Analysis and Design of
Cryptographic Hash Functions

Bart PRENEEL

February 2003

Acknowledgements

I like prefaces. I read them. Sometimes I do not
read any further. Malcolm Lowry

At the end of this Ph.D. project it is a pleasure to thank everybody who has helped
me along the way.

In the first place, I would like to express my thanks to my supervisors, Prof. R. Go-
vaerts and Prof. J. Vandewalle who have introduced me to the field of cryptography.
I appreciate their guidance and support, and I value the interesting discussions on
various subjects we had. They also have taught me many practical aspects of research.
I also would like to thank them for the many opportunities I have received to broaden
my knowledge and to discuss my work with other researchers.

I would also like to thank Prof. A. Oosterlinck for giving me the opportunity to
work at ESAT, and Prof. A. Haegemans and Prof. J.-J. Quisquater for reviewing this
manuscript. Prof. A. Barbé, Prof. J. Berlamont, and Prof. P. Landrock are gratefully
acknowledged for serving on the jury.

I would like to mention my COSIC colleagues, Joan Daemen, Rita De Wolf, Mark
Vandenwauver, Luc Van Linden, and Jan Verschuren, who created a nice working at-
mosphere. Special thanks go to Antoon Bosselaers for the many years of collaboration,
for the assistance with the software, and for the valuable comments on all my drafts. I
would like to thank Ria Vanden Eynde for the active proof reading and for the moral
support.

I also would like to acknowledge the collaboration with the students who have been
working under my supervision. I have learned many things from my colleagues of the
RIPE project and from the experts of ISO/IEC JTC1/SC27/WG2.

Many people in the cryptographic community have contributed to this research,
through interesting discussions or by providing useful information. I would like to
mention especially Prof. T. Beth, dr. C. Carlet, Prof. D. Chaum, dr. D. Coppersmith,
Prof. I. Damgard, dr. B. den Boer, dr. A. Jung, L. Knudsen, dr. X. Lai, dr. K. Martin,
dr. W. Meier, dr. K. Nyberg, dr. L. O’Connor, dr. R. Rueppel, dr. B. Sadeghiyan, dr.
O. Staffelbach, dr. H. Tiersma, and dr. Y. Zheng.

Finally I would like to acknowledge the support of the Belgian National Science
Foundation (N.F.W.0.).

vi

vii

Abstract

The subject of this thesis is the study of cryptographic hash functions. The importance
of hash functions for protecting the authenticity of information is demonstrated. Ap-
plications include integrity protection, conventional message authentication and digital
signatures. Theoretical results on cryptographic hash functions are reviewed. The in-
formation theoretic approach to authentication is described, and the practicality of
schemes based on universal hash functions is studied. An overview is given of the com-
plexity theoretic definitions and constructions. The main contribution of this thesis
lies in the study of practical constructions for hash functions. A general model for hash
functions is proposed and a taxonomy for attacks is presented. Then all schemes in the
literature are divided into three classes: hash functions based on block ciphers, hash
functions based on modular arithmetic and dedicated hash functions. An overview is
given of existing attacks, new attacks are demonstrated, and new schemes are pro-
posed. The study of basic building blocks of cryptographic hash functions leads to the
study of the cryptographic properties of Boolean functions. New criteria are defined
and functions satisfying new and existing criteria are studied.

viii

Contents

1 Authentication and Privacy 1
1.1 Inmtroduction L 1
1.2 Background and definitionso L oL 2
1.3 The separation of privacy and authentication 3

1.3.1 Models for symmetric and asymmetric cipher systems 3
1.3.2 Information authentication and digital signatures 5
1.3.3 Privacy and authentication: two different concepts 6
1.4 Three approaches to the authentication problem 8
1.4.1 Information theoretic approach 8
1.4.2 Complexity theoretic approach 9
1.4.3 System based or practical approach 11
1.5 Outline of the thesis 12
1.6 Main contributions 12

2 Cryptographic Hash Functions 15
2.1 Introduction 15
2.2 Practical definitions L L 16

2.2.1 One-way hash function (OWHF) 17
2.2.2 Collision resistant hash function (CRHF) 18
2.2.3 Message Authentication Code (MAC) 18

2.3 Applications of hash functions 19
2.3.1 Information authentication 19
2.3.1.1 Authentication without secrecy 19

2.3.1.2 Authentication with secrecy 21

2.3.2 Authentication of multi-destination messages 22
2.3.3 Non-repudiation, 24
2.3.3.1 Optimization of digital signature schemes 25

