or in GF (p), where p is an n-bit prime. In
most proposals n was suggested to be 512 bits, but it is clear that in the near future
this will have to be increased to 768 or 1024 bits. As the size of the result is also n
bits, most schemes were designed to yield a CRHF.

Before describing these schemes, it is remarked that there exists some controversy
about the choice of the RSA modulus N : if N is generated by the signer, N could
be equal to the modulus he uses to generate RSA signatures. In that case the signer
has some additional information over the verifier, as he knows its factorization into
primes. This might give him an advantage to attack the hash function, even if the
security of the hash function does not rely completely on factorization. It is certainly
a problem that if one is not able to prove the security of the hash function, one will
also not be able to prove that knowledge of the factorization does not help an attacker.
Moreover, the security of the provably secure schemes discussed in this section does rely
on the fact that factoring the modulus is a hard problem. Even if a special modulus is
generated for the hash function, the person who has generated the modulus may have
an advantage.

As a solution it was suggested to use a universal modulus for hashing that is to
be generated by a trusted authority. The main problem with this solution is the
trust in this authority, and the fact that factorization efforts and other attacks will
be concentrated on this single modulus. This in turn will require a larger size for this
modulus. Note that a similar argument holds for the key of a certification authority,
that has to certify the public keys of all users [46].

6.2. OVERVIEW OF MDC PROPOSALS 165

A way out of this impasse could be to calculate a hash value with the modulus of the
signer and with the modulus of the intended verifier(s), and to sign the concatenation
of the hashcodes. This will solve the trust problem, but it decreases the efficiency,
especially if there is more than one verifier.

Note that a similar problem holds in case of schemes based on a single prime number
p: here it is conceivable (but not essential) that a “weaker” prime is chosen. However,
if the size of p is sufficiently large, the probability that a random prime is weak is
very small, and no way is known to generate a prime for which the discrete logarithm
problem is easy if one knows the trapdoor information, but finding the trapdoor itself
is hard.

For this type of schemes it makes sense to define the rate:

Definition 6.1 The rate of a hash function based on a modular arithmetic is the
number of squarings or multiplications in the ring ZZN needed to process a block of n
bits.

Note that in software a squaring in ZZN can be implemented almost twice as fast as a
multiplication; as most schemes use only squarings, this distinction will not be made.

As indicated in the introduction, a distinction will be made between schemes that
are provably secure and schemes that are more practical.

6.2.2.1 Schemes that are not provably secure

A synthetic approach, similar to the treatment in section 5.3.1.4 for block ciphers, can
evaluate the possible combinations with a single modular squaring (rate equal to 1)
combined with 1 or 2 exors or additions modulo N . Here one has only two inputs, the
argument of the modular squaring P and the feedforward FF , that each can be equal
to Xi, Hi−1, Xi ⊕Hi−1, or a constant V . This yields 16 possible schemes, of which 7
combinations are trivially weak. The attacks that apply are indicated in table 6.1. The
same symbols have been used as in table 5.2 of section 5.3.1.4, namely direct attack
(D), permutation attack (P), forward attack (F), backward attack (B), and fixed point
attack (FP). If the factorization of the modulus is known, the schemes are equivalent
to the cases studied in section 5.3.1.4, where the secret key K is known and constant
(note that in case of squaring the inverse mapping is not uniquely defined, but this
has no influence on the treatment). This means that the same attacks apply: they are
indicated between square brackets in table 6.1. It can be seen from table 6.1 that there
are four cases for which attacking the scheme becomes harder if the factorization of the
modulus is not known. Only for two schemes this means a significant improvement.

A first remark is that scheme 9 is in fact trivially weak, as the hash function is the
sum modulo 2 of the message blocks and a constant that can be zero. Four of the other
schemes have appeared in the literature for the exponent equal to 2, namely schemes
1, 3, 5, and 8 (the CBC-mode). The weakness of scheme 1 was discussed in [122]: one
can permute blocks, insert an even number of blocks (these attacks also were discussed
in section 5.3.1.4), insert zero blocks or manipulate with small blocks (i.e., blocks for
which X2

i < N). The first three attacks apply to scheme 2 as well. The weakness of

166 CHAPTER 6. HASH FUNCTIONS BASED ON MODULAR ARITHMETIC

FF\P Xi Hi−1 Xi ⊕Hi−1 V
Xi – D3 [D] FP5 [B] –
Hi−1 P1 [D] – FP6 [D] –
Xi ⊕Hi−1 P2 [P] D4 [D] F7 [F] D9 [D]
V – – F8 [D] –

Table 6.1: Attacks on the 16 different schemes based on modular exponentiation. The
schemes are numbered according to the superscript.

scheme 3 (the dual of scheme 1) was discussed in [230]. Scheme 5 is similar to the E⊕

operation for block ciphers, and was suggested in [244]:

f = (Xi ⊕Hi−1)
2 mod N ⊕Xi .

The fixed point attack was presented in [122]: if FP is a fixed point of the modular
squaring [26], Hi−1 ⊕ FP can be inserted between Xi and Xi+1 without changing the
hashcode. A similar attack applies to scheme 6, but here the output in case of insertion
of Hi−1 ⊕ FP will be equal to Hi−1 ⊕ FP . If the fixed point 0 is chosen however, the
output will again be Hi−1. Note that fixed point attacks can be thwarted easily by
adding the message length in the padding procedure (cf. section 2.4.1).

If one takes into account the attacks that assume knowledge of the factorization
of the modulus, one can conclude from table 6.1 that scheme 5 is the most promising
scheme. The fact that one can go backwards in constant time means that finding
a preimage will require only 2n/2 operations with a meet in the middle attack (cf.
section 2.5.2.1). This is no problem if the modulus size is 512 bits or more.

From the previous discussion it seems a little odd that the CBC mode (scheme 8)
is the proposal that has received the most attention. It goes back to a 1980 scheme
by D. Davies and W. Price, and a similar scheme suggested by R. Jueneman in 1982
(cf. section 6.2.1). The idea of the designers is to improve the security by adding
redundancy (to Xi or to Hi−1), or by using exponents larger than 2. The redundancy
will thwart the forward attack (or correcting block attack, section 2.5.2.4), and —in
some cases— the direct attack if the factorization of the modulus is known. However, in
all cases finding a pseudo-preimage requires only constant time, and hence a preimage
can be found in 2n/2 operations.

A first proposal by D. Davies and W. Price [70] is very slow, namely to choose an
n-bit exponent (the rate is 1.5n):

f = (Hi−1 ⊕Xi)e mod N ,

where e is the public exponent for an RSA cryptosystem. The RSA signature is equal
to Ht concatenated with a signature on IV . The designers suggest to add redundancy
(Xt+1 = X1) to thwart a forward attack or correcting block attack. However, it
is noted that additional redundancy in every block is required (or including of the

6.2. OVERVIEW OF MDC PROPOSALS 167

message length) to avoid attacks based on the fixed points P of RSA encryption like 0
and 1. An example of such a collision is to choose the message starting with X1 = IV
followed by an arbitrary number of 0 blocks. Also the proposed redundancy does not
solve the problem of a direct attack in constant time if the factorization of n is known:
one can easily compute the secret exponent d, and after random choice of X1 one
obtains H1 and Ht; it is now easy to find suitable values for the remaining Xi.

In order to speed up the scheme, a second proposal was to choose e = 2 [73]. To
avoid vulnerability to appending or inserting blocks based on a correcting last block
attack, the 64 most significant bits of every message block were fixed to 0. This
scheme has a rate of 1.14. With this approach, someone who knows the factorization
of the modulus can find a preimage in 264 operations. On the other hand, if one
does not know this factorization, it should be impossible for an attacker to construct a
correcting block with the imposed redundancy. However, it was pointed out by A. Jung
that correcting blocks can be found based on continued fractions using the “extended
Euclidean algorithm” [171]. A detailed analysis by M. Girault in [122] shows that
about 2150 collisions can be found and that at least 170 redundancy bits have to be
introduced to thwart the attack. A similar examination of fixing the least significant
positions shows that in this case at least 128 fixed positions are required. A broader
overview of techniques to find or approximate Lth roots can be found in [124].

The next proposal was to disperse 256 redundancy bits over the block by fixing the
four most significant bits in every byte to 1 (or the hexadecimal value Fx). This scheme
has rate 2, and finding a preimage requires 2n/2 operations if the factorization of the
modulus is known. In fact two proposals were made, that differ slightly: the proposal
by A. Jung [171] replaced the exor by addition modulo N , and added a normalization
at the end: if Ht < bN/2c, bN/2c was added to Ht. These modifications were not
incorporated in the informative annex D of CCITT-X.509 [46]. Applications where
this hash function is recommended are the French standard ETEBAC 5 [47] for file
exchange between banks and customers, and TeleTrusT [99].

A correcting block attack of D. Coppersmith on the CCITT scheme [125, 172] finds
two messages X and X ′ such that

h(X ′) = 256 · h(X) . (6.1)

It will be shown that this relation can be used for an existential forgery of a signature
based on three chosen messages. This forgery works if (6.1) holds between integers
or if the modulus of the hash function is equal to the modulus of the multiplicative
signature scheme like RSA. A simple way to thwart this attack is to add redundancy to
the hashcode as specified in [155]: this redundancy guarantees that no two arguments
of the signature scheme are multiples of each other.

The correcting block attack can be described as follows: given two arbitrary mes-
sages X and X ′ that yield hash value Ht+1 and H ′

t′+1 respectively, two blocks Y and
Y ′ will be constructed (with the correct redundancy) such that

H ′
t′+1 ⊕ Y ′ = 16 · (Ht+1 ⊕ Y) .

168 CHAPTER 6. HASH FUNCTIONS BASED ON MODULAR ARITHMETIC

From this equation all bits of Y and Y ′ can easily be determined based on the ob-
servation that multiplying by 16 corresponds to a left shift over 4 positions. If the
half-bytes or nibbles of a bit string are denoted with X[i], where X[0] corresponds to
the least significant nibble, one obtains the following equations (to simplify notations
n is assumed to be a multiple of 4, and the indices are omitted from Ht+1 and H ′

t′+1):

Y ′[0] = H ′[0],
Y ′[2i] = H[2i− 1]⊕H ′[2i]⊕ Fx (1 ≤ i < n/4),
Y [2i] = H[2i]⊕H ′[2i+ 1]⊕ Fx (0 ≤ i < n/4) .

It is clear that Y [i] = Y ′[i] = Fx for odd i. An additional condition that has to
be imposed is that H[n/4 − 1] ⊕ Fx is equal to 0, which happens with probability
1/16. If this is not the case, a different X has to be chosen. It is clear that now
h(X ′‖Y ′) = 256 · h(X‖Y) mod N . If this equation has to be valid between integers,
one has to impose that h(X‖Y) is smaller than N/256. This event has a probability
of about 1/256, which reduces the total probability to 1/4096.

The attack on the signature scheme requires two message pairs (X0, X
′
0), (X1, X

′
1)

for which
h(X ′

j) = 256 · h(Xj), for j = 0, 1 . (6.2)

If the hash function is now combined with a multiplicative signature scheme like RSA,
the following relation holds:

Sig(h(X ′
j)) = Sig(256 · h(Xj)) = Sig(256) · Sig(h(Xj)), for j = 0, 1. (6.3)

The last equality is only valid if equation (6.2) holds between integers, or if the mod-
ulus of the signature schemes is equal to the modulus of the hash function. In both
cases, equation (6.3) yields 2 multiplicative relations between the 4 signatures and the
unknown constant Sig(256) (one can assume that it is not possible to obtain this value
directly), which implies that if 3 signatures are known, the fourth can be computed.

In the variant by A. Jung [171], the normalization makes it impossible for equa-
tion (6.2) to hold between integers, which implies that the attack will only work if the
same modulus is used for signature computation and for hashing. One also has to re-
place the exor by addition. It is also clear that this attack is independent of the nature
of the redundancy bits: it does not help to make the 4 redundancy bits dependent on
the 4 other bits in the byte, as suggested in [122].

A. Jung suggests the following solution to thwart the Coppersmith attack [172]:

• The block size n′ is defined as the largest multiple of 16 strictly below n, or

n′ = 16 ·
⌊
n− 1
16

⌋
.

Hence between 1 and 15 most significant bits of the argument of the squaring
operation will always be 0.

6.2. OVERVIEW OF MDC PROPOSALS 169

• Pad the message with binary ones to complete a block, and subsequently add an
extra block containing the binary representation of the length of the message in
bits.

• Before every squaring operation the 4 most significant bits of the n′-bit block
Hi−1⊕Xi are forced to 1; this should make it impossible to find integer multiples,
just like the previous normalization.

• After every squaring operation the n-bit result is reduced to n′ bits by forcing
between 1 and 15 most significant bits to 0.

He expects that these modifications thwart the Coppersmith attack and will possibly
lead to a proof of security based on the collision resistance of the compression function.
The result of I. Damg̊ard (cf. section 4.3.3.2) can indeed be extended to this scheme
[173] if the output of the compression function is (by definition) restricted to the 256
bits to which a constant is added in the next iteration (the fact that more bits of
Hi are used in the next iteration can not decrease the security level). Due to the
small difference with the broken scheme, it seems that a careful analysis is required.
Moreover, this scheme has still the small problem that knowledge of the factorization
of N leads to a preimage in 2n/2 operations.

An alternative improvement with rate 1.33 was put forward in [160] for n = 512
bits:

• 128 redundancy bits are added to Xi by fixing the 8 most significant bits of every
32-bit word to 3Fx.

• The most significant byte of Hi−1 is added modulo 2 to the next byte of Hi−1,
and subsequently the most significant byte is forced to 0.

• The exor is replaced by addition modulo N .

Additionally it is suggested to limit the hashcode by taking only the most significant
bytes of Ht (16 bytes or more). Because of the limited redundancy, a preimage requires
about 2128 operations. Note that the appearance of this scheme in an ISO/IEC docu-
ment does not imply that it is approved by ISO/IEC. This scheme should be carefully
studied before it can be recommended.

I. Damg̊ard suggested to construct a collision resistant function based on modular
squaring (with n = 512) as follows [66]: introduce redundancy in both Hi−1 and
Xi at complementary positions. This has the result that the exor corresponds to a
concatenation of bytes. His proposal has rate 1.36. The first three bytes of every 4-byte
group (starting from the least significant byte) come from Xi, and the fourth byte is a
byte from Hi−1. In order to avoid trivial collisions, the most significant byte is made
equal to 3Fx. This choice is a compromise between security (spread the redundancy
bits as much as possible) and efficiency (lump the redundant bits together in bytes).

However, B. den Boer [82] showed that it is easy to find a collision for the basic
function (i.e., a pseudo-collision). One looks for two numbers X and X + y with most
significant byte equal to 3Fx such that their squares differ only in the 3 least significant

170 CHAPTER 6. HASH FUNCTIONS BASED ON MODULAR ARITHMETIC

bytes. From the equation:

(X + y)2 mod N = X2 + 2Xy + y2 mod N ,

it follows that it is sufficient to choose a y between 27 and 211, and to look for an X
such that 2Xy is equal to kN + z, with z ≈ −y2 (additionally there should also be
no carry from the addition of z + y2 and X2 to the fourth least significant byte of
X + y). A suitable X can be found as follows: write kN for successive integer values
of k ≥ 1 as X2y + z′, with z′ ≈ y2 (more precisely y2 − y < z′ < y2 + y), until one
obtains a value of X with most significant byte equal to 3Fx. Then 2Xy = kN − z′, or
z = −z′. The following argument suggests that one will find a suitable value for X: if
N = q2y + r, 0 < r < 2y, then the candidates for X will start with q and increase at
every step with q or q + 1. Hence it follows that a sufficient number of candidates for
X will be found, which suggests that a suitable X will be found with overwhelming
probability.

An improved version with rate 1.36 was suggested in [160] for n = 512 bits:

• First a mapping g is defined that maps a 64-byte integer Hi−1 onto the 16-byte
integer H ′

i−1. The ith byte of an integer A (starting with the most significant
byte) is denoted with A[i]. Let v(i) be the following permutation of the integers
modulo 16: v(i) = 5i + 11 mod 16. Then the mapping g(Hi−1) is defined as
follows:

H ′
i−1[j] = Hi−1[v(j)] ⊕ Hi−1[v(j) + 16] ⊕ Hi−1[v(j) + 32]

⊕ Hi−1[v(j) + 48], 0 ≤ j ≤ 15 .

• The most significant byte of Xi is forced to the value 3Fx.

• The value to be squared is defined as follows: the first three bytes of every 4-byte
group (starting from the most significant byte !) come from Xi, and the fourth
byte is a byte from H ′

i−1.

• The hashcode is equal to g(Ht).

A disclaimer about the ISO/IEC approval holds for this scheme as well; further eval-
uation is certainly recommended.

Another proposal to construct a collision resistant function based on modular squar-
ing was suggested with some theoretical arguments in [339, 343]. The collision resistant
function consists of 2 modular squarings with n = 500 bits:

f(Y 1‖Y 2) =
(
chop’450

(
(IV ‖Y 1)2 mod N

)
‖Y 2

)2
mod N ,

where chop’t(x) drops the t most significant bits of x, Y 1 and Y 2 are 450-bit blocks,
and IV is a 50-bit initialization variable. The complete hash function has the following
form:

Hi = f(Hi−1‖Xi) ,

6.2. OVERVIEW OF MDC PROPOSALS 171

where Hi−1 is a 500-bit block, and Xi is a 400-bit block. The rate of this scheme
is equal to 2.56, and its security is based on the fact that O(logN) bits of squaring
modulo N is hard if N is a Blum integer, i.e., N = pq with p ≡ q ≡ 3 mod 4. From
this it is wrongly concluded that finding two integers such that their squares agree at
the 50 least significant positions is hard (a trivial collision for x is x′ = −x). As only
50 bits of the first squaring are used as input to the second squaring, it follows that
collisions can be found with a birthday attack in 226 operations.

It can be shown that one can find a second preimage for f even if k = n/4 bits
are selected, or 3n/4 bits are chopped [263]. This approach renders random attacks
infeasible, and yields a rate of 3.82. The algorithm is the same as the one presented
in [122] to break the CBC-scheme with redundancy in the least significant positions.
Indeed, choose a random Y 1 and define X = IV ‖Y 1. Then define X ′ = X + 2ky. It
follows that

X ′2 = X2 + 2k(2Xy + 2ky2) .

The k least significant bits of X ′2 and X2 will agree modN if (but not only if) 2Xy+
2ky2 < 2n−k. This condition is satisfied if both numbers satisfy the inequality, i.e.,
y < 2n/2−k and 2Xy mod N < 2n−k. A suitable y can be found with the extended
Euclidean algorithm if 2n/2−k · 2n−k > 2n which is equivalent to k < n/4. For more
details the reader is referred to [122].

It is clear that most attacks on the CBC or concatenation schemes can be thwarted
by increasing the number of squarings and/or multiplications or by increasing the
redundancy. The following schemes obtain a higher security level at the price of a
reduced performance:

• The combination of two squaring operations [122], yielding a rate of 2:

f =
(
Hi−1 ⊕ (Xi)2

)2
mod N .

Finding a fixed point implies solving the equation X2
i = Hi−1 ⊕ FP , where FP

is a fixed point of the modular squaring. If the factorization of the modulus is
unknown, this is only easy if the right hand side is equal to 0 or 1. It is an
interesting research problem to classify the attacks against schemes with two (or
more) squarings.

• Another possibility [122] is to use the CBC scheme with redundancy combined
with a higher encryption exponent (e = 3). This implies that the rate will be
larger than 2.

• A proposal by D. Davies [39] to reduce the amount of redundancy consists of
concatenating the 64 least significant bits of Hi−1 with the message block of 448
bits, combined with an exponent 216 + 1 = 65537:

f = (Xi ‖ Hi−1)65537 mod N .

Because of the size of the chaining variable, this can only yield a OWHF. More-
over the speed is significantly reduced due to the larger exponent. The rate of
this scheme is equal to 19.4.

172 CHAPTER 6. HASH FUNCTIONS BASED ON MODULAR ARITHMETIC

It is clear that many more alternatives can be proposed. One can conclude that the
most promising schemes seem to be those based on scheme 5. It is recommended to
use an exponent ≥ 3 (to avoid attacks that exploit the local effect of small input dif-
ferences), and to add redundancy (fix some input bits) to block multiplicative attacks.
In this way one can obtain a scheme with an acceptable rate, that is secure even if
factorization of the modulus is known.

Finally it is remarked that a completely different design for both an MDC and a
MAC based on arithmetic in GF (2593) was suggested in [4]. It uses a special ‘addition’
of 256 and 593 bits, where part of the output is recycled to the first input. This
addition will be denoted with +′. The exponent is a function of the previous message
blocks:

f = (Xi)g(Hi−1) mod (2593 − 1) +′ Hi−1 .

The size of Xi is equal to 593 bits, and the size of Hi−1 is equal to 256 bits. The
exponent is expanded with the function g to a 593-bit value with Hamming weight
at most 30. I. Damg̊ard has identified several weaknesses in this proposal. In case it
is used as an MDC, he pointed out that fixed points can be found as follows: let P
be a 593-bit value such that Hi−1 = P +′ Hi−1. Then, if gcd(g(Hi−1), 2593 − 1) = 1,
inserting

Xi = P g(Hi−1)−1

leaves the chaining variable unchanged. In order to obtain a MAC, it is suggested to
choose IV = K. It is clear that one can now append any block to a message and update
the MAC, and it was pointed out by I. Damg̊ard that a chosen message attack with
X1 = 0 will reveal the key. These attacks are thwarted in the second proposal, where
the MAC is calculated as αHt , where α is a primitive element. However, inserting 256
0 blocks will leave the MAC unchanged. Other weaknesses might be identified if a
detailed specification of the mapping g were available.

6.2.2.2 Provably secure schemes with large modulus

Only for very few hash functions one can state that their security is provably equivalent
to a hard problem. To our knowledge, all these schemes but one are based on the
hardness of factoring or discrete logarithm (the other one is based on the knapsack
problem, cf. chapter 7). I. Damg̊ard describes three provably secure constructions for
claw-resistant permutations [64, 65]. Together with theorem 4.11 they can be used to
construct a CRHF. The first scheme gives a direct reduction to factoring, while the
other two, that are based on a one-way group homomorphism, yield only an indirect
reduction to factoring and to the discrete logarithm problem respectively. J.K. Gibson
[120] constructs a collision resistant function based on the discrete logarithm problem
modulo a composite. Its security can be directly reduced to factoring. It is clear that for
the schemes based on factoring, anyone who knows the factorization can trivially break
the scheme. This implies that if the same modulus is used as for the signature scheme,
the signer is able to find collisions or preimages. Moreover, interactions between the
hashing and signing operations can make the system also insecure for outsiders, as

6.2. OVERVIEW OF MDC PROPOSALS 173

mentioned in [65]. The disadvantage of all four schemes is that they are very slow:
hashing the message requires about the same time as applying RSA with full length
exponent to the message.

The first two constructions by I. Damg̊ard [64, 65] are based on factoring. A
claw resistant permutation family with set size rn is constructed as follows. Let N =
p1 · p2 · · · pv, where the pi are k-bit prime numbers with pi ≡ 3 mod 4, and v is the
smallest integer such that 2v−1 ≥ rn. For each N one can construct a set of claw
resistant permutations with security parameter k (note that n = vk). For each a ∈ ZZ∗N
(the elements of ZZN relatively prime to N), one defines:

J(a) = (
(
a

p1

)
,

(
a

p2

)
, · · ·

(
a

pv

)
) .

The set QRN of quadratic residues modulo N is the set of integers ∈ ZZ∗N such that
their image under J is equal to (1, 1, · · · 1). Let Gv denote the group of ±1 v-tuples
under pointwise multiplication modulo the subgroup generated by (−1,−1, . . . ,−1).
Then J induces a surjective homomorphism φN : ZZ∗N −→ Gv. A set

A = {a0, a1, . . . , arn−1 | ai ∈ ZZ∗N}

is called an injective set if |φN (A) |=|A |. Then the claw resistant set of permutations
is the set of permutations

{
f

(N)
i

}
of QRN , with

f
(N)
i (x) = (aix)2 mod N, for x ∈ QRN and 0 ≤ i ≤ rN − 1 .

It can be shown that finding claws is as hard as factoring N , i.e., for any injective set,
knowledge of a claw implies knowledge of the factorization of N . Note that checking
whether a set is injective requires knowledge of the factorization of N , but it can be
shown that revealing an injective set does not reveal information on how to factor N .
The disadvantage of this construction is that increasing the set size will reduce the
number of applications of f to hash a given number of bits, but at the same time the
size of N be increased. This is because some factoring algorithms like the elliptic curve
method have a running time that depends on the size of the smallest prime factor and
not on the size of N . Hashing ν bits requires a modular squaring of a νk-bit integer.

An alternative construction, where the size of N does not depend on the set size r
can be described as follows. Let N be an integer defined as above with v = 2, and let
A be a set of r elements of QRN . Then the claw resistant set of permutations is the
set of permutations

{
f

(N)
i

}
of QRN , with

f
(N)
i (x) = aix

2 mod N, for x ∈ QRN and 0 ≤ i ≤ r − 1 .

Because the size of A can only be polynomial in the size of N , this construction is
faster by a factor O(log2 k). However in this case one can only show that knowledge of
a claw yields a square root of a number of the form ai · a−1

j . This does not imply that
one can factor N , and hence this is weaker from a theoretical viewpoint: although one

174 CHAPTER 6. HASH FUNCTIONS BASED ON MODULAR ARITHMETIC

can show that possessing an algorithm for computing square roots of randomly chosen
elements in QRN leads to factoring N , an adversary might know a square root of the
quotient of two elements “by chance”, and not as a result of such an algorithm. Here
hashing log2(k) bits requires a modular squaring of a 2k-bit integer.

An even slower scheme based on the discrete logarithm problem [64, 65] requires a
full modular exponentiation to hash log2(k) bits. For a k-bit prime with generator α,
let A be a set of ν elements of ZZ∗p. Then the following set of permutations proves to
be claw resistant:

fi(x) = ai α
x mod p, for x ∈ ZZ∗p and 0 ≤ i ≤ r − 1 .

Here finding claws is equivalent to finding the discrete logarithm in GF (p) with base
α of the quotient of two elements of A. In order for the discrete logarithm problem
to be hard, it is required that the prime factors of p− 1 are not too small [251]. Here
hashing log2(k) bits requires a modular exponentiation of a k-bit integer. Here one
can perform precomputations, as the base for the exponentiation is fixed.

The construction of J.K. Gibson [120] yields a collision resistant function based on
the discrete logarithm modulo a composite. Let N = pq be an n-bit product of two
odd primes p, q, for which p − 1 = 2up1 and q − 1 = 2vq1, where p1 and q1 are odd
primes. It is assumed that p, q, p1, and q1 are large and distinct and that u and v
are both small. Let a ∈ ZZ∗N and suppose its order is a multiple of p1q1 (it can be
shown that almost all a ∈ ZZ∗N satisfy this condition). Then the function f is defined
as follows:

f : Σm −→ Σn : x 7→ f(x) = ax mod N .

A function evaluation requires about 1.5m modular multiplications of n-bit numbers.
J.K. Gibson shows that finding collisions for f is equivalent to factoring N , and that
this function is also one-way in both senses, as discussed in section 4.3.3.1. Note that
additionally p+1 and q+1 should have a large prime factor in order to guarantee that
factoring N is hard. The author also generalizes the result by showing that the fact
that N is hard to factor implies that f is collision resistant and one-way for almost all
a ∈ ZZ∗N .

6.3 A MAC proposal

F. Cohen has designed a MAC for the anti-virus package ASP [53]: this program
computes a MAC for every file, and verifies this MAC before the file is loaded. The
MAC calculation consists of two stages: first every block of the file is compressed, and
subsequently the compressed values for every block are combined in a MAC. The only
part of the scheme that is published, is the second stage of the compression. Several
weaknesses of this compression will be demonstrated in this section (they have also
been published in [252, 257]): the MAC is not uniformly distributed, the dependency
between the chaining variables is limited, and part of the key can be recovered with
an adaptive chosen message attack. One can determine exactly those key bits that are

6.3. A MAC PROPOSAL 175

necessary to make Hi with high probability independent of Hi−1. In the environment
for which the scheme was designed, an adaptive chosen text attack is not realistic.
However, in section 7.3.1 it will be shown that the function that is used in ASP is in
fact different from the published version, and that this version can be attacked easily
even in a restricted environment. In this section the attention will be focussed on the
published MAC schemes based on modular arithmetic.

6.3.1 Description of the scheme

The first MAC designed by F. Cohen [52] is based on a combination of RSA encryption
with public exponent e and a modulo reduction. The initial value is the RSA encryption
of the secret key K and the round function can be described as follows:

f = {1 + [Xi mod (Hi−1 − 1)]}e mod N .

It was shown by Y.J. Huang and F. Cohen that this scheme has several weaknesses
[148]: it is always possible to append message blocks and to compute the corresponding
MAC. Moreover one can also change the message: when one finds a block Xi such
that Xi < Hi−1− 2, the chaining variable Hi is independent of all previous blocks and
of the key. In an improved version [148] the secret key K is used in every evaluation:

f = {1 + (Xi ⊕K) mod (Hi−1 − 1)}e mod N .

It will be shown that the reduced dependency is not improved, but that it only becomes
more difficult to estimate when there is no dependency. This can be overcome with a
chosen message attack that enables to calculate enough key bits to carry out all desired
manipulations with a negligible probability of detection.

Below a complete description of the scheme of [148] is given; the first block is
treated in a special way. The encryption of the plaintext block X with the RSA key
(e,N) is denoted with RSA(X) = Xe mod N . Note that both e and N are public
[52].

H1 = RSA (X1 ⊕K)
Hi = RSA (1 + (Xi ⊕K) mod (Hi−1 − 1)) , 2 ≤ i ≤ t .

The use of the RSA algorithm implies that certain parts of the algorithm are crypto-
graphically strong. However, the scheme has rate 1.5n, which means that it is very
slow. It is stated in [52] that the performance can be improved by means of a prelim-
inary compression of the plaintext. This can be looked at as a trade-off between two
extremes: in the first case, there is no compression which results in a secure but slow
compression algorithm; on the other hand, the message could be compressed with an
MDC and then the result could be encrypted with the RSA algorithm. In the latter
case, RSA does not directly improve the strength of the MDC. Our attack assumes
that there is no preliminary compression such that the scheme takes maximal profit
of the strength of RSA. An attack that takes into account the compression (but also

176 CHAPTER 6. HASH FUNCTIONS BASED ON MODULAR ARITHMETIC

with a different MAC) will be discussed in section 7.3.1. A last remark concerns the
length of the result. There is no reason to keep the full 512 bits of the result. Without
decreasing the security level significantly, the result can be reduced to 128 or 256 bits
by combining lower and higher parts with an exor.

6.3.2 Weakness of the modulo reduction

The coupling of the blocks by a modulo reduction results in specific weaknesses like
non-uniform distribution of the intermediate variables. When x and y are uniformly
distributed independent random integers between 0 and N − 1, the probability that
x mod y equals i is given by (for convenience x mod 0 is defined as x mod N = x):

Pr [(x mod y) = i] =
1
N2

N∑
k=i+1

⌊
N − 1 + k − i

k

⌋
.

It can be shown with some tedious manipulations that this is equivalent to

1
N2

N − ⌊ N

i+ 1

⌋
i+
b N

i+1c−1∑
k=1

⌊
N − 1− i

k

⌋ .

For bN/2c ≤ i ≤ N − 1 this probability equals N−i
N2 instead of 1

N for a uniform
distribution. For i = 0 the sum can be approximated as follows [141]:

1
N

[
ln(N − 1) + 2γ +O(

1√
N

)
]
,

where γ = 0.577216 . . . is Euler’s constant. Figure 6.1 shows this probability distribu-
tion for the case N = 64. It is clear from this diagram that the distribution is a linear
function of i for i ≥ 32.

Because K is a uniform random variable, the same holds for Xi ⊕ K. The good
randomness properties of the RSA cause the result Hi of the RSA operation also to
be random. As a consequence,

Pr [(Xi ⊕K) < Hi−1 − 1] =
1
2
− 2
N
.

In that case, Hi is independent of all previous blocks.
Under the assumption that the plaintext blocks are independent, uniformly dis-

tributed random variables, one can easily prove the following proposition.

Proposition 6.1 If the first l bits of Ht−k (1 ≤ k ≤ t − 1) are equal to 1, the prob-
ability that Ht is independent of Ht−k—and thus of the data blocks X1 to Xt−k—is
approximately equal to 1− 1/2k+l.

This opens the door for tampering with messages by changing individual blocks and
combining blocks of different plaintexts into one new plaintext with a low probability

6.3. A MAC PROPOSAL 177

0

0.09

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 10 20 30 40 50 60

Figure 6.1: The probability distribution Pr [(x mod y) = i] for N = 64.

of detection. There especially is a very small dependence of the checksum result on
the first plaintext blocks, which clearly violates the fourth condition of definition 2.3.
One can wonder how an attacker can obtain the intermediate result, but this is very
easy when he can compute the checksum for a shorter version of the plaintext. The
error probability of an attack could be significantly lowered when he would know K
or at least the first bits of K. In the following section it will be shown how the first s
bits of K can be derived by means of an adaptive chosen plaintext attack.

6.3.3 Deriving the first s bits of the key K

It is assumed that an attacker can compute the checksum for messages consisting of
one block X1 and of two blocks X1 and X2. This implies that he can submit these
messages and obtain the corresponding MAC’s. In section 6.3.4 it will be shown that
the attack also works for longer messages. The corresponding checksums are given by
the following equations:

H1 = RSA(X1 ⊕K)
H2 = RSA (1 + (X2 ⊕K) mod (H1 − 1)) .

Because the modular exponentiation is bijective, one can extract information on the
most significant bits of K by comparing H1 and H2. For a given X1, one looks for an

178 CHAPTER 6. HASH FUNCTIONS BASED ON MODULAR ARITHMETIC

X2 such that H1 equals H2:

H1 = H2 ⇐⇒ X1 ⊕K = 1 + [(X2 ⊕K) mod (H1 − 1)] .

If (X2 ⊕K) < H1 − 1 the modulo operation has no influence and thus

X1 ⊕K = 1 + (X2 ⊕K) . (6.4)

The fact that K is unknown does not prevent an attacker from solving it for X2 if
(X2 ⊕K) < H1 − 1.

Before it is described how one can obtain X2 some notation is introduced. An n-bit
integer A will be represented as a vector with the components (A[n], A[n− 1], . . . , A[1]),
where the most significant bits are placed first, or

A =
n∑
i=1

A[i] · 2i−1 .

The vector Ei is defined as follows:

Ei[k] =

{
1 for 1 ≤ k ≤ i
0 for i+ 1 ≤ k ≤ n .

The following algorithm solves equation (6.4) for X2.

Algorithm S — Solving for X2.

i = 0
compute H1

repeat i = i+ 1
X2 = X1 ⊕ Ei
compute H2

until (H1 = H2) or (i ≥ j)

The expected number of trials for this algorithm is 2. It would be possible to try all n
possibilities, but in order to speed up the algorithm the number of trials is limited to
j, resulting in an error probability of 1/2j .

The attack can now be described. First it will be shown how the most significant bit
of K can be determined and then it will be indicated how the attack can be extended
to the higher order bits.

6.3.3.1 Deriving the most significant bit of K

The algorithm consists of two steps: in step 1 one searches for an X1 that results in
a special H1 and in step 2 one looks for a corresponding value of X2 that results in
equality between H1 and H2.

6.3. A MAC PROPOSAL 179

Step 1

Choose X1 and compute the corresponding value of H1 = RSA(X1 ⊕K) until
H1[n] = 1
H1[i] = 0, i = n− 1, n− 2, . . . , n− k + 1
H1[1] = 0

This will require on the average 2k+1 RSA encryptions. If H1 = 0 the attacker is very
lucky, because this implies K = X1. One can hence assume that K 6= X1.

Step 2

Use Algorithm S to find an X2 such that H1 = H2. Two cases have to be considered:

1. X1[n]⊕K[n] = 0 (probability = 1
2). The construction of X2 implies that (X2 ⊕

K) < H1 − 1 and thus Algorithm S yields a solution after on the average 2 RSA
encryptions.

2. X1[n]⊕K[n] = 1 (probability = 1
2).

(a) X2⊕K = H1−1 (probability = n−1
2n): in this case the attacker is very lucky

again because H2 will be equal to 1 and K can easily be computed.
(b) X2 ⊕K < H1 − 1 (probability ' 1

2k): Algorithm S will find a solution as in
case 1.

(c) X2 ⊕ K > H1 − 1 (probability ' 1 − 1
2k): because H1[n] = 1, the modulo

operation can be replaced by a subtraction:

1 + [(X2 ⊕K) mod (H1 − 1)] = 1 + (X2 ⊕K)−H1 + 1 .

Equality of H1 and H2 can be obtained if

X1 ⊕K = (X2 ⊕K) + 2−H1 .

For the least significant bit, this yields the following equation:

X1[1]⊕K[1] = X1[1]⊕ Ei[1]⊕K[1]⊕H1[1] .

The fact that Ei[1] = 1 results in H1[1] = 1 which contradicts the previous
assumption that H1[1] = 0. However, even when this would not be the case,
it is very unlikely that Algorithm S would yield a solution.

It is easy to see that the above procedure allows to determine the most significant
bit of K: if Algorithm S succeeds, it is decided that K[n] = X1[n], else one puts
K[n] = X1[n]. There are two cases in which the algorithm fails. The fact that only j
steps are applied in Algorithm S implies that it is wrongly decided with a probability of
1/2j that there is no solution, but every additional RSA computation divides this error
probability by 2. A more serious problem is that if K[n] = X1[n], Algorithm S will
succeed with a probability 1/2k. Halving this error probability requires on the average
a doubling of the amount of precomputation in step 1. This leads to the conclusion
that these errors will occur more frequently. The results are summarized in table 6.2.

180 CHAPTER 6. HASH FUNCTIONS BASED ON MODULAR ARITHMETIC

probability # RSA calculations result
1
2 2k+1 + 2 K[n]
1

2k+1 2k+1 + 2 K[n]

1
2

(
1− 1

2k

)
2k+1 + j K[n]

Table 6.2: Overview of the different cases of the cryptanalytic attack.

6.3.3.2 Deriving the s most significant bits of K

The same attack can be extended to derive the first s bits of K. It is not feasible to
compute all bits of K because the amount of computation doubles for each bit. How-
ever, an attacker does not need to know all bits of K to improve his odds significantly.
When he knows the first s bits of K, he can force the first s bits of Xi ⊕K to zero,
which implies that Xi⊕K is smaller than Hi−1 with a probability of 1− (1/2s), when
Hi−1 is uniformly distributed. On the other hand, in case Hi−1 is known, it is possible
to find an Xi such that Xi ⊕K < Hi−1 for 2n − 2n−s values of Hi−1.

The following variation on the attack will compute the sth bit of K under the
assumption that the first s− 1 bits of K are already known.

Step 1

Choose X1 and compute the corresponding value of H1 = RSA(X1 ⊕K) until
H1[i]⊕K[i]⊕X1[i] = 0, i = n, n− 1, . . . , n− s+ 2
H1[n− s+ 1] = 1
H1[i] = 0, i = n− s, n− s− 1, . . . , n− s− k + 2
H1[1] = 0 .

This will require on the average 2k+s RSA encryptions.

Step 2

As for the first bit, use Algorithm S to find an X2 such that H1 = H2.

To derive the first s bits of K, the total number of modular exponentiations can
be shown to be approximately

s ·
(

1 +
j

2

)
+ 2k+1 · (2s − 1) .

When j � k, the probability that these s bits are correct equals(
1− 1

2k+1

)s
.

6.4. CONCLUSION 181

6.3.4 Further extensions

In order to simplify the expressions, it was assumed that the length of the chosen plain-
text was only two blocks. The attack can however be extended to longer plaintexts. It
suffices to look for a plaintext that results in a very large checksum Ht. One can then
add two blocks Xt+1, Xt+2 to the text and with a probability Ht/N one can write

Ht+1 = RSA (1 + (Xt+1 ⊕K) mod (Ht − 1))
= RSA (1 + (Xt+1 ⊕K))

Ht+2 = RSA (1 + (Xt+2 ⊕K) mod (Ht+1 − 1)) .

The previous attack can now be repeated. The only difference is that the addition of
1 appears also in the first equation and thus Algorithm S is no longer necessary. On
the other hand, this attack needs a plaintext with a large checksum.

6.4 Conclusion

In this chapter an overview was given of hash functions based on modular arithmetic.
First weaknesses of the schemes with a small modulus were discussed. For schemes
based on a large modulus, the synthetic approach of chapter 5 was used to classify
many proposals. A particular scheme was identified as a promising candidate for the
design of new schemes. Subsequently existing proposals and attacks were summarized.
Special attention has been paid to provably secure schemes. New weaknesses were
demonstrated for the scheme by Y. Zheng, T. Matsumoto, and H. Imai.

In the second part of this chapter, it was shown that the modified version of the
cryptographic checksum algorithm proposed by F. Cohen and Y.J. Huang is insecure.
The result of the checksum is insensitive to changes in the initial part of the plaintext
and thus several manipulations are possible. Moreover, an attacker can compute the
first bits of the key using an adaptive chosen text attack. Knowledge of these bits
reduces significantly the chances on detecting a modification to the plaintext.

182 CHAPTER 6. HASH FUNCTIONS BASED ON MODULAR ARITHMETIC

Chapter 7

Dedicated Hash Functions

If you don’t know where you’re going, any road
will take you there. Lewis Carroll

7.1 Introduction

In this chapter a number of dedicated hash functions will be discussed, i.e., algorithms
that were especially designed for hashing operations. In a first section an overview
will be given of MDC proposals, while in a second section the MAC proposals will be
treated. Subsequently some design principles for hash functions will be discussed.

The main contribution of this chapter are three new attacks, the improvement of
an existing attack, and a first evaluation of two other schemes. A second contribution
is the discussion of design criteria for dedicated hash functions.

7.2 Overview of MDC proposals

The following algorithms will be described in this section: BCA, MD2, MD4 and its
derivatives MD5, SHA, RIPEMD, and HAVAL, N-hash, FFT-Hash I and II, Snefru,
and three hash functions based on cellular automata, namely a proposal by I. Damg̊ard,
Cellhash, and Subhash. An overview will be given of attacks on knapsack based hash
functions, and 5 schemes will be discussed that are based on an additive knapsack, and
2 schemes that are based on a multiplicative knapsack.

A new attack will be presented on the BCA and on a variant of N-hash, together
with a first evaluation of MD2 and SHA.

7.2.1 The Binary Condensing Algorithm (BCA)

The “Binary Condensing Algorithm” (BCA) is especially designed for the Belgian
standard security system TRASEC (TRAnsmission SECurity) for EFT [319]. Its round
function consists of a mixing operation and a condensation. The mixing operation

183

184 CHAPTER 7. DEDICATED HASH FUNCTIONS

takes as input a 256-byte block that consists of 224 message bytes and 32 bytes of the
chaining variable. It is based on a permutation p at byte level, two 256-byte S-boxes
or substitutions S and T that operate on bytes as well and modulo 2 additions. The
result of the mixing operation is condensed to 32 bytes by repeatedly exoring upper
and lower halves to yield the new chaining variable. The hashcode is reduced to 64 or
128 bits again by exoring lower and upper halves.

The mixing function consists of two parallel operations that act on the same in-
put. The input of both operations will be denoted with X, and the output with H1
and H2 respectively. The bytes of these blocks will be denoted with X[0] . . . X[255],
H1[0] . . .H1[255], and H2[0] . . .H2[255]. The first operation can then be described as
follows:

H1[i] =
255−i⊕
j=0

S

255−j⊕
k=0

S(X[p[k]])

 .

The output of the second operation is given by

H2[i] = T

 i⊕
j=0

T

255⊕
k=j

T (X[k])

 .

The condensation operation can be described as follows:

H[i] =
7∑

k=0

H1[32k + i]⊕H2[32k + i] .

The final condensation to 16 bytes is computed in a similar way:

Ht[i] =
15∑
k=0

H1[16k + i]⊕H2[16k + i] .

In the first place this function is designed to be a OWHF, and in that case a further
reduction to 8 bytes is carried out. It is clear that the security of the algorithm depends
strongly on the nonlinearity offered by the S-boxes, as they are the only nonlinear
component. However, it can be shown that if S and T are selected randomly, the
probability that they are linear is negligible [13, 131, 222].

In order to clarify this description, a simple example will be given, where the input
size of the round function is restricted to 5 bytes, and the permutation is given in
table 7.1. The expression for H1[0] is given by

r 0 1 2 3 4 r 0 1 2 3 4
p[r] 4 3 1 2 0 p−1[r] 4 2 3 1 0

Table 7.1: Permutation p and inverse permutation p−1 for a small example of the BCA.

7.2. OVERVIEW OF MDC PROPOSALS 185

H1[0] = S (S(X[4])⊕ S(X[3])⊕ S(X[1])⊕ S(X[2])⊕ S(X[0]))
⊕S (S(X[4])⊕ S(X[3])⊕ S(X[1])⊕ S(X[2]))
⊕S (S(X[4])⊕ S(X[3])⊕ S(X[1]))
⊕S (S(X[4])⊕ S(X[3]))
⊕S (S(X[4])) .

The expression for H1[i] consists of the first 5− i terms of H1[0]. In case of H2[i], the
expression for H2[4] contains the maximal number of terms:

T−1(H2[4]) = T (T (X[0])⊕ T (X[1])⊕ T (X[2])⊕ T (X[3])⊕ T (X[4]))
⊕T (T (X[1])⊕ T (X[2])⊕ T (X[3])⊕ T (X[4]))
⊕T (T (X[2])⊕ T (X[3])⊕ T (X[4]))
⊕T (T (X[3])⊕ T (X[4]))
⊕T (T (X[4])) .