2.3.3.2 Practical digital signatures based on a one-way function 27

2.3.4 Identification with passwords 29
2.3.5 Encryption algorithms based on hash functions 29
2.3.6 Application to software protection 30

2.4 General constructions 31
2.4.1 General model 31

ix

2.5

2.6

The
3.1
3.2

3.3

3.4

CONTENTS

2.4.2 Conditions on the function f fora OWHF
2.4.3 Conditions on the function f fora CRHF
2.4.4 'Tree approach to hash functions
2.4.5 Cascading of hash functions
Methods of attack on hash functions
2.5.1 Attacks independent of the algorithm
2.5.1.1 Random attack
2.5.1.2 Exhaustive key search
2.5.1.3 Birthday attack oL
2.5.2 Attacks dependent on the chaining
2.5.2.1 Meet in the middle attack
2.5.2.2 Constrained meet in the middle attack
2.5.2.3 Generalized meet in the middle attack
2.5.2.4 Correcting block attack
2.5.2.5 Fixed point attack 0oL
2.5.2.6 Keycollisions.,
2.5.2.7 Differential attacks
2.5.2.8 Analytical weaknesses
2.5.3 Attacks dependent on an interaction with the signature scheme .
2.5.4 Attacks dependent on the underlying block cipher
2.5.4.1 Complementation property
2542 Weakkeys o
2.5.4.3 Fixedpoints
2.5.5 High level attacks,
Conclusion e

Information Theoretic Approach

Introduction
Basic theory Lo
3.2.1 Definitions and notations
3.2.2 Bounds on authentication codes
3.2.3 Characterization of perfect Cartesian authentication codes
Practical Cartesian authentication codes
3.3.1 The perfect schemes
3.3.2 Universal hash functions

3.3.2.1 Definitions

3.3.2.2 Constructions 0.

3.3.2.3 Authentication codes based on universal hash functions
3.3.3 A comparative overview
Conclusion e

CONTENTS xi

4 The Complexity Theoretic Approach 67
4.1 Introduction 67
4.2 Complexity theoretic definitions 68

4.2.1 Basic definitions L o 68
4.2.2 Pseudo-random string generators 69
4.2.3 One-way functions, 70
4.3 Complexity theoretic constructions 72
4.3.1 Universal hash functions and uniformizers 72
4.3.2 Universal One-Way Hash Functions (UOWHF) 72
4.3.2.1 Definition o o 73

4.3.2.2 General construction methods 74

4.3.2.3 The scheme of Naor and Yung 75

4.3.2.4 The first scheme of Zheng, Matsumoto, and Imai 76
4.3.2.5 The schemes of De Santis and Yung 76

4.3.2.6 The scheme of Rompel 77
4.3.2.7 The second scheme of Zheng, Matsumoto, and Imai . . 77
4.3.2.8 The scheme of Sadeghiyan and Pieprzyk 78

4.3.3 Collision Resistant Hash Functions (CRHF) 79
4.3.3.1 Definition L o 79

4332 Fixedsize CRHF. 81

4.3.3.3 Claw resistant permutations 81
4.3.3.4 Distinction resistant permutations 83

4.3.3.5 Claw resistant pseudo-permutations 84

4.3.4 Sibling resistant functions (SRF) 84
4.3.4.1 Definition oL o 84

4.3.4.2 Constructiono 85

4.3.5 Perfect Authentication codes 85
4.4 Conclusion e 86

5 Hash Functions Based on Block Ciphers 89
5.1 Introduction 89
5.2 Authentication based on encryption and redundancy 90

5.2.1 Authentication based on randomized encryption 91
5.2.2 Newmodesofuse 92
5.2.3 Addition schemes, 94
5.2.4 Asimple MAC 96
5.3 Overview of MDC proposals 97
5.3.1 Size of hashcode equals block length 97
5.3.1.1 Conventional modes ofuse 97