The expression for T−1(H2[i]) consists of the first i+ 1 terms of T−1(H2[4]).
Two weaknesses have been identified in this algorithm. The first weakness occurs

if the input bytes to the round function are equal, while the second weakness depends
on the properties of the permutation. If the 256 input bytes to the round function are
equal to x, the following holds:

H1[i]⊕H2[i] = T (T (0)) if i ≡ 0 mod 4
= S(S(x))⊕ T (T (T (x))⊕ T (0)) if i ≡ 1 mod 4
= S(0)⊕ S(S(x))⊕ T (T (T (x))) if i ≡ 2 mod 4
= S(0)⊕ T (0) if i ≡ 3 mod 4 .

As the distance between the values that are added modulo 2 in the condensation
operation is a multiple of 4 (namely 16 or 32), the internal state or the hashcode will
be equal to zero, independent of the value of x. This collision for the round function
also yields a collision for the hash function if all bytes of IV are equal. In that case it
is also trivial to find a large number of preimages for the all zero value. This attack
can however be extended to other messages: it is based on the fact that terms cancel
out in the inner sums if too many values of X[i] are equal. This leads to a limited
number of values for the terms in the outer sum, that will also cancel out with very
high probability. As a consequence, a large number of messages will be hashed to a
small set. Finding a preimage in this set is much easier, and the probability to find a
collision among these messages is significantly higher. In this case the attack depends
on the properties of the permutation p.

The second weakness implies that if the output is reduced to 16 bytes, BCA is not a
CRHF for certain choices of the permutation. The goal of the permutation is to prohibit
that changes in X[r] can be compensated by a modification of X[r + 1]. However, if
there exists a value r such that p−1[r+1] = p−1[r]±1, a local compensation is possible.
A second observation is that if there exist such an r, all terms but one in the expression

186 CHAPTER 7. DEDICATED HASH FUNCTIONS

for H1 and H2 either depend on S(X[r]) ⊕ S(X[r + 1]) and T (X[r]) ⊕ T (X[r + 1])
respectively, or are independent of X[r] and X[r+1]. The attack can now be described
as follows:

Step 1

Look for an r such that p−1[r + 1] = p−1[r] + 1 (the case p−1[r + 1] = p−1[r] −
1 is analogous and will not be treated here). Additionally it is required that r ≡
p−1[r] mod 32. In the example above, r = 1 satisfies the first condition.

Step 2

Look for two pairs (X[r], X ′[r]) with X[r] 6= X ′[r] and (X[r + 1], X ′[r + 1]) with
X[r + 1] 6= X ′[r + 1] such that

S(X[r])⊕ S(X ′[r]) = S(X[r + 1])⊕ S(X ′[r + 1])
T (X[r])⊕ T (X ′[r]) = T (X[r + 1])⊕ T (X ′[r + 1]) .

If the S-boxes S and T are random, one expects 216 solutions.

Step 3

If X[r] and X[r+1] are replaced by X ′[r] and X ′[r+1] respectively, at most one term
in the summation for H1[i] will change, namely the one that contains X[r] but not
X[r + 1]. This term will only occur if 0 ≤ i ≤ p−1[r], and the difference is equal to

∆ = S (S(X[r]⊕ α))⊕ S
(
S(X ′[r]⊕ α)

)
with α =

p−1[r]−1⊕
k=0

S(X[p[k]]) .

Hence the difference pattern of H1 has the following form:

H1[i]⊕H1′[i] =

{
∆ for 0 ≤ i ≤ p−1[r]
0 for p−1[r] < i ≤ 255 .

A similar observation holds for H2: in this case the first r+ 1 bytes of H2 will not
change. All other bytes will be modified with the value

∆′ = T (β ⊕ T (T (X[r + 1])⊕ γ))⊕ T
(
β ⊕ T

(
T (X ′[r + 1])⊕ γ

))
.

Here β = β1 ⊕ β2, where β1 is independent of i and β2 depends on i:

β = β1 ⊕ β2 =
r⊕
j=0

T

255⊕
k=j

T (X[k])

 ⊕ i⊕
j=r+2

T

255⊕
k=j

T (X[k])

 ,

and

γ =
255⊕

k=r+2

T (X[k]) .

7.2. OVERVIEW OF MDC PROPOSALS 187

In order to make β2 and thus ∆′ independent of i, one can choose the X[i] for r+ 2 <
i ≤ 255 as follows:

T (T (X[255])) = 0, and T (X[i]) = 0, for r + 2 < i < 255 .

From this one obtains that β2 = 0. The difference pattern of H1 then has the following
form:

H2[i]⊕H2′[i] =

{
0 for 0 ≤ i ≤ r + 1
∆′ for r + 1 < i ≤ 255 .

An additional condition will now be imposed: select among the 216 values solutions
X[r], X[r+1], X ′[r], and X ′[r+1] those that yield ∆′ = ∆: one expects 256 solutions.

Step 4

The difference pattern of the hashcode can now be found by adding both patterns
modulo 2 and by applying the condensation operation. It can be checked that the dif-
ference pattern will be equal to 0 (or the two inputs collide) because of the condition
r ≡ p−1[r] mod 32.

If the permutation is selected uniformly from all permutations, one can calculate
the probability that the condition imposed in step 1 is satisfied. For a given r, the
probability that p−1[r + 1] = p−1[r] + 1 is equal to 1/256, and this has to be divided
by 32 because of the additional requirement. As there are 256 candidates for r, the
probability that a suitable r can be found is given by

1−
(

1− 1
256
· 1
32

)256

≈ 1
32.5

= 0.031 .

If one also takes into account the case p−1[r + 1] = p−1[r] − 1, one finds an overall
probability of 6.1%. If one is searching for a collision and not a pseudo-collision,
the first 32 bytes coming from the chaining variables can not be modified, and the
probability becomes 5.3%. If additional conditions are imposed on the permutation,
namely, r ≡ 0 mod 32 and p−1[r] ≡ 0 mod 32, it is no longer required that ∆′ = ∆.

It was shown that the BCA is not collision resistant for certain choices of the
permutation, and this independently of the selection of the S-boxes. This type of
differential attack could be extended in several ways, e.g., by imposing the requirement
that there exists an r such that |p−1[r+1]−p−1[r] | is ‘small’. The number of elements
that can not be freely chosen in the attack because of the condition on β2 is equal to
255 − r − 1. If r is large, a very limited number of conditions are imposed, and the
attack can be converted into an attack finding a second preimage. Another extension
could exploit specific weaknesses of the S-boxes. One can conclude that the security of
the BCA is questionable, as the increased size of the memory does not compensate for
the limited number of operations that is carried out on every input byte. It is certainly
recommended to design the permutation in such a way that this type of attack becomes
harder.

188 CHAPTER 7. DEDICATED HASH FUNCTIONS

7.2.2 MD2

R. Rivest of RSA Data Security Inc. has designed a series of hash functions, that
were named MD for “message digest” followed by a number. MD1 is a proprietary
algorithm. MD2 [175] was suggested in 1990, and was recommended to replace BMAC
[193]. MD3 was never published, and it seems to have been abandoned by its designer.
MD4 [279, 282] and MD5 [281, 283] will be discussed in the next section. This section
will give a brief description of MD2, together with a discussion of some potential
attacks.

In a first stage of the algorithm, a simple 16-byte hashcode is computed and ap-
pended to the message. Subsequently a second compression algorithm is applied to
the extended message. After padding the message is split in t blocks of 16 bytes. The
individual bytes will be denoted with X[i][j], with 0 ≤ i ≤ t− 1 and 0 ≤ j ≤ 15. Both
stages make use of a random 8-bit permutation, that will be denoted with sbox[].

FOR i=0 TO 15 DO H1[i]=0; END {initialization}
r = 0;

FOR i = 0 TO T-1 DO {main loop}
FOR j = 0 TO 15 DO

H1[j] = sbox[X[i][j] exor r];
r = H1[j];

END
END

After this stage, t is incremented by 1 and the first hashcode is appended to the
message. The second stage has an internal memory of 48 bytes, or 3 16-byte blocks.
At the beginning of each iteration, the first block is initialized with Hi−1, the second
block with Xi, and the third block with Xi ⊕ Hi−1. The new value of the chaining
variable Hi consists of the first block of the output. Every round consists of 18 steps,
and every step transforms all 48 bytes of the state. The hashcode is equal to the first
16-byte block. The pseudo-code for the second stage looks as follows:

FOR i=0 TO 47 DO H[i]=0; END {initialization}

FOR i = 0 TO t-1 DO
FOR j = 0 TO 15 DO {main loop}

H[16+j] = X[i][j];
H[32+j] = X[i][j] exor H[j];

END

r=0;
FOR j = 0 TO 17 DO {18 rounds}

FOR k = 0 TO 47 DO
r= H[k] exor sbox[r];

7.2. OVERVIEW OF MDC PROPOSALS 189

H[k]=r;
END
r = (r+j) modulo 256;

END
END

The algorithm requires 54 exors and 53 table look-ups per input byte, and is clearly
software oriented: the variables are updated sequentially. For the time being no anal-
ysis of the algorithm has been published.

The first hashcode is simple to analyze. Given the hashcode, it is easy to find
the last 15 bytes of the message. Subsequently one can choose all other bytes except
the first one, that is determined by a backward recursion. This means that if one
wants to attack MD2, one will probably choose the last block, and compute the 15
corresponding bytes of the previous block. If the attack yields the first byte, it has a
probability of 1/256 of being correct.

The following observations can be made on the main hashcode. The fact that the
last two 16-byte blocks of the state are discarded, implies that in the last iteration
one can omit the last 32 operations. The kth byte of the internal state after stage j
(0 ≤ j ≤ 17) will be denoted with Hj[k]. From the hashcode one can go backwards
and compute the triangle given by Hj+2[15-j] through Hj+2[15], for 0 ≤ j ≤ 15. If
one additionally chooses H1[15], one can compute from the chaining variables (H0[j],
0 ≤ j ≤ 15) the remaining internal states of the first block, and the triangle containing
Hj[47-j] through Hj[47], for 0 ≤ j ≤ 16. Finding a preimage is now reduced to
finding a solution for the 16 message blocks (that enter the second and third block)
and the second block of the output (except for H16[31] that is already fixed), which
means that a constraint has to be satisfied at the end of every round. The constraint
in the first round can be avoided by trying all possible values for H1[15]. For rounds
1 through 16, one has 16 constraints, corresponding with a success probability of
2−128. Trying a single plaintext requires in this case only 31 modulo 2 additions and
table look-ups. If one is searching for a pseudo-preimage, one could try to introduce
symmetry (i.e., make the internal state equal for the second and third block), but this
is prevented by the fact that the initial value is added to the input of the third block.
From these observations it becomes clear that if the number of rounds would be smaller
than 17, the hashcode would not reach all possible values. In case of a single round,
the hashcode is simply a function of the chaining variables, and in case of i rounds
(2 ≤ i ≤ 16), the hashcode has an entropy of i− 1 bytes. Hence the number of rounds
is actually only one more than strictly necessary.

The most successful approach to find a collision seems to be a differential attack.
One can hope (like in the case of Snefru, cf. section 7.2.6) that changes to the input will
compensate each other and hence not affect the output. As the S-box is a permutation,
two inputs will never yield the same output, but with a small computer program we
have shown that in some cases more than one pair yields a given input and output
exor. Table 7.2 gives the frequency distribution of the exor table. The value of 256
corresponds to input exor equal to 0.

190 CHAPTER 7. DEDICATED HASH FUNCTIONS

pairs # occurrences
0 39,896
2 19,685
4 5,035
6 808
8 94
10 17
256 1

Table 7.2: Frequency distribution of the exor table for the MD2 S-box.

Modifications can compensate each other as follows: if a certain difference pattern
occurs in byte k, this pattern will be transformed by the S-box if the new state of
byte k+ 1 will be computed. If the previous value contains the correct difference, this
change can be cancelled out if

Hj[k+1]⊕ H′j[k+1] = sbox[Hj[k]]⊕ sbox[H′j[k]]⊕ Hj−1[k+1]⊕ H′j−1[k+1] .

More work has to be done in order to determine how many rounds of MD2 can be
broken in this way. It would also be interesting to explore whether permutations can
be found that make a differential attack harder.

7.2.3 MD4, MD5, SHA, RIPEMD, and HAVAL

MD4 is another MDC designed by R. Rivest. It was announced at the rump session of
Eurocrypt’90 and was published in [279, 282]. The four other algorithms MD5, SHA,
RIPEMD, and HAVAL are variants on MD4 that were proposed in a later stage.

7.2.3.1 MD4

MD4 is an iterative hash function that operates on 32-bit words. The round function
takes as input a 4-word chaining variable and a 16-word message block and maps
this to a new chaining variable. All operations are defined on 32-bit words. The
transformation consists of 3 rounds, and each round consists of 16 steps. In every
step one word of the chaining variables is modified as follows: a message word and
a non-linear function of the three other chaining variables is added, and the result is
rotated over a variable number of positions. This mapping is reversible, i.e., one can
go backwards easily. Every message word is used exactly once in every round, but in a
different order. After the 3 rounds, the previous chaining variable is added to the new
chaining variable in order to make the function irreversible. The complete description
specifies a padding rule and an initial value.

7.2. OVERVIEW OF MDC PROPOSALS 191

{nonlinear functions at bit level: multiplex,majority,exor}
f(j,x,y,z) = (x and y) or (not(x) and z) (0 <= j <= 15)
f(j,x,y,z) = (x and y) or (x and z) or (y and z) (16 <= j <= 31)
f(j,x,y,z) = x exor y exor z (32 <= j <= 47)

{added constant (hexadecimal)}
K(j) = 0 (0 <= j <= 15)
K(j) = 5A827999 (16 <= j <= 31)
K(j) = 6ED9EBA1 (32 <= j <= 47)

{selection of message word}
r(j) = j (0 <= j <= 15)
r(j) = (4*(j-16)) modulo 15 (16 <= j < 31) r(31)=15
r(32..47) = 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15

{amount for rotate left (rol)}
s(0..15) = 3,7,11,19,3,7,11,19,3,7,11,19,3,7,11,19
s(16..31) = 3,5, 9,13,3,5, 9,13,3,5, 9,13,3,5, 9,13
s(32..47) = 3,9,11,15,3,9,11,15,3,9,11,15,3,9,11,15

{initial value (hexadecimal)}
h0 = 67452301 h1 = EFCDAB89 h2 = 98BADCFE h3 = 10325476

It is assumed that the message after padding consists of t 16-word blocks that will be
denoted with X[i][j], with 0 ≤ i ≤ t − 1 and 0 ≤ j ≤ 15. All additions are additions
modulo 232. The pseudo-code for MD4 is then given below.

A = h0; B = h1; C = h2; D = h3;

FOR i = 0 TO t-1 DO
FOR j = 0 TO 47 DO

TEMP = A + f(j,B,C,D) + X[i][r(j)] + K(j);
A = D; D = C; C = B; B = rol(TEMP,s(j));

END
h0 = h0 + A; h1 = h1 + B; h2 = h2 + C; h3 = h3 + D;

END

This algorithm is clearly software oriented: all variables are updated sequentially,
and extensive use is made of standard processor instructions. The only problem for
most programming languages is the rotate operation, that has to be simulated using
two shifts. The order of the bytes in a word is chosen such that implementations on
the slower little endian architectures1 have the smallest overhead.

1In little endian processors like the 80x86 family, the least significant byte occupies the position
with the lowest address. In big endian processors like the 680x0 and the RISC processors, the least
significant byte occupies the position with the highest address.

192 CHAPTER 7. DEDICATED HASH FUNCTIONS

Although the scheme is intended to yield a collision resistant function, the chaining
variables and the message block are processed in a different way. The basic configu-
ration allows to construct fixed points easily, but they offer no serious threat as the
message length is included and IV is fixed (cf. section 7.4). If the third round is omit-
ted, the scheme is weak: R. Merkle showed in an unpublished result that if the third
round is omitted, one can easily find two messages differing in only 3 bits that hash
to the same value. The attack exploits the choice of the rotations and the order of the
message words. It works for 99.99% of all initial values, including the one that was
chosen. B. den Boer and A. Bosselaers [81] showed how to produce a collision if the
first round is omitted. The idea is to use only different message words in the 8 middle
steps of both the second and third round, that both depend on message blocks 1, 2,
5, 6, 9, 10, 13, and 14. Moreover the attack exploits the fact that rotations are only
over odd positions. Both attacks require only a millisecond of computation on a PC,
and the second attack leaves 320 bits of freedom. It is still an open problem whether
these can be used to produce a collision for all three rounds. Finally it is remarked
that E. Biham [24] discussed a differential attack on MD4, that seems to be feasible
for two rounds. It also relies heavily on the order of the message words.

7.2.3.2 MD5

In consequence of these attacks, R. Rivest realized that the security level of MD4 was
not as large as he intended, and he proposed in 1991 a strengthened version of MD4,
namely MD5 [281, 283, 295]. An additional argument was that although MD4 was not
a very conservative design, it was being implemented fast into products. MD5 has an
additional round, and has a multiplexer function in the first and second round. The
order in which the message words are used has been changed, and 16 different rotation
amounts were introduced (to avoid certain attacks and to increase the avalanche effect).
Two remarkable changes are that every step now has a unique additive constant, which
requires about 250 additional bytes of storage, and the core of the algorithm is modified.
This yields the following description:

{nonlinear functions at bit level: multiplex,multiplex,exor,-}
f(j,x,y,z) = (x and y) or (not(x) and z) (0 <= j <= 15)
f(j,x,y,z) = (x and z) or (y and not(z)) (16 <= j <= 31)
f(j,x,y,z) = x exor y exor z (32 <= j <= 47)
f(j,x,y,z) = (x or not(z)) exor y (48 <= j <= 63)

{added constant}
K(j) = first 32 bits of sin(j+1) (0 <= j <= 63)

{selection of message word}
r(j) = j (0 <= j <= 15)
r(j) = (1+5*(j-16)) modulo 16 (16 <= j <= 31)
r(j) = (5+3*(j-32)) modulo 16 (32 <= j <= 47)

7.2. OVERVIEW OF MDC PROPOSALS 193

r(j) = 7*(j-48) modulo 16 (48 <= j <= 63)

{amount for rotate left (rol)}
s(0..15) = 7,12,17,22,7,12,17,22,7,12,17,22,7,12,17,22
s(16..31) = 5, 9,14,20,5, 9,14,20,5, 9,14,20,5, 9,14,20
s(32..47) = 4,11,16,23,4,11,16,23,4,11,16,23,4,11,16,23
s(48..63) = 6,10,15,21,6,10,15,21,6,10,15,21,6,10,15,21

{initial value (hexadecimal)}
h0 = 67452301 h1 = EFCDAB89 h2 = 98BADCFE h3 = 10325476

The pseudo-code for MD5 is then given below.

A = h0; B = h1; C = h2; D = h3;

FOR i = 0 TO t-1 DO
FOR j = 0 TO 63 DO

TEMP = A + f(j,B,C,D) + X[i][r(j)] + K(j);
A = D; D = C; C = B; B = B + rol(TEMP,s(j));

END
h0 = h0 + A; h1 = h1 + B; h2 = h2 + C; h3 = h3 + D;

END

B. den Boer noted that an approximate relation exists between any four consecutive
additive constants. Moreover, together with A. Bosselaers he developed an attack that
produces pseudo-collisions, more specifically they can construct two chaining variables
(that only differ in the most significant bit of every word) and a single message block
that yield the same hashcode [83]. The attack takes a few minutes on a PC. This
means that one of the design principles behind MD4 (and MD5), namely to design a
collision resistant function is not satisfied. T. Berson [18] discussed how differential
techniques could be used to break a single round of MD5, but his attack is still far off
from being effective against all four rounds together.

7.2.3.3 SHA

On January 31, 1992, NIST (National Institute for Standards and Technology, USA)
published in the Federal Register a proposed Secure Hash Standard (SHS) [112] that
contains the description of the Secure Hash Algorithm (SHA). This hash function is
designed to work with the Digital Signature Algorithm (DSA) proposed in the Digital
Signature Standard (DSS) [111]. The algorithm is clearly inspired by MD4, but it is a
strengthened version. The size of the chaining variables is increased to 5 32-bit blocks,
which results in a total of 160 bits. This seems to be in line with the considerations
of the feasibility of a birthday attack, as discussed in section 2.5.1.3. The number of
steps per round has been increased to 20, and the number of rounds has been increased
to 4, like for MD5. The increase of the number of steps per rounds implies that every

194 CHAPTER 7. DEDICATED HASH FUNCTIONS

word of the chaining variable is transformed 4 times per round, just like for MD4
and MD5. The main operation has been modified and now involves a rotation of two
variables. A very important change is that starting from 16, the message word is
computed as the exor of four previous message words. A modification that affects only
the implementation is that the bytes in a word are ordered differently.

{nonlinear functions at bit level}
{nonlinear functions at bit level: multiplex,exor,majority,exor}
f(j,x,y,z) = (x and y) or (not(x) and z) (0 <= j <= 19)
f(j,x,y,z) = x exor y exor z (20 <= j <= 39)
f(j,x,y,z) = (x and y) or (x and z) or (y and z) (40 <= j <= 59)
f(j,x,y,z) = x exor y exor z (60 <= j <= 79)

{added constant (hexadecimal)}
K(j) = 5A827999 (0 <= j <= 19)
K(j) = 6ED9EBA1 (20 <= j <= 39)
K(j) = 8F1BBCDC (40 <= j <= 59)
K(j) = CA62C1D6 (60 <= j <= 79)

{initial value (hexadecimal)}
h0 = 67452301 h1 = EFCDAB89 h2 = 98BADCFE h3 = 10325476 h4 = C3d2E1F0

The pseudo-code for SHA then has the following form (again all additions are
modulo 232):

A = h0; B = h1; C = h2; D = h3; E=h4;

FOR i = 0 TO t-1 DO
FOR j = 0 TO 79 DO

IF (j > 15) THEN
X[i][j] = X[i][j-3] exor X[i][j-8] exor X[i][j-14]

exor X[i][j-16];
END
TEMP = rol(A,5) + f(j,B,C,D) + E + X[i][j] + K(j);
E = D; D = C; C = rol(B,30); B = A; A = TEMP;

END
h0 = h0 + A; h1 = h1 + B; h2 = h2 + C; h3 = h3 + D; h4 = h4 + E;

END

The design principles of the algorithm are not public, and no evaluation of SHA has
been published for the time being. The algorithm might still be changed in response
to comments supplied to NIST.

The fact that the message words are not simply permuted certainly increases the
strength of the algorithm. It implies that it is no longer possible to change a small
number of input bits to the 4 rounds: any message bit affects between 28 (words 10, 11,

7.2. OVERVIEW OF MDC PROPOSALS 195

and 12) and 36 (words 2 and 3) steps. At bit level, the transformation is a systematic
linear (80, 16, 23) code, or a code with length n = 80, size k = 16 and minimum
distance 23. This means that on a given bit position, the difference modulo 2 between
two set of 80 message words will have a Hamming weight of at least 23. This is not
optimal, as it is shown in [145] that the minimum distance of the best linear codes
with that length and dimension lies between 28 and 32. This choice offers probably
the best compromise between speed and security.

7.2.3.4 RIPE-MD

In the framework of the EEC-RACE project RIPE [259, 317] a new version of MD4
was developed [277]. The rotations and the order of the message words are modified
to decrease vulnerability against previous attacks. Moreover, two instances of the
algorithm, that only differ in the constants, are run in parallel, but with the same
input. This increases the internal memory to 256 bits. After processing a 512-bit block,
both chaining variables are combined together with the initial chaining variables.

7.2.3.5 HAVAL

While SHA and RIPEMD can be considered variants on MD4, HAVAL is an extension
of MD5. It was proposed by Y. Zheng, J. Pieprzyk, and J. Seberry at Auscrypt’92
[346]. The first modification in HAVAL is that the size of both message block and
chaining variable is doubled to respectively 32 and 8 words. The number of rounds
can be 3, 4, or 5 and each round consists of 32 steps. The simple nonlinear functions
are replaced by highly nonlinear functions of 7 variables, that satisfy some specific
properties like the Strict Avalanche Criterion or SAC (cf. chapter 8). Moreover a
single function is used in every round, but in every step a different permutation is
applied to the inputs. Again a new message order has been introduced, and every step
(except for those in the first round) uses a different additive constant. Two rotations
over 7 and 11 positions have been introduced. The core of the algorithm has now the
following form:

TEMP = rol(f(j,A,B,C,D,E,F,G),25) + rol(H,11) + X[i][r(j)] + K(j);
H = G; G = F; F = E; E = D; D = C; C = B; B = A; A = TEMP;

At the end of the algorithm, on can apply a folding operation to reduce the size of the
hashcode to 16, 20, 24, or 28 bytes. The choice in the number of rounds and in the
size of the output yield 15 different versions of the algorithm. The attack on MD5 by
B. den Boer and A. Bosselaers [83] is not directly applicable to HAVAL because of the
additional rotation operation that is applied to the chaining variable H.

7.2.4 N-hash

N-hash is a hash function designed by S. Miyaguchi, M. Iwata, and K. Ohta [226, 229].
The size of both chaining variable and plaintext blocks is equal to 128 bits. The basic

196 CHAPTER 7. DEDICATED HASH FUNCTIONS

building block of N-hash is an encryption function denoted with R(Hi−1, Xi). This
function is reversible with respect to Xi, which means that if Hi−1 is known, Xi can be
computed from R(Hi−1, Xi). The encryption consists of 8 rounds or processing stages
and is preceded by an addition to Xi of a constant and of Hi−1 with upper and lower
parts interchanged. The key input to every round is equal to Hi−1 ⊕ Vi, where Vi is a
round dependent constant. The complete algorithm can now be described as follows:

f = R(Hi−1, Xi)⊕Hi−1 ⊕Xi .

One round consists of the application of 4 F functions, that are similar to the F
function of FEAL [225, 228]. In fact every round is equivalent to 2 rounds of a Feistel
cipher [104, 105]. The nonlinearity comes from an addition modulo 256 followed by a
rotate left over 2 positions. The S-boxes show several weaknesses, e.g., an input exor
of 80x always leads to an output exor of 02x.

In [226] the question was raised whether the round function f is collision resistant.
In 1989, B. den Boer [82] showed how to construct three pseudo-preimages hashing to
a given value. He found constants α and β such that

R(Hi−1 ⊕ α,Xi ⊕ β) = R(Hi−1, Xi)⊕ α⊕ β ,

which implies that Hi will remain unchanged. A possible solution is to choose α equal
to a‖c‖b‖c‖a‖c‖b‖c and β equal to b‖c‖a‖c‖b‖c‖a‖c, with a = 8280x, b = 8080x, and
c = 0000x. After the initial addition of Hi−1 with upper and lower part exchanged,
the data input exor of the first round is equal to α ⊕ β = d‖d‖d‖d with d = 2000x.
Together with an input exor of α in the key, this yields an output exor of α⊕ β after
the first round. It is clear that for all subsequent rounds input and output exor will
remain constant, which means that this attack is independent of the number of rounds.

E. Biham and A. Shamir exploited other weaknesses in the S-boxes to obtain an
iterative characteristic of 3 rounds with probability 2−16 [21]. It can be described as
follows. Let ψ = 80608000x and let φ = 80E08000x, then the following pattern of
input and output exors is obtained:

(ψ,ψ, 0, 0) −→ (0, 0, φ, φ) −→ (ψ,ψ, φ, φ) −→ (ψ,ψ, 0, 0) .

Here the first and second transitions have probability 1/256, while the third transition
has probability 1. This means that for N-hash with 3r rounds, a second preimage
can be found with probability 2−16r, and a collision can be produced in 28+16(r−1)

operations, which means that it is faster than a birthday attack for variants of N-hash
with up to 12 rounds. Note however that this attack does not apply to N-hash as the
suggested number of rounds is equal to 8. Further study is necessary to find good
characteristics in case the number of rounds is not divisible by three. Note that this
weakness would be much more important if the function R would be used as a block
cipher: in that case the characteristic can be one or two rounds shorter than the block
cipher, and it would be possible to break the cipher faster than exhaustive search for
the 128 key bits for any number of rounds up to about 24.

7.2. OVERVIEW OF MDC PROPOSALS 197

A new version of N-hash appeared in a Japanese contribution to ISO [161]. Here
it is suggested to interchange Xi and Hi−1. However, in that case any change in Xi

for which upper and lower part are equal (this implies that the exchange operation at
the beginning of the algorithm has no effect) yields the following pattern of input and
output exors:

(ψ1, ψ2, ψ1, ψ2) −→ (ψ1, ψ2, 0, 0) −→ (0, 0, ψ1, ψ2) −→ (ψ1, ψ2, ψ1, ψ2) .

This pattern is obtained in all cases, which means that if the number of rounds is
divisible by three, this variant of N-Hash is totally insecure!

One can conclude that several weaknesses have been identified in N-Hash and its
variants. For the time being no collisions were reported for the original proposal, but
serious doubts have been raised about its security.

7.2.5 FFT-Hash I and II

FFT-Hash I and II are MDC’s proposed by C. Schnorr [297, 298]. The algorithms are
based on a bijective transformation that is built from a discrete Fourier transform and
a polynomial recursion. The security relies on the fact that polynomial transformations
of high degree over a finite field generate local randomness [234].

FFT-Hash I was presented at the rump session of Crypto’91. The input to the
round function consists of 16 16-bit words that will be denoted with X[0], X[1],. . . ,
X[15]. The following transformation is applied:
Step 1: (X[0], X[2], . . . X[14]) = FT8(X[0], X[2], . . . X[14]).
Step 2: FOR i = 0, 1, . . . 15 DO X[i] = X[i]+X[i−1]X[i−2]+X[X[i−3]]+2i mod p.
Step 3 and 4 are identical to Step 1 and 2 respectively. Here p = 216 + 1, and
all operations are modulo p, except the indices, which are taken modulo 16. The
operations FT8 is the Fourier transform with the primitive root 24 of order 8:

FT8 : ZZ8
p −→ ZZ8

p : (a0, . . . , a7) 7→ (b0, . . . , b7), with bi =
7∑
j=0

24ijaj .

Finally the output words are reduced modulo p. From this transformation a com-
pression function is obtained by selecting words X[8], . . . , X[15] as output. The hash
function is now defined by specifying that the first 8 input words are used for the
chaining variables and by fixing a padding procedure and an initial value. It should be
noted that the bijective transform can easily be inverted, which means that finding a
pseudo-preimage is trivial. It can be shown that for random inputs, the output of the
hash function has a distribution that is close to uniform.

An important disadvantage of the scheme is that to store a single variable modulo p,
two 16-bit words are necessary. Moreover the serial character of the recursion virtually
excludes efficient hardware implementations. The following weaknesses were found in
the scheme:

• if X[i− 1] and X[i+ 1] are both equal to 0, a change in X[i] does not propagate
to the other variables,

198 CHAPTER 7. DEDICATED HASH FUNCTIONS

• the indirect addressing can be exploited either if the index points to a variable
with a given value or does not point to a given value,
• the FT8 only affects the variables with an even index; moreover if a subset of 8

inputs or outputs is known, the remaining inputs and outputs can be computed.

These weaknesses lead to two independent attacks by J. Daemen, A. Bosselaers, R. Go-
vaerts, and J. Vandewalle [62] and by T. Baritaud, H. Gilbert, and M. Girault [12].
Both attacks require only 223 partial evaluations of the hash function and lead to mul-
tiple collisions, i.e., a large set of messages that hash to the same value. The first attack
requires 3 message blocks, and varies the second word of the first message block, while
the second attack uses 2 message blocks and varies the last word of the first message
block.

These attacks resulted in a new version that was presented at Eurocrypt’92 [298].
It differs only in minor points from the previous scheme.
Step 1: FOR i = 0, 1, . . . 15 DO X[i] = X[i]+X∗[i−1]X∗[i−2]+X[i−3]+2i mod p.
Step 2: (X[0], X[2], . . . X[14]) = FT8(X[0], X[2], . . . X[14]).
Step 3: (X[1], X[3], . . . X[15]) = FT8(X[1], X[3], . . . X[15]).
Step 4 is identical to Step 1. Here the ∗ indicates that if this variable is 0, it will
be replaced by 1. Three weeks later S. Vaudenay announced that he had found colli-
sions for FFT-Hash II; he presented his attack at Crypto’92 [321]. In a further variant
C. Schnorr suggests to destroy the reversibility by adding the input of the transfor-
mation to the output [298]. In view of the slow speed in both hardware and software,
adding more steps seems to be unacceptable.

7.2.6 Snefru

R. Merkle suggested in 1989 a software oriented one-way hash function that he called
Snefru [214]. First a reversible transformation is specified that acts on a 512-bit block,
that consists of 16 32-bit words X[0],...,X[15]. The transformation contains at least
two passes, where a single pass has the following form:

FOR j = 0 TO 3 DO
FOR i = 0 TO 15 DO

k = 1 - ((i div 2) mod 2);
delta = sbox[k][first byte of X[i]];
X[i-1] = X[i-1] exor delta;
X[i+1] = X[i+1] exor delta;

END
rotate X over s(j) bytes;

END

Here the indices are taken modulo 16, and the values of s(j) are 2, 1, 2, and 3.
Every pass uses two S-boxes that each contain 256 32-bit words, which corresponds to
2 Kbytes. After all passes have been completed, the input is added modulo 2 to the
output, which makes the function irreversible.

7.2. OVERVIEW OF MDC PROPOSALS 199

Like in the case of FFT-Hash I, a compression function is obtained by selecting
words X[12],...,X[15] as output. This means that a 384-bit message block will enter
the round function. Here however it is claimed that this function is collision resistant,
which means that it is not necessary to fix an initial value. The hash function is now
defined by specifying that the first 4 input words are used for the chaining variables.

Slower and more secure variants have also been suggested, where the size of the
chaining variable is equal to 256 bits. What is interesting about the algorithm is that
the design philosophy and all choices made in the design are justified in [214]. In order
to avoid allegations about a trapdoor in the S-boxes, they are computed with a public
pseudo-random generator from random numbers that were published in 1955.

E. Biham and A. Shamir obtained the following results on Snefru [22]: finding a
collision for Snefru with p passes requires 212.5+16(p−2) operations, and finding a second
preimage takes 224+32(p−2) operations. Even if the S-boxes are unknown, a collision
can be found in 220.5 operations for p = 2 and 249 operations for p = 3. The collision
attacks remain faster than a birthday attack even if the size of the chaining variable is
increased up to 224 bits. The main observation behind the attack is that if the third
byte of X[7] and of X[9] are modified, there is a high probability (2−40 for p = 2) that
these changes cancel out at certain positions. As a consequence the last 4 words are
not modified. The attacks for p > 2 exploit the reversibility of the transformation. A
similar observation was made independently by J. Williams [326], who obtained the
same success probability by modifying the third byte of X[7] through X[11]. His attack
can be extended to 3 passes, for which it has a success probability of 2−72, but fails
for p ≥ 4.

As a consequence of theses attacks, one should use 6 and preferably 8 passes,
possibly combined with an increased size of the chaining variable. However, these
measures increase the size of the S-boxes, and decrease the performance.

7.2.7 Hash functions based on cellular automata

It was suggested by S. Wolfram [329] to use a one-dimensional cellular automaton (s
bits in size) for pseudo-random bit generation.

xi(j)←− xi−1(j − 1)⊕ [xi−1(j) ∨ xi−1(j + 1)] .

Here the indices have to be taken modulo s. The bit generator b(x) starts from
a random x and outputs the sequence xi(0). Let bc−d(x) denote the string xc(0),
xc+1(0),. . . ,xd(0). I. Damg̊ard tried to use the one-way property of this generator to
design a collision resistant function as follows:

f = bc−d(Xi ‖ Hi−1 ‖ Z) .

where Z is a random r-bit string added to make “trivial” collisions more sparse and
harder to find. The value of c should not be chosen too small in order to make F
complete. Proposed values are s = 512, r = 256, c = 257, and d = 384. The advantage
of the scheme lies in the fact that in a parallel VLSI implementation every step would
require about d clock cycles (for the given example 3 clock cycles/bit).

200 CHAPTER 7. DEDICATED HASH FUNCTIONS

It was shown by O. Staffelbach and W. Meier [311] that the Wolfram pseudo-
random bit generator is in fact very weak for s < 1000 (S. Wolfram proposed s = 127).
Moreover J. Daemen, A. Bosselaers, R. Govaerts, and J. Vandewalle [61] found several
weaknesses in the hash function proposed by I. Damg̊ard. They proved that for the
proposed parameters, for most inputs there exists an r > 0 such that the output of f is
independent of bits x126−r through x126. Moreover, if the input starts with a pattern
of alternating zeroes and ones, the output is independent of a number of bits that
follow this pattern. These weaknesses yield multiple collisions for f and also collisions
for the hash function.

J. Daemen, J. Vandewalle, and R. Govaerts subsequently proposed Cellhash, a new
hash function that is based on a cellular automaton [61]. The elementary operation
computes the new 257-bit chaining variable from the old chaining variable and a 257-
bit message block (with the first bit always equal to 0). For a fixed message block the
transformation is bijective and reversible; it can be described as follows:

Step 1 hi = hi ⊕ (hi+1 ∨ hi+2) , 1 ≤ i ≤ 256 h0 = h0 ⊕ (h1 ∨ h2) .
Step 2 hi = hi−3 ⊕ hi ⊕ hi+3 ⊕ xi , 0 ≤ i ≤ 256.
Step 3 hi = h10·i , 0 ≤ i ≤ 256.

The indices should be considered modulo 257. Before the hashing operation, the
message is subjected to a preprocessing to introduce redundancy, that is of paramount
importance for the security. If the message after padding contains t 32-bit words that
are denoted with X[0] through X[t−1], the expanded message contains t′ = 8 · t 32-bit
words that are given by:

X[j] = X[(j mod 8 + j div 8) mod t], with 0 ≤ j ≤ t′ − 1 .

Eight of these words are combined into a single 256-bit block. The chaining variables
are initialized with the all zero value.

The design is clearly hardware oriented: all operations are very simple and act
in parallel on all bits. The disadvantage of the redundancy scheme is that an extra
register of 224 bits is required. In software the third step would be very slow. The
choice of a 257-bit chaining variable guarantees that the mapping is bijective and
avoids circular symmetric patterns. The designers also argue that differential attacks
are very unlikely to succeed. Because of the invertibility, finding a pseudo-preimage and
a pseudo-collision requires only a single operation. As a consequence, one can obtain a
preimage in about 2128 operations with a meet in the middle attack. To avoid problems
with the redundancy, 8 32-bit words in the beginning and in the middle should be kept
constant. A single iteration step has only nonlinear order two, which implies that if
the hash result is written as a function of the message bits, the maximal number of
factors in the algebraic normal form (cf. chapter 8) is 127, while for a random Boolean
function this is equal to 256. Moreover, only a small subset of terms are possible. As a
consequence analysis based on formal coding has shown to be feasible if every message
bit would be used only 4 times [94]. A meet in the middle attack seems however to be
hard, as the inverse function is much more complex. With this technique it was also

7.2. OVERVIEW OF MDC PROPOSALS 201

investigated whether it is easy to find fixed points. If all 32-bit words in the plaintext
are equal, this yields rather simple equations, but for the time being they have not
been solved.

An improved version of Cellhash, Subhash, was proposed by the designers in [63].
The multiplier 10 is replaced by 12 in Step 3, and the redundancy scheme for the
message is simplified: the cyclic structure is removed by prepending and appending
zero blocks to the message. As a consequence of the modifications, the resistance to
differential attacks has been improved.

7.2.8 Hash functions based on the knapsack problem

First the knapsack problem will be described. Subsequently a brief summary will be
given of algorithms to solve the knapsack problem, and finally some hash functions
based on the knapsack scheme and on related problems will be discussed.

7.2.8.1 The knapsack problem

The knapsack problem is the following NP-complete problem [116]: given a finite set
U , for each u ∈ U a size s(u) ∈ IN and a value v(u) ∈ IN, and positive integers B and
K, does there exist a subset U ′ ⊆ U such that∑

u∈U ′
s(u) ≤ B and

∑
u∈U ′

v(u) ≥ K?

If s(u) = v(u), ∀u ∈ U this problem is called the subset sum problem. In cryptography,
a special case of the subset sum problem is considered, namely given a set of n b-bit
integers {a1, a2, . . . , an}, and a b′-bit integer S (with b′ ≈ b+ log2 n), find a vector X
with components xi equal to 0 or 1 such that

n∑
i=1

ai · xi = S .

For historical reasons we will use the name knapsack to indicate this problem.
For cryptographic applications, one defines the function f(X) = S for given ai, and

hopes that this function is a one-way function. The first application of this function
was the 1978 Merkle-Hellman public key scheme [210]. Since then many variants have
been proposed, comprising schemes with digital signature capability. However, almost
all schemes have been broken [92, 32]. Most of these attacks made use of the special
structure that was built into the knapsack to obtain a trapdoor one-way function. If
the knapsack is used to construct a one-way function, no special structure is required.
However one should note that more general attacks were published that are not based
on any structure, which leads to the following question: is the subset sum only hard
in worst case, while the average instance is easy, which renders knapsacks useless for
cryptography. In case of a negative answer, the problem remains to determine the
parameters of the knapsack such that the problem is hard. It is certainly true that
many instances of the knapsack problem are easy, and that certain instances allow to

202 CHAPTER 7. DEDICATED HASH FUNCTIONS

derive partial information on X. Moreover, if X is a random vector, the distribution
of the result is not uniform [37]. Other weaknesses of the problem are caused by the
linearity, which is very undesirable from a cryptographic standpoint. An argument in
favor of the knapsack [66] is that it can be shown that deciding in general whether a
given knapsack induces an injective mapping is co-NP complete; a collision is of course
a witness of non-injectiveness (if the knapsack compresses its input, the knapsack is
not injective, but this does not imply that finding a witness is easy).

The attractivity of the subset sum problem lies in the fact that implementations
in both hardware and software would be much faster. Processing an n-bit message
requires on average n/2 additions of b-bit integers (O(nb) operations), while schemes
based on the hardness of factoring or discrete logarithm require typically 1.5n modular
multiplications (O(n3) operations).

7.2.8.2 Solving the knapsack problem

First note that in [149] it is shown that the subset sum problem becomes harder if
| n − b′ | decreases. For small b′ this mapping will be surjective and almost regular
(cf. section 4.3.2.5), while for large b′ the mapping becomes almost injective. If the
knapsack is to be used for hashing, one will of course have that b′ < n.

The density of a knapsack is defined as

d =
n

b′′
≈ n

b
,

where b′′ = log2 max1≤i≤n ai. Brickell and Lagarias-Odlyzko have shown that if d ≤
0.6463 . . ., the knapsack problem can be solved by reducing it to finding a short vector
in a lattice [32]. Coster-LaMacchia-Odlyzko-Schnorr [60] and Joux-Stern have ex-
tended the Lagarias-Odlyzko algorithm to solve problems with d ≤ 0.9408. Because
of the reduction to lattice problems, no exact bounds are known, but in practice the
running time is O(n · b3).

A second algorithm by R. Schroeppel and A. Shamir solves the knapsack problem
with b ≈ n in time O(2n/2) and space O(2n/4).

A third algorithm designed by Ph. Godlewski and P. Camion [126] finds a collision
for a knapsack in time O(n log2 n) under the condition that

n ≥ 22
√
b′ .

In the same paper, the authors describe a fourth attack that finds a preimage in
O(22

√
b′) operations under the condition that

n ≥ 2
√
b′ · 2

√
b′ .

A fifth algorithm that was proposed by P. Camion to break a multiplicative knap-
sack ([36], cf. section 7.2.8.4) was extended by P. Camion and J. Patarin [37] to solve
the following additive knapsacks. If the number of operations (and the storage require-
ment) is equal to (n/r)2r, a preimage can be found if

n ≥ 2b
′/r+log2 r−1 .

7.2. OVERVIEW OF MDC PROPOSALS 203

Note that in [37] only the cases r = 32 and r = 16 are considered, but the parameters
of the attack can easily be generalized. First the attack solves smaller subproblems in
the subgroups modulo r-bit primes using the birthday attack; then the solutions are
combined with the Chinese remainder theorem. In the case of a collision attack, n can
be two times smaller.

Figure 7.1 indicates for which choices of b and n an attack is known that requires
less than 264 computations and storage. The ‘safe’ area is the region between curve 1
and curve 5.

Number of
elements n

0

200

400

600

800

1000

0 100 200 300 400 500
p p

p p
p p

p p
p p

p pppppppppppppp pppppppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
pppppppppppp
ppppppppppp
ppppppppppp
p

ppppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
pp

p p
p p p p p p p p p p p p p p p p p

p p p p p pppppppppp
ppppppppppppppp

pppppppppppp
pppppppppppppppp

ppppppppppppppppp
ppppppppppppp

ppppppppppppp
pppppppppppp

p p

1

2

3
4 5 n = 2b

Size of elements b
(bits)

Figure 7.1: The relation between the number n of elements of the knapsack and the
size b (in bits) of the elements for the 5 attacks; the numbers refer to the number of
the attack.

7.2.8.3 Hash functions based on additive knapsacks

A more general knapsack was proposed by G. Gonnet. It is described in [126]. Let J
be a finite set of indices, let x be a string of size |J | over the alphabet X, and let T be
a mapping T : X × J −→ [0, l[: (x, j) 7→ T (x, j), with l ∈ IN. A compression function
can now be defined as follows:

f : X |J| −→ [0, s· |J | [: x = (xj)j∈J 7→
∑
j∈J

T (xj , j) .

204 CHAPTER 7. DEDICATED HASH FUNCTIONS

Ph. Godlewski and P. Camion [126] showed that this scheme can be broken if l is not
too large by modifying an earlier attack on a scheme by J. Bosset (cf. next section).
This resulted in the fourth algorithm.

I. Damg̊ard, who was aware of the third and fourth attack by Ph. Godlewski and
P. Camion, suggested that a random knapsack with n ≈ 2s, e.g., n = 256 and b = 120
(corresponding to s = 128), yields a collision resistant function [66], which could
be used with the construction described in section 4.3.3.2. This in turn motivated
P. Camion and J. Patarin to improve again the attack on the Bosset scheme which
yielded the fifth algorithm [37]. They showed that a preimage for the round function
can be constructed with O(232) operations and storage, which is clearly feasible. Note
that this only implies that one can find a pseudo-preimage and a pseudo-collision for
the hash function: finding a preimage with proposition 2.2 requires still about 280

operations. However, a preimage could be found directly with the Schroeppel-Shamir
attack in 264 operations and 232 storage: in this case one has to solve a knapsack with
n = 128 and b = 120. At the same time the authors of [37] pose the open problem to
find a pseudo-preimage for the case n = 512 and s = 256.