5.3.1.2 Invertible key chaining 98

5.3.1.3 Non-invertible key chaining 99

5.3.1.4 A synthetic approach 100

5.3.2 Size of hashcode equals twice the block length 111

5.3.2.1 Tteration of a OWHF 111

xii

CONTENTS

5.3.2.2 Schemes with rate greater than or equal to 2 112

5.3.2.3 Schemes with rate equal to 1 124

5.3.3 Size of key equals twice the block length 132
5.3.3.1 Size of hashcode equals block length 132

5.3.3.2 Size of hashcode equals twice the block length 132

5.3.4 A new scheme based on a block cipher with fixed key 133
5.3.4.1 Background and design principles 133

5.3.4.2 Description of the new scheme 134

5.3.4.3 Attacks on the scheme. 138

5.3.4.4 A detailed study of the security level 143

5.3.4.5 Extensions L o 148

5.3.4.6 Overview of results 150

54 Overview of MAC proposals 155
5.4.1 CBC and CFB modes of a block cipher algorithm 155
5.4.2 Invertible chaining fora MAC 159

5.5 Conclusion 160
Hash Functions Based on Modular Arithmetic 161
6.1 Introduction 161
6.2 Overview of MDC proposals 162
6.2.1 Schemes with a small modulus 162
6.2.2 Schemes with a large modulus 164
6.2.2.1 Schemes that are not provably secure 165

6.2.2.2 Provably secure schemes with large modulus 172

6.3 A MACproposal 174
6.3.1 Description of the scheme 175
6.3.2 Weakness of the modulo reduction 176
6.3.3 Deriving the first s bits of the key K 177
6.3.3.1 Deriving the most significant bit of K 178

6.3.3.2 Deriving the s most significant bits of K 180

6.3.4 Further extensions 0oL 181

6.4 Conclusion 181
Dedicated Hash Functions 183
7.1 Introduction 183
7.2 Overview of MDC proposals 183
7.2.1 The Binary Condensing Algorithm (BCA) 183
722 MD2 e 188
7.2.3 MD4, MD5, SHA, RIPEMD, and HAVAL 190
7231 MD4 ... 190

7232 MD5 ... 192

7233 SHA 193

7234 RIPE-MD 195

7235 HAVAL 195

CONTENTS

7.3

7.4

7.2.4
7.2.5
7.2.6
7.2.7
7.2.8

FFT-HashTand Il
Snefru
Hash functions based on cellular automata
Hash functions based on the knapsack problem
7.2.8.1 The knapsack problem
7.2.8.2 Solving the knapsack problem
7.2.8.3 Hash functions based on additive knapsacks
7.2.8.4 Hash functions based on multiplicative knapsacks

Overview of MAC Proposals

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6

The ASP MAC function
Message Authenticator Algorithm (MAA)
Decimal Shift and Add algorithm (DSA)
Based on a stream cipher oL
Matrix algebra oo
Proprietary algorithms

Design principles Lo

7.4.1
7.4.2
7.4.3

Security relevant criteriao oo
Efficiency
Trapdoors in hash functions

7.5 Conclusion e

Cryptographic Properties of Boolean Functions

8.1 Introduction
8.2 Definitions e

8.3

8.4

8.2.1
8.2.2

Basic definitions
Transformations on Boolean functions
8.2.2.1 The algebraic normal transform
8.2.2.2 The Walsh-Hadamard transform
8.2.2.3 The autocorrelation function

Criteria for Boolean functions and their properties

8.3.1
8.3.2
8.3.3
8.3.4

Completeness L
Nonlinearity
Balancedness and correlation immunity
Propagation criteria oL

Functions satisfying certain criteria

8.4.1

8.4.2

Quadratic functions
8.4.1.1 A canonical form
8.4.1.2 Quadratic functions satisfying PC(k)
8.4.1.3 Quadratic functions satisfying CI(m)
8.4.1.4 Quadratic functions satisfying higher order PC'
8.4.1.5 Quadratic functions satisfying combined criteria
Bent functionso o Lo
8.4.2.1 Constructions of bent functions

xiii

195
197
198
199
201
201
202
203

. 205

206
206
209
210
211
212
212
213
213
216
219
219

Xiv

CONTENTS

8.4.2.2 Counting bent functions 257

8.4.2.3 Extension of bent functions foroddn 259

8.5 Construction of Boolean functions 259
8.5.1 Exhaustive search 260
8.5.2 Recursive construction methods 262
8.5.3 Nonlinear optimization 262

8.6 Extensions to S-boxes 263
8.7 Conclusion e e e e 264
Conclusions and Open Problems 265
Modes of Use 269
Al The ECBmode e 269
A2 The CBCmode e 270
A3 The CFBmode e 271
A4 The OFBmode e 272
Birthday Attacks and Collisions 275
B.1 Introduction e e 275
B.2 Models for matching probabilities 276
B.3 Coincidences 277
B.4 k-fold collisions e 279
Differential Cryptanalysis of Hash Functions Based on Block Ciphers287
C.1 Imtroduction e 287
C.2 Differential attacks on single length hash functions 288
C.3 Differential attacks on MDC-2 and MDC-4 290
C.4 Differential attacks on FEAL-N based hash functions 291
C.5 Conclusion e 293
The Number of Graphs with a Given Minimum Degree 295
D.1 Definitions and basic properties 295
D.2 A solution for some values of the minimum degree 297

References 301

List of notations

Such is the advantage of a well-constructed lan-
guage that its simplified notation often becomes
the source of profound theories. — P.S. Laplace

XV

xvi

LIST OF NOTATIONS

List of abbreviations

AGL(n)
ANSI
CBC
CCITT
CFB
CI(m)
CIB(m)
CIN(m)
CPU
CRC
CRF
CRHF
ECB
EFT
EPC(k)
ETEBAC
FIPS
GF(p")
GL(n)
IEC

ISO

1V
MAC
MDC
NIST
OFB
OFBNLF
OWF
OWHF
PC(k)
PCBC
PSG
RCC
RIPE
SAC
SRF

SV
UOWHF

affine linear group of GF(2")

American National Standards Institute

Cipher Block Chaining

International Telegraph and Telephone Consultative Committee
Cipher Feedback

Correlation Immune of order m

Balanced and Correlation Immune of order m
Non-balanced and Correlation Immune of order m
Central Processing Unit

Cyclic Redundancy Check

Collision Resistant Function

Collision Resistant Hash Function

Electronic Codebook

Electronic Funds Transfer

Extended Propagation Criterion of degree k
Echanges Télématiques Entre les Banques et leurs Clients
Federal Information Processing Standard

Galois Field with p™ elements

general linear group of GF(2")

International Electrotechnical Committee
International Organization for Standardization
Initial Value

Message Authentication Code

Manipulation Detection Code

National Institute for Standards and Technology (US)
Output Feedback

Output Feedback with a Non-Linear Function
One-Way Function

One-Way Hash Function

Propagation Criterion of degree k
Plaintext-Ciphertext Block Chaining
Pseudo-random String Generator

Random Code Chaining

Race Integrity Primitives Evaluation

Strict Avalanche Criterion

Sibling Resistant Function

Starting Variable

Universal One-Way Hash Function

List of cryptographic algorithms

BCA
BMAC
DEA
DES
DSA

DSAA
FEAL
FFT-hash
IDEA
IPES
MAA
MD-x
PES
QCMDC
QCMDCV4
RSA

SHA
TRASEC

Binary Condensing Algorithm
Bidirectional MAC

Data Encryption Algorithm

Data Encryption Standard

Decimal Shift and Add algorithm

Digital Signature Algorithm

Dect Standard Authentication Algorithm
Fast data Encipherment Algorithm

Fast Fourier Transform hash function
International Data Encryption Algorithm
Improved Proposed Encryption Standard
Message Authenticator Algorithm
Message Digest x

Proposed Encryption Standard
Quadratic Congruential MDC

Quadratic Congruential MDC Version 4
Rivest Shamir Adleman

Secure Hash Algorithm

TR Ansmission Security

List of mathematical symbols

z|ly : the concatenation of the binary strings = and y

|z] : the greatest integer less than or equal to z

[2] : the least integer greater than or equal to z

Xvil

xviii LIST OF NOTATIONS

Chapter 1

Authentication and Privacy

The beginning s easy; what happens next is
much harder.

1.1 Introduction

The title of this chapter will sound familiar and yet a little odd to anyone who is
interested in cryptography. The explanation is that the frequently cited 1979 overview
paper of W. Diffie and M. Hellman in the Proceedings of the IEEE [96] is entitled
“Privacy and Authentication: an introduction to cryptography”. In spite of the title,
this overview paper is devoted almost completely to the protection of privacy. This
is not surprising, since at that time cryptology was mainly concentrating on the pri-
vacy problem, and it was widely believed that the authentication problem was only
a subproblem, in the sense that protection of authenticity would follow automatically
from privacy protection. W. Diffie and M. Hellman conclude “The problems of privacy
and authentication are closely related and techniques for solving one can frequently be
applied to the other”.