J. Patarin proposed to strengthen the hash function of I. Damg̊ard as follows [245]:
every time a zero bit is encountered in the message that is to be hashed, the inter-
mediate result is rotated to the right over one position. It is not clear whether the
known attacks can be extended to this case, but it seems that a simple rotation is not
sufficient to increase the security significantly.

R. Impagliazzo and M. Naor suggested to use the knapsack to construct an effi-
cient Pseudo-random String Generator (PSG) and Universal One-Way Hash Function
(UOWHF) [149]. They prove the equivalence of the security of these primitives to the
one-wayness of the knapsack problem, but if the knapsack is not hard to invert on
average, this is not very useful. For the PSG they suggest n < b < 1.5n, while for the
UOWHF they recommend n/3 < b < n. It is clear that in the first case the extended
low density attacks might cause problems, while in the second case the fifth attack by
P. Camion and J. Patarin might be used to break the scheme if b = n/3 and n < 768.
If b is closer to n, the security increases but the performance decreases. Indeed, if the
density is approximated by n/b, the number of operations to process a single bit is
proportional to

n

d(1− log2 n
n)− 1

.

From this equation it follows that the number of operations increases quickly if the
density d approaches 1, and that for a fixed density d the number of operations per
bit grows roughly linearly with n.

Ph. Godlewski and P. Camion suggested a special scheme that applies to the input
a one-way function and subsequently a linear error correcting code [126]: the hashcode
consists of the redundancy symbols of a MDS code [199] over GF (pm). The scheme
allows to correct a limited number of errors in the image under the one-way function,
but about half of the symbols can be used for detecting changes to the image and
hence to the input. It has the property that at least d bits have to be modified to the

7.2. OVERVIEW OF MDC PROPOSALS 205

hashcode to obtain a second valid hashcode, where d is the minimum distance of the
error correcting code. Because of the linearity, the attacks on the knapsack can break
the scheme if either p or pn is small.

7.2.8.4 Hash functions based on multiplicative knapsacks

The first knapsack type hash function was suggested by J. Bosset [27]. It is based
on a multiplicative knapsack in GL(2, p), the group of 2 by 2 invertible matrices over
GF (p), with p = 10, 007. Every possible plaintext block of 6 bits is associated with a
random element of the group and the result of the hash function is the product of the
corresponding matrices, coded with about 80 bits.

In fact J. Bosset suggested a smaller p and hash size, namely p = 997 and a hash
size of about 40 bits. P. Camion showed that even the larger scheme can be broken
with a probabilistic factorization algorithm in GL(2, p) [36]. The attack constructs a
second preimage by inserting 48 correcting plaintext blocks into the second plaintext.
It is based on the existence of a chain of subgroups GL(2, p) = Gr ⊇ Gr−1 ⊇ . . . ⊇ G1

such that the indices [Gr : Gr−1] are not too large. It was later extended to the fifth
attack, which was used to break the schemes of G. Gonnet and I. Damg̊ard (cf. previous
section).

An interesting scheme by G. Zémor is also based on the hardness of finding short
factorizations in certain groups [336, 337]. The general construction can be described
as follows. Let x ∈ Xt be an string of length t over the alphabet X. Let G be a group,
let S be a set of generators with |S |=|X |, and let f be a bijective mapping between
X and S. Then a hash function can be defined as follows:

h : Xm −→ G : x = (xi)1≤i≤t 7→ h(X) = f(x1)f(x2) . . . f(xt) .

The following choice is suggested: let p be a 150-bit prime number and take for G
the group SL(2, p) of 2× 2-matrices with determinant 1 over GF (p). The mapping f
associates 0 with the matrix A and 1 with the matrix B, where A and B are given by:

A =

(
1 1
0 1

)
B =

(
1 0
1 1

)
.

The size of the hashcode is equal to log2(p(p2−1)) ≈ 3 log2 p bits. An implementation
can be very fast, and can easily be parallelized. The security of the hash function is
based on the fact that finding short factorizations in this group is hard (note that a
trivial long factorization of the unity element is given by Ap = Bp = 1). Because of
the size of p, the method by P. Camion [36] can not be applied. The properties of this
hash function can be obtained by studying the Cayley graph Gp associated with G and
S. It can be shown that this graph has a large girth (i.e., the length of the shortest
cycle), namely

girth (Gp) ≥
ln
(p

2

)
ln
(

1+
√

5
2

) .

206 CHAPTER 7. DEDICATED HASH FUNCTIONS

This implies that two messages with the same hashcode will differ in at least 215 bits.
Secondly it can be shown that this graph has a small diameter (i.e., the maximum
distance between two vertices), namely ≤ 500, 000 ln p. This shows that if the input is
at least 6 Megabytes, the output ranges over the complete image. From this one would
conclude that this hash function is not suitable for hashing very short messages. The
large girth however implies that all messages with length ≤ 215 bits have a different
image, and thus finding a preimage is still infeasible. In order to evaluate the security
of the construction, one has to determine the number of operations to find a ‘medium
sized’ factorization. Even if this construction would be insecure, other groups exist
with similar properties.

7.3 Overview of MAC Proposals

In this section three schemes will be discussed extensively, namely the MAC’s that
are used in the anti-virus package ASP, the Message Authenticator Algorithm (MAA),
and the DSA2 algorithm (Decimal Shift and Add). Subsequently a scheme based
on a stream ciphers and a scheme based on matrix algebra are described, and four
proprietary algorithms are briefly mentioned.

The new contributions are the cryptanalysis of the ASP algorithms and an improved
meet in the middle attack on the DSA algorithm.

7.3.1 The ASP MAC function

As discussed in section 6.3, the anti-virus package ASP [53] contains two MAC’s. They
are intended to generate a hashcode for every program; this hashcode is verified every
time the program is loaded. In spite of the statement in [54] on p. 65, that “ The
default cryptographic checksum algorithm was published in “Computers and Security”,
and has withstood a mild amount of attack from the broad cryptographic community,”
both algorithms that are implemented in ASP are—to the best of our knowledge—not
published. Together with I. Bellefroid and K. Beyen, we have examined the algorithms
and shown that they contain several weaknesses. Part of this work was also published
in [16].

Both algorithms consist of an external MAC, that has the following update func-
tion:

f = (Hi−1 + g(Xi)) mod 7295 + 2 .

Here the size of the message blocks is equal to 1024 bytes, and the size of the chaining
variable is only 13 bits (7295 possible values). The value for IV is obtained by applying
a nonlinear transformation to the secret key K, that has only 7297 possibilities (about
13 bits), and to the name and the location of the file. The MAC is obtained by
applying a similar nonlinear function to K ⊕ Ht. It is clear that because of the size
of the parameters, both an exhaustive attack for the key (cf. section 2.5.1.2) and a
birthday attack (cf. section 2.5.1.3) are trivial. However, this MAC is intended for a

2Not to be confused with the Digital Signature Algorithm.

7.3. OVERVIEW OF MAC PROPOSALS 207

very restricted environment, and it is assumed that the potential attacker has no access
to the secret key K or to the MAC. In this case an attacker can do no better than
guess the hashcode or the key, which yields a success probability of 1/7295. This can
be considered as acceptable if one only intends to thwart attacks of malicious programs
like viruses. No specific weaknesses were identified in the nonlinear transformations
that would improve this probability.

However, it will be shown that both algorithms can be broken even under these
restricted conditions by exploiting weaknesses of g. The function g is not a memoryless
mapping from 1024 bytes to 16 bits, but it is in fact an MDC with message block size
of 1 byte. The chaining variable after every 1024 message bytes enters the MAC
calculation, and the initial value is equal to 0. Two different versions are suggested for
g.

The slowest version, that will be denoted with ASP1 has the following description:

g = (4 ·H ′
i−1) mod 7295 +X[i] .

Here X[i] is a message byte, that will be interpreted as an integer in two’s complement,
i.e., X[i] ∈ [−128, 127]. The chaining variable H ′

i lies in the interval [−128, 7421]. The
faster version will be denoted with ASP2:

g = (H ′
i−1 +X[i])⊕ i .

Here the chaining variable belongs to [0, 65535]. It will now be shown that the following
attack on ASP1 is possible: replace the first 1020 bytes of a message block, and
subsequently append 4 correcting bytes such that the value H ′

l·1024 and hence the
input to the MAC calculation remains unchanged. A similar attack for ASP2 requires
at most 60 correcting bytes.

Attack on ASP1 Let H ′
1023 be the value of the chaining variable that enters the

MAC calculation before the modification, and let H ′∗
1019 be the value of the chaining

variable after the modification. Then one simply has to solve the equation

H ′
1023 − (256 ·H ′∗

1019) mod 7295 = 64 ·X[1020] + 16 ·X[1021] + 4 ·X[1022] +X[1023] .

The left hand side of the equation lies in the interval [−7422, 7421], and the right
hand side in [−10880, 10795]. It is clear that it is easy to find a solution: in most
cases it is sufficient to write the left hand side in base 4. In some cases, namely if
H ′

1023 6∈ [0, 7294], one has to work to the upper or lower boundary of the interval,
and modify subsequently the coefficients. An additional weakness in this case is that
the chaining variables are not uniformly distributed: the values at the border of the
interval occur less frequently than expected.

Attack on ASP2 This attack is based on similar principles. The disadvantage here
is that the step size is limited. This can be explained as follows: if two iterations are
combined, one obtains:

H ′
i+1 =

((
(H ′

i−1 +X[i])⊕ i
)
+X[i+ 1]

)
⊕ (i+ 1) .

208 CHAPTER 7. DEDICATED HASH FUNCTIONS

If X[i] and X[i + 1] are equal to zero, the difference in absolute value between H ′
i+1

and H ′
i−1 will always be equal to 1 if i is even. The correcting block attack will try to

choose the values of X[i] and X[i+1] such that a larger step can be taken. It will start
with an even value of i. The distance modulo 216 between the two values determines
whether one will go up or down towards the final value H ′

1023. If H ′
j+1 = H ′

1023, with
j even and j < 1022, one will keep the chaining variable constant after every 2 steps
by selecting X[j + k] = 0 and

X[j + k + 1] = (−1)H
′
j+k mod 2 for 2 ≤ k ≤ 1022− j .

A simple and conservative strategy to obtain the target value of H ′
1023 guarantees

that after every 2 iterations the difference modulo 216 will decrease with 128. If X[i+
1] = 0, one obtains

H ′
i+1 = (H ′

i−1 +X[i])⊕ i⊕ (i+ 1) = (H ′
i−1 +X[i])⊕ 0001x ,

because i is even. In the positive direction, one will choose X[i] = 127 if H ′
i−1 is odd,

and X[i] = 126 if H ′
i−1 is even. In the first case the step size will be 128, and in

the second case it will be 127. Note however that this can occur at most once. If
the distance is smaller than 128, it is very easy to obtain the correct value in a final
iteration. If the values for H ′

i−1 have to decrease, X[i] will be chosen equal to −128,
and a decrease of 129 per iteration will be possible (in the first step this might be
only 128). This means that the total number of iterations and hence the number of
correcting bytes will be at most 512.

The strategy can be improved. If a “greedy method” is used, that tries to maximize
the step size after two iterations, one can show that 60 steps are sufficient. In this case
the step size after two iterations will be lower bounded by 128 and upper bounded by
2174 (these numbers have to be increased by one in case of decreasing values). After
at most 7 iterations it can be made equal to 2048 as follows. Assume for example
that the value of H ′

974 is equal to 4FFFx. Choosing X[975] = 1 will result in a value of
H ′

975 = 5000x⊕03CEx. With X[976] = 98 = 0062x, one obtains a value H ′
976 = 57FFx,

which yields indeed a step size of 2048. In a similar way one can step from 43FFx to
4BFFx, which corresponds to the same difference. When we come close, i.e., within a
distance of about 1024 of the target, at most 7 steps are necessary to obtain the correct
value. The maximal number of steps is hence upper bounded by 2 · (7 + 16 + 7) = 60.
Depending on the value of i and of H ′

i, some steps can be larger. An even better
strategy will try to maximize the step size after 4 iterations. In that case the number of
small steps at the beginning and at the end can be decreased. One can conclude that if
the complexity of the attack is increased (i.e., more program storage and computation),
the number of correcting blocks can be decreased.

An important observation is that, for a given value of H ′
0, the variables H ′

i can
be approximated as originating from a random walk. This means that the expected
distance between H ′

1024 and H ′
0 is small, which implies that the distance that has to be

corrected with the correcting bytes is not uniformly distributed, but tends to be small
as well. As a consequence, 40 correcting bytes will be sufficient for almost all cases.

7.3. OVERVIEW OF MAC PROPOSALS 209

Finally note that a virus does not know whether ASP1 or ASP2 is used. However,
due to the simplicity of both checksums one can find many modifications that will be
undetected with both checksums. From these attacks it follows that these algorithms
should be replaced by a fast MDC, like MD4 or one of its variants. A MAC is not
necessary as the hashcode is not readable or writable by an attacker.

7.3.2 Message Authenticator Algorithm (MAA)

The MAA was published in 1983 by D. Davies and D. Clayden in response to a request
of the UK Bankers Automated Clearing Services (BACS) [72, 74]. It was the intention
that the implementation of the algorithm takes advantage of the fast 32-bit multipli-
cation available on a mainframe computer, which is not so well suited to implement
DES-like operations. In 1987 it became a part of the ISO 8731 banking standard [154].
The algorithm consists of three parts. The prelude is a key expansion from 64 bits to
192 bits: it generates 8 bytes for the initial value of the main loop, 8 bytes parameters
of the main loop, and 8 bytes that will be used as data in the coda. It also eliminates
weaker key bytes equal to 00x or FFx. Note that it has only to be executed in case
of installation of a new key. The main loop consists of two parallel branches with
logical operations, additions, and multiplications modulo 232 − 1 or modulo 232 − 2.
The chaining variable has a length of 8 bytes and the message is processed in blocks
of 4 bytes. In the coda, part of the key is introduced in the main loop, and with a
modulo 2 addition the result is reduced to a 32-bit hashcode. Although the algorithm
is certainly suitable for a mainframe computer, implementation in present day personal
computers and workstations can also be very efficient.

In the description of the main loop, V and W are derived from the key, the chaining
variables are represented with (H1i,H2i), and the 32-bit message block is denoted with
Xi. The following description is then obtained:

Step 1 V = rol (V, 1) Ki = V ⊕W .
Step 2 H1i = MUL1(H1i−1 ⊕Xi, S1(Ki +H2i−1))

H2i = MUL2(H2i−1 ⊕Xi, S2(Ki +H1i−1)) .

Here MUL1 is a multiplication modulo 232 − 1, MUL2 is a (modified) multiplication
modulo 232 − 2, and S1 and S2 are functions that fix 4 bits of the 32-bit argument to
1 and 4 bits to 0.

For a fixed key and message block, the mapping is injective: as discussed in sec-
tion 2.4.1, this implies that the number of attained states decreases if variations are
introduced in the beginning of a long message. Due to the fact that the size of the in-
ternal memory is equal to twice the size of the result, this effect is not very important.
The designers suggest to limit the size of the messages to about 4 Megabytes, and in
[154] a special mode is suggested for longer messages. Two small security problems
of the algorithm have been discussed by the designers. First, factors of the modulus
for multiplication might appear in the intermediate result and remain there through
the rest of the computation, but this is avoided by the choice of the moduli. Secondly,
if one of the arguments of the multiplication is equal to 0, it can be kept equal to

210 CHAPTER 7. DEDICATED HASH FUNCTIONS

0 by choosing the subsequent message blocks equal to 0. For the second multiplier,
this problem is avoided by the mappings S1 and S2. For the first multiplier, this can
only happen if Xi = H1i−1 or Xi = H2i−1. If both chaining variables would be equal
by chance, one could construct a large number of messages with hashcode equal to 0.
However, as both chaining variables depend on the secret key, that attacker has no
idea about their value, and hence this does not seem to help him. The only conse-
quence of these weaknesses is that someone who knows the secret key does not need a
birthday attack (which would take 216 operations) to find two colliding messages. He
can exploit this weakness to generate easily such a set [318].

A statistical evaluation was performed in collaboration with K. Van Espen and
J. Van Mieghem [318]; it showed that the only weakness in the building blocks is the
most significant bit of MUL2. However, this does not seem to affect the security of
the algorithm. A differential attack on the algorithm might reveal some information
on the chaining variables or on the secret key. The simplest input difference seems
to be 231, as this avoids carries. However, extracting information is hard, as in the
two last rounds 2 32-bit key blocks are used as message blocks, which means that all
information is mixed with an unknown key.

7.3.3 Decimal Shift and Add algorithm (DSA)

This proposal was designed in 1980 by Sievi of the German Zentralstelle für das
Chiffrierwesen, and it is used as a message authenticator for banking applications
in Germany [74]. The fact that it is based on decimal representation and arithmetic
makes it suitable for calculation by hand or with a pocket calculator with 10-digit
precision, although present day processors still have a limited number of instructions
for decimal arithmetic. The algorithm was considered as a candidate for international
standardization, but was not withheld.

The key length is 20 decimal digits, which corresponds to 66.5 bits, and the data is
processed in blocks of 10 digits. The operations are cyclic shifts and additions modulo
1010. The data is processed in two parallel chains that each depend on 10 key digits:

H1i = fi(K1, (Xi +H1i−1) mod 1010) H2i = fi(K2, (Xi +H1i−1) mod 1010) ,

where the chaining variables are initialized with the corresponding key (the scheme
would probably be more secure if the first chain would be initialized with the second
key and vice versa), and 10 zero blocks are appended to the message. The function f
can be described as follows:

fi(K,Y) = (ror(Y,K[i mod 10]) + Y) mod 1010 .

Here ror(x, a) is function that performs a right rotation over a positions of its argument,
and K[i] denotes the ith digit of K (the most significant bit has number 9). At the
end the two chains are combined:

H ′
t = (H1t +H2t) mod 1010

Ht = H ′
t[9−2] +H ′

t[7−0] mod 108 ,

7.3. OVERVIEW OF MAC PROPOSALS 211

where H[i−j] denotes the i − j + 1-digit number consisting of digits i, i + 1, . . . , j of
H.

The security is certainly improved by the use of two independent parallel chains
and by the reduction at the end. It is clear that the appending of the zero blocks
makes it harder to observe the influence of modifications to the last message block.
Some weaknesses have been discovered in [144] based on the non-uniformity of the
carry vectors, and a meet in the middle attack was described that requires a storage
of about 4 Terabytes. The storage requirement can be reduced by considering the
following improvement.

• For a known message-MAC pair, compute H1t for all 1010 ≈ 233 values of K1.
Sort this array of about 37 Gigabytes.

• For a given Ht, compute the ±100 corresponding values of H ′
t; this is easy, as

was shown in [144].

• Compute now H2t for all 1010 values of K2, and check for all values of H ′
t whether

there is a value in the table such that H ′
t = (H1t+H2t) mod 1010. It is expected

that about 1012 matches will be found; the correct key can be found after checking
this key on two additional message-MAC pairs (cf. section 2.5.1.2).

Hence this attack requires 240 MAC evaluations (most work has to be spent on elimi-
nating false matches) and a storage of 37 Gigabytes. It is clear that this scheme does
not offer an acceptable security level. The complexity of breaking this scheme might
be reduced with differential attacks using a 1-block message: if α is added to the most
significant digit of X0, this will result in an addition of α mod 10 to the most significant
digit of H11 and H21, and an addition of α to the position determined by K1[0] and
K2[0] respectively. It can be expected that the 10 subsequent iterations in both chains
(caused by the addition of the 0 blocks), will create a pattern in Ht that reveals some
information about the key.

7.3.4 Based on a stream cipher

At Auscrypt’92, X. Lai, R. Rueppel, and J. Woollven [185] have proposed an efficient
MAC based on a stream cipher. The basic idea is to use a running key sequence
generated from the secret key to demultiplex a message sequence into two subsequences,
which then are fed into two accumulating feedback shift registers. The MAC consists
of the final state of both shift registers. The initial state of both registers can either
be used as part of the secret key or can be made public. An interesting aspect of
this proposal is that it is non-iterative (cf. section 2.4.1). It can be shown that the
MAC has a uniform distribution if the shift registers satisfy certain conditions. For
the security of the scheme, it is required that the running key sequence never repeats,
which would also be required if it were to be used for secrecy protection.

One weakness of this scheme as currently proposed is the vulnerability of the end of
the message: if one appends s bits to the message, one can update the corresponding
MAC with a success probability of 1/2s: it is sufficient to guess the next s bits of the

212 CHAPTER 7. DEDICATED HASH FUNCTIONS

key stream for the new message and to modify the MAC accordingly. If all appended
bits are equal, one only has to predict the Hamming weight of the key stream, which
is rather easy even for large s. A similar property holds if one wants to modify the
last s bits of the message. These attacks can be thwarted by appending the message
length and a sufficiently long 0/1 balanced string to the end of the message.

7.3.5 Matrix algebra

A scheme based on matrix algebra [138] uses as key a random t × t matrix A with t
the number of b-bit blocks of the plaintext X:

MAC = XtAX =
∑
i<j

aij · xi · xj .

As the size of the input is restricted, it is in fact a keyed one-way function and not a
MAC. After observing t2 linear independent equations of this form, an opponent can
solve the set for A. This makes the scheme totally insecure against a chosen message
attack. If X ′ belongs to ker(A) then adding X ′ to X does not affect the result, which
implies that someone who knows the secret key can easily construct messages with the
same hashcode.

The dual of this scheme uses as key a 1× t random vector A and the information
is stored in a t× t matrix:

MAC = AtXA =
∑
i<j

ai · aj · xij .

Computing the t entries of the key vector requires solving a quadratic set of equa-
tions (O(t3) operations), and every matrix X ′ with A ∈ ker(X ′) can be added to the
information without affecting the hashcode.

7.3.6 Proprietary algorithms

A large number of proprietary MAC’s have been proposed for specific applications.
Very little information is available about these algorithms. Taking into account all the
problems that have been identified in published algorithms, one can only trust them
if they have been reviewed extensively by independent experts.

The Telepass algorithm [121, 135] is in fact not a hash function, but a keyed one-way
function. It is used for generating MAC’s in smart cards. A 64-bit result is computed
from a 96-bit key, 32 bits of data, and an input E of 64 bits. It is a proprietary
algorithm that requires only 200 bytes of microcode and is limited to the resources
available in a smart card.

The Data Seal is a proprietary MAC [191] that was designed to protect electronic
bank transfers. Another proprietary authenticator is provided by S.W.I.F.T. to the
member banks to exchange financial messages [74]. No details of these algorithms are
public.

7.4. DESIGN PRINCIPLES 213

In second generation mobile and cordless telephone systems, like GSM and DECT,
a challenge response procedure is carried out to authenticate a portable radio termina-
tion. This procedure is based on one or two keyed one-way functions, which in case of
DECT is called the DECT Standard Authentication Algorithm (DSAA) [323]. Again
no details of this algorithm have been revealed.

7.4 Design principles

For the time being we are far from a theory to design efficient and secure hash functions.
After having discussed eight dedicated MDC’s and five MAC’s, comprising some vari-
ants, it becomes clear that the best one can hope for is to extract a number of design
principles from these proposals.

One of the first requirements for a hash function is that its description should be
concise and clear. This will make the hash function more attractive to evaluate and to
implement. Additionally one would like to have a motivation for all design decisions,
and a comparison with alternatives that were rejected.

In a first part, some criteria that affect the security will be discussed, while in the
second part some implementation aspects will be treated. Finally it will be explained
why trapdoors can also be a problem for hash functions.

This section was partially inspired by the presentations and discussion on the Ober-
wolfach meeting on “Cryptographic Hash Functions,” March 24-27, 1992 organised by
T. Beth.

7.4.1 Security relevant criteria

The following security relevant properties will be discussed: should the round function
be collision resistant and one-way or not, should the round function be partially bijec-
tive and one-way, how to protect begin and end of the hashing operation, the use of
redundancy in the message, and finally a treatment of some specific problems.

Collision resistant and one-way The main issue faced by the designer is whether
he will base his dedicated hash function on a function that is both collision resistant
and one-way or not. Arguments in favor of a collision resistant and one-way func-
tion are that analyzing the security can be reduced to analyzing a single iteration as
shown in section 4.3.3.2 for collision resistance and in section 2.4.2 for the one-way
property. The advantage of this construction is also that the choice of a specific IV is
not so important: the scheme should be secure with any IV . Indeed, if a perfectly se-
cure compression function would exist, finding a pseudo-preimage or a pseudo-collision
would be not easier than finding a preimage or a collision. Another advantage of this
approach is that the size of the chaining variables can be increased at the cost of a
decreased performance. Finally the tree construction described in section 2.4.4 can be
used.

214 CHAPTER 7. DEDICATED HASH FUNCTIONS

On the other hand, from analyzing the hashing process, it follows that the roles
of Hi and Xi are essentially different. This means that it seems natural to impose
different conditions on both inputs of the round function. E.g., if finding a pseudo-
preimage is relatively easy, one can use proposition 2.2 to find a preimage faster than
2n operations, but this does not mean that finding a preimage becomes feasible. One
can hope that loosening the requirements will improve the performance of the hash
function.

If the option is taken to design a collision resistant function, one should be consis-
tent and design the round function such that it is symmetric with respect to message
and chaining variable. Designs along these lines are BCA, MD2, FFT-hash, Snefru,
the Damg̊ard scheme based on a cellular automaton and the knapsack schemes. De-
signs that treat chaining variables and message blocks differently are N-hash, Cellhash,
Subhash, MD4 and its variants, and all MAC’s. On the other hand, the only round
functions for which no collisions were found are those of MD2, Snefru with more than
6 passes, MD4, SHA, and RIPE-MD (MD5 is excluded). It is rather surprising, as the
MD4 variants are designs of the second type.

Bijectivity and one-wayness A second related issue is the question whether the
round function or part of the round function should be bijective and one-way. On the
one hand, bijectivity for part of the round function seems to be a desirable property:
this avoid attacks where the entropy of the internal variables or chaining variables
decreases (cf. the long message attack discussed in section 2.4.1), and one can show
that at certain places no collision can occur. On the other hand, one would like to
have a one-way mapping: if an attacker can go backwards easily, he will be able to
use meet in the middle techniques. In practice however it seems hard to combine both
properties: proving that a scheme is bijective is in most cases done by proving that
one can go backwards. Examples based on number theoretic problems do exist (e.g.,
RSA), but are are rather slow. In order to get around this, many schemes combine a
bijection with a feedforward of the data input or the chaining variable input or both.
Of course this destroys the bijectivity.

A distinction has to be made between schemes that treat chaining variables and
message blocks symmetrically and schemes that do not have this property. In the first
case BCA, FFT-hash, and Snefru are based on a bijective mapping, where the output
size is reduced by exoring lower and upper halves (for BCA) and by chopping part
of the bits (for FFT-hash and Snefru). In case of Snefru the round function is made
one-way by exoring the input to the output. The security of the Damg̊ard scheme
based on cellular automata and of the knapsack schemes is based on the one-wayness
of the round function. With respect to this criterion, MD2 behaves a bit differently:
the mapping is one-way, but part of the internal state can be recovered. The optimal
configuration in this case seems to be a number of bijective mappings, interleaved with
feedforwards in order to avoid a meet in the middle attack. The security can also be
increased by not simply selecting the output bits but applying a simple compression.
It is a well known open problem to find a very efficient one-way permutation.

7.4. DESIGN PRINCIPLES 215

If message blocks and chaining variables are treated in a different way, the schemes
that contain a mapping that is bijective if one of the inputs is fixed can be treated in the
same way as single length hash functions based on a block cipher (cf. section 5.3.1.4).
This means that all properties like fixed points can be derived from the discussion there.
Cellhash and Subhash have a round function that is bijective for a fixed message and
for a fixed chaining variable, but the mapping can be inverted easily if one of the inputs
is fixed. It is equivalent to a CFB mode, but it derives its strength from the specific
redundancy scheme in the message. MD4 and its variants are based on a function
that is bijective for a fixed message block, while the one-way property is introduced by
a feedforward of the previous chaining variable, hence it corresponds to scheme 5 in
table 5.4. The first variant of N-hash is bijective for a fixed chaining variable, and the
other one is bijective for a fixed message block. In both variants the chaining variable
and the message are added modulo 2 to the output of the function. The first variant
of N-hash corresponds to scheme 3 in table 5.4, and the second variant corresponds
to scheme 7. From the discussion in section 5.3.1.4 it follows that fixed points can
be found easily for MD4 and its variants and for N-hash and its variant. The impact
of these fixed points is however limited. The conclusions on differential attacks can
however not be transferred in a straightforward way: in the case of DES, a differential
attack for a constant plaintext with a varying key is probably infeasible, but this is not
necessarily the case for these functions. This implies that no configuration is a priori
more secure against differential attacks.

For the MAC’s the situation is different: MAA and DSA are one-way mappings,
even for a fixed and known key, while the ASP MAC’s are clearly invertible (apart
from the nonlinear transformation at the end, that can however be listed in a table).

Beginning and end It is not the intention of this paragraph to repeat the extensive
discussion on the initial value IV and on the padding scheme. It is recalled that
it was recommended to choose a single IV or a limited set of IV ’s, and to use an
unambiguous padding rule that comprises the addition of the length of the message.
For some schemes it can be useful to impose a maximal message length.

Many schemes are vulnerable to attacks where one goes backwards or to attacks
that concentrate on the end of the message like correcting block attacks. Their security
can be increased without reducing the performance by adding at the end a limited
number of blocks that are a function of all message blocks. Examples are the first
hashcode that is used in MD2 and the Quisquater-Girault scheme of section 5.3.2.3.
Other solutions are the addition of zero blocks (DSA and Subhash) or the use of cyclic
redundancy in the message (Cellhash).

It was also discussed in section 2.4.1 how adding a first block that is dependent
on IV can have as effect that finding a pseudo-preimage is not easier than finding a
preimage: this is especially interesting in case of schemes where going backwards is
very easy, and still the use of different IV ’s is necessary.

In case of a MAC, the security can certainly be increased if not only the round
function, but also IV and the last blocks depend on the secret key K. This makes it

216 CHAPTER 7. DEDICATED HASH FUNCTIONS

harder to predict the value of Hi and to obtain information on K or on Hi by selecting
the last message blocks in a specific way.

Another principle that seems to increase the security is to work with two indepen-
dent chains with a limited interaction in every round: in this way the security margin
caused by the additional internal memory can ‘wipe out’ certain weaknesses in the
round function.

Redundancy in the message A good design principle seems to be to use every
message bit as many times as possible, and in such a way that it is hard to compensate
changes in one message block. From this it follows that the same bit should be used at
different locations and in different functions. This calls for a structure like MD4 where
the message is used as ‘key’ to ‘encrypt’ in a reversible way the chaining variables.

Instead of duplicating every message bit, as suggested in section 5.3.1.2, the idea
of using an error correcting code seems to be very promising: in this way one can
guarantee that—independently of the selection of the message—the actual input to
the hash function will differ in at least d locations, with d the minimum distance of the
code. There are several arguments to avoid making more than a single ‘pass’ over the
message: the performance decreases, it might be that additional storage is necessary, if
the round function is invertible a generalized meet in the middle attack may be applied
(cf. section 2.5.2.3), and finally in implementations one has to verify that it is indeed
the same message that enters the hashing process.

Specific attacks A variety of attacks have to be considered when designing a ded-
icated hash function (cf. section 2.5). The first evaluation that has to be performed
on an algorithm is certainly a statistical evaluation: it should be checked whether any
irregularities can be found in the distribution of the output, and whether input dif-
ferences affect the complete output. Special attention can be paid here to weaknesses
occurring in most and least significant bits, to the relation between parity of inputs
and outputs, and to other linearities.

Differential cryptanalysis has shown to be one of the most powerful techniques,
especially against schemes based on S-boxes. In case of hash functions, one will look
for two inputs for which the output difference is zero, or for which the output difference
is equal to the input difference (if a feedforward exists of the input to the output).

Fixed points are certainly not usable in practice, but in absence of better criteria,
they can be used to discriminate between several schemes.

7.4.2 Efficiency

In general a choice is made between software and hardware implementations. In soft-
ware implementations, one will try to update variables sequentially, i.e., use the output
of a calculation immediately in the next step. An important constraint is the limitation
of the memory access, which exists at two levels. In the first place, one will try to keep
as many variables as possible in the registers. Secondly, one will try to optimize the use
of the cache memory. These considerations become more and more important as the

7.4. DESIGN PRINCIPLES 217

access time to the memory seems to decrease more slowly than the cycle time of the
processors. This suggests that faster hash functions will rather make use of logic and
arithmetic operations available on a standard processor, than of S-boxes. However,
the advantage of S-boxes is that they yield a strong nonlinear relation between input
and output. Other less important aspects are word size, byte ordering, and problems
with carries. Finally it should be remarked that one should not try to optimize the
design towards a single processor: designing and reviewing a dedicated hash function
will take several years, and by that time the processor will probably be outdated.
The MD4 family is clearly optimized to be fast in software: these algorithms run at
several Megabit/sec on present day computers, which makes them about one order of
magnitude faster than other schemes that are not yet broken.

For hardware oriented hash functions, one will try to make use of parallelism.
Nonlinearity in hardware can be generated efficiently by S-boxes. The diffusion can
be increased by bit permutations, that simply correspond to wire crossings. Ideally,
such a dedicated hash function should also take a very limited area: this will decrease
the cost of the IC, and will make it possible in the near future to integrate the hash
function as a basic component in other IC’s. A design that consumes too much area will
very likely go the same way as most ASIC (Application Specific IC) designs for RSA
during the eighties: they were never built for economical reasons. The only dedicated
hardware hash function seem to be Cellhash and its variant Subhash. The expected
speed is about 300 Megabit/sec with a 10 MHz clock, but the area will probably be
much larger than the area for a DES implementation.

In order to limit the evaluation effort, one might ask the question whether a single
hash function can be designed that would offer a good compromise between hardware
and software implementation criteria. In that case, a few rules should be observed. A
limited degree of parallelism is necessary in order to make hardware implementations
efficient, and this will be advantageous as well on computer architectures with several
processors. In order to make software implementations fast, permutations at bit level
should be designed in a structured way (byte or word structure), or it should be possible
to combine them together with the S-boxes, as the permutation P of DES. Moreover
S-boxes seem to be a mandatory component, as they are acceptable in both hardware
and software. These S-boxes should be optimal rather than large and random, and
have a size of at most a few Kilobytes. Unacceptable for hardware are algorithms that
use a large number of constants that do not seem to increase the security, like the 64
constants of MD5. The internal memory of the algorithm should not be too large (at
most 80 bytes). The other operations should be simple arithmetic (addition) and logic
operations. In this way, one can achieve a speed of 1 Mbit/sec in software and between
50 and 100 Mbit/sec in hardware (both estimates are for current technology), which
is about twice as fast as the current DES implementations.

To conclude this section, table 7.3 gives an overview of the speed of some hash
functions in software. All timings were performed on a 16 MHz IBM PS/2 Model 80
with a 80386 processor. The implementations were written by A. Bosselaers. Most
of them use additional memory to improve the speed. The C-code was compiled with

218 CHAPTER 7. DEDICATED HASH FUNCTIONS

a 32-bit compiler in protected mode. In order to allow for a comparison with the
schemes of chapter 5 and 6, the speed of a software implementation of DES [8, 108],
PES [181], and FEAL [225] are given, as well as the timings for a modular squaring
and exponentiation with a short exponent. In this case a 512-bit modulus was chosen,
and no use was made of the Chinese remainder theorem to speed up the computations.
From these figures it can be derived that MDC-2 will run at about 100 Kbit/sec.
Note that in some cases the C-compiler produces code that is almost optimal. The
implementations of ASP1, ASP2, and QCMDCV4 (indicated with a ∗) are written in
16-bit code, and could be further optimized. Some algorithms like Snefru and SHA
would perform relatively better on a RISC processor, where the complete internal state
can be stored in the registers. On this type of processor, SHA is only about 15% slower
than MD5. No results for the different versions of HAVAL have been included, as their
performance will vary between the performance of MD4 and MD5.

type hash function C language Assembly language
(Kbit/sec) (Kbit/sec)

dedicated ASP1 2000∗

MAC ASP2 3730∗

MAA 2750
dedicated BCA 764 764
MDC MD2 78 78

MD4 2669 6273
MD5 1849 4401
SHA 710 1370
RIPEMD 1334 3104
N-hash 266 477
FFT-hash I 212 304
Snefru-2 970 970
Snefru-4 520 520
Snefru-6 358 358
Snefru-8 270 270
QCMDCV4 860∗

block cipher DES (+ key schedule) 130 200
DES (fixed key) 512 660
PES (+ key schedule) 520
FEAL-16 (fixed key) 333 623

modular squaring 50 273
arithmetic exponentiation (216 + 1) 1.8 14

Table 7.3: Performance of several hash functions on an IBM PS/2 (16 MHz 80386).

7.5. CONCLUSION 219

7.4.3 Trapdoors in hash functions

It is very common to check proposed encryption functions for trapdoors. These are
weaknesses that are built in the system on purpose, and that allow the person who
knows of these weaknesses to break the algorithm much faster. This risk is certainly
larger in case of proprietary algorithms, where the algorithm can only be reviewed by
a limited number of persons. Although one would not expect that this issue comes
up in the design of hash functions, it is clear that also here this problem arises. An
obvious weakness would be the choice of the IV : one could select it in such a way that
a particular plaintext block yields a fixed point.

The most obvious place to look for trapdoors are S-boxes. In order to avoid any
allegations, designers tend to generate these S-boxes in a random way: the S-boxes
from Snefru are derived from random numbers that were published in 1955, and the
S-box from MD2 is derived from the digits of the number π. However, this solution is
not completely effective: breaking the hash function might be more easy if a certain
property is present. If this event has probability 10−9, the designer can easily come
up with 109 ‘straightforward’ ways to generate the S-box from the public string, but
still the ‘random’ permutation has the required property. In some cases, the security
of the scheme might be increased if certain properties are built into the S-boxes. It is
then even harder to show that no other criteria were applied.

The issue of trapdoors in the modulus of hash functions based on modular arith-
metic has already been discussed in the previous chapter. Another place where it is
very easy to insert a trapdoor is in a random knapsack. Here we do not think about
a trapdoor that would yield a public key scheme, as most of these schemes have been
broken, nor about deriving partial information about the preimage (this can be done
if e.g., only one weight is odd). In this trapdoor, the person who selects the weights
ai can select the last weight as being the difference between 2 disjoint subsets of the
previous weights. Hence he can take two messages of his choice (he can also reorder
the weights) that hash to the same value. Although this is quite obvious, no one seems
to have remarked this in relation with hash functions based on a knapsack. Here again
a solution might be to generate the knapsack from a public random string.

7.5 Conclusion

In this chapter eight MDC’s and five MAC’s and their variants were described. Three
new attacks have been described, namely on the BCA, on a variant of N-hash and on
the MAC’s of the ASP package. An improved meet in the middle attack on DSA was
presented. Also some properties and structures of MD2 and of SHA were discussed.
Other schemes were briefly described together with possible attacks. Special attention
was paid to attacks on knapsack based hash functions.

Finally some design principles for hash functions were discussed, where several
viewpoints have been considered: the security evaluation, the efficiency of software
and hardware implementation, and the possible existence of trapdoors.

220 CHAPTER 7. DEDICATED HASH FUNCTIONS

Chapter 8

Cryptographic Properties of
Boolean Functions

Basic research is when I’m doing what I don’t
know what I’m doing. Werner von Braun

8.1 Introduction

As long as no provably secure and efficient hash functions are available, dedicated hash
functions will play an important role. The design and evaluation of these functions, but
also of other cryptographic functions like block ciphers and stream ciphers, requires
the definition of design criteria: in the absence of a ‘theory’ to design these functions,
most criteria have been introduced by the designer to avoid a certain type of attack.
More general criteria, like one-wayness of the round function, have been discussed in
the previous chapter. However, a different way to look at such a function or at one
of its building blocks is as a Boolean function that maps an n-bit string to an m-bit
string. In the largest part of this chapter we will limit ourselves to the case m = 1. For
convenience, we reserve the term ‘Boolean function’ for this case, and we will use the
term ‘S-box’ for the more general case (rather than look-up table or LUT). A further
generalization is a mapping from GF (qn) to GF (qm) [190]. In case m = 1, this class
has been called ‘Post functions’.

During the last fifteen years, cryptographic research in the area of Boolean functions
has concentrated on the following topics:

1. Define criteria for Boolean functions.

2. Count Boolean functions satisfying certain criteria or combined criteria; this
comprises proving that certain criteria can not be met at the same time. In some
cases one is satisfied with the asymptotic behavior of the number of functions.

221

222 CHAPTER 8. BOOLEAN FUNCTIONS

3. Construct Boolean functions that satisfy certain criteria. One has suggested ex-
plicit and recursive procedures. If both fail, one can try to perform an exhaustive
search or an optimization procedure like simulated annealing.

4. Study the relation between the properties of the Boolean function and the secu-
rity of the cryptographic function.

The theory of Boolean functions has shown to be useful in many applications.
C. Shannon showed in 1938 that these functions can be used to study switching circuits
[302]. In this context the goal was to obtain a mathematical description and to produce
an optimal realization. In his seminal 1949 paper on cryptography, he suggested the use
of an iterated substitution-permutation structure for a block cipher. The substitution
would be realized by S-boxes. Later a different iterated structure with S-boxes was
proposed, the Feistel cipher [104, 105]. Boolean functions also play an important role
in the design of stream ciphers [287]. It was shown that Boolean functions can be
used to construct error-correcting codes with interesting properties, namely the Reed-
Muller codes that were published independently by D. Muller and I. Reed in 1954,
but that have also been attributed to N. Mitani [199], p. 403. The study of theses
codes revealed many interesting properties of Boolean functions. Another application
for Boolean functions is the design of ranging codes [316].

This chapter will be restricted to cryptographic properties of Boolean functions.
Only at the end some generalizations to S-boxes will be made. It will start with
describing the basic definitions, and discussing several transformations on Boolean
functions. Subsequently some cryptographic criteria for Boolean functions will be
defined, and some general characterizations of functions that satisfy these criteria will
be given. In section 8.4 the functions will be studied that satisfy several of these
criteria. The largest part of this section concentrates on quadratic functions, but also
some new results on bent functions will be given. An important new result is described
in section 8.4.1.5: it is shown that there exists a trade-off between the static and the
dynamic properties of a Boolean function. Section 8.5 describes several construction
methods for Boolean functions, and section 8.6 discusses briefly the more general case
of S-boxes. Section 8.7 presents the conclusions.

The main contribution of this chapter is the definition of a new criterion, the propa-
gation criterion of degree k and order m, that generalizes the previous strict avalanche
criterion (SAC) and perfect nonlinearity. A second new result is the characteriza-
tion of properties of quadratic functions. Properties of the functions that satisfy the
higher order SAC are studied, and all functions that satisfy SAC of maximal order
are constructed. Moreover this chapter proposes a new construction for bent functions
and an efficient way to count the number of bent functions of 6 variables (which was
previously unknown). Part of the work in this chapter (namely parts of section 8.3.4
and section 8.4.2) was performed in collaboration with W. Van Leekwijck and L. Van
Linden. A proof has been included only for propositions and theorems that are new;
sometimes a trivial proof of a new result was omitted.

8.2. DEFINITIONS 223

8.2 Definitions

8.2.1 Basic definitions

A Boolean function f is a function whose domain is the vector space ZZn2 of binary
n-tuples x = [x1, x2, . . . , xn] and which takes the values 0 and 1. The set of all these
functions will be denoted with Fn. In some cases it will be more convenient to work
with functions that take the values {−1, 1}. The function f̂ is defined as f̂(x) =
1 − 2 · f(x). In the following a function will be a Boolean function unless stated
explicitly.

The Hamming weight hwt of an element of ZZn2 is the number of components equal
to 1. The Hamming weight of a function f is the number of function values equal
to 1. The Hamming distance d(f, g) between two functions f and g is the number of
function values in which they differ:

d(f, g) = hwt(f ⊕ g) =
∑
x
f(x)⊕ g(x) = 2n−1 − 1

2

∑
x
f̂(x) · ĝ(x) .

Here
∑
x denotes the summation over all x ∈ ZZn2 . The correlation between two func-

tions f and g, denoted with c(f, g), is closely related to the Hamming distance:

c(f, g) = 1− d(f, g)/2n−1 .

A function is said to be linear if there exists a vector b ∈ ZZn2 such that it can be
written as Lb(x) = x ·b or L̂b(x) = (−1)x·b. Here x ·b denotes the dot product of x and
b, defined as x · b = x1b1⊕x2b2⊕ . . .⊕xnbn. The set of affine functions Ab,b0(x) is the
union of the set of the linear functions and their complement: Ab,b0(x) = Lb(x)⊕ b0,
with b0 ∈ ZZ2.

8.2.2 Transformations on Boolean functions

The most natural way to describe a Boolean function is to enumerate all values for
its 2n possible arguments. This representation is called the truth table. However, in
some cases it is interesting to look at other representations of the same function or at
functions that have been derived from the function. The most common representations
that have been used in order to optimize the implementation are the conjunctive and
disjunctive normal form [76, 294]. The representations that will be considered here are
the algebraic normal form, the Walsh-Hadamard transform and the autocorrelation
function.

8.2.2.1 The algebraic normal transform

The algebraic normal transform was introduced by Zhegalkin in 1927 [98]. A Boolean
function is written as a sum modulo 2 of the 2n possible products of the n inputs:

f(x) = a0 ⊕
⊕

1≤i≤n
aixi ⊕

⊕
1≤i<j≤n

aijxixj ⊕ . . .⊕ a12...nx1x2 · · ·xn .

224 CHAPTER 8. BOOLEAN FUNCTIONS

This form is called the algebraic normal form or ringsum expansion of a Boolean
function f , denoted with F and the corresponding transformation is called the algebraic
normal transform. When the natural order of the variables is used, namely 1, x1, x2,
x1x2, x3, x1x3, . . . ,x1x2 . . . xn the following definition can be stated [164]:

Definition 8.1 Let f be a Boolean function of n variables. Then the algebraic nor-
mal transform is a linear transformation (with respect to addition modulo 2) defined
as

[F] = An · [f]

with An =

[
1 0
1 1

]
⊗An−1 , A0 = [1] .

The transform is an involution: A2
n = In.

Here ⊗ denotes the Kronecker product between matrices.
An important measure for the complexity of a Boolean function is the nonlinear

order. If the order of a product of i terms is defined as i, one obtains the following
definition.

Definition 8.2 The nonlinear order of a Boolean function (notation: ord(f)) is
defined as the maximum of the order of its product terms that have a nonzero coefficient
in the algebraic normal form.

The constant Boolean functions have nonlinear order 0, the affine Boolean functions
have nonlinear order < 2, and the quadratic functions are the functions with nonlinear
order < 3.

8.2.2.2 The Walsh-Hadamard transform

The Walsh-Hadamard transform is an orthogonal transform like the discrete Fourier
transform. S. Golomb was apparently the first to consider the Walsh-Hadamard trans-
form of Boolean functions [330].

Definition 8.3 Let f be a real-valued function with domain the vector space ZZn2 . The
Walsh-Hadamard transform of f is the real-valued function F over the vector space
ZZn2 defined as

F (w) =
∑
x
f(x) · (−1)x·w .

The function f can be recovered by the inverse Walsh-Hadamard transform:

f(x) =
1
2n
∑
w
F (w) · (−1)x·w .

8.2. DEFINITIONS 225

It follows from this definition that the Walsh-Hadamard transform writes a Boolean
function f as a sum of linear functions. The relationship between the Walsh-Hadamard
transform of f and f̂ is given by [114]

F̂ (w) = −2F (w) + 2n δ(w) and F (w) = −1
2
F̂ (w) + 2n−1 δ(w) ,

where δ(w) denotes the Kronecker delta (δ(0) = 1, δ(k) = 0 ∀k 6= 0). The Walsh-
Hadamard transform F̂ (w) of the affine function Ab,b0 is given by (−1)b0 2nδ(w ⊕ b).

As the Walsh-Hadamard transform is linear, an alternative definition based on a
matrix product is possible. The function values of f and F are written in the column
matrices [f] and [F] respectively

[F] = Hn · [f] ,

where Hn is the Walsh-Hadamard matrix of order n that can be recursively defined as

Hn =

[
1 1
1 −1

]
⊗Hn−1 , H0 = [1] .

It is easily seen that H2
n = 2n · In.

The distance between two functions f̂ and ĝ can also be computed in the Walsh-
Hadamard domain.

Proposition 8.1 Let f̂ and ĝ be Boolean functions with Walsh-Hadamard transform
F̂ and Ĝ respectively. The Hamming distance between f̂ and ĝ is then given by

d(f, g) = 2n−1 − 2−n−1
∑
w
F̂ (w)Ĝ(w) .

Parseval’s theorem can now be restated a follows:

Theorem 8.1 (Parseval) Let f̂ be a real-valued function with domain the vector
space ZZn2 and with Walsh-Hadamard transform F̂ . Then∑

w
F̂ 2(w) = 2n

∑
x
f̂(x)2 .

For Boolean functions this reduces to the following corollary:

Corollary 8.1 ∑
w
F̂ 2(w) = 22n .

A real-valued function is Boolean iff |f̂(x)|= 1, ∀x. If this condition is translated to
the Walsh-Hadamard domain, one obtains the following proposition of R. Titsworth.

226 CHAPTER 8. BOOLEAN FUNCTIONS

Proposition 8.2 Let f̂ be a real-valued function with domain the vector space ZZn2 and
with Walsh-Hadamard transform F̂ . Then f̂ is Boolean iff

| f̂(x) |= 1 ⇐⇒
∑
w
F̂ (w)F̂ (w ⊕ s) = 22nδ(s) .

The following proposition describes the effect of transformations on the truth table
or in the Walsh-Hadamard domain. It is clear that if the function value of f is com-
plemented, or equivalently, if f̂ is multiplied by −1, the Walsh-Hadamard transform
F̂ will also be multiplied by −1, and vice versa. A more general transformation is the
addition of an affine function to f . A second type of transformations is the set of affine
transformations on the truth table or in the Walsh-Hadamard domain. The group of
all affine transformations, denoted with AGL(n), is the group with elements Ax ⊕ a,
where A is a regular matrix ∈ ZZn×n2 and a is a vector ∈ ZZn2 . The following theorem
considers the effect of the combination of an affine transformation to the input and
the addition of an affine function to the function value. It generalizes results of [199],
p. 417 and [255].

Proposition 8.3 Let f̂ and ĝ be real-valued functions with domain the vector space
ZZn2 and with Walsh-Hadamard transform F̂ and Ĝ respectively.

If ĝ(x) = (−1)b0 (−1)b·x f̂(Ax⊕ a)

then Ĝ(w)= (−1)b0 (−1)b ·A
−1a (−1)w ·A

−1a F̂ ((A−1)tw ⊕ (A−1)tb).

If Ĝ(w)= (−1)b0 (−1)b·w F̂ (Aw ⊕ a)

then ĝ(x) = (−1)b0 (−1)b ·A
−1a (−1)x ·A

−1a f̂((A−1)tx⊕ (A−1)tb) .

Proof: Only the first part will be proven: the second part follows from the simi-
larity between the Walsh-Hadamard transform and its inverse. From the definition of
the Walsh-Hadamard transform it follows that

Ĝ(w) =
∑
x
ĝ(x) · (−1)x·w

=
∑
x

(−1)b0 (−1)b·x f̂(Ax⊕ a) · (−1)x·w .

With the substitutions w′ = w ⊕ b and x′ = Ax⊕ a, one obtains:

Ĝ(w′ ⊕ b) = (−1)b0 (−1)w
′ ·A−1a ∑

x′
(−1)w

′ ·A−1x′ f̂(x′) .

This can be rewritten as

Ĝ(w′ ⊕ b) = (−1)b0 (−1)(A
−1)tw′ · a ∑

x′
(−1)(A

−1)tw′ · x′ f̂(x′) .

8.2. DEFINITIONS 227

Subsequently one sets w′′ = (A−1)tw′, which results in

Ĝ(Atw′′ ⊕ b) = (−1)b0 (−1)w
′′·a F̂ (w′′) .

Finally one replaces Atw′′ ⊕ b by w, yielding

Ĝ(w) = (−1)b0 (−1)b ·A
−1a (−1)w ·A

−1a F̂ ((A−1)tw ⊕ (A−1)tb) ,

which completes the proof.

If in this proposition A is the unity matrix and b the all zero vector, one obtains
the following special case.

Corollary 8.2 A dyadic shift and a complementation in the Walsh-Hadamard domain
generate all 2n+1 possible modifications of terms in the algebraic normal form with
degree smaller than 2, or

if Ĝ(w) = (−1)b0 F̂ (w ⊕ b) then ĝ(x) = (−1)b0 (−1)b·x f̂(x) .

It is clear from the definition of the Walsh-Hadamard transform that F̂ (0) is equal
to the sum of all function values. The following generalization was developed when
studying the Hamming weight of the cosets of the first order Reed-Muller code [199],
p. 415:

Proposition 8.4 Let f̂ be a Boolean function of n variables with Walsh-Hadamard
transform F̂ . Then

d(f, b · x⊕ b0) =
1
2

(
2n − (−1)b0 F̂ (b)

)
.

The last proposition of this section describes the Walsh-Hadamard transform of a
Boolean function f of n+1 variables that is the concatenation of two functions g1 and
g2 of n variables [114]. The algebraic normal form of f can be written as

f(xn+1) = (1⊕ xn+1)g0(xn)⊕ xn+1g1(xn) = g0(xn)⊕ xn+1(g0(xn)⊕ g1(xn)) .

Here the index n of the vector xn denotes the dimension, and xn+1 = xn‖xn+1. If
xn+1 = 0, f is equal to g0, and if xn+1 = 1, f is equal to g1.

Proposition 8.5 Let ĝ0 and ĝ1 be Boolean functions of n variables with Walsh-Ha-
damard transform Ĝ0 and Ĝ1 respectively. Then the Walsh-Hadamard transform F̂ of
the concatenation of ĝ0 and ĝ1 is given by

F̂ (wn+1) = Ĝ0(wn) + (−1)wn+1 Ĝ1(wn) .

Concerning the terminology ‘Walsh-Hadamard transform’, it is important to note
that in fact four different transformations were defined. The Hadamard transform [14]
is the transformation that has been described here, and the Walsh transform is the
same transformation but with reversed order for the bits of w. As both transformations
are often confounded, we suggest the name Walsh-Hadamard transform.

228 CHAPTER 8. BOOLEAN FUNCTIONS

8.2.2.3 The autocorrelation function

The autocorrelation function is a well known concept in signal processing. It is also a
very useful tool to study cryptographic properties.

Definition 8.4 Let f̂ be a real-valued function with domain the vector space ZZn2 . The
autocorrelation function of f̂ is the real-valued function over the vector space ZZn2
defined as

r̂f̂ (s) =
∑
x
f̂(x) · f̂(x⊕ s) .

If it is allowed by the context, the index f̂ will be omitted. If f̂ is Boolean, the
autocorrelation function of f can be defined in a similar way:

rf (s) =
∑
x
f(x)⊕ f(x⊕ s) .

From this definition it follows that r̂f̂ = 2n−rf . Note that r̂(0) = 2n and r(0) = 0. The
value of the autocorrelation function in s is proportional to the correlation between
f̂(x) and f̂(x ⊕ s). The autocorrelation function of the affine function Ab,b0 is given

by 2n(−1)s·b.
A more general concept is the crosscorrelation between two functions:

Definition 8.5 Let f̂ and ĝ be real-valued functions with domain the vector space ZZn2 .
The crosscorrelation function of f̂ and ĝ is the real-valued function over the vector
space ZZn2 defined as

ĉf̂ ,ĝ(s) =
∑
x
f̂(x) · ĝ(x⊕ s) .

It is clear that ĉf̂ ,ĝ = ĉĝ,f̂ . If f̂ and ĝ are Boolean functions, one can define the
crosscorrelation function cf,g in a similar way. It follows from this definition that the
autocorrelation function is the crosscorrelation of a function with itself or r̂f̂ = ĉf̂ ,f̂ .

One of the most important theorems for all Fourier-type transformations is the
convolution theorem. It states that the transform of the convolution is the product of
the transforms. In case of the Walsh-Hadamard transform, one obtains the following
formulation.

Theorem 8.2 (convolution) Let f̂ and ĝ be real-valued functions with domain the
vector space ZZn2 and with Walsh-Hadamard transform F̂ and Ĝ respectively. Then the
Walsh-Hadamard transform of the crosscorrelation of f̂ and ĝ is equal to the pointwise
product of F̂ and Ĝ, or∑

x
ĉf̂ ,ĝ(x)(−1)x·w = F̂ (w) · Ĝ(w), ∀w ∈ ZZn2 .

If f̂ = ĝ, one obtains the Walsh-Hadamard variant of the well known Wiener-
Khintchine theorem, that in case of the Fourier transform states that the Fourier

8.2. DEFINITIONS 229

transform of the autocorrelation function is equal to the energy spectrum (the square
modulus of the Fourier transform). The Walsh-Hadamard energy spectrum of any
real-valued function f is defined as F̂ 2. The Walsh-Hadamard transform of r̂ will be
denoted with R̂.

Theorem 8.3 (Wiener-Khintchine) Let f̂ be a real-valued function with domain
the vector space ZZn2 and with Walsh-Hadamard transform F̂ . Then the Walsh-Hada-
mard transform R̂ of the autocorrelation function of f̂ is equal to the Walsh-Hadamard
energy spectrum of f̂ :

R̂(w) = F̂ 2(w), ∀w ∈ ZZn2 .

This theorem is very useful to obtain a spectral characterization of certain crypto-
graphic properties.

The effect on the autocorrelation function of transformations on f can be derived
from the combination of the Wiener-Khintchine theorem with proposition 8.3.

Proposition 8.6 Let f̂ and ĝ be real-valued functions with domain the vector space
ZZn2 and with autocorrelation function r̂f̂ and r̂ĝ respectively.

If ĝ(x) = (−1)b0 (−1)b·x f̂(Ax⊕ a) then r̂ĝ(s) = (−1)s · (A
−1)tb r̂f̂ (As) .

This implies that a dyadic shift of the function values and complementing the function
do not affect the autocorrelation function, while the addition of a linear function does
not modify the absolute value of the autocorrelation function.

This section is concluded with a description of the autocorrelation function of a
Boolean function f of n+1 variables that is the concatenation of two functions g1 and
g2 of n variables.

Proposition 8.7 Let ĝ0 and ĝ1 be Boolean functions of n variables with autocorrela-
tion functions r̂ĝ0 and r̂ĝ1 respectively, and with crosscorrelation ĉĝ0,ĝ1.
Then the autocorrelation function r̂f̂ (sn+1) of the concatenation of ĝ0 and ĝ1 is given
by

r̂ĝ0(sn) + r̂ĝ1(sn) if sn+1 = 0
2 · ĉĝ0,ĝ1(sn) if sn+1 = 1 .

Proof: From proposition 8.5 it follows that the Walsh-Hadamard transform of f̂
is given by

F̂ (wn+1) = Ĝ0(wn) + (−1)wn+1 Ĝ1(wn) ,

and hence the energy spectrum is equal to

F̂ (wn+1)
2 = Ĝ0(wn)

2 + Ĝ1(wn)
2 + 2(−1)wn+1 Ĝ0(wn) · Ĝ1(wn) .

230 CHAPTER 8. BOOLEAN FUNCTIONS

The Wiener-Khintchine theorem states that the autocorrelation function of f̂ can be
obtained by taking the inverse Walsh-Hadamard transform, or

r̂f̂ (sn+1) =

1
2n+1

 ∑
wn+1

(−1)sn+1·wn+1

(
Ĝ0(wn)

2 + Ĝ1(wn)
2 + 2(−1)wn+1 Ĝ0(wn) · Ĝ1(wn)

) .
If sn+1 = 0, the first two terms clearly yield r̂ĝ0(s) + r̂ĝ1(sn), and the second term
vanishes. In case sn+1 = 1, the first two terms sum to 0, and the third term yields the
crosscorrelation of ĝ0 and ĝ1 (by the convolution theorem).

8.3 Criteria for Boolean functions and their properties

A design criterion Dn is a valuation, i.e., a mapping from Fn to a set W , and a function
f is considered to be ‘good’ if the value Dn(f) belongs to some well defined subset W ′

of W . In this section the following criteria will be defined: completeness, nonlinearity,
balancedness and correlation immunity, and the propagation criterion of degree k.

In cryptography, it is important that properties still hold after applying simple or
weak transformations to the function. For transformations applied to the argument of
the function, one has the following definition [208].

Definition 8.6 Let Ω(n) denote the group of all invertible transformations of GF (2n),
and let Dn be a design criterion. The symmetry group of Dn, denoted with I(Dn),
is the largest subgroup of Ω(n) which leaves Dn invariant, or

I(Dn) = {α ∈ Ω(n) | Dn(α(f(x))) = Dn(f(x)), ∀x ∈ ZZn2 , ∀f ∈ Fn} .

We will encounter three types of criteria. For the first type, the symmetry group is
equal to the group of all permutations and complementations of variables, while for
the second type it is equal to GL(n), the subgroup of all linear transformations, and
for third type it is equal to AGL(n), the subgroup of all affine transformations.

One can also consider modifications to the algebraic normal form of the function.
An important case is the addition of an affine function: some criteria are not affected
by such an addition, while others clearly are. Another modification that might be
applied is a small change to the truth table. A design criterion Dn is called robust if
small changes to the truth table do not lead to large changes of Dn. This concept is
related to stability as defined in [97].

8.3.1 Completeness

One of the oldest criteria suggested for a Boolean function is that it should be complete
or nondegenerate [176]. This means that the output should depend on all input bits.
It is clear that this is a very weak criterion, as it does not specify how strong the
dependency should be. If a function is not complete, the truth table will show specific

8.3. CRITERIA FOR BOOLEAN FUNCTIONS AND THEIR PROPERTIES 231

symmetries. However, it will be much easier to identify this in the algebraic normal
form: if a function does not depend on input i, the variable xi will simply not appear.
In the autocorrelation function this can be detected easily: if ei is the ith unit vector,
i.e., the vector with a one in position i and zeroes elsewhere, r̂(ei) will be equal to 2n.
With the aid of the Wiener-Khintchine theorem, this can be restated in terms of the
Walsh-Hadamard transform.

8.3.2 Nonlinearity

Nonlinearity is a desirable property in cryptography, as linear systems are known to be
very weak. In this section four definitions for nonlinearity will be considered, namely
the nonlinear order, the distance to affine functions, the distance to rth order functions,
and the distance to linear structures.

A natural choice for a nonlinearity criterion seems to be ord(f). The symmetry
group of this criterion is AGL(n) [208], and of course the nonlinear order is not affected
if terms of lower order are added. However, the criterion is not robust: a small modifi-
cation to the truth table can cause a big difference. The function Ab,b0(x)+x1x2 · · ·xn
satisfies ord(f) = n, but its truth table differs only in a single location from an affine
function.

The following proposition establishes a relation between the nonlinear order of a
Boolean function and its Hamming weight. It is a corollary of a deep theorem by
R. McEliece ([199], p. 447):

Proposition 8.8 Let f be a Boolean function of n variables with ord(f) = r (r > 0).
Then hwt(f) is a multiple of

2d
n
r e−1 .

The truth table, Walsh-Hadamard spectrum, and autocorrelation function of affine
functions are recognized easily. For functions of maximal nonlinear order, one knows
that their Hamming weight is odd, and one can also prove certain properties of the
autocorrelation function and the Walsh-Hadamard spectrum.

Proposition 8.9 Let f be a Boolean function of n variables with n > 2.
If ord(f) = n, the autocorrelation function r̂f̂ can have no zeroes.

Proof: It is sufficient to show that a zero in the autocorrelation function implies
that hwt(f) is even, which yields a contradiction. Let s be the value for which r̂(s) = 0
or r(s) = 2n−1. Then

hwt(f) =
∑
x
f(x) mod 2

=
∑
x
f(x⊕ s) mod 2

=
1
2

∑
x
f(x)⊕ f(x⊕ s) mod 2

=
1
2
r(s) mod 2 = 2n−2 mod 2 .

232 CHAPTER 8. BOOLEAN FUNCTIONS

If n > 2, the theorem follows.

The following proposition is due to R. Titsworth. It follows directly from proposi-
tion 8.4.

Proposition 8.10 Let f be a Boolean function of n variables with n > 1.
If ord(f) = n, the Walsh-Hadamard transform F̂ can have no zeroes.

A more general relation between the nonlinear order of a Boolean function and its
Walsh-Hadamard spectrum was obtained by Ph. Langevin [186].

Proposition 8.11 Let f be a Boolean function of n variables. If 2s is a divisor of
F̂ (w), ∀w, then ord(f) ≤ n− s+ 1, and if additionally 2s+1 (with s ≥ 2) is no divisor
of any F̂ (w), then ord(f) ≤ n− s.

A more robust measure of nonlinearity is the distance of a Boolean function to the
set of affine functions [208].

Definition 8.7 Let f be a Boolean function of n variables. The distance to the set
of affine functions of f is defined as

min
b,b0

d(f,Ab,b0) .

It can be shown that this distance is upper bounded by

2n−1 − 2bn/2c−1 .

This upper bound can only be met if n is even, and the functions that achieve this
bound are the bent functions (cf. section 8.3.4 and 8.4.2). The symmetry group of this
criterion is AGL(n) [208], and it is not affected if an affine function is added to f .

The distance to affine functions can be obtained easily from the Walsh-Hadamard
spectrum. The alternative formula for the distance

d(f, g) = 2n−1 − 2−n−1
∑
w
F̂ (w)Ĝ(w)

shows that the minimum distance to affine functions equals

2n−1 − 1
2

max
w
| F̂ (w) | .

The maximal value of the spectrum is thus a measure for the minimum distance to
affine functions. The fact that the Walsh-Hadamard transform can be used to obtain
the best affine approximation of a Boolean function was observed by R. Rueppel [286].

A robust generalization with the same symmetry group is the distance to functions
with nonlinear order ≤ k [208]. Determining the best rth order approximation for
r ≥ 2 is not easy for large n, as it is equivalent to decoding the rth order Reed-Muller
codes. A practical algorithm to find such an approximation has been described in [206].

8.3. CRITERIA FOR BOOLEAN FUNCTIONS AND THEIR PROPERTIES 233

This method assumes that the distance in a number of subsets of the truth table is
not too large.

Another robust definition of nonlinearity is the distance to linear structures [208].
Its symmetry group is also AGL(n) [208]. A linear structure for a function is a value
of s 6= 0 such that f(x) ⊕ f(x ⊕ s) is constant or such that | r̂(s) |= 2n. The distance
to linear structures can then be defined as the shortest distance to the set of functions
with a linear structure. It can be calculated as follows:

2n−2 − 1
4

max
s6=0
| r̂(s) |= 2n−2 − 1

2
max
s6=0
|r(s)− 2n−1 | .

It was shown in [48] that linear structures of S-boxes can lead to weaknesses in Feistel-
type substitution ciphers. If f has a linear structure, there is a linear transformation
that maps f onto a function that is linear in some of its input bits [241].

8.3.3 Balancedness and correlation immunity

For cryptographic applications, it is often very important that the truth table has as
many 0 as 1 entries. In that case, the uncertainty over the value of f or the entropy
H(f) is maximal (the definition of the entropy and related concepts was given in
section 3.2.2).

Definition 8.8 Let f be a Boolean function of n variables.
Then f is balanced iff hwt f = 2n−1.

A necessary and sufficient condition for a function to be balanced is that F̂ (0) =
0, which follows directly from the definition of the Walsh-Hadamard transform. A
necessary condition is that ord(f) < n (cf. proposition 8.10).

A related concept, suggested by T. Siegenthaler [307], is correlation immunity. It
originated from analyzing the security of certain stream ciphers [308].

Definition 8.9 Let f be a Boolean function of n variables. Then f is mth order
correlation immune, CI(m) (1 ≤ m ≤ n), iff f̂(x) is statistically independent of
any subset of m input variables.

G. Xiao and J. Massey [330] showed that this condition is equivalent to the condition
that f(x) is statistically independent of any linear combination of at most m input
variables. A function satisfies CI(m) iff knowledge of m input variables gives no
additional information on the output, or iff the mutual information between any m
input variables i1, i2, . . . im and the output is equal to 0:

H(f(x))−H(f(x) | xi1 , xi2 , . . . , xim) = 0 .

Note that if f is constant, knowledge of any number of input bits gives no additional
information about the function value, and hence the function satisfies CI(n). In [38]
it was shown that the truth table of a correlation immune function corresponds to an
orthogonal array.

T. Siegenthaler derived conditions on the algebraic normal form. These conditions
were strengthened by G. Xiao and J. Massey [330]:

234 CHAPTER 8. BOOLEAN FUNCTIONS

Proposition 8.12 Let f be a Boolean function of n variables. If f satisfies CI(m),
then ord(f) ≤ n−m, and all coefficients of order n−m are equal to 2−nF̂ (0).

The property that a function is balanced and satisfies CI(m) will be abbreviated with
CIB(m), while the nonbalanced functions that satisfy CI(m) will be said to satisfy
CIN(m). In the special case that f satisfies CIB(m), one obtains the following result:

Corollary 8.3 Let f be a Boolean function of n variables that satisfies CIB(m):

if 0 < m < n− 1 then ord(f) ≤ n−m− 1,

if m = n− 1 then f =
n⊕
i=1

xi ⊕ ε with ε = 0 or 1 .

A characterization in the Walsh-Hadamard domain was given by G. Xiao and
J. Massey [330], and their proof was later simplified by L. Brynielsson [287].

Proposition 8.13 Let f be a Boolean function of n variables. Then f satisfies CI(m)
iff

F̂ (w) = 0 1 ≤ hwt(w) ≤ m.

From the distance formula based on the Walsh-Hadamard spectrum it follows that a
function f satisfies CI(m) iff its correlation to linear functions of the form (−1)b·x,
with 1 ≤ hwt ≤ b is equal to zero. From this standpoint, Parseval’s theorem can be
restated as follows: ∑

b

c2(f, Lb) = 1 ,

or the sum of the squares of the correlation to all affine functions is equal to 1. This
implies that if the correlation to a subset of affine functions is smaller, the correlation
to other affine functions will increase. For the largest values of m, one can note that
CI(n−1) is only satisfied by a linear function, namely the sum of all variables (and its
complement), and CI(n) (correlation immunity of maximal order) is only satisfied by
a constant function. Note that balancedness implies that the correlation to a constant
function is zero.

A slightly different interpretation of correlation immunity is the following: a func-
tion f satisfies CIB(m) iff it is balanced, and every function obtained from f by fixing
1 ≤ m′ ≤ m input bits is still balanced (independently of the value that is given to
these bits). For functions that satisfy CIN(m), i.e., functions that are not balanced,
one obtains the following interpretation. The unbalance of the function is defined as
F̂ (0) (for a balanced function the unbalance would be equal to 0). In this case a func-
tion satisfies CIN(m) iff every function obtained from f by fixing 1 ≤ m′ ≤ m input
bits has the minimum possible unbalance, independently of the value that is given to
these bits. The unbalance can be reduced with a factor of at most 2 if a single input
bit is fixed. Hence f satisfies CI(m) iff fixing m′ input bits of f , with 1 ≤ m′ ≤ m
results in an unbalance of F̂ (0)/2m

′
, independently of the choice of these input bits.

For m = 1, the functions obtained from f̂ by setting xn to 0 and 1 will be denoted

8.3. CRITERIA FOR BOOLEAN FUNCTIONS AND THEIR PROPERTIES 235

with ĝ0 and ĝ1 respectively. Proposition 8.5 yields an expression for the unbalance of
ĝ0 and ĝ1:

Ĝ0(0n−1) =
1
2

(
F̂ (0n−10) + F̂ (0n−11)

)
Ĝ1(0n−1) =

1
2

(
F̂ (0n−10)− F̂ (0n−11)

)
.

It is clear that the unbalance will be halved in both cases iff F̂ (0n−11) = 0. This
argument can be repeated when variable xi is fixed, yielding F̂ (ei) = 0, ∀i with 1 ≤
i ≤ n, which corresponds the case m = 1 in proposition 8.13. A generalization can be
found in [115, 320].

From proposition 8.3 it follows that the symmetry group of the correlation immu-
nity criterion is the group of all permutations and complementations of variables, and
that the criterion is not affected by complementing the function either. On the other
hand, the addition of a linear function corresponds to a dyadic shift in the Walsh-
Hadamard domain (cf. corollary 8.2), and hence it can modify the value of m. The
criterion is not robust, but a small modification to the truth table will only result in a
small increase in the correlation. If a single entry is modified in the truth table, every
value of the Walsh-Hadamard spectrum F̂ is modified with the value ±2. For example,
the all zero function satisfies CI(n), and the function x1x2 · · ·xn (the product of all
variables) has the following Walsh-Hadamard spectrum:

F̂ (0) = 2n − 2 and F̂ (w) = −2 · (−1)hwt (w) ∀ w 6= 0 .

Hence the correlation to all linear functions remains small. The distance of the function
to a balanced function has as symmetry group all linear transformations, or GL(n).
If an affine function is added, the behavior is similar to the behavior for correlation
immunity.

A criterion which has a larger symmetry group, namely AGL(n), is the number of
zeroes of F̂ , denoted with NF̂ . It is not affected either by the addition of an affine
function. However, if one takes into account Parseval’s theorem, and considers the
distance to affine functions, one can conclude that for many applications it might be
better to have a flat Walsh-Hadamard energy spectrum. The only functions with this
property are the bent functions, and they will be discussed in section 8.3.4 and 8.4.2.

Note finally that the concept of correlation immunity was generalized by R. Forré
in [115], by considering the entropy profile, i.e., the values of H(f(x)) and H(f(x) |
xi1 , xi2 , . . . , xim) for m = 1 through n−1, and for all

(n
m

)
choices of i1, i2, . . . im. For a

good function, the entropy profile has to be as large as possible and should be smooth.

8.3.4 Propagation criteria

The propagation criteria study the dynamic behavior of a Boolean function, i.e., what
happens if the input to the function is modified.

236 CHAPTER 8. BOOLEAN FUNCTIONS

Definition 8.10 Let f be a Boolean function of n variables. Then f satisfies the
propagation criterion of degree k, PC(k) (1 ≤ k ≤ n), if f̂(x) changes with a
probability of 1/2 whenever i (1 ≤ i ≤ k) bits of x are complemented.

This criterion generalizes two previous criteria. The strict avalanche criterion or SAC
that was introduced by A. Webster and S. Tavares in [324] is equivalent to PC(1),
and perfect nonlinearity, that was proposed by W. Meier and O. Staffelbach in [208]
is equivalent to PC(n). Later the same definition was given independently in [3]. If
a function that satisfies PC(1) is approximated by a function of less variables, it will
agree for at most 75% of the values [11, 114]. The approximation by a function of
less variables seems to be an interesting open problem, that is related to lower order
approximations. More work certainly has to be done on this subject.

The relation between the probability that the output changes and the autocor-
relation function can be obtained directly from the definition of the autocorrelation
function:

Proposition 8.14 Let f be a Boolean function of n variables.

Pr
(
f̂(x) 6= f̂(x⊕ s)

)
=

1
2
− r̂(s)

2n+1
.

Summing these probabilities for all s 6= 0 yields:

∑
s6=0

Pr
(
f̂(x) 6= f̂(x⊕ s)

)
= 2n−1 − F̂ 2(0)

2n+1
.

If f is balanced then F̂ (0) = 0 and the average of the probabilities is 2n−1/(2n−1) > 1
2 .

It is now straightforward to restate PC(k) in terms of the autocorrelation function,
which yields the dual of proposition 8.13.

Proposition 8.15 Let f be a Boolean function of n variables. Then f satisfies PC(k)
iff

r̂(s) = 0 for 1 ≤ hwt(s) ≤ k .

The expression of PC(1) under the form of a sum of a function with a shifted version
of itself has been used in several papers (e.g., [114, 208]), but no connection was made
to the concept of an autocorrelation function. On the one hand, this concept clearly
shows the similarity to correlation immunity, and on the other hand it results in the
possibility to use the Wiener-Khintchine theorem to calculate r̂ efficiently and to prove
several theorems easily. An information theoretic interpretation of PC(k) is that the
mutual information between f(x) and f(x⊕ s) is zero, or

H(f(x⊕ s))−H(f(x⊕ s) | f(x)) = 0 for 1 ≤ hwt(s) ≤ k .

The relation between PC(k) and the nonlinear order is more complex than in the
case of CI(m). From proposition 8.9 it follows that if r̂ has only a single zero, the

8.3. CRITERIA FOR BOOLEAN FUNCTIONS AND THEIR PROPERTIES 237

function can not have maximal linear order. The functions that satisfy PC(n) are well
known as the perfect nonlinear or bent functions. They were discovered by O. Rothaus
in the sixties, but his results were only published in 1976 [285]. Bent functions have
been used in spread spectrum techniques [243]. In 1989 they were rediscovered by
W. Meier and O. Staffelbach when they were studying perfect nonlinear functions.
Here the properties of bent functions will be briefly summarized. Some new results will
be given in section 8.4.2. Bent functions only exist for even values of n. The nonlinear
order of bent functions is bounded from above by n

2 for n > 2. Their autocorrelation
function is an impulse, and hence their energy spectrum is flat with value 2n. This
implies that bent functions are never balanced and the difference between the number of
ones and the number of zeroes equals ±2

n
2 . In [208] it is shown that bent functions have

maximum distance 2n−2 to all linear structures and maximum distance 2n−1 − 2
n
2
−1

to all affine functions, and thus they have minimum correlation ±2−
n
2 to all affine

functions. For odd values of n, there exist functions that satisfy PC(n− 1), and their
nonlinear order is upper bounded by (n + 1)/2. Note that if Post functions from
ZZnq to ZZq are considered, a perfect nonlinear function is always bent (i.e., has a flat
spectrum), but a bent function is only a perfect nonlinear function if q is prime [237].

Based on the Wiener-Khintchine theorem, the PC(k) criterion can be restated as
follows: ∑

w
(−1)s·w F̂ 2(w) = 0 for 1 ≤ hwt(s) ≤ k .

This generalizes the characterization by R. Forré in [114] for the case k = 1, and yields
a simple proof.

In the same paper R. Forré proves that the following condition is sufficient for
PC(1):

F̂ 2(w) = F̂ 2(w ⊕ v) ,

where v denotes the all 1 vector [11 · · · 1]. It is however not a necessary condition: with
the aid of proposition 8.3 this can be reduced to

r̂(s) = (−1)s·v r̂(s) ,

which is equivalent to
r̂(s) = 0 if hwt(s) is odd!

This condition is clearly much stronger than PC(1).
A different way to look at PC(k) is based on the directional derivative.

Definition 8.11 Let f be a Boolean function of n variables. The directional deriva-
tive of f in direction s is defined as:

df,s(x) = f(x)⊕ f(x⊕ s) .

The relation between the directional derivative and the autocorrelation function is
given by:

r(s) =
∑
x
df,s(x) .

238 CHAPTER 8. BOOLEAN FUNCTIONS

One now obtains an alternative definition: f satisfies PC(k) iff the directional deriva-
tive d̂f,s(x) of f is balanced ∀ s : 1 ≤ hwt(s) ≤ k. This concept will be more important
if further generalizations of PC(k) are studied.

From proposition 8.6 it follows that the symmetry group of PC(k) is the group
of all permutations and complementations of variables (note that for PC(1) this was
already proven in [114]). Moreover, it also implies that the criterion is not affected
by the addition of an affine function. It was already shown in [208] that perfect
nonlinearity or PC(n) has as symmetry group the affine group AGL(n). None of these
criteria is robust, but a small modification to the truth table will only result in a small
modification to the autocorrelation function. Indeed, if a single entry of the truth table
is modified, the autocorrelation function will change for every nonzero argument with
±4. Another criterion that has as symmetry group AGL(n) would be the number of
zeroes of r̂(s), denoted with Nr̂.

Note that the concept of PC(k) could be generalized in the same way as CI(m),
by defining the autocorrelation profile, i.e., the values of r̂(s) ordered according to
increasing Hamming weight of s. For a good function, the autocorrelation profile
has to come as close as possible to the impulse function in the origin, which is the
autocorrelation function of a bent function.

It was shown that CI(m) can also be explained in terms of properties of functions
that are obtained when input bits of f are fixed. The motivation for this approach is
that in certain types of attacks the cryptanalyst fixes part of the input, and tries to
attack the remaining function. A natural question that arises is how PC(k) behaves
with respect to this criterion, i.e., which properties are satisfied by functions that
are obtained from f by fixing input bits? It will be shown that if one imposes that
these functions also satisfy PC(k), a stronger criterion is obtained, that will be denoted
with PC(k) of higher order. The first higher order propagation criterion was suggested
by R. Forré [114] for PC(1). In this section new and generalized definitions will be
proposed, that have been described and studied in [255, 320]. Both generalizations are
straightforward, but in the first case an additional restriction is imposed: it is required
that k +m ≤ n or if m bits are kept constant, at most n−m bits can be changed.

Definition 8.12 Let f be a Boolean function of n variables. Then f satisfies the
propagation criterion of degree k and order m (PC(k) of order m) iff any
function obtained from f by keeping m input bits constant satisfies PC(k).

A more general definition is obtained if the restriction k+m ≤ n is removed. This
means that a certain value is given to m bits and subsequently k bits are changed.
However, the set of bits that are given a certain value and the set of those that are
changed can have common elements. This leads to an information theoretic definition,
which is comparable to correlation immunity.

Definition 8.13 Let f be a Boolean function of n variables. Then f satisfies the
extended propagation criterion of degree k and order m (EPC(k) of order
m) iff knowledge of m bits of x gives no information on f(x) ⊕ f(x ⊕ s), ∀ s with
1 ≤ hwt(s) ≤ k.

8.3. CRITERIA FOR BOOLEAN FUNCTIONS AND THEIR PROPERTIES 239

The definition can be restated in terms of balancedness and correlation immunity of
the directional derivative.

Proposition 8.16 Let f be a Boolean function of n variables.

1. f satisfies EPC(k) of order 0 iff the directional derivative d̂f,s(x) of f is balanced
∀ s : 1 ≤ hwt(s) ≤ k.

2. f satisfies EPC(k) of order m > 0 iff the directional derivative d̂f,s(x) of f
satisfies CIB(m), ∀ s : 1 ≤ hwt(s) ≤ k.

Both definitions only make sense if one can show that if the criterion holds for
order m, it also holds for 0 ≤ m′ ≤ m. This was done for PC(1) of order m in [194],
and the proof can be adapted for the more general criteria. It can be shown that the
higher order criteria have the same symmetry group and behavior under the addition
of an affine function as the original criteria.

The relation between PC and EPC is given in the following proposition:

Proposition 8.17 Let f be a Boolean function of n variables.

1. If f satisfies EPC(k) of order m (with k ≤ n − m) then f satisfies PC(k) of
order m.

2. If f satisfies PC(k) of order 0 or 1 then f satisfies EPC(k) of order 0 or 1.

3. If f satisfies PC(1) of order m then f satisfies EPC(1) of order m.

Proof: The first part follows directly from the definition of PC(k) and EPC(k),
and the same holds for the second part if the order is equal to 0. The proof of the
second part can be completed as follows. Let f be a function that satisfies PC(k) of
order 1. Now f satisfies EPC(k) of order 1 iff∑

x, xi=b0

f̂(x) · f̂(x⊕ a) = 0 ,

∀i, 1 ≤ i ≤ n, ∀b0 ∈ ZZ2, and ∀a with 1 ≤ hwt(a) ≤ k. If ai = 0, this condition is
equivalent to PC(k) of order 1. If ai = 1, the expression can be reduced to

1
2

∑
x
f̂(x) · f̂(x⊕ a) = 0 ,

and this is equivalent to PC(k) of order 0.
The proof of the third part is based on the same principles. Let f be a function that
satisfies PC(1) of order m. Now f satisfies EPC(1) of order m iff∑

x, xj1
=bj1 ... xjm=bjm

f̂(x) · f̂(x⊕ ei) = 0 ,

240 CHAPTER 8. BOOLEAN FUNCTIONS

∀i, 1 ≤ i ≤ n, ∀ choices of m positions j1, . . . jm out of n, and ∀bj1 . . . bjm ∈ ZZ2. If
jk 6= i, ∀k, with 1 ≤ k ≤ m, this condition is exactly the condition for PC(k) of order
m. If there exists a k such that i = jk, the expression can be reduced to

1
2

∑
x, xj1

=bj1 ... xjk−1
=bjk−1

xjk+1
=bjk+1

... xjm=bjm

f̂(x) · f̂(x⊕ ei) = 0 .

This equality is satisfied as it is equivalent to the condition that f satisfies PC(1) of
order m− 1.

In section 8.4.1.4 it will be shown that this theorem is tight: there exist functions
that satisfy PC(2) of order 2, but do not satisfy EPC(2) of order 2.

It follows directly from the definition of PC(1) that the maximal order is equal to
n − 2. A new result for PC(1) of higher order is an upper bound on the nonlinear
order.

Theorem 8.4 Let f be a Boolean function of n variables, with n > 2.

1. If f satisfies PC(1) of order m (0 ≤ m < n− 2), then 2 ≤ ord(f) ≤ n−m− 1.

2. If f satisfies PC(1) of order n− 2, then ord(f) = 2.

Proof: The lower bound on ord(f) follows from the fact that a linear function
does not satisfy PC(1) of order 0. In order to prove the upper bound of the first part,
it will be shown that if 0 ≤ m < n− 2, f can have no terms of order ≥ n−m. Assume
that f has a term of order n − k, with 0 ≤ k ≤ m. By setting all k variables that
do not occur in this term to zero, a function f ′ of n − k variables is obtained with
ord(f ′) = n− k. From proposition 8.9 it follows that if n− k > 2, the autocorrelation
function of f ′ can have no zeroes, and hence f ′ can not satisfy PC(k).
The upper bound of the second part follows from the fact that a function that satisfies
PC(n− 2) also satisfies PC(n− 3).

The resulting upper bound is indicated in table 8.1. In section 8.4.1.4 a character-

m 0 1 . . . n− 4 n− 3 n− 2
nonlinear order ≤ n− 1 n− 2 . . . 3 2 2

Table 8.1: Upper bound on nonlinear order of functions satisfying PC(1) of order m.

ization will be given of second order functions satisfying PC(1) of higher order.
This section is concluded with the spectral characterization of functions satisfying

PC(k) and EPC(k) of order m, which generalizes the case PC(1) of order m as given
in [114].

Proposition 8.18 Let f̂ be a Boolean function of n variables with Walsh-Hadamard
transform F̂ .

8.3. CRITERIA FOR BOOLEAN FUNCTIONS AND THEIR PROPERTIES 241

Then f̂ satisfies PC(k) of order m iff∑
w
F̂ (w) · F̂ (w ⊕ a) · (−1)w·s = 0 ,

∀a with 1 ≤ hwt(a) ≤ m, and ∀s with 1 ≤ hwt(s) ≤ k, with aisi = 0, ∀i with
1 ≤ i ≤ n. Then f̂ satisfies EPC(k) of order m iff∑

w
F̂ (w) · F̂ (w ⊕ a) · (−1)w·s = 0 ,

∀a with 1 ≤ hwt(a) ≤ m, and ∀s with 1 ≤ hwt(s) ≤ k.

Proof: The proof for k = 1 and m = 1 was given in [114]. Here we will prove
the result only for k = 2, m = 2, since the general case is very tedious. Assume that
input i and j of f̂ are made equal to zero, resulting in the function f̂

′
. By applying

proposition 8.5 twice, one finds the following expression for F̂
′
:

F̂
′
(w′) =

1
4

[
F̂ (w′)⊕ F̂ (w′ ⊕ ei)⊕ F̂ (w′ ⊕ ej)⊕ F̂ (w′ ⊕ eij)

]
,

where eij denotes the vector with a one in positions i and j and zeroes elsewhere.
Now f ′ has to satisfy EPC(2), which can be expressed with the Wiener-Khintchine
theorem: ∑

w′

(−1)skw
′
k⊕slw

′
l F̂

′
(w′)

2
= 0 ,

∀k, l with 1 ≤ k ≤ l ≤ n. In case of PC(2), one imposes the condition that k and l are
different from both i and j. By substituting the expression for F̂

′
(w′), and regrouping

the terms such that the summation over w′ can be rewritten as a summation over w,
one obtains four terms:

1
16

∑
w

(−1)skwk⊕slwl F̂ 2(w)

+
1
8

∑
w

(−1)skwk⊕slwl F̂ (w)F̂ (w ⊕ ei) +
1
8

∑
w

(−1)skwk⊕slwl F̂ (w)F̂ (w ⊕ ej)

+
1
8

∑
w

(−1)skwk⊕slwl F̂ (w)F̂ (w ⊕ eij) .

The first three terms are zero as f satisfies also PC(k) of order 0 and 1. Hence the
fourth term must also vanish. The proof is then completed by observing that the
assignment of a different value to input bits i and j does not lead to new conditions
on F̂ .

242 CHAPTER 8. BOOLEAN FUNCTIONS

8.4 Functions satisfying certain criteria

This section will describe functions that satisfy the criteria defined in the previous
section. The emphasis will be on quadratic functions, since several new results have
been obtained for these functions. It is very hard to extend these results to functions
with higher nonlinear order. Some work on third order functions has been done in
relation to Reed-Muller codes, but many problems are still unsolved. Subsequently
two new constructions for bent functions will be described, one of which has shown to
be equivalent to a previous construction, an efficient method will be proposed to count
the number of bent functions of 6 variables, and some remarks will be made on the
extension of the concept of bent functions for odd n.

8.4.1 Quadratic functions

First a canonical form for a quadratic function will be described. This canonical form
will then be used to derive the results on PC(k) and on CI(m). Subsequently the
quadratic functions that satisfy higher order propagation criteria are studied, and the
section is concluded with an observation on combined properties of the autocorrelation
function and the Walsh-Hadamard spectrum.

8.4.1.1 A canonical form

For the study of quadratic functions, it is useful to write the second order coefficients
of the algebraic normal form in a binary upper triangular matrix A with zero diagonal.
Hence

f(x) = xAxt ⊕ b · x⊕ b0 .

One now defines the matrix B as follows: B = A+At. B is a symmetric matrix with
zero diagonal, and is called a symplectic matrix. The relation between the quadratic
function f and the matrix B is that the associated symplectic form of the function can
be written as

xByt = f(x⊕ y)⊕ f(x)⊕ f(y)⊕ f(0) .

The number of second order coefficients equals n·(n−1)
2 and will be denoted with ∆(n).

The quadratic functions can be reduced with an equivalence transform to a canonical
form based on Dickson’s theorem [199], p. 438.

Theorem 8.5 (Dickson’s theorem) If B is a symplectic n × n matrix of rank 2h,
then there exists an invertible binary matrix R such that RBRT has zeroes everywhere
except on the two diagonals immediately above and below the main diagonal, and there
has 1010. . . 100. . . 0 with h ones.
Every quadratic Boolean function can by an affine transformation of variables be re-
duced to

⊕h
i=1 x2i−1x2i ⊕ ε, with ε an affine function of x2h+1 through xn.

The rank of the 2∆(n) symplectic matrices is given by the following theorem [199],
p. 436:

8.4. FUNCTIONS SATISFYING CERTAIN CRITERIA 243

Lemma 8.1 The number of symplectic n× n matrices over ZZ2 of rank 2h equals

M(n, 2h) =
[
n

2h

]
·M(2h, 2h) .