However, their seminal 1976 paper [95] has given cryptography a new orientation,
through the introduction of new concepts and definitions. These concepts gave birth
to new ideas and approaches, resulting in a clear separation of the privacy and authen-
tication problem. About the protection of authenticity, they state that “Not only must
a meddler be prevented from injecting totally new, authentic messages into a channel,
but he must be prevented from creating apparently authentic messages by combining,
or merely repeating, old messages which he has copied in the past. A cryptographic
system intended to guarantee privacy will not, in general, prevent this latter form of
mischief.” The development of both theoretical and practical cryptographic systems
to guarantee authenticity has been an important research topic in the cryptographic
community during the last fifteen years.

In this chapter basic concepts of privacy and authentication will be briefly ex-

1

2 CHAPTER 1. AUTHENTICATION AND PRIVACY

plained. Subsequently, it will be shown that privacy and authentication are two differ-
ent concepts. This will require the description of a model for symmetric and asymmet-
ric cipher systems and an explanation of how cryptographically secure hash functions
can be used to provide authentication and to optimize digital signature schemes. A
taxonomy will be given for authentication systems, comparing the information theo-
retic approach, the complexity theoretic approach, and the system based or practical
approach. Finally an outline of this thesis will be given and the main contributions
will be described.

1.2 Background and definitions

It is well known that the concealment of information or protection of privacy is as old
as writing itself. Human ingenuity found many ways to conceal information: steganog-
raphy, i.e., the hiding of the mere existence of a message, codes, where words or com-
binations of words are replaced by fixed symbols, and cryptology or ciphers, where
information is transformed to render it useless for the opponent. The distinction be-
tween the latter two is rather subtle, and can be made on the fact that codes split
up information according to semantic borders, while ciphers operate on chunks of in-
formation independently of the linguistic interpretation. The technological evolution
from handwritten messages on paper sent by courier to the communication of infor-
mation through both local and worldwide communication networks and the storage
and processing in a variety of computer systems certainly has increased the vulner-
ability of information to eavesdropping. Cryptology was the only solution that was
able to make the leap from the closed world of generals and diplomats to worldwide
commercial applications.

Apart from concealment or privacy protection, it is equally important that both
the contents and the originator of the information are not modified. Both requirements
are captured in the term authentication. An attacker who tries to modify contents or
origin of information is called an active attacker. The fact that the relative importance
of this threat has increased can be illustrated by the emergence of malicious software
programs. The best known examples of this group are certainly the computer viruses
[51]. Others include worms [306], Trojan horses, and logical bombs. Every effective
solution will have to be based on a verification of the authenticity of the software when
it is loaded on the hard disk and when it is loaded by the CPU. The latter application
will require very high throughput of 100 Mbytes per second and even more. A second
illustration is situated in the banking world. The authenticity of financial transactions
is generally considered more important than the secrecy, as one successful fraud can
result in a considerable benefit for the attacker. The problem here is not only the
economical value of a single attack, but the fact that the trust in the system can be lost
[117]. A third application that will become more and more important is the protection
of the authenticity of pictures and moving images (e.g. videoconferencing). As one
can expect that it will become feasible to “edit” moving pictures and make a person
say and do things he or she never said or did, it is required that one can guarantee

1.3. THE SEPARATION OF PRIVACY AND AUTHENTICATION 3

the authenticity of moving images. This will impose even higher requirements on the
throughput. Other applications where authentication is important are alarm systems,
satellite control systems, distributed control systems, and systems for access control
[88].

Authentication is the protection of the communicating parties against attacks of a
third party. However, a different threat emerges when the two communicating parties
are mutually distrustful and try to perform a repudiation. This means that sender or
receiver will try to modify a message and/or deny to have sent or received a particular
message. In paper documents, protection against this type of attack is offered by a
handwritten signature. It is clear that in case of electronic messages, a simple name
at the end of the message offers no protection at all. This is analogous to the fact
that a photocopy of a document with a manual signature has no value, as one can
always produce a bogus document with cut and paste operations. A typical example
of this fraud is the electronic communication of orders to a stockbroker. The customer
can place an order to buy shares of company X. If some days later the transaction
turns out badly, he will try to deny his order. If on the other hand, the transaction
is successful, the stockbroker might claim that he never received the order with the
intention to keep the profit. In case of a dispute, a third party (a judge), has to take a
decision. An elegant technical solution to this problem was offered by the concept of
digital signature schemes based on trapdoor one-way functions [95]. It will be discussed
in more detail in the next section.