Here
[n
k

]
denotes the binary Gaussian binomial coefficient, defined for all nonnegative

integers k by [
n

0

]
= 1,

[
n

k

]
=
[
n− 1
k − 1

]
+ 2k

[
n− 1
k

]
and M(2h, 2h) = (22h−1 − 1)22h−2 · · · (23 − 1)22.

8.4.1.2 Quadratic functions satisfying PC(k)

In this section the number of quadratic Boolean functions of n variables that satisfy
PC(k) will be studied. From section 8.3.4 it follows that this criterion is not affected by
the addition of affine terms, and hence abstraction will be made of linear and constant
terms. The number of quadratic Boolean functions of n variables that satisfy PC(k)
and that do not satisfy PC(k+1) divided by 2n+1 will be denoted with |PC(k)2n |. Note
that it follows from the definition of PC(k) that the number of quadratic functions
satisfying PC(k) is equal to 2n+1 ·

∑n
l=k |PC(l)2n |. The values |PC(k)2n | for small n

are given in table 8.2. In this section, the numbers in this table will be explained and
partially generalized for arbitrary n.

k |PC(k)22 | |PC(k)23 | |PC(k)24 | |PC(k)25 | |PC(k)26 | |PC(k)27 | |PC(k)28 |
1 0 3 13 320 8661 467432 45272585
2 1 1 0 280 4480 530180 57911392
3 − 0 0 140 420 486920 32568200
4 − − 28 28 0 291648 3888640
5 − − − 0 0 97216 0
6 − − − − 13888 13888 0
7 − − − − − 0 0
8 − − − − − − 112881664

Table 8.2: The number of quadratic functions of n variables satisfying PC(k) and not
PC(k + 1) divided by 2n+1 (|PC(k)2n |) for n = 2 to 8.

For n even the quadratic bent functions or functions satisfying PC(n) correspond
to the symplectic matrices of full rank, and their number |PC(n)2n |= M(n, n) [199],
p. 442. This result was found independently by the author and in [97]. If n is
odd, no functions exist that satisfy PC(n), but we obtained a construction for all
|PC(n − 1)2n |= M(n − 1, n − 1) functions satisfying PC(n − 1). It will be described
in section 8.4.1.4. The generalization of these results for arbitrary k is nontrivial,
because PC(k) is not invariant under AGL(n) (cf. section 8.3.4), and hence one can

244 CHAPTER 8. BOOLEAN FUNCTIONS

not make use of Dickson’s theorem to obtain directly the number of quadratic func-
tions satisfying PC(k). Therefore we first study a number that is invariant under affine
transformations, namely the number of zeroes of the autocorrelation function (denoted
by Nr̂). Subsequently these results can be applied to PC(k).

Theorem 8.6 The autocorrelation function of a quadratic function takes the values 0
and ±2n. The number of zeroes is given by Nr̂ = 2n − 2n−2h for 1 ≤ h ≤ bn2 c.
The number of functions with this number of zeroes equals M(n, 2h). There are

[n
2h

]
possible patterns for these zeroes and to every pattern correspond exactly M(2h, 2h)
functions.
The coordinates where r̂(s) 6= 0 form a (n− 2h)-dimensional subspace of ZZn2 .

Proof: For the canonical quadratic function:

f(x) =
h⊕
i=1

x2i−1x2i ,

the autocorrelation function can be written as follows:

r(s) =
∑
x

(
h⊕
i=1

s2i−1s2i ⊕
h⊕
i=1

(x2i−1si ⊕ x2is2i−1)

)
.

Note that the affine function ε can be omitted because affine terms have no influence
on the autocorrelation function. If r(s) = 2n−1, corresponding to r̂(s) = 0, the first
part of the sum has no influence on the result. It is easily seen that r(s) will be equal to
2n−1 if there exists at least one si 6= 0, with 1 ≤ i ≤ 2h. Hence the number of nonzeroes
of r̂(s) equals 2n−2h, corresponding to the vectors s with si = 0, for 1 ≤ i ≤ 2h. It is
clear that these vectors form a subspace of ZZn2 of dimension n − 2h. The number of
distinct subspaces of dimension n− 2h corresponds to the number of [n, n− 2h] codes
and equals

[n
2h

]
[199], p. 444.

The last part of theorem 8.6 makes it possible in principle to compute the number
of quadratic functions satisfying PC(k).

Corollary 8.4 The number of quadratic functions of n variables satisfying PC(k) is
given by

bn
2 c∑

h=1

L(n, n− 2h, k)M(2h, 2h) ,

where L(n, r, k) denotes the number of linear [n, r, d] codes with minimum distance
d > k.

Proof: This follows from the observation that a function will satisfy PC(k) if the
nonzeroes of r, that form a subspace of dimension n − 2h, occur at positions with

8.4. FUNCTIONS SATISFYING CERTAIN CRITERIA 245

Hamming weight > k. This is equivalent to the statement that the nonzeroes should
form a linear code with length n, dimension n− 2h and minimum distance d > k.

Because of the Singleton bound (d ≤ n− r + 1) [199] p. 33, the lower limit of this
sum can be increased to bk+1

2 c. However, the computation of L(n, r, k) even for small
values of n is a difficult problem. Even the maximal d for given n and r (notation
dmax(n, r)) remains an open problem except for r ≤ 5 and d ≤ 3. In [145] a table of
known bounds dmax(n, r) is listed for n ≤ 127. Table 8.3 gives, for n between 2 and 8,
the number of linear codes with a given dimension and minimum distance. From the
last column it can be verified that the number of distinct (n, r, d) codes is equal to

[n
r

]
.

In order to clarify how corollary 8.4 together with table 8.3 can be used to explain
the numbers in table 8.2, a complete example is given for n = 6. In this case, 1 ≤
h ≤ 3, and the autocorrelation function has 1, 4, or 16 nonzeroes and the number of
corresponding functions is 13888 (bent functions), 18228, and 651. For 4 nonzeroes,
r = 2 and from table 8.3 one finds dmax(6, 2) = 4. Hence the bent functions are the
only functions satisfying PC(4), PC(5) and PC(6). The number of [6, 2, 4], [6, 2, 3],
[6, 2, 2], and [6, 2, 1] codes is 15, 160, 305, and 171 respectively. With every code
correspond 28 functions, resulting in 420, 4480, 8540, and 4788 functions for every
class. For 16 nonzeroes, every code corresponds to exactly one function. The number
of [6, 4, 2] and [6, 4, 1] codes is given by 121 and 530. The number of 6-bit functions
satisfying PC(3) equals 13888+420 = 14308, the number of functions satisfying PC(2)
equals 14308 + 4480 = 18788, and the number of functions satisfying PC(1) equals
18788 + 8540 + 121 = 27449.

Corollary 8.4 can be combined with the results in [145] to determine an expression
for the number of quadratic functions satisfying PC(k) for large values of k.

Corollary 8.5 The number of quadratic functions of n variables satisfying PC(k) is
given by

M(n, n), b2n3 c ≤ k ≤ n n even,

M(n− 1, n− 1) ·
∑n
i=k+1

(n
i

)
, b4n7 c ≤ k ≤ n− 1 n odd and n 6≡ 2 mod 7,

b4n7 c − 1 ≤ k ≤ n− 1 n odd and n ≡ 2 mod 7.

Proof: For n even this follows from dmax(n, 2) = b2n3 c [145]. For n odd this follows
from the fact that the number of [n, 1, d] codes equals

(n
d

)
and that dmax(n, 3) = b4n7 c−1

if n ≡ 2 mod 7 and dmax(n, 3) = b4n7 c else.

8.4.1.3 Quadratic functions satisfying CI(m)

In this section the number of quadratic Boolean functions of n variables that are
correlation immune and balanced will be studied. The situation here is more complex
than in the case of PC(k), as these criteria are affected by the addition of linear terms
(cf. section 8.3.3). For the two constant functions 0 and 1, it is clear that they satisfy
CIN(n). The linear functions b · x⊕ b0 satisfy CIB(hwt(b)− 1).

246 CHAPTER 8. BOOLEAN FUNCTIONS

d 0 1 2 tot
r

0 1 0 0 1
1 0 2 1 3
2 0 1 0 1

d 0 1 2 3 tot
r

0 1 0 0 0 1
1 0 3 3 1 7
2 0 6 1 0 7
3 0 1 0 0 1

d 0 1 2 3 4 tot
r

0 1 0 0 0 0 1
1 0 4 6 4 1 15
2 0 22 13 0 0 35
3 0 14 1 0 0 15
4 0 1 0 0 0 1

d 0 1 2 3 4 5 tot
r

0 1 0 0 0 0 0 1
1 0 5 10 10 5 1 31
2 0 65 75 15 0 0 155
3 0 115 40 0 0 0 155
4 0 30 1 0 0 0 31
5 0 1 0 0 0 0 1

d 0 1 2 3 4 5 6 tot
r

0 1 0 0 0 0 0 0 1
1 0 6 15 20 15 6 1 63
2 0 171 305 160 15 0 0 651
3 0 725 640 30 0 0 0 1395
4 0 530 121 0 0 0 0 651
5 0 62 1 0 0 0 0 63
6 0 1 0 0 0 0 0 1

d 0 1 2 3 4 5 6 7 tot
r

0 1 0 0 0 0 0 0 0 1
1 0 7 21 35 35 21 7 1 127
2 0 420 1022 945 280 0 0 0 2667
3 0 3941 6265 1575 30 0 0 0 11811
4 0 7000 4781 30 0 0 0 0 11811
5 0 2303 364 0 0 0 0 0 2667
6 0 126 1 0 0 0 0 0 127
7 0 1 0 0 0 0 0 0 1

d 0 1 2 3 4 5 6 7 8 tot
r

0 1 0 0 0 0 0 0 0 0 1
1 0 8 28 56 70 56 28 8 1 255
2 0 988 3038 4144 2345 280 0 0 0 10795
3 0 19628 46522 28560 2445 0 0 0 0 97155
4 0 77926 109991 12840 30 0 0 0 0 200787
5 0 63114 34041 0 0 0 0 0 0 97155
6 0 9702 1093 0 0 0 0 0 0 10795
7 0 254 1 0 0 0 0 0 0 255
8 0 1 0 0 0 0 0 0 0 1

Table 8.3: The number of linear codes with a given dimension r and minimum distance
d for n between 2 and 8.

8.4. FUNCTIONS SATISFYING CERTAIN CRITERIA 247

The number of quadratic Boolean functions of n variables that satisfy CIB(m) and
not CIB(m+1) will be denoted with |CIB(m)2n |, and for the number of nonbalanced
functions with the same property the symbol |CIN(m)2n | will be used. These numbers
comprise the affine functions, and will always be even, as complementing the function
does not affect CI(m). Note that it follows from the definition of correlation immunity
that the total number of functions that satisfy CIB(m) is given by

∑n
l=m |CIB(l)2n |.

For nonbalanced functions a similar expression holds. The values of |CIB(m)2n | and
|CIN(m)2n | for small n are given in table 8.4. In this section, some of the numbers in
this table will be explained and generalized for arbitrary n.

m |CIB(m)22 | |CIB(m)23 | |CIB(m)24 | |CIB(m)25 | |CIB(m)26 | |CIB(m)27 |
0 4 62 648 32346 1506524 271866518
1 2 6 212 3620 306686 26871250
2 0 2 8 540 13760 1722686
3 − 0 2 10 1150 40950
4 − − 0 2 12 2170
5 − − − 0 2 14
6 − − − − 0 2
7 − − − − − 0

tot 6 70 870 36518 1828134 300503590

m |CIN(m)22 | |CIN(m)23 | |CIN(m)24 | |CIN(m)25 | |CIN(m)26 | |CIN(m)27 |
0 8 48 1072 27400 2253912 230261024
1 0 8 104 1496 110856 6069616
2 2 0 0 120 1280 34440
3 − 2 0 0 120 2240
4 − − 2 0 0 0
5 − − − 2 0 0
6 − − − − 2 0
7 − − − − − 2

tot 10 58 1178 29018 2366170 236367322

Table 8.4: The number of balanced and nonbalanced quadratic functions of n variables
that are mth order correlation immune and not m + 1th order correlation immune
(|CIB(m)2n | and |CIN(m)2n |) for n = 2 to 7.

The number of balanced functions is already known, as the weight distribution of
functions with ord ≤ 2 has been obtained from the study of Reed-Muller codes [199],
p. 443.

Theorem 8.7 Let Ai be the number of functions with ord ≤ 2 and Hamming weight
i. Then Ai = 0 unless i = 2n−1 or i = 2n−1 ± 2n−1−h for some h, 0 ≤ h ≤ bn2 c. Also

248 CHAPTER 8. BOOLEAN FUNCTIONS

A0 = A2n = 1 and

A2n−1±2n−1−h = 2h(h+1) · (2
n − 1)(2n−1 − 1) · · · (2n−2h+1 − 1)
(22h − 1)(22h−2 − 1) · · · (22 − 1)

for 1 ≤ h ≤ bn
2
c .

A2n−1 can be evaluated because all Ai sum to 21+n+∆(n).

For large values of m the functions that satisfy CIN(m) are known from proposi-
tion 8.12. With every function correspond two functions, namely the function and its
complement.

m = n: |CIB(n)2n |= 0 and |CIN(n)2n |= 2. The only function is the all zero function.

m = n− 1: |CIB(n− 1)2n |= 2 and |CIN(n− 1)2n |= 0. The only function is the sum
of all variables.

m = n− 2: |CIB(n − 2)2n |= 2n and |CIN(n − 2)2n |= 0. The functions are the sum
of n− 1 variables (note that |CIN(n− 2)2n |= 0 only if n ≥ 4).

m = n− 3: | CIB(n − 3)2n |= n · (n − 1) + 1
3n(n − 1)(3n − 2)(n + 1). The n(n − 1)

linear functions are the sums of n−2 variables, and the functions with nonlinear
order 2 have been characterized and counted recently by P. Camion, C. Carlet,
P. Charpin, and N. Sendrier [38]. The techniques they have been using are similar
to the techniques developed in this section.

The generalization of these results for arbitrary m is nontrivial, because correlation
immunity is not invariant under AGL(n) (cf. section 8.3.3). Therefore we first study a
number that is invariant under affine transformations, namely the number of zeroes of
the Walsh-Hadamard spectrum (denoted by NF̂). Subsequently these results can be
applied to CI(m).

Based on Dickson’s theorem, the number of zeroes of the Walsh-Hadamard spec-
trum of a quadratic function can be calculated.

Theorem 8.8 The number of zeroes of the Walsh-Hadamard transform of a quadratic
function is given by NF̂ = 2n − 22h for 1 ≤ h ≤ bn2 c. The number of functions with
this number of zeroes equals 2n+1 ·M(n, 2h). If F̂ (w) 6= 0, then | F̂ (w) |= 2n−h.
If f is nonbalanced, the coordinates where F̂ (w) 6= 0 form a 2h-dimensional subspace
of ZZn2 , and if f is balanced they form a dyadic shift of a 2h-dimensional subspace.

Proof: It will be shown that F̂ , the Walsh-Hadamard transform of

f(x) =
h⊕
i=1

x2i−1x2i

is equal in absolute value to 2n−h for wi = 0, with 2h + 1 ≤ i ≤ n and equal to zero
elsewhere. The theorem then follows from the application of Dickson’s theorem and
from the observation that the addition of the affine term ε only causes a dyadic shift of

8.4. FUNCTIONS SATISFYING CERTAIN CRITERIA 249

the Walsh-Hadamard spectrum. The Walsh-Hadamard transform of f can be written
as:

F̂ (w) =
∑
x

(−1)
⊕h

i=1
x2i−1x2i · (−1)

⊕n

i=1
xiwi .

Here we assume that 2h < n. If 2h = n, f is a bent function and the theorem is clearly
true.

• In case wi = 0, 2h + 1 ≤ i ≤ n, the expression for the Walsh transform reduces
to

F̂ (w) =
∑
x

(−1)
⊕h

i=1
x2i−1x2i · (−1)

⊕2h

i=1
xiwi .

As the variables x2h+1 through xn do not occur in this sum, it can be simplified
to

F̂ (w) = 2n−2h ·
∑
x′

(−1)
⊕h

i=1
x2i−1x2i · (−1)

⊕2h

i=1
xiwi ,

where x′ denotes [x1 . . . x2h]. By observing that the remaining sum corresponds
to the Walsh-Hadamard transform of a bent function of 2h variables, it follows
that its absolute value equals 2h.

• In the other case, let U denote the set of indices {i1, i2, . . . , ik} in the interval
[2h + 1, n] for which wij = 1. The Walsh-Hadamard transform can then be
written as

F̂ (w) =
∑
x′

(−1)
⊕h

i=1
x2i−1x2i · (−1)

⊕2h

i=1
xiwi ·

∑
x′′

(−1)
⊕

ij∈U
xij ,

where x′ denotes [x1 . . . x2h] and x′′ denotes [x2h . . . xn]. It is easily seen that the
second sum vanishes, and hence F̂ equals zero.

If f is nonbalanced, the nonzeroes form a subspace, and this again can be used
to count the functions satisfying CIN(m) in a similar way as the functions satisfying
PC(k).

Corollary 8.6 The number of quadratic functions of n variables satisfying CIN(m)
is given by

bn
2
c∑

h=1

L(n, 2h,m)M(2h, 2h)22h+1 ,

where L(n, r,m) denotes the number of linear [n, r, d] codes with minimum distance
d > m.

Proof: The proof is similar to the proof of corollary 8.4. The first two factors
correspond to the number of symplectic matrices of dimension n and rank 2h for which
the nonzeroes of the Walsh-Hadamard spectrum form a linear code with minimum

250 CHAPTER 8. BOOLEAN FUNCTIONS

distance > m. The addition of linear terms results in 22h nonbalanced functions that
also satisfy CIN(m). Indeed, according to proposition 8.3, the addition of linear terms
corresponds to a dyadic shift in the Walsh-Hadamard spectrum, and the function will
only remain nonbalanced if it is shifted over a vector belonging to the subspace of
nonzeroes. The number of vectors in this subspace is equal to 22h. The proof is
completed by the observation that CIN(m) is invariant under complementation.

From corollary 8.3 and from combining corollary 8.6 with the observation that
dmax(n, 2) = b2n3 c [145], one obtains the following result.

Corollary 8.7 There exist no quadratic functions of n variables that satisfy CIN(m)
if b2n3 c ≤ m ≤ n, and no functions satisfying CIB(m) if n− 2 ≤ m ≤ n.

Note that the Walsh-Hadamard spectrum of the quadratic functions was indepen-
dently studied in [187]. There it was additionally shown that if f is nonbalanced, the
subspace of nonzeroes is orthogonal to the kernel of the symplectic matrix B corre-
sponding to f . If f is balanced, one can write kerB as M ⊕ {0, d}, where M is the
part of kerB on which f vanishes. Then F̂ (w) differs from zero iff w is orthogonal to
M and not orthogonal to d. This might be used to count the number of functions that
satisfy CIB(m), but this problem seems to be harder than the nonbalanced case.

Note that the characterization of the Walsh-Hadamard spectrum also yields the
distance of the quadratic functions to affine functions (cf. section 8.3.2). If n is even,
the maximal distance is reached by the bent functions, namely 2n−1 − 2n/2−1. If n is
odd, the maximal distance to affine functions is given by 2n−1 − 2bn/2c.

Theorem 8.8 can be used to obtain a different expression for the number of quadratic
balanced functions. There are 2(2n− 1) balanced linear functions and every quadratic
function with no affine terms with q zeroes in the Walsh-Hadamard spectrum corre-
sponds to 2q balanced functions through the addition of affine terms (corollary 8.2).
Hence the total number of balanced functions with ord ≤ 2 can also be written as

A2n−1 = 2(2n − 1) + 2

d
n
2 e−1∑
h=1

(2n − 22h)M(n, 2h)

 .

This corresponds to counting the cosets of the Reed-Muller code of order one into the
cosets of order two, based on [199] p. 415.

8.4.1.4 Quadratic functions satisfying higher order PC

In this section the quadratic functions satisfying higher order propagation criteria will
be discussed. First, the relatively easy case of higher order PC(1) will be treated,
subsequently the functions satisfying PC(n− 1) of order 1. A function will be defined
that satisfies higher order PC(2) of order 2, and it will be shown that it does not
satisfy EPC(2) of order 2.

The following theorem characterizes all quadratic functions satisfying PC(k) of
order m.

8.4. FUNCTIONS SATISFYING CERTAIN CRITERIA 251

Theorem 8.9 Let f be a quadratic Boolean function of n variables, with n > 2. Then
f satisfies PC(1) of order m (0 ≤ m ≤ n− 2), iff every variable xi occurs in at least
m+ 1 second order terms of the algebraic normal form.

Proof: For m = 0 it is sufficient to show that a quadratic function satisfies PC(1)
iff every variable occurs at least once in the second order terms of the algebraic normal
form. It is clear that this condition is necessary. It is also sufficient, as it implies that
for every i (1 ≤ i ≤ n) f can be written as f(x) = xi · g(x′)⊕ h(x′), where x′ denotes
[x1 . . . xi−1xi+1 . . . xn], g(x′) is an affine function and h(x′) is a quadratic function. The
value of the autocorrelation function in the unit vector ei can then be computed as

r(ei) =
∑
x
f(x)⊕ f(x⊕ ei) =

∑
x
g(x′) = 2n−1 or r̂(ei) = 0 ,

which corresponds to the definition of PC(1). The result for m > 0 follows from the
observation that if m variables are fixed, the number of second order terms in which a
remaining variable occurs will be reduced with at most m.

Theorem 8.9 can also be interpreted as follows: the quadratic functions satisfying
PC(1) of order m correspond to the undirected simple graphs with n vertices with
minimum degree equal to m + 1. Determining the number of graphs with n vertices
and degree dmin for general n and dmin seems to be a difficult problem [140]. In
appendix D expressions are derived for the cases dmin = 0, 1, 2, n− 3, n− 2, and n− 1.

From every graph 2n+1 different functions can be obtained by adding an affine
function. From theorem 8.4 it follows that only quadratic functions can satisfy PC(1)
of order n − 2 and order n − 3. Hence theorem 8.9 characterizes all functions with
these properties. Note that there is essentially only one function that satisfies PC(1)
of order n− 2, namely sn(x), hence the sum of two functions satisfying PC(1) of n− 2
is always affine.

In [194] it was shown that exactly 2n+1 functions satisfy PC(1) of maximal order
n− 2, and a more complex construction and counting method for these functions was
given in [3]. In [195] a different characterization and counting method for PC(1) of
order n− 3 was developed.

The following theorem constructs and counts all quadratic functions that satisfy
PC(n− 1) of order 0 and 1 for n odd.

Theorem 8.10 Let f be a quadratic Boolean function of n variables, n > 2 and
odd. Then f satisfies PC(n − 1) of order 0 and 1 iff f is obtained with the following
construction:

1. Let f ′ be a function of n−1 variables satisfying PC(n−1) with algebraic normal
form coefficients equal to a′ij.

2. Define aij = a′ij for 1 ≤ i < j ≤ n− 1 and

ain =
n−1⊕

j=0,j 6=i
aij for 1 ≤ i ≤ n− 1 .

252 CHAPTER 8. BOOLEAN FUNCTIONS

The number of functions satisfying PC(n − 1) of order 0 and 1 is given by M(n −
1, n− 1).

Proof: It follows directly from theorem 8.6 that every quadratic function satisfying
PC(n − 1) of order 0 satisfies PC(n − 1) of order 1. To characterize the functions
satisfying PC(n − 1) of order 1, it is recalled that every function f∗ obtained from
f by fixing one input bit should satisfy PC(n − 1). This can be restated with the
symplectic matrices B and B∗ that correspond to f and f∗ respectively: every matrix
B∗ obtained from B by deleting one column and the corresponding row should have
full rank n − 1. As the rank of a symplectic matrix is always even, this implies that
B has necessarily rank n − 1 and that any column (row) can be written as a linear
combination of the other columns (rows). Any symplectic matrix B∗ of rank n − 1
can be extended in 2n−1 ways to a matrix B. However, if any matrix obtained from
deleting one column and the corresponding row in B should have rank n − 1, the
only solution is that the added column (row) is the sum of all other columns (rows).
This can be shown as follows: if a particular column and row are not selected in the
sum, the deletion of this column and row from B will result in a singular matrix B∗,
contradicting the requirement.

If corollary 8.5 is combined with the proof of previous theorem, one obtains the
following result.

Corollary 8.8 Let n be an odd integer, n > 2. The number of functions satisfying
PC(k) of order 1 is given by M(n− 1, n− 1), for b2(n−1)

3 c ≤ k ≤ n− 1.

From the previous discussion it follows that the function of which the algebraic
normal form contains all second order terms, has some interesting properties. It will
be denoted with sn or

sn(x) =
∑

1≤i<j≤n
xixj .

Proposition 8.19 The function sn satisfies PC(k) of order m for all values of k <
n−m, and also for k = n−m if k is odd.

Proof: If m bits are kept constant in sn, one obtains the function sn−m plus an
affine function. This function of n−m variables satisfies PC(n−m) if n−m is even
(theorem 8.6) and PC(n−m− 1) if n−m is odd (theorem 8.10).

However, sn does not satisfy EPC(2) of order 2, and this shows that proposi-
tion 8.17 is tight. Indeed, the directional derivative of sn for a vector s with a 1 in
position i and j is equal to xi⊕xj⊕1. This function satisfies CIB(1), but not CIB(2).
Hence sn(x) does not satisfy EPC(2) of order 2. In this particular example, it is clear
that if xi = xj , then f(x⊕ s) 6= f(x), ∀x and if xi 6= xj , then f(x⊕ s) = f(x), ∀x. For
PC(2) the average of both cases is considered: f changes on average with a probability
of 0.5. For n ≤ 5, the functions sn(x) are the only functions for which PC and EPC
are not equivalent.

8.4. FUNCTIONS SATISFYING CERTAIN CRITERIA 253

To conclude this section, table 8.5 gives the number of all quadratic functions
satisfying PC(k) of order m for n between 3 and 7 (without affine terms). Note that
here the convention is different from table 8.2: if a function satisfies PC(k) of order
m it is counted in all entries for PC(k′) of order m′ with k′ ≤ k and m′ ≤ m. This is
necessary to obtain a consistent representation. The main open problems here are the
characterization of functions satisfying PC(k) and order m for k > 1, and a study of
the difference between PC(k) and EPC(k). It was verified by computer calculation
that for n = 7 there exists functions that satisfy EPC(2) of order 2.

m 0 1 2
k

1 4 1 0
2 1 1 −
3 0 − −

m 0 1 2 3
k

1 41 10 1 0
2 28 1 1 −
3 28 0 − −
4 28 − − −

m 0 1 2 3 4
k

1 768 253 26 1 0
2 448 28 1 1 −
3 168 28 0 − −
4 28 28 − − −
5 0 − − − −

m 0 1 2 3 4 5
k

1 27449 12068 1858 76 1 0
2 18788 3188 1 1 1 −
3 14308 421 1 0 − −
4 13888 1 1 − − −
5 13888 0 − − − −
6 13888 − − − − −

m 0 1 2 3 4 5 6
k

1 1887284 1052793 236926 15796 232 1 0
2 1419852 237048 4901 1 1 1 −
3 889672 17668 841 1 0 − −
4 402752 13888 1 1 − − −
5 111104 13888 0 − − − −
6 13888 13888 − − − − −
7 0 − − − − − −

Table 8.5: The number of quadratic Boolean functions of n variables satisfying PC(k)
of order m divided by 2n+1 for n = 3 to 7.

8.4.1.5 Quadratic functions satisfying combined criteria

A natural question that arises is whether there exist functions that satisfy a combina-
tion of one or more criteria. From this point of view, one can combine theorem 8.6

254 CHAPTER 8. BOOLEAN FUNCTIONS

with theorem 8.8 to obtain the following corollary.

Corollary 8.9 Let f be a quadratic Boolean function of n variables. Then

(2n −Nr̂) · (2n −NF̂) = 2n .

It was conjectured by the author in [258] and later shown by C. Carlet in [41] that this
can be generalized for arbitrary order as follows:

Theorem 8.11 Let f be a Boolean function of n variables. Then the product of the
number of zeroes of the autocorrelation function and of the Walsh-Hadamard transform
lies between the following bounds:

2n ≤ (2n −Nr̂) · (2n −NF̂) ≤ 22n .

Proof: The upper bound is trivial. In order to prove the lower bound, it is first
shown that

2n −Nr̂ ≥ 2−nF̂ 2(w), ∀w ∈ ZZn2 . (8.1)

This clearly holds for w = 0, as

2−nF̂ 2(0) = 2−n
∑
s
r̂(s) ≤ 2n −Nr̂ .

Here we made use of the fact that r̂(s) ≤ 2n. From proposition 8.3 it follows that a
dyadic shift in the Walsh-Hadamard energy spectrum only affects the sign of r̂(s), and
hence equation (8.1) holds.
It is easy to see that

2n −NF̂ ≥
∑
w F̂

2(w)

maxw
{
F̂ 2(w)

} =
22n

maxw
{
F̂ 2(w)

} . (8.2)

Here the last equality follows from corollary 8.1. The theorem then follows from
multiplying equations (8.1) and (8.2).

It is clear that the upper bound will be achieved if ord(f) = n, as Nr̂ = 0 (propo-
sition 8.9) and NF̂ = 0 (proposition 8.10). From corollary 8.9 it follows that the lower
bound will be achieved if ord(f) ≤ 2. We conjectured in [258] that the only other cases
where equality holds are the functions that satisfy PC(n) if n is even or for functions
for which Nr̂ = 2n − 2 if n is odd.

However, C. Carlet showed in [41] that if n > 6 there exist more functions for which
equality holds, namely all functions for which there exists a linear form b · x and two
supplementary subspaces E and E′, with dimE′ even such that the restriction of f to
E′ is bent, and

∀x ∈ E,∀y ∈ E′ : f(x⊕ y) = f(y)⊕ b · x .

He called this class of functions partially-bent functions and has described their prop-
erties. Determining the number of partially-bent functions seems to be hard, as it

8.4. FUNCTIONS SATISFYING CERTAIN CRITERIA 255

depends on the number of bent functions (cf. section 8.4.2). The autocorrelation func-
tion and Walsh-Hadamard spectrum of the partially-bent functions have the same
structure as those of the quadratic functions, i.e., they depend on dimE′. For n ≤ 6,
the partially-bent functions with nonlinear order > 2 are bent functions.

An interesting open problem is to study the functions that satisfy both PC(k) (or
PC(k) of higher order) and CI(m). For functions satisfying PC(1) of order n− 2 and
n−3 and CI(m), a classification has been obtained in [196, 197]. It would be interesting
to try to prove these results by combining properties of graphs and symplectic matrices.

8.4.2 Bent functions

From section 8.3, it follows that bent functions have some interesting properties from
a cryptographical viewpoint. The most important properties of bent functions have
been summarized in section 8.3.4. For a more extensive overview the reader is referred
to [287]. In this section two constructions for bent functions are discussed, and an
efficient method to count the number of bent functions of 6 variables is proposed.
Subsequently some extensions for n odd are considered.

8.4.2.1 Constructions of bent functions

Most known constructions are enumerated in [334]: the two Rothaus constructions
[285], the eigenvectors of Walsh-Hadamard matrices [333], constructions based on Kro-
necker algebra, concatenation, dyadic shifts, and linear transformations of variables.
An alternative characterization of bent functions can be given in terms of a combina-
torial structure called a difference set.

A dyadic shift of the truth table does not affect the autocorrelation function (propo-
sition 8.6), and in case of a bent function one can show that this yields 2n − 1 bent
functions with distance 2n−1 from the original function.

In this section a new construction will be given based on concatenation of four
functions [255], that generalizes the results on concatenation in [334]. A dual result
was obtained independently in [2]. The construction of a Boolean function f̂ through
concatenation implies that the vector [f̂] is obtained as a concatenation of different
vectors [ĝi].

Theorem 8.12 The concatenation f̂ of dimension n + 2 of 4 bent functions ĝi of
dimension n is bent iff

Ĝ1(w) · Ĝ2(w) · Ĝ3(w) · Ĝ4(w) = −22n, ∀w ∈ ZZn2 .

Proof: By applying proposition 8.5 twice, the Walsh-Hadamard transform of F̂
can be written as

F̂ (wn+2) = Ĝ1(wn) + Ĝ2(wn)(−1)wn+1 + Ĝ3(wn)(−1)wn+2 + Ĝ4(wn)(−1)wn+1⊕wn+2 .
(8.3)

The fact that the functions ĝi are bent implies that

|Ĝi(wn+2) |= 2n/2 .

256 CHAPTER 8. BOOLEAN FUNCTIONS

Now f̂ is bent iff
| F̂ (wn+2) |= 2(n+2)/2 .

If wn+1 and wn+2 are both equal to 0, equality in equation (8.3) can be obtained for a
given value of wn iff three values Ĝi(wn) out of four are either positive or negative. It
turns out that in these cases equality also holds if the tuple (wn+1, wn+2) takes on one
of the other three possible values. The condition on the sign of the Ĝi(w)’s is clearly
equivalent to

Ĝ1(w) · Ĝ2(w) · Ĝ3(w) · Ĝ4(w) = −22n ,

which completes the proof.

The following remarks can be made about this theorem:

• The order of the ĝi has no importance.

• If ĝ1 = ĝ2, the theorem reduces to ĝ4 = −ĝ3, and if ĝ1 = ĝ2 = ĝ3, then ĝ4 = −ĝ1.
These special cases have been considered in [334].

One obtains immediately two corollaries:

Corollary 8.10 If f̂ , ĝ1, ĝ2, and ĝ3 are bent then ĝ4 is also bent.

Corollary 8.11 If the concatenation of 4 arbitrary vectors of dimension n is bent,
then the concatenation of all 4! permutations of these vectors is bent.

Note that through dyadic shifting of f only 4 of the 24 permutations can be obtained.
This theorem is best possible in the sense that if the function is split up in 8 vectors,
all permutations will in general not result in a bent function.

In [334] it was observed that the concatenation of the rows of a Walsh-Hadamard
matrix yield a bent function. We obtained the following generalization [255].

Proposition 8.20 For n = 2m, consider the rows of the Walsh-Hadamard matrix
Hm. The concatenation of the 2m rows or their complement in arbitrary order results
in (2m)! 22m

different bent functions of n variables.

This construction was suggested independently in [2]. Instead of proving this propo-
sition, we will give the proof of K. Nyberg, who showed that this construction is equiv-
alent to Maiorana’s construction [238]. The proof requires three simple lemma’s.

Lemma 8.2 Let f ′ =
[
(−1)f (x,y)

]
where x, y ∈ ZZn2 and f is a function from ZZ2n

2 to

ZZn2 . Then [
1 1
1 −1

]
⊗ f ′ =

[
(−1)g(x,y)

]
,

where x, y ∈ ZZ2n
2 ,

and g(x1, . . . , xn, xn+1, y1, . . . , yn, yn+1) = f(x1, . . . , xn, y1, . . . , yn) + xn+1 · yn+1.

8.4. FUNCTIONS SATISFYING CERTAIN CRITERIA 257

Lemma 8.3

H1 =

[
1 1
1 −1

]
=
[
(−1)f(x, y)

]
,

where x, y ∈ ZZn2 and f(x, y) = x · y.

Lemma 8.4 The Hadamard matrix of order n is given by

Hn =
[
(−1)f(x,y)

]
,

where x, y ∈ ZZn2 and f(x, y) = x · y.

The proof follows by induction from the preceding lemmas.
The equivalence between the two constructions can now easily be shown.

Proposition 8.21 Let Hn(π, g) be the 2n × 2n matrix obtained from Hn by permu-
tation of the rows (the row x in Hn(π, g) is row π(x) of Hn) followed by eventual
complementation of the rows (the row x in Hn(π, g) is complemented ⇔ g(x) = 1).
Then

Hn(π, g) =
[
(−1)f (x,y)

]
,

where f(x, y) = g(x) + π(x) · y.

This latter construction is exactly the Maiorana construction.

8.4.2.2 Counting bent functions

The number of quadratic bent functions can be obtained from theorem 8.6, but the
number of bent functions of larger order and for arbitrary n remains an open problem.
A lower bound can be obtained from the Maiorana construction. An improvement
was obtained in [2], but for n ≥ 8 it is negligible. An upper bound for n > 2 can be
computed based on the restriction on the nonlinear order:

22n−1+d(n) with d(n) =
1
2

(
n
n/2

)
.

Table 8.6 gives the lower bound, the number of bent functions (if known), the upper
bound, and the number of Boolean functions for n between 2 and 8.

For n = 6, the number of bent functions has been determined with a new counting
method. In this case the bent functions have nonlinear order 2 or 3. As affine terms
can be neglected, an exhaustive search through all 235 functions is feasible but very
computer intensive. It was suggested by O. Rothaus [285] that if the third order terms
are divided into classes that are not equivalent under affine transformation of variables
(second order terms are not considered), four different classes are obtained. However,
we were able to show that there are in fact five classes, but the fifth class does not

258 CHAPTER 8. BOOLEAN FUNCTIONS

n # Boolean lower bound # bent upper bound
2 16 8 8 8
4 65536 384 896 2048
6 264 223.3 232.3 242

8 2256 260.3 ? 2163

Table 8.6: The number of Boolean functions, the number of bent functions, and an
upper and lower bound for the number of bent functions for n between 2 and 8.

lead to bent functions. A computer program was written to determine the size of
each class. This could be done by applying affine transformations of variables until
a canonical form was obtained. Secondly the number of bent functions in each class
was obtained by adding all possible second order terms to a single representative of
this class. Table 8.7 describes the different classes, and gives the number of elements
per class and the number of bent functions corresponding to each element. The total
number of bent functions of 6 variables is equal to 42, 386, 176 · 128 = 5, 425, 430, 528.

class nr. representative
0 (no third order terms)
1 x1x2x3

2 x1x2x3 ⊕ x4x5x6

3 x1x2x3 ⊕ x1x4x5

4 x1x2x3 ⊕ x1x4x5 ⊕ x2x4x6

5 x1x3x6 ⊕ x1x4x5 ⊕ x1x5x6 ⊕ x2x3x4 ⊕ x2x5x6

class nr. # el./class # bent functions/el. tot # of bent functions
0 1 13, 888 13, 888 (1 · 13, 888)
1 1, 395 1, 344 1, 874, 880 (135 · 13, 888)
2 357, 120 0 0
3 54, 684 192 10, 499, 328 (756 · 13, 888)
4 468, 720 64 29, 998, 080 (2, 160 · 13, 888)
5 166, 656 0 0

tot 1, 048, 576 42, 386, 176 (3, 052 · 13, 888)

Table 8.7: Representative and size of the equivalence classes for the third order func-
tions for n = 6, and the number of bent functions in every class.

This result disproves the conjecture in [2] that all bent functions can be obtained
either from the concatenation approach or from the Maiorana construction (or the

8.5. CONSTRUCTION OF BOOLEAN FUNCTIONS 259

Walsh-Hadamard matrix). For n = 6, the concatenation approach and the Maio-
rana approach yield 37, 879, 808 respectively 10, 321, 920 bent functions. The total of
48, 201, 728 represents a fraction of less than 1% of the bent functions of 6 variables.

Note that the weight distribution of all cosets of the first order Reed-Muller code
for n = 6 has been determined recently by J. Maiorana [200]. The number of bent
functions can probably be obtained from these results as well.

8.4.2.3 Extension of bent functions for odd n

As there exist no bent functions for odd n, it is interesting to extend the concept. In
[208], the following proposal for extension was made:

f(x) = (1⊕ xn)f0(x1, . . . , xn−1)⊕ xnf1(x1, . . . , xn−1), with f0, f1 bent .

It is clear that ord(f) ≤ (n+ 1)/2. It can be shown with proposition 8.5 that for half
of the values of w, F̂ (w) = 0 and for the other half | F̂ (w) |= 2(n+1)/2. The maximum
distance to affine functions hence equals 2n−1 − 2(n−1)/2. However, these functions do
not necessarily satisfy PC(1): if f0 = f1, then r̂(0 . . . 01) 6= 0, but for all other values
of s 6= 0, r̂(s) = 0. From proposition 8.7 it follows that if sn 6= 0, r̂(sn 0) = 0. If f0 and
f1 are chosen such that they are almost orthogonal, or ĉf̂0,f̂1(sn) = 0, ∀sn 6= [11 . . . 1],
f will satisfy PC(n− 1). Another observation is that f will be balanced iff f0 and f1

have a different number of zeroes and ones.
If n is odd, the maximal distance to a linear function is equal to the covering

radius of the first order Reed-Muller code. Determining this covering radius ρn for
odd n seems to be a hard problem [55]. It is known that [186, 187]

2n−1 − 2d(n−1)/2e ≤ ρn ≤ 2n−1 − 2(n−2)/2 .

For n even both bounds are equal. For n odd the lower bound is achieved by the
quadratic functions corresponding to the symplectic matrices with rank n − 1. For
n = 1, 3, 5, and 7 ρn is equal to its lower bound, and for m ≥ 15 one has

2n−1 − 108
128

2(n−1)/2 ≤ ρn ≤ 2n−1 − 2(n−2)/2 .

Two important conjectures are that ρn is even for n ≥ 3 and that the upper bound is
asymptotically tight. In [187] it is shown that for n = 9 the lower bound can only be
improved by functions with nonlinear order at least 4.

8.5 Construction of Boolean functions

If a function with special properties is required, several methods can be applied. The
simplest method is exhaustive search, but there are several alternatives. For many
requirements, there exist special constructions, either direct or recursive. If several
properties have to be satisfied together, it is clear that one will first try to construct
a function that meets the stronger requirement, and subsequently try to modify it

260 CHAPTER 8. BOOLEAN FUNCTIONS

such that it satisfies additional conditions. This was suggested in [208] where the
example was given of a balanced function with large distance to affine functions: if
n is even, one starts with a bent function, and modifies this function in such a way
that it becomes balanced. In that case the distance to affine functions can decrease
at most with 2n/2−1. An alternative for exhaustive search might to use techniques
for nonlinear optimization, like simulated annealing. This section will overview these
methods briefly.

8.5.1 Exhaustive search

The simplest way to find a function with certain properties is to search exhaustively
for these functions. For small values of n, this is only feasible if n ≤ 5, as the number
of Boolean functions of 6 variables is already equal to 264. If ord(f) is limited to 3,
the upper bound is n = 6, and for quadratic functions the upper bound is equal to 9.
For all larger values, one has to randomly select a function and test whether or not
it satisfies certain properties. In that case it is important to have an idea about the
probability of success.

In order to increase the number of functions that can be reached by exhaustive
search, one can limit the search by considering equivalence classes of the symmetry
group of the criterion. Research on the number of equivalence classes of Boolean func-
tions has been carried out in the sixties, with as main goal the design of logic networks
[130, 142]. The results are obtained by group theoretic counting techniques. The
classes that have been studied are complementation of variables, permutation of vari-
ables, GL(n), and AGL(n). A second line of research is to determine the asymptotic
size of the number of classes. In [143] it was shown that if the order g of the group is
smaller than

22n−1(1
2
−ε log2 n) with ε > 0 ,

the number of classes is asymptotically equivalent to 22n
/g, and this will always be a

lower bound. In practice, the number of equivalence classes is known for n ≤ 6, and
the asymptotic estimates give tight lower bounds for n ≥ 6. However, this does not
mean that it is always easy to find a representative for each class.

For simple criteria like balancedness, nonaffinity, completeness, and symmetry
(f(x) = f(y) if hwt(x) = hwt(y)), the number of functions satisfying any combinations
of these criteria has been studied in [222]. Earlier work on the same subject can be
found in [10, 13, 131]. From [13] it follows that the number of Boolean functions of n
variables that are balanced, nonaffine, and complete can for n ≥ 6 be approximated
by (

2n

2n−1

)
− n

(
2n−1

2n−2

)
− n22n−1

.

This means that for large n almost all balanced functions are nonaffine and complete.
The balanced functions with maximal nonlinear order n − 1 have been characterized

8.5. CONSTRUCTION OF BOOLEAN FUNCTIONS 261

in [35]. In this report it was also shown that their number is equal to

2n − 1
2n

[(
2n

2n−1

)
−
(

2n−1

2n−2

)]
.

For more complex criteria like correlation immunity and PC(k), no results are
available. Another problem that seems to be very hard is determining the number of
Boolean functions of a given nonlinear order > 2 with a given Hamming weight [40],
[199], p. 446. One can only determine for small n the number of functions satisfying
these criteria.

The results for PC(k) of order m for n equal to 3, 4, and 5 are given in table 8.8.
Note that the same convention is used as in table 8.5, i.e., if a function satisfies PC(k)
of order m it is counted in all entries for PC(k′) of order m′ with k′ ≤ k and m′ ≤ m.
From comparison with table 8.5 it can be seen that the only entries that contain third
order terms are the functions of four variables satisfying PC(1) of order 0, and the
functions of five variables that satisfy PC(1) of order 0 and 1 and PC(2) of order 0.
Surprisingly, this last class also contains 192 fourth order functions.

k |PC(k, 0)3 | |PC(k, 1)3 | |PC(k, 2)3 |
1 4 1 0
2 1 1 −
3 0 − −

k |PC(k, 0)4 | |PC(k, 1)4 | |PC(k, 2)4 | |PC(k, 3)4 |
1 129 10 1 0
2 28 1 1 −
3 28 0 − −
4 28 − − −

k |PC(k, 0)5 | |PC(k, 1)5 | |PC(k, 2)5 | |PC(k, 3)5 | |PC(k, 4)5 |
1 430040 813 26 1 0
2 3760 28 1 1 −
3 168 28 0 − −
4 28 28 − − −
5 0 − − − −

Table 8.8: The number of Boolean functions of n variables satisfying PC(k) of order
m divided by 2n+1 (|PC(k,m)n |) for n = 3, 4, and 5.

The properties of these special fourth order functions will be described here. The
nonzeroes of the autocorrelation function have all absolute value 8. The zeroes of the
autocorrelation function form the set of all 15 vectors with Hamming weight 1 or 2.

262 CHAPTER 8. BOOLEAN FUNCTIONS

An example of this class is

f1(x) = x1x2x3x4 ⊕ x1x2x3x5 ⊕ x1x2x4x5 ⊕ x1x3x4x5 ⊕ x2x3x4x5

⊕x1x4 ⊕ x1x5 ⊕ x2x3 ⊕ x2x5 ⊕ x3x4 .

The value distribution of the Walsh-Hadamard spectrum (table 8.9) shows that this
function satisfies CIN(1). A related function f2 can be defined as

f2(x) = f1(x)⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 .

The Walsh-Hadamard spectrum of f2 is obtained by a dyadic shift over [11111] of the
Walsh-Hadamard spectrum of f1, resulting in a balanced function satisfying PC(2)
(table 8.9). Note that it is not possible to obtain from f1, through an affine transfor-
mation of variables, a function that satisfies CIB(1), as this requires the vanishing of
all coefficients of order 4 [330].

hwt(w) 0 1 2 3 4 5

| F̂1(w) | 12 0 4 8 4 0

| F̂2(w) | 0 4 8 4 0 12

hwt(s) 0 1 2 3 4 5

r̂1(s) 32 0 0 8 8 −8

r̂2(s) 32 0 4 −8 8 8

Table 8.9: Value distribution of the Walsh-Hadamard spectrum and the autocorrelation
function for the functions f1 and f2.

8.5.2 Recursive construction methods

Recursive construction methods have been obtained for several classes of functions.
They can be based on the concatenation of two functions: with the results in this chap-
ter one can directly obtain the algebraic normal form, the autocorrelation function and
the Walsh-Hadamard spectrum of the new function. For correlation immune functions
of maximum nonlinear order, a recursive construction was proposed by T. Siegenthaler
in [307] that increases n and (possibly) the nonlinear order by 1. A recursive construc-
tion for balanced correlation immune functions was suggested in [38]. Here both n and
m are increased by one. The construction can start from the known functions of n− 1
variables that satisfy CIB(0). For bent functions, recursive constructions have been
given in [40, 285]. For functions satisfying PC(1) of order m, a recursive construction
has been suggested in [114].

8.5.3 Nonlinear optimization

If a function has to satisfy contradicting requirements, like a good entropy profile (cf.
section 8.3.3) and a good autocorrelation profile (cf. section 8.3.4), it is very unlikely

8.6. EXTENSIONS TO S-BOXES 263

that an explicit construction method will be found. In that case one will not require
that certain values of Walsh-Hadamard spectrum and autocorrelation function are
zero, but that these values should be small.

In [115] a simulated annealing method is suggested to find balanced functions with a
good entropy profile (mainly the values with Hamming weight 1 and 2 are considered)
and a relatively large distance to affine functions. Choosing the parameters of the
algorithm has to be done on a heuristic basis. For the example of n = 6, it is claimed
that the success probability of the algorithm is about 300 times better than exhaustive
search among balanced functions, but the number of operations for the optimization
algorithm is not indicated. Maybe this limited number of criteria could be satisfied
easily by slightly modifying a good quadratic function or higher order correlation
immune function. Because of the small number of variables, an exhaustive operation
might be even feasible here if one takes into account equivalence classes. If however
additionally criteria would be imposed, and the number of variables would increase,
this method is certainly promising.

8.6 Extensions to S-boxes

In the majority of cryptographic applications, mappings from n to m bits are used,
that are generally called S-boxes. It is clear that the formulation of criteria for S-boxes
is much more complicated. Most criteria for Boolean functions can be applied to the
individual output bits, but many other possibilities exist, and for the time being a
systematic theory is certainly lacking. One can require that the mutual information
between a single input or a single output and all other input and output variables
is small, and impose similar requirements for differences between input and output
bits. Moreover, one can impose that the entropy difference between output and input
(and between output difference and input difference) is minimal. By considering more
output bits at the same time, one can also require that if a single input bit is modified,
at least k output bits should be changed, i.e., imposing a minimum requirement instead
of an average requirement. Other necessary properties could be that the mapping is
invertible, or (if n > m) that the mapping is invertible if certain input bits are kept
constant. In these cases one can also impose properties to the inverse function.

An important observation that was made by W. Van Leekwijck, L. Van Linden,
and the author (cf. [320]) is that rather than applying criteria to single output bits,
one should impose that these criteria have to be satisfied by any linear combinations
of output bits. This approach was also used by K. Nyberg in [239] to define perfect
nonlinearity of S-boxes from GF (qn) to GF (qm). She proposed two constructions for
perfect nonlinear S-boxes. In [240] she has shown that the distance to affine functions
is invariant under linear permutations of input and output and that the distance to
affine functions of a permutation and of its inverse are equal. In the same article,
she has introduced another criterion to characterize the nonlinearity of functions from
GF (qn) to GF (q), namely the linearity dimension. She has also studied the linearity
dimension of quadratic functions, and showed that it is related to the rank of the

264 CHAPTER 8. BOOLEAN FUNCTIONS

corresponding symplectic matrix. Finally she has described a construction for S-boxes
with high nonlinearity consisting of quadratic functions. In the work of J. Pieprzyk
[246, 247, 249] S-boxes with high nonlinearity are studied and constructed, but his
definition of nonlinearity does not consider all linear combinations of output functions.
The S-boxes of [247] have been used in the design of the Feistel cipher LOKI [33, 34].
In [177] a recursive construction is given for S-boxes for which all individual output
bits satisfy PC(1). In [131, 222] some results are given on the number of S-boxes that
satisfy some simple criteria.

Work on S-boxes has mainly been stimulated by investigations on the properties
of the S-boxes of DES [8, 108]. The properties of the S-boxes and related attacks have
been described in [20, 23, 31, 48, 50, 75, 77, 78, 89, 90, 101, 131, 146, 286, 301, 324, 338].
Alternative constructions for the DES S-boxes have been described in [1, 3, 178]. The
problem with these S-boxes is that they have some nice properties, but that they do
not necessarily yield a secure block cipher. It is clear from the differential attack on
DES by E. Biham and A. Shamir [20, 23] that if no special design criteria are taken into
account when designing the S-boxes, a weaker cipher will be obtained. These criteria
do not only depend on individual S-boxes, but on the properties of several S-boxes at
the same time. The S-boxes suggested in [178] satisfy PC(1), but the best iterative
characteristic has probability 1/51.2 for 2 rounds (an input exor of 0B30x to S-box 6
and 7), while the best iterative characteristic for DES has a probability of about 1/234.
This means that a differential attack requires 234 chosen plaintexts instead of 247, and
248.5 known plaintexts instead of 255. This leads to the conclusion that theoretically
interesting criteria are not sufficient, and that ad hoc design criteria are required.

8.7 Conclusion

In this section new and existing criteria for Boolean functions have been described.
New constructions and counting methods have been proposed, and an overview has
been given of methods to find functions that satisfy certain criteria.

In most cryptographic applications, S-boxes are used. The study of criteria for
S-boxes, and the construction of good S-boxes is more difficult than similar problems
for Boolean functions.

Many open problems remain, and it is clear that only a limited number of them will
be solved in the near future: several problems are related to difficult open problems in
combinatorial theory and in coding theory.

The criteria to be imposed on a Boolean function and on an S-box strongly depend
on the particular application in which it will be used. In general, a well designed
Boolean function or S-box will be stronger than a randomly selected one, and it will
always be a compromise between several criteria. Even if no direct relation is estab-
lished with a specific cryptographic scheme, the study of certain criteria can discover
the trade-offs that the designer has to face.

Chapter 9

Conclusions and Open Problems

The more we study the more we discover
our ignorance. Percy Bysshe Shelley

The main goal of this chapter is to summarize the current status of research on
hash functions and to highlight the new contributions.

It has been shown that hash functions play an important role in the protection
of authentication of information. Therefore one would like to have the disposal of a
provably secure hash function that is efficient in both hardware and software. However,
this seems impossible in the near future, and the best one can do is to study the problem
according to the three approaches in cryptography.

In the information theoretic approach, provably secure schemes have been studied
and the limits have been explored. For practical applications that require provable
security, universal hash functions offer an interesting solution, but in general the re-
quired key size is too large. One can expect that new schemes will extend existing
trade-offs between the size of the hashcode, the size of the key, and the probability of
impersonation and substitution.

The most important contribution from the complexity theoretic approach are cer-
tainly the definitions. Secondly it suggests some interesting design principles. The
shortcoming of this approach is that it deals with asymptotic and worse case results.
Moreover, the underlying model of computation does not incorporate the idea of a
birthday attack, which is a serious problem in the context of hash functions. The main
open problem in the complexity theoretic approach is whether one-way functions are
sufficient for collision resistant hash functions. Further research is also required to
improve the efficiency of existing constructions.

The largest part of this thesis has been devoted to the system based approach.
From the many proposals that have been discussed, only few have survived, from which
one might conclude that our knowledge of the design of efficient cryptographic hash
functions is very limited. In this thesis twelve proposals for hash functions have been
cryptanalyzed. This situation is comparable to the evolution of stream ciphers, where

265

266 CHAPTER 9. CONCLUSIONS AND OPEN PROBLEMS

many schemes were proposed and broken [287]. The main difference is that stream
ciphers have a longer history, and that in the case of stream ciphers the commercial
‘standard’ algorithms have not been published. In case of block ciphers, the situation
between 1977 and 1987 was different because of the availability of a widely accepted
commercial solution proposed by NBS, namely DES [108]. We now know that the
designers had an advantage of at least ten years on the open research community.
During the last five years new proposals for block ciphers are emerging.

An important contribution of this thesis is a taxonomy of attacks. It can certainly
serve as a caveat for designers of hash functions and assist in the evaluation of a hash
function. A successful attack on a hash function (except for a MAC) is in most cases
much more dangerous than an attack on an encryption algorithm: if the collision is of a
general nature, there is no way in which the system can prohibit from effectively using
the collision. In case of an encryption algorithm, one could increase the frequency of
key change, which is effective against most attacks.

For hash functions based on block ciphers, the designer tries to reuse the expensive
design effort for the block cipher. The case where key size, block length, and size of the
hashcode are equal has been completely solved in this thesis. Unfortunately no block
ciphers are currently available with a sufficiently large block size that would yield a
collision resistant hash function. Three new schemes for a hash function based on a
block cipher have been proposed. Many open problems remain on schemes for which
the size of the hashcode is larger than the block length, or for which the key size differs
significantly from the block size. An additional problem is that the use of a block
cipher in a hash function can strengthen the requirements that have to be imposed on
the block cipher.

The hash functions based on modular arithmetic have been evaluated in a similar
way as the hash functions based on block ciphers. The scheme proposed by F. Cohen
and Y.J. Huang was cryptanalyzed. Some doubt has been raised about this type of
hash functions, but in a limited number of applications they can offer a good solution
that is scalable. If the efficiency is not too important, schemes are available for which
the security is provably equivalent to number theoretic problems like discrete logarithm
or factoring. For faster schemes, many attacks can be explained by the fact that more
designers have suggested a scheme ‘on the edge’. If it is acceptable to decrease the
performance with a factor 2 to 4, it is much easier to come up with a secure solution.

For dedicated hash functions, the basic questions to be considered by the designer
are the general structure (e.g., based on a collision resistant function or not, redundancy
in the message, . . .), and the way to introduce the nonlinearity. All answers will be
influenced by the choice of the implementation: is the algorithm hardware or software
oriented, or should it have an acceptable performance in both hardware and software.
For the nonlinearity, three basic options seem to be available: select large S-boxes that
are weak but efficient (e.g., multiplication), select large random S-boxes or select small
but optimal S-boxes. The three options can be influenced by the study of cryptographic
properties of Boolean functions and S-boxes. In chapter 8 several new results on the
cryptographic properties of Boolean functions have been presented.

267

It is widely accepted that a new cryptographic scheme should be used only if it has
been intensively evaluated, and not only by its designer. If the designer can not afford
to pay a number of capable experts to spend a sufficiently long time on evaluation a
scheme, one has to hope that publication of the scheme will attract cryptanalysts.

• The main problem with this approach is that most currently available designs
are too close ‘to the edge’, mainly for performance reasons. On the one hand,
this attracts cryptanalysts to spend their time on the scheme (and publish a
paper on the attack), but on the other hand this leads to a moving target: one
(and probably more) new versions appears, which implies that the cryptanalysts
will lose interest and, which is even worse, the confidence in the scheme gets lost
(whether the new scheme is broken or not). The only way to avoid this problem
is to have a sufficient security margin, such that one can show that only a limited
number of ‘rounds’ can be broken.

• A second element to stimulate evaluators is that every design decision is well
motivated. This implies that the designer should explain why alternative choices
were rejected. In this case an evaluator does not lose time to ‘reverse engineer’
the algorithm to find out what the designers already knew. This can also help
to judge the quality of the design.

• A third observation is that the credit to the cryptanalyst, and hence partially
his effort, seems to be proportional to the scientific reputation of the designer or
design team. Business aspects can also have an important influence. Standards
seem to be especially attractive. The problem here is that the main evaluation
will only take place after the publication of the standard.

In this view the EEC-funded RIPE project (Race Integrity Primitives Evaluation,
RACE 1040) [259, 277, 317], which provided for a thorough evaluation of submitted
schemes based on independent criteria, has suggested an interesting approach. Its
disadvantage is that the quality of the outcome of the evaluation depends strongly on
the quality of the algorithms that are submitted.

If one has to choose a hash function now, one can select one of the proposals in this
thesis that has not been broken. For highly critical applications, it is recommended
to parallelize (cf. section 2.4.5) two or more hash functions that have already been
evaluated for some time, and that are based on different design principles.

In view of the nature of the hash functions that are currently available, there might
be a need for a MAC that allows for a very fast software implementation. It could
be based on similar principles as the MD4 family. For a hardware oriented MAC, the
schemes based on a block cipher are sufficient. A second interesting scheme would be
a CRHF that is fast in hardware, or preferably fast in both hardware and software.

Of course it would be more interesting to evaluate schemes of which the security, or
at least certain properties, can be proved. This requires that these schemes are based
on mathematical structures, like properties of groups, codes, or graphs. This would
clearly facilitate the evaluation of the scheme. As long as no provably secure schemes
are available, an open evaluation will be necessary.

268 CHAPTER 9. CONCLUSIONS AND OPEN PROBLEMS

Appendix A

Modes of Use

Rien ne pèse tant qu’un secret. La Fontaine

If a block cipher is used to encrypt data, it is in most cases not recommended to split
the data into blocks and encrypt every block separately. Depending on the application,
several modes of use or modes of operation have been proposed and standardized: the
four modes of use for DES were specified in the 1981 US Federal Information Processing
Standard, Publication 81 [109]. An international standard specifying four modes of use
for a 64-bit block cipher algorithm was published in 1987 [152], and a generalization
for an n-bit block cipher algorithm was published in 1991 [158]. The main body of the
latter standard was also improved, and an informative annex was added that contains
some information about the properties of the different modes of use, and about handling
incomplete blocks. For a more extensive discussion of the modes of use, the reader is
referred to chapter 4 of [74].

In this appendix, the plaintext will consist of t blocks, denoted with P1 through Pt.
The corresponding ciphertext blocks will be denoted with C1 through Ct. For the first
two modes, that are called block modes, the size of a plaintext block will be n bits,
where n is the block length of the block cipher algorithm. For the two other modes,
that are called stream modes, the size of a plaintext variable is equal to j bits, where j
is a parameter of the mode. When discussing the error propagation property, it will be
assumed that the block cipher has the property that changing one or more plaintext
bits results in an average 50% change in the ciphertext.

A.1 The ECB mode

In the Electronic Codebook Mode (ECB) mode, the block cipher is applied in a
straightforward way. Every plaintext block is encrypted independently or

Ci = E(K,Pi) for i = 1, . . . , t .

269

270 APPENDIX A. MODES OF USE

The decryption operation for the ECB mode is given by:

Pi = D(K,Ci) for i = 1, . . . , t .

The properties of the ECB mode are:

1. Encryption or decryption of a block can be carried out independently of the other
blocks.

2. Reordering of the ciphertext blocks will result in the corresponding reordering of
the plaintext blocks.

3. The same plaintext block always produces the same ciphertext block (for the
same key) making it vulnerable to a “dictionary attack”.

4. In the ECB mode, a single or multiple bit error within a single ciphertext block
will only affect the decryption of the block in which the error occurs. Hence each
bit of the recovered plaintext version of this block will have an average error rate
of 50%.

The ECB mode is used in a limited number of applications where the repetition
characteristic is acceptable or blocks have to be accessed individually. A typical ex-
ample is key encryption.

A.2 The CBC mode

In the Cipher Block Chaining (CBC) mode the blocks are chained together. The first
ciphertext block is obtained from

C1 = E(K,P1 ⊕ SV) ,

where SV is the starting variable. The other ciphertext blocks are calculated as follows:

Ci = E(K,Pi ⊕ Ci−1) for i = 2, . . . , t .

The first plaintext block can be recovered from

P1 = D(K,C1)⊕ SV .

For the other plaintext blocks one has

Pi = D(K,Ci)⊕ Ci−1 for i = 2, . . . , t .

The properties of the CBC mode are:

1. The chaining operation makes the ciphertext blocks dependent on all preceding
plaintext blocks, and therefore blocks can not be rearranged. Note that this
does not imply that the CBC mode protects the integrity of the plaintext (cf.
chapter 5).

A.3. THE CFB MODE 271

2. The use of different SV values prevents the same plaintext encrypting to the
same ciphertext.

3. In the CBC mode, one or more bit errors within a single ciphertext block will
affect the decryption of two blocks (the block in which the error occurs and
the succeeding block). If the errors occur in the ith ciphertext block, each bit
of the ith decrypted plaintext block will have an average error rate of 50%.
The (i + 1)th decrypted plaintext block will have only those bits in error that
correspond directly to the ciphertext bits in error.

The CBC mode is the most secure and preferred mode to encrypt data. It will
only be replaced by the CFB or the OFB mode in case of special requirements on
synchronization or error propagation.

A.3 The CFB mode

The Cipher Feedback Chaining (CFB) mode is a stream mode, i.e., the size of the
plaintext variables j can be arbitrarily chosen between 1 and n. The scheme that will
be described here is a simplified version of the more general scheme described in the
ISO standards.

The CFB mode makes use of an internal n-bit register. The state of this register
before the encryption or decryption of the ith block will be denoted with Xi. Before
the encryption and decryption operation, this register is initialized with the starting
variable or X1 = SV .

The encryption of plaintext variable i consists of the following two steps:

Ci = Pi ⊕ rchopn−j(E(K,Xi))
Xi+1 = lchopj(Xi)‖Ci .

Here rchopt denotes the function that drops the t rightmost bits of its argument,
and lchopt denotes the function that drops the t leftmost bits of its argument. The
decryption operates in a similar way:

Pi = Ci ⊕ rchopn−j(E(K,Xi))
Xi+1 = lchopj(Xi)‖Ci .

The properties of the CFB mode are:

1. The chaining operation makes the ciphertext variables dependent on all preceding
plaintext variables, and therefore j-bit variables are chained together and can not
be rearranged. Note that this does not imply that the CFB mode protects the
integrity of the plaintext (cf. chapter 5).

2. The use of different SV values prevents the same plaintext encrypting to the
same ciphertext.

3. The encryption and decryption processes in the CFB mode both use the encryp-
tion form of the algorithm.

272 APPENDIX A. MODES OF USE

4. Selection of a small value of j will require more cycles through the encryption
algorithm per unit of plaintext, and thus cause greater processing overheads.

5. If j is chosen equal to the character size, this mode is self synchronizing . This
means that if one or more j-bit characters between sender and receiver are lost,
automatic resynchronization will occur after n bits.

6. In the CFB mode, errors in any j-bit unit of ciphertext will affect the decryp-
tion of succeeding ciphertext until the bits in error have been shifted out of the
CFB internal register. The first affected j-bit unit of plaintext will be garbled
in exactly those places where the ciphertext is in error. Succeeding decrypted
plaintext will have an average error rate of 50% until all errors have been shifted
out of the internal register.

The main reason to use the CFB mode is the self synchronizing property. This
is especially important in a communication environment, where one chooses j equal
to the character size (typically 1 or 8 bits). The error propagation properties are
comparable to those of the CBC mode. The decrease in performance is proportional
to n/j.

A.4 The OFB mode

The Output Feedback Chaining (OFB) mode is also a stream mode, i.e., the size of
the plaintext variables j can be arbitrarily chosen between 1 and n.

The OFB mode makes use of an internal n-bit register. The state of this register
before the encryption or decryption of the ith block will be denoted with Xi. Before
the encryption and decryption operation, this register is initialized with the starting
variable or X1 = SV .

The encryption of plaintext variable i consists of the following three steps:

Yi = E(K,Xi)
Ci = Pi ⊕ rchopn−j(Yi)

Xi+1 = Yi .

Note that the only difference with the CFB mode is the updating of the internal
register. The decryption operates in a similar way:

Yi = E(K,Xi)
Pi = Ci ⊕ rchopn−j(Yi)

Xi+1 = Yi .

The properties of the OFB mode are:

1. The absence of chaining makes the OFB mode more vulnerable to specific attacks.
2. The use of different SV values prevents the same plaintext encrypting to the

same ciphertext.

A.4. THE OFB MODE 273

3. The encryption and decryption processes in the OFB mode both use the encryp-
tion form of the algorithm.

4. The OFB mode does not depend on the plaintext to generate the key stream
used to add modulo 2 to the plaintext.

5. Selection of a small value of j will require more cycles through the encryption
algorithm per unit of plaintext, and thus cause greater processing overheads.

6. The OFB mode does not extend ciphertext errors in the resultant plaintext
output. Every bit in error in the ciphertext causes only one bit to be in error in
the decrypted plaintext.

The main reason to use the OFB mode is the error propagation property. In order
to optimize the performance, one will preferably choose j equal to 64. It is very
important that each re-initialization uses a value of SV different from the SV values
used before with the same key. The reason for this is that an identical bit stream
would be produced each time for the same parameters. This would be susceptible to
a “known plaintext attack”.

274 APPENDIX A. MODES OF USE

Appendix B

Birthday Attacks and Collisions

The protection provided by encryption is based on the
fact that most people would rather eat liver than do
mathematics. Bill Neugent

B.1 Introduction

A variety of attacks have surprised the designers of cryptographic schemes because they
require only O(

√
n) of operations, where a naive approach would require O(n) trials.

Because this holds for the “birthday paradox” as well, all these attacks have been
called birthday attacks; sometimes they are called square root attacks. Although their
asymptotic efficiency is very similar, different models correspond to slightly different
distributions, as will be shown in this appendix.

The birthday problem is the following well known problem in probability theory:
under the assumption that the birthdays of n people are distributed independently
over the year (365 days), how large should n be in order to have a reasonable large
probability (say 0.5) to find two people with the same birthday? The probability that
all persons have a different birthday is given by

1
365n

·
n−1∏
i=0

(365− i) .

The complement of this probability is the probability that two or more people have the
same birthday. For n = 23 this is equal to 0.507. This has been called the “birthday
paradox” because this number is much smaller than most people would intuitively
think.

275

276 APPENDIX B. BIRTHDAY ATTACKS AND COLLISIONS

B.2 Models for matching probabilities

Several models can be considered in matching problems. Every model yields different
probabilities and corresponds to different problems in cryptographic applications [235].
In probability theory, matching problems are mostly described in terms of urns and
balls: r balls are randomly thrown into n urns and one studies the number of urns
containing a certain number of balls (problem 1). An alternative formulation is that
an urn contains n balls numbered from 1 to n. Subsequently r balls are drawn, and
their numbers are listed. Now one studies the distribution of the numbers in this list
(problem 2). One is mostly interested in two distributions, that are the same for both
problems.

• The probability distribution of the number t of urns containing one or more balls
(problem 1), or of the number t of balls that is listed at least once (problem 2).
This allows to determine the number of coincidences, defined as r − t. In this
model an urn that contains k balls (problem 1), or a number that is listed k
times (problem 2) will correspond to k − 1 coincidences.

• The probability distribution of the number of urns containing k or more balls
(problem 1), or of the number of balls that is listed k or more times (problem 2).
In both models this will be called a k-fold collision.

In cryptography, most attention has been paid to the first approach [56, 123, 235].
However, in this thesis it was shown that results on the second problem are useful as
well (cf. chapter 5).

A second distinction that can be made is based on the fact that there are balls of
one or two colors, and in the latter case whether drawings are made with or without
replacements.

• In case of the birthday problem, there is only one set in which one looks for a
match. This corresponds to the problem that was described above. In crypto-
graphic applications, this model is valid in algorithms for finding key collisions
(cf. section 2.5.2.6). It is also valid if an attacker wants to produce a collision for
a hash function without any restriction on the messages. Note that in this case
drawings are necessarily made with replacements.

• In most cryptographic attacks, one looks for a match between two sets. In terms
of urns and balls, this means that there are r1 white and r2 red balls, and one
studies the probability distribution of the number of urns that contain two or
more balls of a different color. For each of the balls, one can select the urns with
and without replacements (i.e., the same urn can be chosen only once). It is
more natural to formulate this in terms of problem 2. One has two urns, the first
one contains n white balls numbered from 1 to n, and the second one contains n
red balls numbered from 1 to n. First one selects r1 balls from the first urn, and
records their numbers. Subsequently one draws r2 balls from the second urn,
and records their numbers. The number of coincidences between the two lists of

B.3. COINCIDENCES 277

numbers is now counted. One has two ways to select the balls: one can replace
the ball after every drawing, or put it aside. This corresponds to drawing with
and drawing without replacements. Unless it is explicitly stated, the terminology
of problem 2 will be used in the rest of this appendix.

Model A: balls from both urns are drawn with replacements. Here one could
make a distinction between coincidences and k-fold collisions, but the latter
concept is rather complicated in this context (a combination of a k1-fold
collision of white balls with a k2-fold collision of red balls with k = k1 +k2).
A example of an application in cryptography is a birthday attack on a hash
function with two distinct sets of messages (cf. section 2.5.1.3). Model A
holds if the round function is not bijective for a fixed chaining variable.

Model B: balls from both urns are drawn without replacements. In this case it
makes only sense to speak about coincidences, as a coincidence can only be
found between balls with a different color. An example is a cryptanalytic
attack on a cryptosystem that is ‘closed’, i.e., a cryptosystem for which
there exists for any pair of keys K1,K2 a key K such that

E(K,P) = E(K2, E(K1, P)), ∀P .

An attacker who is given a plaintext ciphertext pair (P,C) with C =
E(K,P), will not look for K, but for a pair of keys K1, K2 that satisfy
the relation above.

Model C: this is a mixed model, where balls from one urn are drawn with re-
placements and balls from the other urn are drawn without replacements.
In this case the extension to k-fold collisions would be easier. The applica-
tion that is indicated in [235], namely producing ‘sensible’ collisions for a
hash function based on CBC mode (cf. section 5.3.1.1) is rather artificial.
A more interesting application is the time memory trade-off [147], where a
set of r1 values will be stored (in order to avoid waste of storage space, one
will delete matches in the stored set), and compared afterwards to a set of
r2 values, that are drawn with replacements.

In the rest of this appendix an overview of known results on distributions for coin-
cidences will be given, followed by a detailed discussion of the distribution of k-fold
collisions for drawings from a single urn.

B.3 Coincidences

A detailed discussion of the distribution of the number of coincidences for the four
models has been given in [235]. The results are summarized below.

For drawings of balls from a single urn with replacements, the probability that t
different balls have been drawn (or that there are t urns containing one or more balls

278 APPENDIX B. BIRTHDAY ATTACKS AND COLLISIONS

in problem 1) is given by the classical occupancy distribution [134]:

Pr(n, r, t) =
{
r

t

}
n(t)

nr
, 1 ≤ t ≤ r . (B.1)

Here n(r) = n(n− 1) · · · (n− r+ 1) and
{ r
t

}
denotes the Stirling number of the second

kind, defined by the following polynomial identity

xr =
r∑
t=1

{
r

t

}
x(t) . (B.2)

The probability of a coincidence is given by

Pr(n, r, t < n) = 1− Pr(n, r, n) = 1− n(r)

nr
. (B.3)

For large n, and r = O(
√
n), this can be approximated by

1− exp
(
−r(r − 1)

2n

)
≈ 1− exp

(
− r

2

2n

)
. (B.4)

For model A, the probability of no coincidence is given by

PrA(n, r1, r2, 0) = 1− 1
nr1+r2

∑
ν=r1+r2

n(ν)
{
r1
t1

}{
r2
t2

}
. (B.5)

For large values of n and if r = r1 = r2 with r = O(
√
n) this can be approximated by

1− exp

(
−r

2

n

)
. (B.6)

For model B, we have a hypergeometric distribution for the number of coincidences

PrB(n, r1, r2, t) =

(
r1
t

)(
n− r1
r2 − t

)/(
n

r2

)
, (B.7)

where max(0, r1 + r2 − n) ≤ t ≤ min(r1, r2). For t = 0 this reduces to

PrB(n, r1, r2, 0) =
n(r1+r2)

n(r1)n(r2)
. (B.8)

For large values of n and if r1 and r2 are O(
√
n) the probability of a coincidence can

be approximated by

1− exp
(
−r1r2

n

[
1 +

r1 + r2 − 1
2n

])
. (B.9)

B.4. K-FOLD COLLISIONS 279

It is clear that if r1 = r2 = r, this is very close to the asymptotic expression for model A
given by (B.6). For model C the occupancy distribution and the hypergeometric dis-
tribution are mixed (r1 balls are drawn with replacements, r2 balls are drawn without
replacements):

PrC(n, r1, r2, t) =
∑
s

(
s

t

)(
n− s
r2 − t

){
r1
s

}
n(s)

n(r1)

/(
n

r2

)
. (B.10)

For t = 0 this corresponds to

PrC(n, r1, r2, 0) =
(

1− r2
n

)r1
. (B.11)

For large values of n and if r1 and r2 are O(
√
n) the probability of a coincidence can

be approximated by

1− exp
(
−r1r2

n

)
. (B.12)

This result can also be found in Appendix B of the book of C. Meyer and S. Matyas
[215].

In [123] it has been shown that for the first three models (not for model C) the
probability distribution converges under certain conditions asymptotically to a Poisson
distribution, and expressions for the error terms have been given. It was also proven
that the probability distribution of the number of coincidences converges to

e−λ
λx

x!
,

where λ = r2

2n , r2

2n , and r1r2
n respectively. An interesting consequence is that for large

values of r and n, the expected number of coincidences is equal to λ. If cryptographic
schemes are evaluated, one has mostly that r = O(

√
n), with n of the order of 256 or

even larger. One can conclude that in this case, the asymptotic results are valid, and
there is not much difference between the four models: if drawings are made from a
single urn, the number of trials has to be a factor of about

√
2 larger than in the other

cases to obtain the same success probability.

B.4 k-fold collisions

The number of k-fold collisions will now be studied for drawing with replacements
within a single set. This result was shown by R. von Mises in 1939, but we were
not able to find the paper containing the proof. Feller ([106], pp. 101–106) gives the
asymptotic expression, but proves only the complete expression for k = 0 and studies
its asymptotic behavior.

Theorem B.1 If r balls are randomly distributed over n urns, the number t of urns
containing exactly k-balls is given by(

n

t

)
r(tk)

(k!)t
(1− t

n)r−tk

ntk

n−t∑
ν=0

(−1)ν
(
n− t
ν

)
(r − tk)(νk)

(k!)νnνk

(
1− ν

n−t

)r−(ν+t)k

(
1− t

n

)νk . (B.13)

280 APPENDIX B. BIRTHDAY ATTACKS AND COLLISIONS

Proof: We start with calculating the probability that a specific urn contains k
balls:

p1 =
(r
k

)
(n− 1)r−k

nr
.

Here
(r
k

)
corresponds to the selection of k balls and (n − 1)r−k corresponds to the

different ways in which the remaining r−k balls can be distributed over the remaining
n − 1 urns. The total number of distributions is given by nr. Similarly, for two cells
this probability is equal to

p2 =
(r
k

)(r−k
k

)
(n− 2)r−2k

nr
.

The product of the two binomial coefficients can be simplified to

r!
(k!)2(r − 2k)!

=
r(2k)

(k!)2
.

The general expression for ν ≤ n is then

pν =
r(νk)

(k!)ν

(
1− ν

n

)r−νk
nνk

. (B.14)

Note that pn = 0. The probability that ν cells contain k balls is given by

Sν =

(
n

ν

)
pν , (B.15)

as there are
(n
ν

)
ways to select ν cells out of n. The next step is to calculate the

probability that no cell contains exactly k balls. This can be done with the inclusion-
exclusion principle:

Pr(n, r, k, 0) =
n−1∑
ν=0

(−1)νSν . (B.16)

Consider now a distribution where t cells contain exactly k balls. These t cells can be
chosen in

(n
t

)
ways and the balls in these t cells can be chosen in r(tk)/(k!)t ways. The

remaining r−tk balls are distributed over the remaining cells so that none of these cells
contains k balls; the number of such distributions is (n− t)r−tk Pr(n− t, r − tk, k, 0).
Dividing by nr on obtains for the probability that exactly t cells contain k balls

Pr(n, r, k, t)

=

(
n

t

)
r(tk)

(k!)t
(n− t)r−tk Pr(n− t, r − tk, k, 0)/nr

=

(
n

t

)
r(tk)

(k!)t
(1− t

n)r−tk

ntk

n−t−1∑
ν=0

(−1)ν
(
n− t
ν

)
(r − tk)(νk)

(k!)νnνk

(
1− ν

n−t

)r−(ν+t)k

(
1− t

n

)νk .

This completes the proof.

B.4. K-FOLD COLLISIONS 281

The probability distribution of the number of coincidences can be obtained from
Pr(n, r, 0, t). Indeed, if one knows that t urns are empty, the number of coincidences
is given by c = r−n+ t. With the substitution α = r− c− ν one finds for the number
of coincidences

Q(n, r, c) =

(n
r−c
)

nr

r−c∑
α=1

(−1)r−c−α
(
r − c
α

)
αr .

This expression was also given in [123], but with an error in the exponent of (−1).
As it is not possible to evaluate (B.13) for large values of r and n, the asymptotic

behavior of this equation will be studied. This will be done for the case n → ∞ and
r → ∞, but under certain constraints. They will be discussed in the terminology of
problem 1.

• If k > 1 one has the following: if r/n is too small, then we can expect no cells
containing k balls; in this case Pr(n, r, k, 0) is near unity and all Pr(n, r, k, t) with
t ≥ 1 are small. On the other hand, if r/n is excessively large, most cells will
contain about k = r/n balls; this case will be considered later.

• If k ≤ 1 the following occurs: if r/n is too large, then no cells will contain 0 or
1 balls; in this case Pr(n, r, k, 0) is near unity and all Pr(n, r, k, t) with t ≥ 1 are
small. On the other hand if r/n is very small, then nearly all cells will contain 0
or 1 balls; in this case Pr(n, r, 0, t) will be near unity for t = (n− r)/n, and zero
elsewhere, and Pr(n, r, 1, t) will be near unity for t = r/n, and zero elsewhere.

Therefore we will discuss only the intermediate case.

Theorem B.2 If r balls are randomly distributed over n urns, the number t of urns
containing exactly k balls follows asymptotically a Poisson distribution, with

Pr(n, r, k, t) = e−λk
λtk
t!

and λk = n
exp

(
− r
n

)
k!

(
r

n

)k
. (B.17)

This holds if r and n tend to infinity such that λk remains bounded.

Proof: The first part consists in estimating the quantity Sν of (B.15). Based on
the inequality x(s) ≤ xs for s ≥ 1 one obtains

ν! Sν ≤
nν

nνk
rνk

(k!)ν

(
1− ν

n

)r−νk
.

For 0 < x < 1 one finds from the Taylor expansion that

−t
1− t

< ln(1− t) < −t .

Therefore

ν! Sν <
nν

(k!)ν

(
r

n

)νk
exp

(
−r − νk

n
ν

)
.

282 APPENDIX B. BIRTHDAY ATTACKS AND COLLISIONS

In order to obtain a lower bound one uses the inequality x(s) ≥ (x− s)s for s ≥ 1:

ν! Sν ≥
(n− ν)ν

nνk
(r − νk)νk

(k!)ν

(
1− ν

n

)r−νk
.

The lower bound for the logarithm yields

ν! Sν >
nν

(k!)ν

(
r

n

)νk (
1− νk

r

)νk
exp

(
−r − ν(k − 1)

n− ν
ν

)
.

Now define

λk = n
exp

(
− r
n

)
k!

(
r

n

)k
,

and suppose that r and n increase in such a way that λk remains constrained to a
finite interval 0 < a < λk < b. For each fixed ν the ratio of upper and lower bound
then tends to unity, under the condition that νk � r. Hence

0 ≤ λnk
ν!
− Sν → 0 . (B.18)

This relation holds trivially when λk → 0, and hence (B.18) remains true whenever r
and n increase in such a way that λk remains bounded. Now

e−λk − Pr(n, r, k, 0) =
∞∑
ν=0

(−1)ν
(
λνk
ν!
− Sν

)
(B.19)

and (B.18) implies that the right side tends to zero. The observation that (B.13) can
be rewritten as St · Pr(n, r, k, 0) shows that for each fixed t

Pr(n, r, k, t)− e−λk
λtk
t!
→ 0 .

This completes the proof.

As a corollary of this theorem, one can easily derive the asymptotic probability for
the case that the number of coincidences are relevant: it can be verified that

λ∞ =
∞∑
k=2

λk = n

[
1−

(
1 +

r

n

)
exp

(
− r
n

)]
. (B.20)

A Taylor expansion up to third order terms results in the familiar

λ∞ ≈ r2

2n

[
1− 2r

3n

]
≈ r2

2n
. (B.21)

This first approximation explains more exactly the behavior for values of n between
100 and 625 as given in [123].

The probability that exactly one k-fold collision occurs is λk exp(−λk), and the
probability that at least one k-fold collision occurs is given by 1 − exp(−λk). If one

B.4. K-FOLD COLLISIONS 283

k log2(r) log2(r̃) λk+1

2 32.50 32.50 1.10 · 10−10

3 43.53 43.53 1.72 · 10−7

4 49.15 49.15 6.76 · 10−6

5 52.58 52.58 6.09 · 10−5

6 54.92 54.92 2.63 · 10−4

7 56.62 56.61 7.48 · 10−4

8 57.92 57.91 1.64 · 10−3

16 62.81 62.77 2.57 · 10−2

20 63.92 63.85 4.51 · 10−2

24 64.73 64.63 6.62 · 10−2

28 65.34 65.21 8.75 · 10−2

32 65.84 65.68 1.08 · 10−1

48 67.16 66.89 1.83 · 10−1

64 67.98 67.62 2.43 · 10−1

96 69.00 68.52 3.31 · 10−1

128 69.67 69.10 3.94 · 10−1

Table B.1: Numerical solutions for the number of trials r such that λk = 1 for n = 264.
Also indicated are an approximation r̃ and λk+1.

wants to calculate the number of trials in order to have at least one k-fold collision
with probability 1− e−1 ≈ 0.63, one has to solve numerically the equation λk = 1 or

r exp
(
− r

nk

)
= n

k−1
k (k!)

1
k .

For the case n = 264, and 2 ≤ k ≤ 64 the values of r are indicated in table B.1. If
r ≤ n a good approximation can be obtained as follows:

r̃ = n
k−1

k (k!)
1
k .

This approximation has also been given in table B.1. For the case r = n, λk = ne/k!,
table B.2 indicates what the largest value of k is that corresponds to λk ≥ 1 for a given
value of n.

However, in cryptographic applications one is in fact interested in the probability
that at least one l-fold collision occurs, for some l ≥ k. The probability that at least
one (k + 1)-fold collision occurs is given by 1− exp(−λk+1). From the relation

λk+1 =
r

n(k + 1)
λk ,

it follows that if r is chosen such that λk = 1, the probability of a k + 1-fold match
is much smaller. For n = 264 it can be seen from table B.1 that λk+1 is smaller than

284 APPENDIX B. BIRTHDAY ATTACKS AND COLLISIONS

log2(n) k

16 7
32 12
48 16
64 20
80 23
96 27

Table B.2: Largest value of k for which λk ≥ 1 if r = n.

about 0.1 if k < 32. It is clear that for larger values of k the probabilities for a k + i-
fold match with i > 1 will play a more important role. However, if r � n, a different
approximation can be used as will be shown in the following paragraph.

If a large number of drawings has been made, the law of large numbers specifies in
terms of problem 1 that the number of balls in every urn will approximate r/n, and the
number of urns containing k balls will be distributed according to a Gaussian distri-
bution with mean µ = r/n and standard deviation σ =

√
r/n [106]. The substitution

x = (y − µ)/σ results in the normalized Gaussian distribution:

G(x) =
1√
2π

exp

(
−x

2

2

)
.

In this case it is possible to determine the number of urns that contain k or more balls
from the cumulated normal distribution. If Q(z) is defined as

Q(z) =
∫ ∞

z
G(x) dx ,

this probability is equal to Q((k − µ)/σ). If z is large, Q(z) can be approximated by

Q(z) ≈ 1
z
√

2π
exp

(
−z

2

2

)
.

Hence if r trials are made, with r � n, the probability that there is an urn with more
than

r

n
+ z

√
r

n

balls is equal to Q(z). With the definitions r = 2r
′
, n = 2n

′
, k = 2k

′
, z = 2z

′
and

r′ = n′ + k′ − x′, one can rephrase this as follows: if 2r
′
= 2n

′+k′−x′ trials are made,
the probability that there is an urn with more than 2k

′
balls is equal to Q(z) if

2k
′
= 2k

′−x′ + 2z
′+(k′−x′)/2 . (B.22)

B.4. K-FOLD COLLISIONS 285

Note that this relation is independent of n′. It can be shown that the solution of (B.22)
is given by

x′ = 2 log2

(√
22·(z′−1−k′/2) + 1− 2z

′−1−k′/2
)
. (B.23)

For large values of k′ this can be approximated by x′ = −2z
′−k′/2. From the asymptotic

expressions for Q(z) one obtains that Q(8) = 2−50.5 and Q(16) = 2−190.0. Therefore
the choice of z = 16 or z′ = 4 yields a safe lower bound for the number of trials.
Table B.3 indicates the relation between k′ and x′ for z′ = 4. It can be seen from
(B.23) that replacing z′ by z′ + δ′z yields the value of x′ corresponding to k′ + 2δ′z. We
have selected a sufficient security margin because for smaller values of k′ (k′ ≤ 10)
this can compensate for the errors that may have been introduced by replacing the
distribution by a normal distribution. For larger values of k′ the table entries tend
to 0, which means that the choice of a different value of z would make not much
difference. One can conclude from this table that for k′ ≥ 16 the number of operations
to produce a 2k

′
-fold collision is given by 2n

′+k′ . For k ≥ 10 this formula gives a good
approximation.

k′ x′ k′ x′

4 4.165 12 0.507
5 3.307 13 0.360
6 2.543 14 0.180
7 1.900 15 0.127
8 1.338 16 0.090
9 1.000 32 3.52 · 10−4

10 0.714 64 5.35 · 10−9

Table B.3: Values of k′ and x′ for the equation (B.23) with z′ = 4.

A combination of the Poisson and the Gaussian approximation was used to produce
figure B.1. It gives the relation between the number of trials r and k for n = 248 and
n = 264. The approximation by the normal distribution was made with a value of
z = 16. For small values of k′ = log2(k), only a limited number of points are present,
corresponding to the discrete values k = 2, 3, . . . The number of operations for a
k-fold collision increases very fast with k in this area. For k′ > 15 one notes that the
behavior is linear because of the logarithmic scales.

286 APPENDIX B. BIRTHDAY ATTACKS AND COLLISIONS

Number of
operations
r′ = log2(r)

20

90

30

40

50

60

70

80

0 255 10 15 20

·

·
·
··
···
·····
········
··············
················
··················
····················

······················
························

························
·························

·························
·········

·

·
·
··
···
······
··············
···············
·················
···················

······················
·······················

·······················
·························

·························
·······················

Multiplicity of collisions k′ = log2(k)

Figure B.1: Binary logarithm of the number of trials r to obtain a k-fold collision for
n = 248 and n = 264.

Appendix C

Differential Cryptanalysis of
Hash Functions Based on Block
Ciphers

When there is no difference, there is only
indifference. Louis Nizer

C.1 Introduction

This appendix describes in more detail a differential attack on several hash functions
based on a block cipher. It will be mainly concerned with results for DES [108] as
the underlying block cipher, but the case of FEAL-N [225, 228] will also be discussed.
Differential cryptanalysis, proposed by E. Biham and A. Shamir, is a very powerful
technique for the cryptanalysis of both block ciphers and hash functions (cfr. sec-
tion 2.5.2.7). It will be assumed that the reader is familiar with the main principles
and results of differential cryptanalysis as described in [20, 21, 22, 23, 182].

The use of differential attacks on hash functions based on block ciphers was sug-
gested to the author by I. Damg̊ard [67]. Similar ideas were developed by E. Biham
[24], without studying a detailed optimization.

The basic idea of the attack is to look for a characteristic of the underlying block
cipher for which input exor equals output exor. It is assumed that the attacker has
control over the plaintext input. Because of the feed forward that is present in all
secure hash functions based on block ciphers, these two exors will cancel out in the
result and will produce two blocks with the same hash value.

Differential cryptanalysis of a block cipher and of a hash function based on that
block cipher are closely related but differ in some aspects. In the first place, the
goal is not to find a key, but to find a single right pair, i.e., a pair that follows the

287

288 APPENDIX C. DIFFERENTIAL CRYPTANALYSIS

characteristic. Note that the most recent attack on DES as a block cipher requires
only one right pair as well [23]. The number of rounds of the characteristic and of the
hash function have to be exactly the same, while for the attack on a block cipher the
characteristic can be 1, 2, or 3 rounds shorter, which increases its probability. The
fact that the key is known can be exploited to reduce the effort to find a right pair.
The main difference is that the attack can be performed off-line and in parallel. This
implies that even if the number of computations would be 247, the attack would be
practical, which is not the case for an attack requiring 247 chosen plaintexts.

In a first section, an analysis will be made for scheme 1–4 of section 5.3.1.4 that
yield a single length hash function. Then the differential attacks on MDC-2 and MDC-
4 will be treated. Finally the security of these schemes with FEAL-N as block cipher
will be discussed, and the conclusion will be presented.