1.3 The separation of privacy and authentication

1.3.1 Models for symmetric and asymmetric cipher systems

In this section it will be explained how the concepts of authentication and privacy,
that were at first closely related, grew more and more apart. First a model has to be
given for a cipher system. Hereto the model for a symmetric or conventional cipher
system introduced by C. Shannon in 1949 [303] will be extended to include asymmetric
or public-key cipher systems (figure 1.1). The sender Alice wants to transmit the
plaintext P to the receiver. She will transform the plaintext P into the ciphertext C
with the encryption algorithm FE. The encryption algorithm FE is actually a family
of transformations parameterized by an encryption key K¥. The receiver Bob will
recover the plaintext P by applying the decryption algorithm D. This algorithm is
in the same way parameterized by a decryption key K. The model also contains a
key generation algorithm K G, that produces corresponding pairs K¥ and K. For
simplicity it will be assumed that the generation of keys is controlled by Bob. The key
K has to be sent to Alice through a secure channel. The eavesdropper Eve, who also
will be called cryptanalyst or opponent, knows the description of E and D, and has
access to C'. She will try to derive information on the plaintext P.

In case of a symmetric cipher, K¥ and K are equal and the channel to distribute
K¥ has to protect both its privacy and its authenticity. A possible but expensive
solution is to have the key communicated by a courier. The security of the cipher

4 CHAPTER 1. AUTHENTICATION AND PRIVACY

Alice Eve Bob

KE KP

KG

Figure 1.1: Model of cipher system.

relies on the fact that knowledge of F, D, and C does not allow to derive P.

In case of an asymmetric cipher, K¥ is made public, and therefore this type of
cipher is also called public-key algorithm. The channel to distribute K only has to
protect the authenticity, while Bob has to protect both the authenticity and the secrecy
of KP. The assumptions underlying this cipher are that knowledge of E, D, and C
does not allow to derive P and that knowledge of K¥ does not allow to derive KP.
The concept invented to achieve these properties is the trapdoor one-way permutation
(in fact a trapdoor one-way function suffices). This is a permutation that is hard to
invert unless one knows some secret trapdoor information.

A beautiful property of the public-key algorithms is that if the encryption function
is a trapdoor one-way permutation, they can be turned easily into a digital signature
scheme. If Bob transforms a plaintext P with his secret key K, he obtains the cipher-
text C'. It is possible for Alice — in fact for everyone who knows the corresponding
public key K¥ — to encipher C’ with K* and to verify that P is obtained. Note
that here the implicit assumption is made that P contains some verifiable redundancy,
as will be discussed in the next section. Because Bob is the only person who knows
KP_ it is clear that he is the only person who can possibly have generated C’, and
hence he can not deny to have sent P. If both Alice and Bob generate their own key
pair and exchange their respective public keys, a superposition of both operations will
guarantee both privacy and authentication (figure 1.2). Alice will decipher P with her
secret key K E , subsequently encipher the result with the public key K g of Bob, and
send the resulting ciphertext C” to Bob. Bob can obtain the corresponding plaintext
and verify its authenticity by deciphering C” with his secret key K5 and subsequently
encrypting the result with the public key K E of Alice.

1.3. THE SEPARATION OF PRIVACY AND AUTHENTICATION 5

Alice Bob

Figure 1.2: Protection of both authenticity and privacy with a public key system.

It is clear that the extension of this model to a model with central key generation
and distribution is straightforward. In this case a hierarchical approach is possible
based on master keys.

1.3.2 Information authentication and digital signatures

This section aims to illustrate briefly how cryptographic hash functions can be used to
protect the authenticity of information and to improve digital signature schemes. A
more detailed treatment will be given in chapter 2.

The protection of the authenticity of information includes two aspects:

e the protection of the originator of the information, or in ISO terminology [151]
data origin authentication,

e the fact that the information has not been modified, or in ISO terminology [151]
the integrity of the information.