C.2 Differential attacks on single length hash functions

The attack on this system will look for two plaintext blocks X and X ′ 6= X that satisfy

E(K,X)⊕X = E(K,X ′)⊕X ′

for a given DES key K. The difference between the X and X ′ will be chosen in such a
way that the probability that this equation holds is maximized. If one is looking for a
collision, one can freely choose X and X ′. However, the same principle could be used
to find a second preimage for a given X. One only has a very limited number of trials,
but one hopes that the success probability of a single trial will be better than 2−56.

For DES, the best known characteristics with input exor equal to output exor for
7 rounds or more are iterative characteristics for an odd number of rounds [21]. This
implies that the attack will be limited to an odd number of rounds. In this section it
will be explained how knowledge of the key can reduce the effort to find a right pair.

For DES, the two best iterative characteristics modify only the inputs of the first 3
S-boxes. They will be indicated with ψ, for which the input exor to the S-boxes equals
19 60 00 00x, and φ, for which this exor equals 1B 60 00 00x. The probability of both
characteristics for 3 rounds equals pψ = pφ = 14/64 · 8/64 · 10/64 ≈ 1/234. However,
this does not tell the complete story: if key bit 6 of S2 is different from key bit 2 of
S6 (because of the expansion E they are added to the same bit of the plaintext), the
probability of φ is 7/1024 ≈ 1/146, while the probability of ψ equals 7/4096 ≈ 1/585.
If both key bits are equal the probabilities will be interchanged. This means that for
2t+ 1 rounds, one can always find a characteristic with probability [20], p. 42:

max
(

1
22n

,
1

22t−2n

)(
7

210

)t
.

Here n, 0 ≤ n ≤ t is the number of rounds in which the indicated key bits are equal.
The probability of the characteristic will be maximal and equal to (7/1024)t if all key
bits are different or if all are equal. This will be the case for 1 key out of 64. As the
key is known in our case, the probability of success can be increased by attacking hash

C.2. DIFFERENTIAL ATTACKS ON SINGLE LENGTH HASH FUNCTIONS 289

values where such a key is used in the hashing process. For a 15 round characteristic,
a probability of 2−50.3 can be obtained if the following key bits are all different or all
equal:

(11, 60), (44, 57), (41, 25), (9, 58), (50, 34), (18, 2), (51, 35).

An overview of the characteristics with the largest probability is given in table C.1.

number of rounds − log2(p)
7 21.6
9 28.8
11 36.0
13 43.2
15 50.3

Table C.1: The probabilities of the best known characteristics for DES for which input
exor equals output exor.

The second way in which knowledge of the key can be used is to choose the input
bits to the first three S-boxes in such a way that the characteristic will have a higher
probability. For the second round it is possible to take inputs for which the character-
istic will be satisfied with probability 1. This can be done by selecting the inputs that
go to the first three S-boxes from the 112 right pairs that satisfy the characteristic.
This means that only a 13-round characteristic is required to attack the 15-round hash
function. For the fourth round this is much more complicated: the design properties
of DES make it impossible to predict actual values of the inputs to the S-boxes (note
that it is possible to predict input differences). A more sophisticated approach could
start in the middle of the algorithm: in this case it might be possible to eliminate two
additional rounds, but more work has to be done on this approach.

A third way in which advantage can be taken from knowledge of the key is that
wrong pairs can be discarded faster: every round one can check whether the charac-
teristic is satisfied or not, which means that in most cases only 4 rounds will have to
be calculated in stead of 15 rounds. This makes the attack about four times faster.

Note that the first two methods can not help an attacker directly when he tries
to construct a second preimage. What he can do to increase his success probability
is to limit his attack to inputs that satisfy additional constraints. For the number
of operations to construct a collision and a second preimage for a DES-based single
length hash functions with t rounds (t odd), the reader is referred to table 5.6. From
this table it follows that finding a second preimage for 15 rounds can be made slightly
more efficient than exhaustive search, and the advantage will be substantial (214) if
the attacker can limit his attacks to optimal messages (in this case the number of
operations for a collision and for a second preimage are equal).

One could try to optimize that attack by looking for other good characteristics for
which input and output exor are equal. Even if the probability is slightly worse, one

290 APPENDIX C. DIFFERENTIAL CRYPTANALYSIS

could perform more trials in order to find a second preimage.
The main open problem is the extension of the attack to an even number of rounds.

This would require more work on the construction of characteristics. A possibility is
the use of fixed points. If χ is a fixed point with a certain probability, one could
make use of the following characteristic: (χ, χ) (with χ → 0), (χ, χ) (with χ → χ),
the iterative characteristic χ for an odd number of rounds, (alternating χ → 0 with
0 → 0), and finally (χ, 0) (with χ → χ) yielding an identical output and input exor.
It should be possible to construct the inputs to the first two rounds such that the
characteristic is satisfied with very high probability. The only problem would be the
transition χ → χ in the last round. In [179] it is suggested that such a characteristic
will have rather low probability, but further investigations are clearly necessary.

C.3 Differential attacks on MDC-2 and MDC-4

For a differential attack on MDC-2, the input pair has to be a right pair for both
characteristics. Essentially all properties can be transferred, but the overall probability
of success will be the product of the probabilities, under the reasonable assumption
that both key values are independent. In order to maximize both probabilities, it
is necessary that both keys satisfy the constraints discussed in the previous section,
which means that only 1 value in 4096 will be attacked in case of 15 rounds. From
the definition of MDC-2, it follows that a collision for the basic compression function
of MDC-2 with identical chaining variables yields a similar collision for MDC-4 as
well. Hence a differential attack on MDC-4 is not harder than a differential attack on
MDC-2.

The only step where the approach is more complicated is the second round. Here
a careful selection of the inputs is necessary to produce two inputs that yield a right
pair for both key values with probability 1. Let Ki and K∗

i be the key bits in the
ith round of the first and second DES respectively. The values that enter the S-boxes
in the second round are b = L ⊕K2 ⊕ F (K1, R) and b∗ = L ⊕K∗

2 ⊕ F (K∗
1 , R). It is

required that the first 18 bits of b and b∗ both yield a right pair. This can be obtained
as follows: look for an R such that the first 18 bits of b⊕ b∗ (this is independent of L)
correspond to the difference between two right pairs. Subsequently, L can be chosen
such that both b and b∗ yield a right pair. The number of possible differences between
right pairs is expected to be 1122, which means that about 218+1/1122 ≈ 42 trials will
be necessary. If one wants to estimate the exact number of trials, the distribution
of these differences should be verified. Note that the fact that the second and third
bits of the keys are different (this is imposed in the definition of the scheme) excludes
a trivial solution, namely the case where the relevant bits of (K1,K2) and (K∗

1 ,K
∗
2)

would be equal.
One can conclude that it is possible to deal with the first two rounds, resulting in

the figures indicated in table 5.9. The probabilities of the characteristics have to be
multiplied, and the overall work is increased by a factor 2 since there are two chains.
The conclusion is that for only MDC-2 or MDC-4 with 11 rounds or less this attack

C.4. DIFFERENTIAL ATTACKS ON FEAL-N BASED HASH FUNCTIONS 291

is faster than a birthday attack. In order to be of the same order of magnitude as a
birthday attack for 15 rounds, a characteristic with probability of 2−32 or better would
be required (this would be 1/40 per two rounds for an iterative characteristic). For the
second preimage attack the situation is slightly different, as finding a second preimage
for MDC-4 is harder. In case of MDC-2, the differential attack is only faster for 11
rounds or less, while for MDC-4 it is faster for 15 rounds or less.

Note that the initial values that are proposed by the designers (2525252525252525x
and 5252525252525252x) have 3 different and 4 equal key bits and 4 different and 3
equal bits respectively. This means that in this case both ψ and φ have a probability
that is a factor 128 smaller for both chains together. In a practical attack, the attacker
will calculate the chaining variables for about 4096 random message blocks. He expects
then to find a chaining variable that brings him in the optimal situation.

C.4 Differential attacks on FEAL-N based hash functions

Differential attacks on hash functions based on the block cipher FEAL-N [225, 228]
are more effective. The reason is that for FEAL-N there exists a 4-round iterative
characteristic with relatively high probability [21]. Let ψ = 80 60 80 00x and let φ =
80 E0 80 00x, then the following pattern of exors is obtained at the beginning of every
round:

(ψ,ψ) −→ (ψ, φ) −→ (φ, φ) −→ (φ, ψ) .

The corresponding output exor is then equal to the input exor. All four transitions
have probability 1/4, which yields an overall probability of 1/256. The actual input
and output exor pattern is equal to (ψ, 0), as the left part is added modulo 2 to the
right part at the beginning and at the end of the encryption. Note that this attack
assumes that N is a multiple of 4.

Knowledge of the key can speed up the search for a right pair in two ways: the
plaintext can be chosen such that the characteristic is always satisfied in the first
round, and an early abort strategy can be used. Note that in case of FEAL-N there
are no keys that increase the probability of the characteristic.

• The characteristic will be satisfied in the first round if an input exor of E0x and
80x of the second S-box yield an output exor 80x. There are exactly 216/4 =
16, 384 input pairs for which this holds. If the plaintext bytes are denoted with
P [0] through P [8], and the round keys are numbered as in [21], the inputs S2a
and S2b of this S-box can be written as follows:

S2a = P [0]⊕ P [1]⊕ P [4]⊕ P [5]⊕K2a (C.1a)
S2b = P [2]⊕ P [3]⊕ P [6]⊕ P [7]⊕K2b , (C.1b)

with

K2a = K89[0]⊕K89[1]⊕Kab[0]⊕Kab[1]⊕K0[0]
K2b = K89[2]⊕K89[3]⊕Kab[2]⊕Kab[3]⊕K0[2] .

292 APPENDIX C. DIFFERENTIAL CRYPTANALYSIS

One possibility to obtain a right pair is to choose S2a = S2b = A0x. One can now
solve P [5] and P [7] (or 2 other variables) from (C.1a) and (C.1b) respectively,
such that the characteristic will be always satisfied in the first round.

• The average number of rounds that have to be computed can be reduced to 7/3
if after every round it is verified whether the pair is a right pair. This yields a
speedup with a factor 3N/7.

From this it follows that the number of full encryptions to find a right pair is about

22N

2N
.

The number of operations to find a collision for a single length hash function based on
FEAL-N is indicated in table C.2. For a second preimage the number of encryptions
has to be multiplied by 4. A solution for N equal to 4, 8, 12, and 16 can also be found
in table C.2. The scheme suggested in the Japanese ISO contribution [161] can be
described as follows:

Hi = E(Hi−1, Xi)⊕Xi ⊕Hi−1 .

It corresponds to scheme 3 of section 5.3.1.4, and it will thus be vulnerable to a
differential attack.

A second scheme that was described in this contribution is a variant on MDC-2.
The only difference is that before the plaintext enters the second block cipher, the 8-
byte constant A consisting of 8 bytes with the value AAx is added modulo 2. Also both
key and plaintext are added modulo 2 to the ciphertexts, both after the exchange:

T1i = E(H1i−1, Xi) = LT1i ‖ RT1i
T2i = E(H2i−1, Xi ⊕A) = LT2i ‖ RT2i

V 1i = LT1i ‖ RT2i
V 2i = LT2i ‖ RT1i

H1i = V 1i ⊕Xi ⊕H1i−1

H2i = V 2i ⊕Xi ⊕H1i−1 .

In this case one has to obtain a good pair for both keys. The exchange of the right
halves has no influence on the result, as the same characteristic is used in both en-
cryptions. A simple way to guarantee that Xi satisfies the characteristic in both
encryptions is to restrict the attack to pairs (H1i−1,H2i−1) that yield the same value
of K2a and K2b (this holds with a probability of 1/65, 536). It is clear that one could
easily generalize the solution. The number of full encryptions is then approximately
equal to

24N

3N
.

The number of operations to find a collision for this double length hash function based
on FEAL-N and a solution for N equal to 4 and 8 are given in table C.2.

C.5. CONCLUSION 293

type N # encryptions Example of collisions
key(s) plaintext

single length 4 25 F8F5D8605FF0F6F1x 7326DA39FD2420BFx
8 212 9186875F60D26F00x 87BE2AB529A5760Fx
12 219.6 416827E2BF080FCDx DA24259F826B76D3x
16 227 BFABEE5EF51AAF65x 7E3D20303BBA7B23x

double length 4 212.2 E2033C42A611CCCFx 7BFE2B7075B74FBFx
BFD26A87CCE9EBD9x

8 227.2 2A6DE5B70AB4B489x 185B91454CC4CB87x
F3BFA9B41BED3A46x

12 242.6

16 258.2

Table C.2: Number of operations to find a collision for hash functions based on FEAL-
N and examples of collisions.

One can conclude from table C.2 that more than 16 rounds are required to make a
differential attack less efficient than a birthday attack. If one imposes that a differential
second preimage attack is slower than an exhaustive search, N has to be larger than
32.

C.5 Conclusion

Differential attacks on hash functions based on DES form no serious threat because no
good characteristics are known with an even number of rounds. If the number of rounds
of DES would be decreased by one, the only attack that would be more efficient than
a random attack is the second preimage attack on the single length hash functions.
MDC-2 and MDC-4 are resistant to differential attacks if the number of rounds is 13 or
more. Further improvements might be expected on non-iterative characteristics with
a high probability and on characteristics for an even number of rounds. If however a
good characteristic exists with the same length as the block cipher, as is the case for
FEAL-N, one has to increase the number of rounds in order to lower the probability
of the characteristic. Contrary to a differential chosen or known plaintext attack on a
block cipher, a differential attack on the hash function based on the same block cipher
can be a practical attack.

294 APPENDIX C. DIFFERENTIAL CRYPTANALYSIS

Appendix D

The Number of Graphs with a
Given Minimum Degree

Est quadam prodire tenus, si
non datur ultra. Horatius

The purpose of this appendix is to determine the number of labeled undirected
simple graphs with n vertices with minimum degree dmin. This problem is interesting
in its own right, but it is studied here because it allows to determine the number
of quadratic Boolean functions of n variables satisfying PC(1) of order m. Indeed,
theorem 8.9 states that this number is equal to the number of labeled undirected
simple graphs with n vertices with minimum degree dmin equal to m+ 1.

D.1 Definitions and basic properties

In this appendix, all definitions and results are restricted to labeled undirected simple
graphs. For more general definitions the reader is referred to [139]. The degree of
a vertex is equal to the number of edges incident to that vertex, and the minimum
degree dmin of a graph is the minimum of the set consisting of the degrees of the
vertices. Similarly, the maximum degree dmax of a graph is the maximum of this set.
The number of graphs with n vertices and minimum (maximum) degree dmin (dmax)

will be denoted with Admin
n (Bdmax

n). Determining Admin
n and Bdmax

n for general n
and dmin seems to be a difficult problem [140]. By complementing the corresponding
graphs, one obtains that

Admin
n = Bn−1−dmin

n .

Note that this does not necessarily holds if one considers the restriction to connected
graphs.

295

296 APPENDIX D. GRAPHS WITH A GIVEN MINIMUM DEGREE

Let ak (k = 1, 2, . . .) be a series of numbers. Then the formal power series

A(x) =
∞∑
k=1

ak
xk

k!

is called the exponential generating function for the series ak.
The number of labeled graphs with k vertices will be denoted with gk and the

number of connected graphs with k vertices will be denoted with g′k. The corresponding
exponential generating functions are then G(x) and G′(x) respectively. The following
relation can be established between G(x) and G′(x) [140].

Theorem D.1 The exponential generating functions G(x) and G′(x) for labeled graphs
and labeled connected graphs satisfy the following relation

1 +G(x) = eG
′(x) .

This theorem can be generalized [140]: if the exponential generating function for
a class H(x) of graphs is known, then the exponential generating function for the
corresponding connected graphs H ′(x) can be obtained as the formal logarithm of
the first series. The relation between the two series is then given by the following
proposition.

Proposition D.1 If
∑∞
k=0 hkx

k = exp [
∑∞
k=0 h′kxk], then for n ≥ 1

h′n = hn −
1
n

n−1∑
k=1

k h′khn−k . (D.1)

It is now straightforward to determine the number of connected graphs.

g′n
n!

= 2∆(n) − 1
n

n−1∑
k=1

k
gk
k!

g′n−k
n− k!

,

with ∆(n) = n·(n−1)
2 . This can be rewritten as

g′n = 2∆(n) −
n−1∑
k=1

(
n− 1
k − 1

)
g′k 2∆(n−k) .

A second result that is required is about trees. A tree is a connected graph that
has no cycles. The number of trees was determined by Cayley in 1889 [140].

Theorem D.2 (Cayley) The number Tn of trees with n vertices is

Tn = nn−2 . (D.2)

The next result can be used to show that certain graphs are always connected.

D.2. A SOLUTION FOR SOME VALUES OF THE MINIMUM DEGREE 297

Proposition D.2 Let G be a graph with n vertices and with dmin ≥ n−k. A sufficient
condition for G to be connected is that

k ≤
⌈
n

2

⌉
. (D.3)

Proof: The proof consists in showing that if G is not connected, then

dmin <

⌊
n

2

⌋
.

If G is not connected, G will consist of at least 2 components. The minimum degree
dmin of G will be maximal if G consists of 2 components G1 and G2. Indeed, if there
are more than 2 components, dmin will not decrease if components are merged by
adding vertices. Now

dmin = min {dmin(G1), dmin(G2)} <
⌊
n

2

⌋
.

This completes the proof.

D.2 A solution for some values of the minimum degree

In this section a solution will be given for the following cases: dmin = 0, 1, 2, n−3, n−2,
and n − 1. The cases dmin = 0 and dmin = n − 1 are trivial, as they correspond to
all graphs and the complete graph respectively. The cases dmin = 1 and dmin =
n − 2 are not too difficult to solve, but the cases dmin = 2 and dmin = n − 3 require
more complicated derivations. We believe that it might be possible to extend these
techniques for dmin = 3 and dmin = n− 4.

The case dmin = n − 2 corresponds to dmax = 1. Hence one has to count the
number of ways in which one can construct a graph with 0 through bn/2c edges, such
that none of these are adjacent:

B1
n =

∑
0≤2i≤n

1
i!

i−1∏
j=0

(
n− 2j

2

)
.

This can be simplified to

B1
n =

∑
0≤2i≤n

n!
(n− 2i)! i! 2i

.

The case dmin = 1 corresponds to the number of graphs with no isolated points.
The number of these graphs is given by the following recursive equation (for n > 2):

A1
n = 2∆(n) − 1−

n−1∑
k=2

(
n

k

)
A1
k ,

298 APPENDIX D. GRAPHS WITH A GIVEN MINIMUM DEGREE

with A1
2 = 1. The solution of this equation is given by

A1
n =

n−1∑
k=1

(−1)n−k−1

(
n− 1
k

)
2∆(k) (2k − 1) .

This can be further simplified to

A1
n = 2∆(n)

n∑
k=0

(−1)k
(
n

k

)
2−

k(2n−k−1)
2 .

One can show that asymptotically

A1
n

2∆(n)
= 1− n

2n−1
+
n(n− 1)
(2n−1)2

+O

(
n3

23n

)
.

In order to solve the case dmin = n−3 or to determine An−3
n , one will first compute

the number B2
n of graphs with dmax = 2. The corresponding number B′2

n of connected
graphs can be found directly. For n = 1 and n = 2, there is only 1 solution, and for
n ≥ 3 one finds (n! + (n − 1)!)/2 graphs. The first term corresponds to the number
of paths of length n − 1, and the second terms to the number of cycles. Hence the
following expression is valid for n ≥ 1:

B′2
n =

⌊
(n+ 1)!

2n

⌋
.

With equation (D.1) one obtains the following recursion formula

B2
n =

⌊
(n+ 1)!

2n

⌋
+
n−1∑
k=1

(
n− 1
k − 1

)⌊
(k + 1)!

2k

⌋
B2
n−k . (D.4)

From complementation of these graphs, one also has obtained An−3
n . Note that A′n−3

n

is not equal to B′2
n, as complementing a connected graph with dmin = n − 3 will not

always yield a connected graph. For n ≤ 4, the results for dmin = 1 can be used,
and for n ≥ 5 it follows from proposition D.3 that all graphs with dmin = n − 3 are
connected.

A more complicated derivation yields the number A2
n of graphs with dmin = 2, or

the graphs with no end points (and no isolated points). In [276] it is shown that the
number A′2

n of connected graphs with dmin = 2 satisfies the following equation:

∞∑
k=3

A′2
k

k!
xk =

∞∑
k=1

Ck
k!

xk e−kx .

Here Cn = g′n − Tn, is equal to the number of connected graphs that are not trees.
From this recursion one obtains

A′2
n =

n∑
k=3

(−1)n−k
(
n

k

)
Ck n

n−k .

D.2. A SOLUTION FOR SOME VALUES OF THE MINIMUM DEGREE 299

The corresponding number of graphs can then be found with equation (D.1):

A2
n = A′2

n +
n−3∑
k=3

(
n− 1
k − 1

)
A′2
nA

2
n−k . (D.5)

Numerical results for graphs and connected graphs with up to 10 vertices are col-
lected in table D.1 and D.2 respectively. For small values of n, the upper index in
An−kn can become negative. In that case the convention A−k

n = A0
n (k > 0) was used.

n A0
n A1

n A2
n An−3

n An−2
n An−1

n

1 1 0 0 1 1 1
2 2 1 0 2 2 1
3 8 4 1 8 4 1
4 64 41 10 41 10 1
5 1024 768 253 253 26 1
6 32768 27449 12068 1858 76 1
7 2097152 1887284 1052793 15796 232 1
8 268435456 252522481 169505868 152219 764 1
9 68719476736 66376424160 51046350021 1638323 2620 1

10 35184372088832 34509011894545 29184353055900 19467494 9496 1

Table D.1: The number of graphs with minimum degree 0, 1, 2, n− 3, n− 2, and n− 1.

n A′0
n A′1

n A′2
n A′n−3

n A′n−2
n A′n−1

n

1 1 1 0 1 1 1
2 1 1 0 1 1 1
3 4 4 1 4 4 1
4 38 38 10 38 10 1
5 728 728 253 253 26 1
6 26704 26704 12058 1858 76 1
7 1866256 1866256 1052443 15796 232 1
8 251548592 251548592 169488200 152219 764 1
9 66296291072 66296291072 51045018089 1638323 2620 1

10 34496488594816 34496488594816 29184193354806 19467494 9496 1

Table D.2: The number of connected graphs with minimum degree 0, 1, 2, n− 3, n− 2,
and n− 1.

300 APPENDIX D. GRAPHS WITH A GIVEN MINIMUM DEGREE

Bibliography

The art of being wise is the art of knowing what
to overlook. William James

[1] C.M. Adams and S.E. Tavares, “The structured design of cryptographically good
S-boxes,” Journal of Cryptology, Vol. 3, No. 1, 1990, pp. 27–41.

[2] C.M. Adams and S.E. Tavares, “A note on the generation and counting of
bent sequences,” IEEE Trans. on Information Theory, Vol. IT–36, No. 5, 1990,
pp. 1170–1173.

[3] C.M. Adams and S.E. Tavares, “The use of bent sequences to achieve higher-
order strict avalanche criterion in S-box design,” IEE Proceedings-E, to appear.

[4] G.B. Agnew, R.C. Mullin, and S.A. Vanstone, “Common application protocols
and their security characteristics,” CALMOS CA34C168 Application Notes, U.S.
Patent Number 4,745,568, August 1989.

[5] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, “The Design and Analysis of Com-
puter Algorithms,” Addison-Wesley, 1974.

[6] S.G. Akl, “On the security of compressed encodings,” Advances in Cryptology,
Proc. Crypto’83, D. Chaum, Ed., Plenum Press, New York, 1984, pp. 209–230.

[7] E. Allender, “Some consequences on the existence of pseudo-random generators,”
Journal of Computer and System Sciences, Vol. 39, 1989, pp. 101–124.

[8] “American National Standard for Data Encryption Algorithm (DEA),” X3.92-
1981, ANSI, New York.

[9] “American National Standard for Financial Institution Message Authentication
(Wholesale),” X9.9-1986 (Revised), ANSI, New York.

[10] F. Ayoub, “Probabilistic completeness of substitution-permutation encryption
networks,” IEE Proceedings-E, Vol. 129, 1982, pp. 195–199.

[11] S. Babbage, “On the relevance of the strict avalanche criterion,” Electronic Let-
ters, Vol. 26, No. 7, 1990, pp. 461–462.

[12] T. Baritaud, H. Gilbert, and M. Girault, “FFT hashing is not collision-free,”
Advances in Cryptology, Proc. Eurocrypt’92, LNCS 658, R.A. Rueppel, Ed.,
Springer-Verlag, 1993, pp. 35–44.

301

302 BIBLIOGRAPHY

[13] M. Beale and M.F. Monaghan, “Encryption using random Boolean functions,”
Proc. of the IMA Conference on Cryptography and Coding, Cirencester, De-
cember 1986, H. Beker and F. Piper, Eds., Oxford University Press, Oxford,
pp. 219–230.

[14] K.G. Beauchamp, “Walsh Functions and Their Applications,” Academic Press,
New York, 1975.

[15] M. Bellare and S. Micali, “How to sign given any trapdoor function,” Proc. 20th
ACM Symposium on the Theory of Computing, 1988, pp. 32–42.

[16] I. Bellefroid and K. Beyen, “Evaluatie van de Cryptografische Veiligheid van
Anti-Virus Paketten (Evaluation of the Security of Anti-Virus Software – in
Dutch),” ESAT Laboratorium, Katholieke Universiteit Leuven, Thesis grad. eng.,
1992.

[17] E. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg, “On the inherent in-
tractability of certain coding problems,” IEEE Trans. on Information Theory,
Vol. IT–24, No. 3, 1978, pp. 384–386.

[18] Th. Berson, “Differential cryptanalysis mod 232 with applications to MD5,”
Advances in Cryptology, Proc. Eurocrypt’92, LNCS 658, R.A. Rueppel, Ed.,
Springer-Verlag, 1993, pp. 71–80.

[19] C. Besnard and J. Martin, “DABO: proposed additional message authentication
algorithms for ISO 8731,” preprint, 1992.

[20] E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,”
Journal of Cryptology, Vol. 4, No. 1, 1991, pp. 3–72.

[21] E. Biham and A. Shamir, “Differential cryptanalysis of Feal and N-hash,”
Advances in Cryptology, Proc. Eurocrypt’91, LNCS 547, D.W. Davies, Ed.,
Springer-Verlag, 1991, pp. 1–16.

[22] E. Biham and A. Shamir, “Differential cryptanalysis of Snefru, Khafre, REDOC-
II, LOKI, and Lucifer,” Advances in Cryptology, Proc. Crypto’91, LNCS 576,
J. Feigenbaum, Ed., Springer-Verlag, 1992, pp. 156–171.

[23] E. Biham and A. Shamir, “Differential cryptanalysis of the full 16-round DES,”
Technion Technical Report # 708, December 1991.

[24] E. Biham, “On the applicability of differential cryptanalysis to hash functions,”
E.I.S.S. Workshop on Cryptographic Hash Functions, Oberwolfach (D), March
25-27, 1992.

[25] E. Biham and A. Shamir, “Differential Cryptanalysis of Iterated Cryptosystems,”
Springer-Verlag, 1992.

[26] G.R. Blakley and I. Borosh, “Rivest-Shamir-Adleman public-key cryptosystems
do not always conceal messages,” Comp. and Maths. with Applications, Vol. 5,
1979, pp. 169–178.

[27] J. Bosset, “Contre les risques d’altération, un système de certification des infor-
mations,” 01 Informatique, No. 107, February 1977.

BIBLIOGRAPHY 303

[28] B.O. Brachtl, D. Coppersmith, M.M. Hyden, S.M. Matyas, C.H. Meyer, J. Oseas,
S. Pilpel, and M. Schilling, “Data Authentication Using Modification Detection
Codes Based on a Public One Way Encryption Function,” U.S. Patent Num-
ber 4,908,861, March 13, 1990.

[29] G. Brassard, “On computationally secure authentication tags requiring short
secret shared keys,” Advances in Cryptology, Proc. Crypto’82, D. Chaum,
R.L. Rivest, and A.T. Sherman, Eds., Plenum Press, New York, 1983, pp. 79–86.

[30] G. Brassard and C. Crépeau, “Non-transitive transfer of confidence: a perfect
zero-knowledge protocol for SAT and beyond,” Proc. 27th IEEE Symposium on
Foundations of Computer Science, 1986, pp. 188–195.

[31] E.F. Brickell, J.H. Moore, and M.R. Purtill, “Structures in the S-boxes of the
DES,” Advances in Cryptology, Proc. Crypto’86, LNCS 263, A.M. Odlyzko, Ed.,
Springer-Verlag, 1987, pp. 3–8.

[32] E.F. Brickell and A.M. Odlyzko, “Cryptanalysis: a survey of recent results,” in
“Contemporary Cryptology: The Science of Information Integrity,” G.J. Sim-
mons, Ed., IEEE Press, 1991, pp. 501–540.

[33] L. Brown, J. Pieprzyk, and J. Seberry, “LOKI – a cryptographic primitive
for authentication and secrecy applications,” Advances in Cryptology, Proc.
Auscrypt’90, LNCS 453, J. Seberry and J. Pieprzyk, Eds., Springer-Verlag, 1990,
pp. 229–236.

[34] L. Brown, M. Kwan, J. Pieprzyk, and J. Seberry, “ Improving resistance to
differential cryptanalysis and the redesign of LOKI,” Advances in Cryptology,
Proc. Asiacrypt’91, LNCS, Springer-Verlag, to appear.

[35] P. Camion, “Étude de codes binaires abéliens modulaires autoduaux de petites
longueurs,” Revue du CETHEDEC, NS 79-2, 1979, pp. 3–24.

[36] P. Camion, “Can a fast signature scheme without secret be secure?” Proc. 2nd
International Conference on Applied Algebra, Algebraic Algorithms, and Error-
Correcting Codes, LNCS 228, A. Poli, Ed., Springer-Verlag, 1986, pp. 215–241.

[37] P. Camion and J. Patarin, “The knapsack hash function proposed at Crypto’89
can be broken,” Advances in Cryptology, Proc. Eurocrypt’91, LNCS 547,
D.W. Davies, Ed., Springer-Verlag, 1991, pp. 39–53.

[38] P. Camion, C. Carlet, P. Charpin, and N. Sendrier, “On correlation-immune
functions,” Advances in Cryptology, Proc. Crypto’91, LNCS 576, J. Feigenbaum,
Ed., Springer-Verlag, 1992, pp. 86–100.

[39] M. Campana and M. Girault, “How to use compressed encoding mechanisms in
data protection (Comment utiliser les fonctions de condensation dans la protec-
tion des données – in French),” Proc. Securicom 1988, pp. 91–110.

[40] C. Carlet, “A transformation on Boolean functions, its consequences on some
problems related to Reed-Muller codes,” Proc. Eurocode’90, LNCS 514, G. Cohen
and P. Charpin, Eds., Springer-Verlag, 1991, pp. 42–50.

304 BIBLIOGRAPHY

[41] C. Carlet, “Partially-bent functions,” Advances in Cryptology, Proc. Crypto’92,
LNCS, E.F. Brickell, Ed., Springer-Verlag, to appear.

[42] J.L. Carter and M.N. Wegman, “Universal classes of hash functions,” Proc. 9th
ACM Symposium on the Theory of Computing, 1977, pp. 106–112.

[43] J.L. Carter and M.N. Wegman, “Universal classes of hash functions,” Journal of
Computer and System Sciences, Vol. 18, 1979, pp. 143–154.

[44] “Message Handling/Information Processing Systems,” C.C.I.T.T. Recommenda-
tion X.400, 1988.

[45] “The Directory — Overview of Concepts,” C.C.I.T.T. Recommendation X.500,
1988, (same as IS 9594-1, 1989).

[46] “The Directory — Authentication Framework,” C.C.I.T.T. Recommendation
X.509, 1988, (same as IS 9594-8, 1989).

[47] “Echanges Télématiques Entre les Banques et leurs Clients,” Comité Français
d’Organisation et de Normalisation Bancaires (CFONB), Standard ETEBAC 5,
Version 1.2, May 1989.

[48] D. Chaum and J.-H. Evertse, “Cryptanalysis of DES with a reduced number of
rounds,” Advances in Cryptology, Proc. Crypto’85, LNCS 218, H.C. Williams,
Ed., Springer-Verlag, 1985, pp. 192–211.

[49] D. Chaum, M. van der Ham, and B. den Boer, “A provably secure and efficient
message authentication scheme,” preprint, 1992.

[50] H. Cloetens, Y. Desmedt, L. Bierens, J. Vandewalle and R. Govaerts, “Additional
properties in the S-boxes of the DES,” Abstracts Eurocrypt’86, May 20–22, 1986,
Linköping, Sweden, p. 2.3. (Full paper available from the authors.)

[51] F. Cohen, “Computer viruses — theory and experiments,” Computers & Secu-
rity, Vol. 6, 1987, pp. 22-35.

[52] F. Cohen, “A cryptographic checksum for integrity protection,” Computers &
Security, Vol. 6, 1987, pp. 505-510.

[53] F. Cohen, “A Short Course on Computer Viruses,” ASP Press, Pittsburgh (PA),
1990.

[54] F. Cohen, “The ASP integrity toolkit. Version 3.5,” ASP Press, Pittsburgh (PA),
1991.

[55] G.D. Cohen, M.G. Karpovsky, H.F. Mattson, and J.R. Schatz, “Covering radius
– survey and recent results,” IEEE Trans. on Information Theory, Vol. IT–31,
No. 3, 1985, pp. 328–343.

[56] D. Coppersmith, “Another birthday attack,” Advances in Cryptology, Proc.
Crypto’85, LNCS 218, H.C. Williams, Ed., Springer-Verlag, 1985, pp. 14–17.

[57] D. Coppersmith, “Analysis of Jueneman’s MDC scheme,” unpublished result,
1988.

BIBLIOGRAPHY 305

[58] D. Coppersmith, “Analysis of ISO/CCITT Document X.509 Annex D,” IBM
T.J. Watson Center, Yorktown Heights, N.Y., 10598, Internal Memo, June 11,
1989, (also ISO/IEC JTC1/SC20/WG2/N160).

[59] D. Coppersmith, “Two broken hash functions,” IBM T.J. Watson Center, York-
town Heights, N.Y., 10598, Research Report RC 18397, October 6, 1992.

[60] M.J. Coster, B.A. LaMacchia, A.M. Odlyzko, and C. P. Schnorr, “An improved
low-density subset sum algorithm,” Advances in Cryptology, Proc. Eurocrypt’91,
LNCS 547, D.W. Davies, Ed., Springer-Verlag, 1991, pp. 54–67.

[61] J. Daemen, R. Govaerts, and J. Vandewalle, “A framework for the design of
one-way hash functions including cryptanalysis of Damg̊ard’s one-way function
based on a cellular automaton,” Advances in Cryptology, Proc. Asiacrypt’91,
LNCS, Springer-Verlag, to appear.

[62] J. Daemen, A. Bosselaers, R. Govaerts, and J. Vandewalle, “Collisions for
Schnorr’s FFT-hash,” Presented at the rump session of Asiacrypt’91.

[63] J. Daemen, R. Govaerts, and J. Vandewalle, “A hardware design model for cryp-
tographic algorithms,” Computer Security – ESORICS 92, Proc. Second Euro-
pean Symposium on Research in Computer Security, LNCS 648, Y. Deswarte,
G. Eizenberg, and J.-J. Quisquater, Eds., Springer-Verlag, 1992, pp. 419–434.

[64] I.B. Damg̊ard, “Collision free hash functions and public key signature schemes,”
Advances in Cryptology, Proc. Eurocrypt’87, LNCS 304, D. Chaum and
W.L. Price, Eds., Springer-Verlag, 1988, pp. 203–216.

[65] I.B. Damg̊ard, “The application of claw free functions in cryptography,” PhD
Thesis, Aarhus University, Mathematical Institute, 1988.

[66] I.B. Damg̊ard, “A design principle for hash functions,” Advances in Cryptology,
Proc. Crypto’89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 416–
427.

[67] I.B. Damg̊ard, personal communication, 1991.
[68] I.B. Damg̊ard and L.R. Knudsen, “Some attacks on the ARL hash function,”

Presented at the rump session of Auscrypt’92.
[69] G. Davida, Y. Desmedt, and B. Matt, “An approach to containing computer

viruses,” in “Rogue Programs: Viruses, Worms and Trojan Horses,” L.J. Hoff-
man, Ed., Van Nostrand Reinhold, 1990, pp. 261–272.

[70] D. Davies and W. L. Price, “The application of digital signatures based on public
key cryptosystems,” NPL Report DNACS 39/80, December 1980.

[71] D. Davies, “Applying the RSA digital signature to electronic mail,” IEEE Com-
puter, Vol. 16, February 1983, pp. 55–62.

[72] D. Davies, “A message authenticator algorithm suitable for a mainframe com-
puter,” Advances in Cryptology, Proc. Crypto’84, LNCS 196, G.R. Blakley and
D. Chaum, Eds., Springer-Verlag, 1985, pp. 393–400.

[73] D. Davies and W. L. Price, “Digital signatures, an update,” Proc. 5th Interna-
tional Conference on Computer Communication, October 1984, pp. 845–849.

306 BIBLIOGRAPHY

[74] D. Davies and W.L. Price, “Security for Computer Networks: an Introduction to
Data Security in Teleprocessing and Electronic Funds Transfer (2nd edition),”
Wiley & Sons, 1989.

[75] D. Davies, “Investigation of a potential weakness in the DES algorithm,”
preprint, July 1987 (revised January 1990).

[76] M. Davio, J.-P. Deschamps, and A. Thayse, “Discrete and Switching Functions,”
McGraw-Hill, 1978.

[77] M. Davio, Y. Desmedt, and J.-J. Quisquater, “Propagation characteristics of the
DES,” Advances in Cryptology, Proc. Eurocrypt’84, LNCS 209, N. Cot, T. Beth,
and I. Ingemarsson, Eds., Springer-Verlag, 1985, pp. 62–73.

[78] M.H. Dawson and S.E. Tavares, “An expanded set of S-box design criteria based
on information theory and its relation to differential-like attacks,” Advances in
Cryptology, Proc. Eurocrypt’91, LNCS 547, D.W. Davies, Ed., Springer-Verlag,
1991, pp. 352–367.

[79] W. de Jonge and D. Chaum, “Attacks on some RSA signatures,” Advances in
Cryptology, Proc. Crypto’85, LNCS 218, H.C. Williams, Ed., Springer-Verlag,
1985, pp. 18–27.

[80] W. de Jonge and D. Chaum, “Some variations on RSA signatures and their
security,” Advances in Cryptology, Proc. Crypto’86, LNCS 263, A.M. Odlyzko,
Ed., Springer-Verlag, 1987, pp. 49–59.

[81] B. den Boer and A. Bosselaers, “An attack on the last two rounds of MD4,” Ad-
vances in Cryptology, Proc. Crypto’91, LNCS 576, J. Feigenbaum, Ed., Springer-
Verlag, 1992, pp. 194–203.

[82] B. den Boer, personal communication.

[83] B. den Boer and A. Bosselaers, “Collisions for the compression function of MD5,”
preprint, April 1992.

[84] B. den Boer, “A simple and key-economical authentication scheme,” preprint,
1992.

[85] D. Denning, “Cryptography and Data Security,” Addison-Wesley, 1982.

[86] D. Denning, “Digital signatures with RSA and other public-key cryptosystems,”
Communications ACM, Vol. 27, April 1984, pp. 388–392.

[87] A. De Santis and M. Yung, “On the design of provably-secure cryptographic
hash functions,” Advances in Cryptology, Proc. Eurocrypt’90, LNCS 473,
I.B. Damg̊ard, Ed., Springer-Verlag, 1991, pp. 412–431.

[88] Y. Desmedt, J. Vandewalle, and R. Govaerts, “The mathematical relation be-
tween the economic, cryptographic and information theoretical aspects of au-
thentication,” Proc. Fourth Symposium on Information Theory in the Benelux,
Haasrode, Belgium, 26-27 May 1983, pp. 63-65.

BIBLIOGRAPHY 307

[89] Y. Desmedt, J.-J. Quisquater, and M. Davio, “Dependence of output on input in
DES: small avalanche characteristics,” Advances in Cryptology, Proc. Crypto’84,
LNCS 196, G.R. Blakley and D. Chaum, Eds., Springer-Verlag, 1985, pp. 359–
376.

[90] Y. Desmedt, “Analysis of the security and new algorithms for modern industrial
cryptography,” Doctoral Dissertation, Katholieke Universiteit Leuven, 1984.

[91] Y. Desmedt, “Unconditionally secure authentication schemes and practical and
theoretical consequences,” Advances in Cryptology, Proc. Crypto’85, LNCS 218,
H.C. Williams, Ed., Springer-Verlag, 1985, pp. 42–55.

[92] Y. Desmedt, “What happened with knapsack cryptographic schemes?” in “Per-
formance Limits in Communication, Theory and Practice,” J.K. Skwirzynski,
Ed., Kluwer, 1988, pp. 113–134.

[93] M. Desoete, K. Vedder, and M. Walker, “Cartesian authentication schemes,”
Advances in Cryptology, Proc. Eurocrypt’89, LNCS 434, J.-J. Quisquater and
J. Vandewalle, Eds., Springer-Verlag, 1990, pp. 476–490.

[94] M. Dichtl, personal communication, 1991.

[95] W. Diffie and M.E. Hellman, “New directions in cryptography,” IEEE Trans. on
Information Theory, Vol. IT–22, No. 6, 1976, pp. 644–654.

[96] W. Diffie and M.E. Hellman, “Privacy and authentication: an introduction to
cryptography,” Proc. IEEE, Vol. 67, No. 3, March 1979, pp. 397-427.

[97] C. Ding, G. Xiao, and W. Shan, “The Stability Theory of Stream Ciphers,”
LNCS 561, Springer-Verlag, 1991.

[98] P.E. Dunne, “The Complexity of Boolean Networks,” A.P.I.C. Studies in Data
Processing No. 29, Academic Press, 1988.

[99] J. Ekberg, S. Herda, and J. Virtamo, “TeleTrusT — Technical concepts and
basic mechanisms,” in “Research into Networks and Distributed Applications,”
R. Speth, Ed., Elsevier Science Publishers, 1988, pp. 523–533.

[100] T. ElGamal, “A public key cryptosystem and a signature scheme based on dis-
crete logarithms,” IEEE Trans. on Information Theory, Vol. IT–31, No. 4, 1985,
pp. 469–472.

[101] J.-H. Evertse, “Linear structures in block ciphers,” Advances in Cryptology,
Proc. Eurocrypt’87, LNCS 304, D. Chaum and W.L. Price, Eds., Springer-Verlag,
1988, pp. 249–266.

[102] J.H. Evertse and E. Van Heyst, “Which new RSA-signatures can be computed
from certain given RSA-signatures?” Journal of Cryptology, Vol. 5, No. 1, 1992,
pp. 41–52.

[103] V. F̊ak, “Repeated uses of codes which detect deception,” IEEE Trans. on In-
formation Theory, Vol. IT–25, No. 2, 1979, pp. 233–234.

[104] H. Feistel, “Cryptography and computer privacy,” Scientific American, Vol. 228,
No. 5, May 1973, pp. 15–23.

308 BIBLIOGRAPHY

[105] H. Feistel, W.A. Notz, and J.L. Smith, “Some cryptographic techniques for
machine-to-machine data communications,” Proc. IEEE, Vol. 63, No. 11, Novem-
ber 1975, pp. 1545–1554.

[106] W. Feller, “An Introduction to Probability Theory and Its Applications, Vol. 1,”
Wiley, 1968.

[107] A. Fiat and A. Shamir, “How to prove yourself: practical solutions to iden-
tification and signature problems,” Advances in Cryptology, Proc. Crypto’86,
LNCS 263, A.M. Odlyzko, Ed., Springer-Verlag, 1987, pp. 186–194.

[108] “Data Encryption Standard,” Federal Information Processing Standard (FIPS),
Publication 46, National Bureau of Standards, U.S. Department of Commerce,
Washington D.C., January 1977.

[109] “DES Modes of Operation,” Federal Information Processing Standard (FIPS),
Publication 81, National Bureau of Standards, US Department of Commerce,
Washington D.C., December 1980.

[110] “Computer Data Authentication,” Federal Information Processing Standard
(FIPS), Publication 131, National Bureau of Standards, US Department of Com-
merce, Washington D.C., May 1985.

[111] “Digital Signature Standard,” Federal Information Processing Standard (FIPS),
Draft, National Institute of Standards and Technology, US Department of Com-
merce, Washington D.C., August 30, 1991.

[112] “Secure Hash Standard,” Federal Information Processing Standard (FIPS),
Draft, National Institute of Standards and Technology, US Department of Com-
merce, Washington D.C., January 31, 1992.

[113] P. Flajolet and A.M. Odlyzko, “Random mapping statistics,” Advances in Cryp-
tology, Proc. Eurocrypt’89, LNCS 434, J.-J. Quisquater and J. Vandewalle, Eds.,
Springer-Verlag, 1990, pp. 329–354.

[114] R. Forré, “The strict avalanche criterion: spectral properties of Boolean func-
tions and an extended definition,” Advances in Cryptology, Proc. Crypto’88,
LNCS 403, S. Goldwasser, Ed., Springer-Verlag, 1990, pp. 450–468.

[115] R. Forré, “Methods and instruments for designing S-boxes,” Journal of Cryptol-
ogy, Vol. 2, No. 3, 1990, pp. 115–130.

[116] M.R. Garey and D.S. Johnson, “Computers and Intractability. A Guide to the
Theory of NP-Completeness,” W.H. Freeman and Company, New York, 1979.

[117] R. Garon and R. Outerbridge, “DES watch: an examination of the sufficiency
of the Data Encryption Standard for financial institution information security in
the 1990’s,” Cryptologia, Vol. XV, No. 3, 1991, pp. 177–193.

[118] E. Gilbert, F. MacWilliams, and N. Sloane, “Codes which detect deception,”
Bell System Technical Journal, Vol. 53, No. 3, 1974, pp. 405–424.

[119] J.K. Gibson, “Some comments on Damg̊ard’s hashing principle,” Electronic Let-
ters, Vol. 26, No. 15, 1990, pp. 1178–1179.

BIBLIOGRAPHY 309

[120] J.K. Gibson, “Discrete logarithm hash function that is collision free and one
way,” IEE Proceedings-E, Vol. 138, No. 6, November 1991, pp. 407–410.

[121] Y. Girardot, “Bull CP8 smart card uses in cryptology,” Advances in Cryptol-
ogy, Proc. Eurocrypt’84, LNCS 209, N. Cot, T. Beth, and I. Ingemarsson, Eds.,
Springer-Verlag, 1985, pp. 464–469.

[122] M. Girault, “Hash-functions using modulo-n operations,” Advances in Cryptol-
ogy, Proc. Eurocrypt’87, LNCS 304, D. Chaum and W.L. Price, Eds., Springer-
Verlag, 1988, pp. 217–226.

[123] M. Girault, R. Cohen, and M. Campana, “A generalized birthday attack,”
Advances in Cryptology, Proc. Eurocrypt’88, LNCS 330, C.G. Günther, Ed.,
Springer-Verlag, 1988, pp. 129–156.

[124] M. Girault, P. Toffin, and B. Vallée, “Computation of approximate L-th roots
modulo n and application to cryptography,” Advances in Cryptology, Proc.
Crypto’88, LNCS 403, S. Goldwasser, Ed., Springer-Verlag, 1990, pp. 100–117.

[125] M. Girault, “On consequences of a recent Coppersmith attack against the CCITT
X.509 hash function,” Presented at the rump session of Crypto’89.

[126] Ph. Godlewski and P. Camion, “Manipulations and errors, detection and local-
ization,” Advances in Cryptology, Proc. Eurocrypt’88, LNCS 330, C.G. Günther,
Ed., Springer-Verlag, 1988, pp. 97–106.

[127] O. Goldreich and L.A. Levin, “A hard-core predicate for all one-way functions,”
Proc. 21th ACM Symposium on the Theory of Computing, 1989, pp. 25-32.

[128] S. Goldwasser, S. Micali, and R. Rivest, “A “paradoxical” solution to the signa-
ture problem,” Proc. 25th IEEE Symposium on Foundations of Computer Sci-
ence, October 1984, pp. 441–448.

[129] S. Goldwasser, S. Micali, and R.L. Rivest, “A digital signature scheme secure
against adaptive chosen-message attacks,” SIAM Journal on Computing, Vol. 17,
No. 2, 1988, pp. 281-308.

[130] S.W. Golomb, “Shift register sequences,” Holden-Day, San Francisco, 1967.

[131] J.A. Gordon and H. Retkin, “Are big S-boxes best?” Cryptography: Proc. Work-
shop Cryptography (Burg Feuerstein 1982), LNCS 149, T. Beth, Ed., Springer
Verlag, 1983, pp. 257–262.

[132] J.A. Gordon, “Strong RSA keys,” Electronic Letters, Vol. 20, No. 12, 1984,
pp. 514–516.

[133] J.A. Gordon, “How to forge RSA certificates,” Electronic Letters, Vol. 21, No. 9,
1985, pp. 377–379.

[134] R.L. Graham, D.E. Knuth, and O. Patashnik, “Concrete Mathematics,”
Addison-Wesley, 1989.

[135] L.C. Guillou, “Smart cards and conditional access,” Advances in Cryptology,
Proc. Eurocrypt’84, LNCS 209, N. Cot, T. Beth, and I. Ingemarsson, Eds.,
Springer-Verlag, 1985, pp. 480–489.

310 BIBLIOGRAPHY

[136] L.C. Guillou, M. Davio, and J.-J. Quisquater, “Public-key techniques: random-
ness and redundancy,” Cryptologia, Vol. 13, April 1989, pp. 167–189.

[137] L.C. Guillou, J.-J. Quisquater, M. Walker, P. Landrock, and C. Shaer, “Precau-
tions taken against various potential attacks in ISO/IEC DIS 9796,” Advances in
Cryptology, Proc. Eurocrypt’90, LNCS 473, I.B. Damg̊ard, Ed., Springer-Verlag,
1991, pp. 465–473.

[138] S. Harari, “Non linear non commutative functions for data integrity,” Advances
in Cryptology, Proc. Eurocrypt’84, LNCS 209, N. Cot, T. Beth, and I. Ingemars-
son, Eds., Springer-Verlag, 1985, pp. 25–32.

[139] F. Harary, “Graph Theory,” Addison-Wesley, 1969.
[140] F. Harary and E.M. Palmer, “Graphical Enumeration,” Academic Press, 1973.
[141] G.H. Hardy and E.M. Wright, “An Introduction to the Theory of Numbers (5th

edition),” Oxford University Press, 1979.
[142] M.A. Harrison, “Introduction to Switching and Automata Theory,” McGraw-Hill,

1965.
[143] M.A. Harrison, “On asymptotic estimates in switching and automata theory,”

Journal of the Association for Computing Machinery, Vol. 13, No. 1, January
1966, pp. 151–157.

[144] F. Heider, D. Kraus, and M. Welschenbach, “Some preliminary remarks on the
Decimal Shift and Add algorithm (DSA),” Abstracts Eurocrypt’86, May 20–22,
1986, Linköping, Sweden, p. 1.2. (Full paper available from the authors.)

[145] H.J. Helgert and R.D. Stinaff, “Minimum-distance bounds for binary linear
codes,” IEEE Trans. on Information Theory, Vol. IT–19, No. 3, 1973, pp. 344–
356.

[146] M. Hellman, R. Merkle, R. Schroeppel, L. Washington, W. Diffie, S. Pohlig, and
P. Schweitzer, “Results of an initial attempt to cryptanalyze the NBS Data En-
cryption Standard,” Information Systems Lab., Dept. of Electrical Eng., Stanford
Univ., 1976.

[147] M. Hellman, “A cryptanalytic time-memory trade-off,” IEEE Trans. on Infor-
mation Theory, Vol. IT–26, No. 4, 1980, pp. 401–406.

[148] Y.J. Huang and F. Cohen, “Some weak points of one fast cryptographic checksum
algorithm and its improvement,” Computers & Security, Vol. 7, 1988, pp. 503-
505.

[149] R. Impagliazzo and M. Naor, “Efficient cryptographic schemes provably as se-
cure as subset sum,” Proc. 30th IEEE Symposium on Foundations of Computer
Science, 1989, pp. 236–241.

[150] R. Impagliazzo and S. Rudich, “Limits on the provable consequences of one-way
permutations,” Proc. 21st ACM Symposium on the Theory of Computing, 1990,
pp. 44–61.

[151] “Information processing – Open systems interconnection – Basic reference model
– Part 2: Security architecture,” IS 7498/2, ISO/IEC, 1987.

BIBLIOGRAPHY 311

[152] “Information technology - Data cryptographic techniques - Modes of operation
for a 64-bit block cipher algorithm,” IS 8372, ISO/IEC, 1987.

[153] “Banking - Requirements for message authentication (wholesale),” IS 8730, ISO,
1990.

[154] “Banking - approved algorithms for message authentication, Part 1, DEA,” IS
8731-1, ISO, 1987. “Part 2, Message Authentication Algorithm (MAA),” IS 8731-
2, ISO, 1987.

[155] “Information technology - Security techniques - Digital signature scheme giving
message recovery,” IS 9796, ISO/IEC, 1991.

[156] “Information technology - Data cryptographic techniques - Data integrity mecha-
nisms using a cryptographic check function employing a block cipher algorithm,”
IS 9797, ISO/IEC, 1989.

[157] “Information technology - Security techniques - Procedures for the registration of
cryptographic algorithms,” IS 9979, ISO/IEC, 1991.

[158] “Information technology - Security techniques - Modes of operation of an n-bit
block cipher algorithm,” IS 10116, ISO/IEC, 1991.

[159] “Information technology - Security techniques - Hash-functions, Part 1: General
and Part 2: Hash-functions using an n-bit block cipher algorithm,” DIS 10118,
ISO/IEC, 1992.

[160] “Report of two ISO/IEC JTC1/SC20/WG2 ad-hoc editorial meetings on ‘Hash
functions for digital signatures’,” ISO-IEC/JTC1/SC20/WG2 N70, 1990.

[161] “Hash functions using a pseudo random algorithm,” ISO-IEC/JTC1/SC27/WG2
N98, Japanese contribution, 1991.

[162] “AR fingerprint function,” ISO-IEC/JTC1/SC27/WG2 N179, working docu-
ment, 1992.

[163] C.J.A. Jansen and D.E. Boekee, “Modes of blockcipher algorithms an their pro-
tection against active eavesdropping,” Advances in Cryptology, Proc. Euro-
crypt’87, LNCS 304, D. Chaum and W.L. Price, Eds., Springer-Verlag, 1988,
pp. 327–347.

[164] C.J.A. Jansen, “Investigations on nonlinear streamcipher systems: construction
and evaluation methods,” Doctoral Dissertation, Technische Universiteit Delft,
1989.

[165] F. Jorissen, “A security evaluation of the public-key cipher system proposed by
McEliece, used as a combined scheme,” ESAT report K.U. Leuven, 1986.

[166] R.R. Jueneman, “Analysis of certain aspects of Output Feedback Mode,” Ad-
vances in Cryptology, Proc. Crypto’82, D. Chaum, R.L. Rivest, and A.T. Sher-
man, Eds., Plenum Press, New York, 1983, pp. 99–127.

[167] R.R. Jueneman, S.M. Matyas, and C.H. Meyer, “Message authentication with
Manipulation Detection Codes,” Proc. 1983 IEEE Symposium on Security and
Privacy, 1984, pp. 33-54.

312 BIBLIOGRAPHY

[168] R.R. Jueneman, S.M. Matyas, and C.H. Meyer, “Message authentication,” IEEE
Communications Mag., Vol. 23, No. 9, 1985, pp. 29-40.

[169] R.R. Jueneman, “A high speed Manipulation Detection Code,” Advances in
Cryptology, Proc. Crypto’86, LNCS 263, A.M. Odlyzko, Ed., Springer-Verlag,
1987, pp. 327–347.

[170] R.R. Jueneman, “Electronic document authentication,” IEEE Network Mag.,
Vol. 1, No. 2, 1987, pp. 17-23.

[171] A. Jung, “Implementing the RSA cryptosystem,” Computers & Security, Vol. 6,
1987, pp. 342–350.

[172] A. Jung, “The strength of the ISO/CCITT hash function,” preprint, October
1990.

[173] A. Jung, personal communication, 1992.

[174] D. Kahn, “The Codebreakers. The Story of Secret Writing,” MacMillan, New
York, 1967.

[175] B.S. Kaliski, “The MD2 Message-Digest algorithm,” Request for Comments
(RFC) 1319, Internet Activities Board, Internet Privacy Task Force, April 1992.

[176] J.B. Kam and G.I. Davida, “Structured design of substitution-permutation en-
cryption networks,” IEEE Trans. on Computers, Vol. C–28, 1979, pp. 747–753.

[177] K. Kim, T. Matsumoto, and H. Imai, “A recursive construction method of
S-boxes satisfying strict avalanche criterion,” Advances in Cryptology, Proc.
Crypto’90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 564–573.

[178] K. Kim, “Constructions of DES-like S-boxes based on Boolean functions satis-
fying the SAC,” Advances in Cryptology, Proc. Asiacrypt’91, LNCS, Springer-
Verlag, to appear.

[179] L.R. Knudsen, “Cryptanalysis of LOKI,” Advances in Cryptology, Proc. Asi-
acrypt’91, LNCS, Springer-Verlag, to appear.

[180] M. Kwan and J. Pieprzyk, “A general purpose technique for locating key schedul-
ing weaknesses in DES-like cryptosystems,” Advances in Cryptology, Proc. Asi-
acrypt’91, LNCS, Springer-Verlag, to appear.

[181] X. Lai and J.L. Massey, “A proposal for a new block encryption standard,”
Advances in Cryptology, Proc. Eurocrypt’90, LNCS 473, I.B. Damg̊ard, Ed.,
Springer-Verlag, 1991, pp. 389–404.

[182] X. Lai, J.L. Massey, and S. Murphy, “Markov ciphers and differential cryptanal-
ysis,” Advances in Cryptology, Proc. Eurocrypt’91, LNCS 547, D.W. Davies,
Ed., Springer-Verlag, 1991, pp. 17–38.

[183] X. Lai and J.L. Massey, “Hash functions based on block ciphers,” Advances in
Cryptology, Proc. Eurocrypt’92, LNCS 658, R.A. Rueppel, Ed., Springer-Verlag,
1993, pp. 55–70.

[184] X. Lai, “On the Design and Security of Block Ciphers,” ETH Series in Informa-
tion Processing, Vol. 1, J. Massey, Ed., Hartung-Gorre Verlag, Konstanz, 1992.

BIBLIOGRAPHY 313

[185] X. Lai, R.A. Rueppel, and J. Woollven, “A fast cryptographic checksum algo-
rithm based on stream ciphers,” Advances in Cryptology, Proc. Auscrypt’92,
LNCS, Springer-Verlag, to appear.

[186] Ph. Langevin, “Covering radius of RM(1,9) in RM(3,9),” Proc. Eurocode’90,
LNCS 514, G. Cohen and P. Charpin, Eds., Springer-Verlag, 1991, pp. 51–59.

[187] Ph. Langevin, “On the orphans and covering radius of the Reed-Muller codes,”
Proc. 9th International Conference on Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, LNCS 539, H.F. Mattson, T. Mora, and T.R.N. Rao,
Eds., Springer-Verlag, 1991, pp. 234–240.

[188] J.Y. Lee, E.H. Lu, and P.C.H. Chen, “Random code chaining,” Electronic Let-
ters, Vol. 24, No. 10, 1988, pp. 579–580.

[189] Y. Li and X. Wang, “A joint authentication and encryption scheme based on
algebraic coding theory,” Proc. 9th International Conference on Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, LNCS 539, H.F. Mattson,
T. Mora, and T.R.N. Rao, Eds., Springer-Verlag, 1991, pp. 241–245.

[190] R. Lidl and H. Niederreiter, “Introduction to Finite Fields and Their Applica-
tions,” Cambridge University Press, Cambridge, 1986.

[191] C. Linden and H. Block, “Sealing electronic money in Sweden,” Computers &
Security, Vol. 1, No. 3, 1982, p. 226.

[192] J. Linn, “Privacy enhancement for Internet electronic mail, Part I: Message
encipherment and authentication procedures,” Request for Comments (RFC)
989, Internet Activities Board, Internet Privacy Task Force, February 1987.

[193] J. Linn, “Privacy enhancement for Internet electronic mail, Part I: Message
encipherment and authentication procedures,” Request for Comments (RFC)
1040, Internet Activities Board, Internet Privacy Task Force, January 1988.

[194] S. Lloyd, “Counting functions satisfying a higher order strict avalanche crite-
rion,” Advances in Cryptology, Proc. Eurocrypt’89, LNCS 434, J.-J. Quisquater
and J. Vandewalle, Eds., Springer-Verlag, 1990, pp. 63–74.

[195] S. Lloyd, “Characterising and counting functions satisfying the strict avalanche
criterion of order (n − 3),” Proc. 2nd IMA Conference on Cryptography and
Coding, 1989, Clarendon Press, Oxford, 1992, pp. 165–172.

[196] S. Lloyd, “Properties of binary functions, ” Advances in Cryptology, Proc. Eu-
rocrypt’90, LNCS 473, I.B. Damg̊ard, Ed., Springer-Verlag, 1991, pp. 124–139.

[197] S. Lloyd, “Counting binary functions with certain cryptographic properties, ”
Journal of Cryptology, Vol. 5, No. 2, 1992, pp. 107–131.

[198] M. Luby and C. Rackoff, “How to construct pseudorandom permutations from
pseudorandom functions,” SIAM Journal on Computing, Vol 17, No. 2, April
1988, pp. 373–386.

[199] F.J. MacWilliams and N.J.A. Sloane, “The Theory of Error-Correcting Codes,”
North-Holland Publishing Company, Amsterdam, 1978.

314 BIBLIOGRAPHY

[200] J.A. Maiorana, “A classification of the cosets of the Reed-Muller code R(1,6),”
Mathematics of Computation, Vol. 57, No. 195, July 1991, pp. 403–414.

[201] J.L. Massey, “Cryptography — A selective survey,” Digital Communications
(Proc. 1985 International Tirrenia Workshop), E. Biglieri and G. Prati, Eds.,
Elsevier Science Publ., 1986, pp. 3–25.

[202] J.L. Massey, “An introduction to contemporary cryptology,” in “Contemporary
Cryptology: The Science of Information Integrity,” G.J. Simmons, Ed., IEEE
Press, 1991, pp. 3–39.

[203] S.M. Matyas, C.H. Meyer, and J. Oseas, “Generating strong one-way functions
with cryptographic algorithm,” IBM Techn. Disclosure Bull., Vol. 27, No. 10A,
1985, pp. 5658–5659.

[204] S.M. Matyas, “Key handling with control vectors,” IBM Systems Journal,
Vol. 30, No. 2, 1991, pp. 151–174.

[205] U.M. Maurer and J.L. Massey, “Cascade ciphers: the importance of being first,”
Presented at the 1990 IEEE International Symposium on Information Theory,
San Diego, CA, Jan. 14-19, 1990.

[206] U.M. Maurer, “New approaches to the design of self-synchronizing stream ci-
phers,” Advances in Cryptology, Proc. Eurocrypt’91, LNCS 547, D.W. Davies,
Ed., Springer-Verlag, 1991, pp. 458–471.

[207] R.J. McEliece, “A public-key cryptosystem based on algebraic coding theory,”
DSN Progress Report 42–44, Jet Propulsion Laboratory, Pasadena, CA, 1978,
pp. 114–116.

[208] W. Meier and O. Staffelbach, “Nonlinearity criteria for cryptographic functions,”
Advances in Cryptology, Proc. Eurocrypt’89, LNCS 434, J.-J. Quisquater and
J. Vandewalle, Eds., Springer-Verlag, 1990, pp. 549–562.

[209] H. Meijer and S. Akl, “Remarks on a digital signature scheme,” Cryptologia,
Vol. 7, No. 2, April 1983, pp. 183–185.

[210] R. Merkle and M. Hellman, “Hiding information and signatures in trapdoor
knapsacks,” IEEE Trans. on Information Theory, Vol. IT–24, No. 5, 1978,
pp. 525–530.

[211] R. Merkle, “Secrecy, Authentication, and Public Key Systems,” UMI Research
Press, 1979.

[212] R. Merkle, “A certified digital signature,” Advances in Cryptology, Proc.
Crypto’89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 218–238.

[213] R. Merkle, “One way hash functions and DES,” Advances in Cryptology, Proc.
Crypto’89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 428–446.

[214] R. Merkle, “A fast software one-way hash function,” Journal of Cryptology,
Vol. 3, No. 1, 1990, pp. 43–58.

[215] C.H. Meyer and S.M. Matyas,“Cryptography: a New Dimension in Data Secu-
rity,” Wiley & Sons, 1982.

BIBLIOGRAPHY 315

[216] C.H. Meyer and M. Schilling, “Secure program load with Manipulation Detection
Code,” Proc. Securicom 1988, pp. 111–130.

[217] C.H. Meyer, “Cryptography - A state of the art review,” Proc. Compeuro 89,
VLSI and Computer Peripherals, 3rd Annual European Computer Conference,
IEEE Computer Society Press, 1989, pp. 150-154.

[218] C. Mitchell and M. Walker, “Solutions to the multidestination secure electronic
mail problem,” Computers & Security, Vol. 7, 1988, pp. 483–488.

[219] C. Mitchell, M. Walker, and D. Rush, “CCITT/ISO standards for secure message
handling,” IEEE Journal on Selected Areas in Communications, Vol. 7, May
1989, pp. 517–524.

[220] C. Mitchell, D. Rush, and M. Walker, “A remark on hash functions for message
authentication,” Computers & Security, Vol. 8, 1989, pp. 517-524.

[221] C. Mitchell, “Multi-destination secure electronic mail,” The Computer Journal,
Vol. 32, No. 1, 1989, pp. 13-15.

[222] C. Mitchell, “Enumerating Boolean functions of cryptographic significance,”
Journal of Cryptology, Vol. 2, No. 3, 1990, pp. 155–170.

[223] C. Mitchell, F. Piper, and P. Wild, “Digital signatures,” in “Contemporary
Cryptology: The Science of Information Integrity,” G.J. Simmons, Ed., IEEE
Press, 1991, pp. 325–378.

[224] C. Mitchell, “Authenticating multicast electronic mail messages using a bidi-
rectional MAC is insecure,” IEEE Trans. on Computers, Vol. 41, No. 4, 1992,
pp. 505–507.

[225] S. Miyaguchi, A. Shiraisi, and A. Shimizu, “Fast data encryption algorithm Feal-
8,” Review of Electrical Communications Laboratories, Vol. 36, No. 4, 1988,
pp. 433–437.

[226] S. Miyaguchi, M. Iwata, and K. Ohta, “New 128-bit hash function,” Proc. 4th In-
ternational Joint Workshop on Computer Communications, Tokyo, Japan, July
13–15, 1989, pp. 279–288.

[227] S. Miyaguchi, K. Ohta, and M. Iwata, “Confirmation that some hash functions
are not collision free,” Advances in Cryptology, Proc. Eurocrypt’90, LNCS 473,
I.B. Damg̊ard, Ed., Springer-Verlag, 1991, pp. 326–343.

[228] S. Miyaguchi, “The FEAL cipher family,” Advances in Cryptology, Proc.
Crypto’90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 627–638.

[229] S. Miyaguchi, K. Ohta, and M. Iwata, “128-bit hash function (N-hash),” Proc.
Securicom 1990, pp. 127–137.

[230] S.F. Mjølsnes, “A hash of some one-way hash functions and birthdays,” preprint,
1989.

[231] J.H. Moore and G.J. Simmons, “Cycle structure of the DES for keys having palin-
dromic (or antipalindromic) sequences of round keys,” IEEE Trans. on Software
Engineering, Vol. 13, 1987, pp. 262-273.

316 BIBLIOGRAPHY

[232] J.H. Moore, “Protocol failures in cryptosystems,” in “Contemporary Cryptology:
The Science of Information Integrity,” G.J. Simmons, Ed., IEEE Press, 1991,
pp. 543–558.

[233] M. Naor and M. Yung, “Universal one-way hash functions and their crypto-
graphic applications,” Proc. 21st ACM Symposium on the Theory of Computing,
1990, pp. 387–394.

[234] H. Niederreiter and C.P. Schnorr, “Local randomness in candidate one-way func-
tions,” Advances in Cryptology, Proc. Eurocrypt’92, LNCS 658, R.A. Rueppel,
Ed., Springer-Verlag, 1993, pp. 408–419.

[235] K. Nishimura and M. Sibuya, “Probability to meet in the middle,” Journal of
Cryptology, Vol. 2, No. 1, 1990, pp. 13–22.

[236] M. Nuttin, “Cryptanalyse van het DES Algoritme in de CFB Mode (Cryptanaly-
sis of the CFB Mode of the DES – in Dutch),” ESAT Laboratorium, Katholieke
Universiteit Leuven, Thesis grad. eng., 1992.

[237] K. Nyberg, “Constructions of bent functions and difference sets,” Advances in
Cryptology, Proc. Eurocrypt’90, LNCS 473, I.B. Damg̊ard, Ed., Springer-Verlag,
1991, pp. 151–160.

[238] K. Nyberg, personal communication, 1990.

[239] K. Nyberg, “Perfect nonlinear S-boxes,” Advances in Cryptology, Proc. Euro-
crypt’91, LNCS 547, D.W. Davies, Ed., Springer-Verlag, 1991, pp. 378–386.

[240] K. Nyberg, “On the construction of highly nonlinear permutations,” Advances in
Cryptology, Proc. Eurocrypt’92, LNCS 658, R.A. Rueppel, Ed., Springer-Verlag,
1993, pp. 92–98.

[241] L. O’Connor, “An analysis of product ciphers based on the properties of Boolean
functions,” PhD Thesis, University of Waterloo, Canada, 1992.

[242] W. Ogata and K. Kurosawa, “On claw free families,” Advances in Cryptology,
Proc. Asiacrypt’91, LNCS, Springer-Verlag, to appear.

[243] J.D. Olsen, R.A. Scholtz, and L.R. Welch, “Bent-function sequences,” IEEE
Trans. on Information Theory, Vol. IT–28, No. 6, 1982, pp. 858–864.

[244] J.C. Pailles and M. Girault, “The security processor CRIPT,” 4th IFIP SEC,
Monte-Carlo, December 1986, pp. 127–139.

[245] J. Patarin, personal communication, 1991.

[246] J. Pieprzyk and G. Finkelstein, “Towards effective non-linear cryptosystem de-
sign,” IEE Proceedings-E, Vol. 135, 1988, pp. 325–335.

[247] J. Pieprzyk, “Non-linearity of exponent permutations,” Advances in Cryptol-
ogy, Proc. Eurocrypt’89, LNCS 434, J.-J. Quisquater and J. Vandewalle, Eds.,
Springer-Verlag, 1990, pp. 80–92.

[248] J. Pieprzyk and R. Safavi-Naini, “Randomized authentication systems,” Ad-
vances in Cryptology, Proc. Eurocrypt’91, LNCS 547, D.W. Davies, Ed.,
Springer-Verlag, 1991, pp. 472–481.

BIBLIOGRAPHY 317

[249] J. Pieprzyk, “On bent permutations,” in “Finite Fields, Coding Theory, and Ad-
vances in Communications and Computing,” Lecture Notes in Pure and Applied
Mathematics 141, G.L. Mullen and P.J.-S. Shiue, Eds., Marcel Dekker Inc., New
York, 1993, pp. 173–181.

[250] D. Pinkas, “The need for a standardized compression algorithm for digital sig-
natures,” Abstracts Eurocrypt’86, May 20–22, 1986, Linköping, Sweden, p. 1.4.

[251] J.M. Pollard, “Theorems on factorisation and primality testing,” Proc. Cam-
bridge Philos. Soc.,” Vol. 76, 1974, pp. 521-528.

[252] B. Preneel, A. Bosselaers, R. Govaerts, and J. Vandewalle, “ A chosen text
attack on the modified cryptographic checksum algorithm of Cohen and Huang,”
Advances in Cryptology, Proc. Crypto’89, LNCS 435, G. Brassard, Ed., Springer-
Verlag, 1990, pp. 154–163.

[253] B. Preneel, A. Bosselaers, R. Govaerts, and J. Vandewalle, “Collision free hash
functions based on blockcipher algorithms,” Proc. 1989 International Carnahan
Conference on Security Technology, pp. 203-210.

[254] B. Preneel, R. Govaerts, and J. Vandewalle, “Cryptographically secure hash
functions: an overview,” ESAT Internal Report, K.U. Leuven, 1989.

[255] B. Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts, and J. Vande-
walle, “Propagation characteristics of Boolean functions,” Advances in Cryptol-
ogy, Proc. Eurocrypt’90, LNCS 473, I.B. Damg̊ard, Ed., Springer-Verlag, 1991,
pp. 161–173.

[256] B. Preneel, R. Govaerts, and J. Vandewalle, “Information integrity protection
and authentication in a banking environment,” Proc. Secubank’90.

[257] B. Preneel, A. Bosselaers, R. Govaerts, and J. Vandewalle, “Cryptanalysis of a
fast cryptographic checksum algorithm,” Computers & Security, Vol. 9, 1990,
pp. 257–262.

[258] B. Preneel, R. Govaerts, and J. Vandewalle, “Boolean functions satisfying
higher order propagation criteria,” Advances in Cryptology, Proc. Eurocrypt’91,
LNCS 547, D.W. Davies, Ed., Springer-Verlag, 1991, pp. 141–152.

[259] B. Preneel, D. Chaum, W. Fumy, C.J.A. Jansen, P. Landrock, and G. Roelofsen,
“Race Integrity Primitives Evaluation (RIPE): a status report,” Advances in
Cryptology, Proc. Eurocrypt’91, LNCS 547, D.W. Davies, Ed., Springer-Verlag,
1991, pp. 547–551.

[260] B. Preneel, R. Govaerts, and J. Vandewalle, “Collision resistant hash functions
based on block ciphers, ” E.I.S.S. Workshop on Cryptographic Hash Functions,
Oberwolfach (D), March 25-27, 1992.

[261] B. Preneel, R. Govaerts, and J. Vandewalle, “Hash functions for information
authentication,” Proc. Compeuro 92, Computer Systems and Software Engineer-
ing, 6th Annual European Computer Conference, IEEE Computer Society Press,
1992, pp. 475–480.

318 BIBLIOGRAPHY

[262] B. Preneel, R. Govaerts, and J. Vandewalle, “On the power of memory in the
design of collision resistant hash functions,” Advances in Cryptology, Proc.
Auscrypt’92, LNCS, Springer-Verlag, to appear.

[263] B. Preneel, R. Govaerts, and J. Vandewalle, “An attack on two hash functions
by Zheng, Matsumoto, and Imai,” Presented at the rump session of Auscrypt’92.

[264] W.L. Price, “Hash functions — a tutorial and status report,” NPL Report DITC
151/89, November 1989.

[265] W.E. Proebster, “The evolution of data memory and storage: an overview,” in
“Computer Systems and Software Engineering,” P. Dewilde and J. Vandewalle,
Eds., Kluwer Academic Publishers, 1992, pp. 1–23.

[266] J.-J. Quisquater and L. Guillou, “A “paradoxical” identity-based signa-
ture scheme resulting from zero-knowledge,” Advances in Cryptology, Proc.
Crypto’88, LNCS 403, S. Goldwasser, Ed., Springer-Verlag, 1990, pp. 216–231.

[267] J.-J. Quisquater and J.-P. Delescaille, “How easy is collision search? Appli-
cation to DES,” Advances in Cryptology, Proc. Eurocrypt’89, LNCS 434, J.-
J. Quisquater and J. Vandewalle, Eds., Springer-Verlag, 1990, pp. 429–434.

[268] J.-J. Quisquater and M. Girault, “2n-bit hash-functions using n-bit symmetric
block cipher algorithms,” Abstracts Eurocrypt’89, April 10-13, 1989, Houthalen,
Belgium.

[269] J.-J. Quisquater and M. Girault, “2n-bit hash-functions using n-bit symmet-
ric block cipher algorithms,” Advances in Cryptology, Proc. Eurocrypt’89,
LNCS 434, J.-J. Quisquater and J. Vandewalle, Eds., Springer-Verlag, 1990,
pp. 102–109.

[270] J.-J. Quisquater and J.-P. Delescaille, “How easy is collision search. New results
and applications to DES,” Advances in Cryptology, Proc. Crypto’89, LNCS 435,
G. Brassard, Ed., Springer-Verlag, 1990, pp. 408–413.

[271] J.-J. Quisquater, personal communication, 1989.

[272] J.-J. Quisquater and Y. Desmedt, “Chinese lotto as an exhaustive code-breaking
machine,” Computer, November 1991, pp. 14-22.

[273] J.-J. Quisquater, “Collisions,” E.I.S.S. Workshop on Cryptographic Hash Func-
tions, Oberwolfach (D), March 25-27, 1992.

[274] M.O. Rabin, “Digitalized signatures,” in “Foundations of Secure Computation,”
R. Lipton and R. DeMillo, Eds., Academic Press, New York, 1978, pp. 155-166.

[275] T.R.N. Rao and K.H. Nam, “A private-key algebraic-coded cryptosystem,” Ad-
vances in Cryptology, Proc. Crypto’86, LNCS 263, A.M. Odlyzko, Ed., Springer-
Verlag, 1987, pp. 35–48.

[276] R.C. Read, “Some unusual enumeration problems,” Annals New York Acad. Sc.,
Vol. 175, 1970, pp. 314–326.

[277] “Race Integrity Primitives Evaluation (RIPE): final report,” RACE 1040, 1993.

BIBLIOGRAPHY 319

[278] R.L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-
tures and public-key cryptosystems,” Communications ACM, Vol. 21, February
1978, pp. 120–126.

[279] R.L. Rivest, “The MD4 message digest algorithm,” Advances in Cryptology,
Proc. Crypto’90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 303–
311.

[280] R.L. Rivest, “Cryptography,” in “Handbook of Theoretical Computer Science.
Vol. A: Algorithms and Complexity,” J. Van Leeuwen, Ed., Elsevier, pp.719–
755.

[281] R.L. Rivest, “The MD5 message digest algorithm,” Presented at the rump session
of Crypto’91.

[282] R.L. Rivest, “The MD4 message-digest algorithm,” Request for Comments
(RFC) 1320, Internet Activities Board, Internet Privacy Task Force, April 1992.

[283] R.L. Rivest, “The MD5 message-digest algorithm,” Request for Comments
(RFC) 1321, Internet Activities Board, Internet Privacy Task Force, April 1992.

[284] J. Rompel, “One-way functions are necessary and sufficient for secure signa-
tures,” Proc. 22nd ACM Symposium on the Theory of Computing, 1990, pp. 387–
394.

[285] O.S. Rothaus, “On bent functions,” Journal of Combinatorial Theory (A),
Vol. 20, 1976, pp. 300–305.

[286] R.A. Rueppel, “Analysis and Design of Stream Ciphers,” Springer-Verlag, 1986.

[287] R.A. Rueppel, “Stream ciphers,” in “Contemporary Cryptology: The Science of
Information Integrity,” G.J. Simmons, Ed., IEEE Press, 1991, pp. 65–134.

[288] A. Russell, “Necessary and sufficient conditions for collision-free hashing,” Ad-
vances in Cryptology, Proc. Crypto’92, LNCS, E.F. Brickell, Ed., Springer-
Verlag, to appear.

[289] B. Sadeghiyan and J. Pieprzyk, “A construction for one way hash functions and
pseudorandom bit generators,” Advances in Cryptology, Proc. Eurocrypt’91,
LNCS 547, D.W. Davies, Ed., Springer-Verlag, 1991, pp. 431–445.

[290] B. Sadeghiyan and J. Pieprzyk, “ How to construct a family of strong one way
permutations,” Advances in Cryptology, Proc. Asiacrypt’91, LNCS, Springer-
Verlag, to appear.

[291] R. Safavi-Naini and J. Seberry, “Error-correcting codes for authentication and
subliminal channels,” IEEE Trans. on Information Theory, Vol. IT–37, No. 1,
1991, pp. 13–17.

[292] R. Safavi-Naini, “Feistel type authentication codes,” Advances in Cryptology,
Proc. Asiacrypt’91, LNCS, Springer-Verlag, to appear.

[293] D.V. Sarwate, “A note on universal classes of hash functions,” Information Pro-
cessing Letters, Vol. 10, 1980, pp. 41–45.

320 BIBLIOGRAPHY

[294] W.G. Schneeweiss, “Boolean Functions with Engineering Applications and Com-
puter Programs,” Springer Verlag, 1989.

[295] B. Schneier, “One-way hash functions,” Dr. Dobb’s Journal, Vol. 16, No. 9, 1991,
pp. 148–151.

[296] C.P. Schnorr, “Efficient identification and signatures for smart cards,” Advances
in Cryptology, Proc. Crypto’89, LNCS 435, G. Brassard, Ed., Springer-Verlag,
1990, pp. 239–252.

[297] C.P. Schnorr, “An efficient cryptographic hash function,” Presented at the rump
session of Crypto’91.

[298] C.P. Schnorr, “FFT-Hash II, efficient cryptographic hashing,” Advances in Cryp-
tology, Proc. Eurocrypt’92, LNCS 658, R.A. Rueppel, Ed., Springer-Verlag, 1993,
pp. 45–54.

[299] J. Seberry and J. Pieprzyk, “Cryptography: an Introduction to Computer Secu-
rity, Prentice Hall, 1988.

[300] R. Sedgewick, T.G. Szymanski, and A.C. Yao, “The complexity of finding cycles
in periodic functions,” SIAM Journal Comput., Vol. 11, No. 2, 1982, pp. 376–390.

[301] A. Shamir, “On the security of DES,” Advances in Cryptology, Proc. Crypto’85,
LNCS 218, H.C. Williams, Ed., Springer-Verlag, 1985, pp. 280–281.

[302] C.E. Shannon, “A symbolic analysis of relay and switching circuits,” Trans. of
the AIEE, Vol. 57, 1938, pp. 713–723. pp. 623-656.

[303] C.E. Shannon, “Communication theory of secrecy systems,” Bell System Tech-
nical Journal, Vol. 28, 1949, pp. 656-715.

[304] A. Shimizu and S. Miyaguchi, “Fast data encipherment algorithm FEAL,” Ab-
stracts Eurocrypt’87, April 13-15, 1987, Amsterdam, The Netherlands, pp. VII-
11–VII-14.

[305] A. Shimizu and S. Miyaguchi, “Fast data encipherment algorithm FEAL,” Ad-
vances in Cryptology, Proc. Eurocrypt’87, LNCS 304, D. Chaum and W.L. Price,
Eds., Springer-Verlag, 1988, pp. 267–278.

[306] J.F. Shoch and J.A. Hupp, “The “worm” programs—early experience with a
distributed computation,” Communications ACM, Vol. 25, No. 3, March 1982,
pp. 172–180.

[307] T. Siegenthaler, “Correlation immunity of non-linear combining functions for
cryptographic applications,” IEEE Trans. on Information Theory, Vol. IT–30,
No. 5, 1984, pp. 776–780.

[308] T. Siegenthaler, “Decrypting a class of stream ciphers using ciphertext only,”
IEEE Trans. on Computers, Vol. C–34, 1985, pp. 81–85.

[309] G.J. Simmons, “A natural taxonomy for digital information authentication
schemes,” Advances in Cryptology, Proc. Crypto’87, LNCS 293, C. Pomerance,
Ed., Springer-Verlag, 1988, pp. 269–288.

BIBLIOGRAPHY 321

[310] G.J. Simmons, “A survey of information authentication,” in “Contemporary
Cryptology: The Science of Information Integrity,” G.J. Simmons, Ed., IEEE
Press, 1991, pp. 381–419.

[311] O. Staffelbach and W. Meier, “Analysis of pseudo random sequences generated
by cellular automata,” Advances in Cryptology, Proc. Eurocrypt’91, LNCS 547,
D.W. Davies, Ed., Springer-Verlag, 1991, pp. 186–199.

[312] D.R. Stinson, “Combinatorial techniques for universal hashing,” preprint, 1990.

[313] D.R. Stinson, “Combinatorial characterizations of authentication codes,” Ad-
vances in Cryptology, Proc. Crypto’91, LNCS 576, J. Feigenbaum, Ed., Springer-
Verlag, 1992, pp. 62–73.

[314] D.R. Stinson, “Universal hashing and authentication codes,” Advances in Cryp-
tology, Proc. Crypto’91, LNCS 576, J. Feigenbaum, Ed., Springer-Verlag, 1992,
pp. 74–85.

[315] R. Struik and J. van Tilburg, “The Rao-Nam scheme is insecure against a
chosen-plaintext attack,” Advances in Cryptology, Proc. Crypto’87, LNCS 293,
C. Pomerance, Ed., Springer-Verlag, 1988, pp. 445–457.

[316] R.C. Titsworth, “Optimal ranging codes,” IEEE Trans. Space Elec. Telem.,
Vol. SET-10, March 1964, pp. 19–20.

[317] J. Vandewalle, D. Chaum, W. Fumy, C.J.A. Jansen, P. Landrock, and G. Roelof-
sen, “A European call for cryptographic algorithms: RIPE; Race Integrity Prim-
itives Evaluation,” Advances in Cryptology, Proc. Eurocrypt’89, LNCS 434,
J.-J. Quisquater and J. Vandewalle, Eds., Springer-Verlag, 1990, pp. 267–271.

[318] K. Van Espen and J. Van Mieghem, “Evaluatie en Implementatie van Authentis-
eringsalgoritmen (Evaluation and Implementation of Authentication Algorithms
– in Dutch),” ESAT Laboratorium, Katholieke Universiteit Leuven, Thesis grad.
eng., 1989.

[319] Ph. Van Heurck, “Trasec: Belgian security system for electronic funds transfers,”
Computers & Security, Vol. 6, 1987, pp. 261–268.

[320] W. Van Leekwijck and L. Van Linden, “Cryptografische Eigenschappen van
Booleaanse Functies (Cryptographic Properties of Boolean Functions – in
Dutch),” ESAT Katholieke Universiteit Leuven, Thesis grad. eng., 1990.

[321] S. Vaudenay, “FFT-hash-II is not yet collision-free,” Advances in Cryptology,
Proc. Crypto’92, LNCS, E.F. Brickell, Ed., Springer-Verlag, to appear.

[322] G.S. Vernam, “Cipher printing telegraph system for secret wire and radio tele-
graph communications,” Journal American Institute of Electrical Engineers,
Vol. XLV, 1926, pp. 109-115.

[323] M. Walker, “Security in mobile and cordless telecommunications,” Proc. Com-
peuro 92, Computer Systems and Software Engineering, 6th Annual European
Computer Conference, IEEE Computer Society Press, 1992, pp. 493–496.

322 BIBLIOGRAPHY

[324] A.F. Webster and S.E. Tavares, “On the design of S-boxes,” Advances in Cryp-
tology, Proc. Crypto’85, LNCS 218, H.C. Williams, Ed., Springer-Verlag, 1985,
pp. 523–534.

[325] M.N. Wegman and J.L. Carter, “New hash functions and their use in authen-
tication and set equality,” Journal of Computer and System Sciences, Vol. 22,
1981, pp. 265–279.

[326] J. Williams, “Collisions for two pass Snefru,” Internet News, sci.crypt, November
8, 1990.

[327] R.S. Winternitz, “Producing a one-way hash function from DES,” Advances in
Cryptology, Proc. Crypto’83, D. Chaum, Ed., Plenum Press, New York, 1984,
pp. 203–207.

[328] R.S. Winternitz, “A secure one–way hash function built from DES,” Proc. IEEE
Symposium on Information Security and Privacy 1984, 1984, pp. 88-90.

[329] S. Wolfram, “Random sequence generation by cellular automata,” Advances in
Applied Mathematics, Vol. 7, 1986, pp. 123–169.

[330] G. Xiao and J.L. Massey, “A spectral characterization of correlation-immune
combining functions,” IEEE Trans. on Information Theory, Vol. IT–34, No. 3,
1988, pp. 569–571.

[331] A.C. Yao, “Theory and applications of trapdoor functions,” Proc. 23rd IEEE
Symposium on Foundations of Computer Science, 1982, pp. 80–91.

[332] A.C. Yao, “Computational information theory,” in “Complexity in Information
Theory,” Y.S. Abu-Mostafa, Ed., Springer-Verlag, 1988, pp. 1–15.

[333] R. Yarlagadda and J.E. Hershey, “A note on the eigenvectors of Hadamard ma-
trices of order 2n,” Linear Algebra & Applications, Vol. 45, 1982, pp. 43–53.

[334] R. Yarlagadda and J.E. Hershey, “Analysis and synthesis of bent sequences,”
IEE Proceedings-E, Vol. 136, 1989, pp. 112–123.

[335] G. Yuval, “How to swindle Rabin,” Cryptologia, Vol. 3, 1979, pp. 187–189.
[336] G. Zémor, “Hash functions and graphs with large girths,” Advances in Cryp-

tology, Proc. Eurocrypt’91, LNCS 547, D.W. Davies, Ed., Springer-Verlag, 1991,
pp. 508–511.

[337] G. Zémor, “Hash functions and Cayley graphs,” preprint, 1991.
[338] K.C. Zeng, J.H. Yang, and Z.T. Dai, “Patterns of entropy drop of the key in

an S-box of the DES,” Advances in Cryptology, Proc. Crypto’87, LNCS 293,
C. Pomerance, Ed., Springer-Verlag, 1988, pp. 438–444.

[339] Y. Zheng, T. Matsumoto, and H. Imai, “Duality between two cryptographic
primitives,” Papers of Technical Group for Information Security, IEICE of
Japan, March 16, 1989, pp. 47–57.

[340] Y. Zheng, T. Matsumoto, and H. Imai, “On the construction of block ciphers
provably secure and not relying on any unproved hypothesis,” Advances in Cryp-
tology, Proc. Crypto’89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990,
pp. 461–480.

BIBLIOGRAPHY 323

[341] Y. Zheng, T. Matsumoto, and H. Imai, “Connections between several versions of
one-way hash functions,” Proc. SCIS90, The 1990 Symposium on Cryptography
and Information Security, Nihondaira, Japan, Jan. 31–Feb.2, 1990.

[342] Y. Zheng, T. Matsumoto, and H. Imai, “Structural properties of one-way hash
functions,” Advances in Cryptology, Proc. Crypto’90, LNCS 537, S. Vanstone,
Ed., Springer-Verlag, 1991, pp. 285–302.

[343] Y. Zheng, T. Matsumoto, and H. Imai, “Duality between two cryptographic
primitives,” Proc. 8th International Conference on Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, LNCS 508, S. Sakata, Ed., Springer-
Verlag, 1991, pp. 379–390.

[344] Y. Zheng, T. Hardjono, and J. Pieprzyk, “Sibling intractible function families
and their applications,” Advances in Cryptology, Proc. Asiacrypt’91, LNCS,
Springer-Verlag, to appear.

[345] Y. Zheng, personal communication, 1992.

[346] Y. Zheng, J. Pieprzyk, and J. Seberry, “HAVAL — a one-way hashing algorithm
with variable length output,” Advances in Cryptology, Proc. Auscrypt’92, LNCS,
Springer-Verlag, to appear.

[347] Ph. Zimmerman, “A proposed standard format for RSA cryptosystems,” Com-
puter, Vol. 19, No. 9, 1986, pp. 21–34.

[348] G. Zorpette, “Large computers,” IEEE Spectrum, Vol. 29, No. 1, 1992, pp. 33-35.

[349] G. Zorpette (Ed.), “Special issue on supercomputing,” IEEE Spectrum, Vol. 29,
No. 9, 1992, pp. 26–76.