There are two basic methods for protecting the authenticity of information.

e The first approach is analogous to the approach of a symmetric or asymmetric
cipher, where the secrecy of large data quantities is based on the secrecy and
authenticity of a short key. In this case the authentication of the information
will also rely on the secrecy and authenticity of a key. To achieve this goal, the
information is compressed to a quantity of fixed length, which is called a hashcode.
Subsequently the hashcode is appended to the information. The function that
performs this compression operation is called a hash function. The basic idea
of the protection of the integrity is to add redundancy to the information. The
presence of this redundancy allows the receiver to make the distinction between
authentic information and bogus information.

In order to guarantee the origin of the data, a secret key that can be associated
to the origin has to intervene in the process. The secret key can be involved
in the compression process or can be used to protect the hashcode and/or the

6 CHAPTER 1. AUTHENTICATION AND PRIVACY

information. In the first case the hashcode is called a Message Authentication
Code or MAC, while in the latter case the hashcode is called a Manipulation
Detection Code or MDC.

e The second approach consists of basing the authenticity (both integrity and origin
authentication) of the information on the authenticity of a Manipulation Detec-
tion Code or MDC. A typical example for this approach is a computer user who
will calculate an MDC for all its important files. He can store this collection of
MDC’s on a floppy, that is locked in his safe, or he can write them down on a
piece of paper. If he has to transfer the files to a remote friend, he can simply
send the files and communicate the MDC’s via telephone. The authenticity of
the telephone channel is offered here by voice identification.

The second application of cryptographically secure hash functions is the optimiza-
tion of digital signature schemes and the construction of digital signature schemes that
are not based on a trapdoor one-way permutation (cf. section 2.3.3). The optimization
is obtained through signing the MDC of a message instead of every bit or block. The
description of the hash function can be public and it does not depend on any secret
parameter. The advantages of this approach are that the signature has a fixed short
length and that the computational requirements are minimized. In some cases the se-
curity level of the signature scheme can be increased. For some signature schemes the
hash function is even an integral part of the scheme. Digital signature schemes based
on one-way functions are in general less practical, but can be an alternative if one is
not allowed or willing to use a scheme based on a trapdoor one-way permutation.

1.3.3 Privacy and authentication: two different concepts

Until recently, it was generally believed that encryption of information suffices to
protect its authenticity. The argument was that if a ciphertext resulted after decryption
in meaningful information, it should be originated with someone who knows the secret
key, guaranteeing authenticity of message and sender. As a consequence, if an opponent
wants to modify an enciphered message or to send a fake message, he has to know the
secret key and hence to break the encryption algorithm. The opposite observation
is clearly true: someone who has broken the encryption algorithm can easily modify
messages or send bogus messages. One of the famous persons who experienced this
was Mary, Queen of Scotland, who organized with A. Babington in 1586 a plot to
assassinate Elisabeth. Her encrypted communications were deciphered by Phelippes.
This enabled Phelippes to add a correctly enciphered postscript to one of Mary’s letters
asking for “the names and the qualities of the sixz gentlemen which are to accomplish
the designment”, [174], pp. 122-123. Although the conspirators were caught before the
answer could be intercepted, the forgery clearly illustrates the point.

Several counterexamples will show that it is not necessary to break the cipher
system in order to be able to falsify messages. At first, the protection of integrity
is strongly dependent on the encryption algorithm and on the mode in which the
algorithm is used. The reader who is not familiar with the four standardized modes of a

1.3. THE SEPARATION OF PRIVACY AND AUTHENTICATION 7

cipher (Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback
(CFB), and Output Feedback (OFB)) and with the difference between stream ciphers
and block ciphers will find a detailed treatment of the modes and their properties in
appendix A.

A famous cipher that offers unconditional secrecy is the Vernam cipher or modulo 2
one-time pad [322]. It was invented in 1917 by G. Vernam to encipher printed telegraph
communications. The ciphertext is obtained through an addition modulo 2 or exor of
the key. Its security relies on the fact that ciphertext and plaintext are statistically
independent. The disadvantage of the system is that the size of the key is as large
as the size of the plaintext. However, C. Shannon showed in 1949 [303] that this is
optimal to achieve unconditional or perfect secrecy. Nevertheless an active attacker
can change any bit of the plaintext by simply flipping the corresponding bit of the
ciphertext, as was remarked by Feistel [104, 105]. This observation is also valid for any
additive stream cipher and for the OFB mode of any block cipher. It holds partially
if a block cipher is used in CFB or CBC mode [91].

If a plaintext longer than one block is enciphered with a block cipher in ECB mode,
an active attacker can easily reorder the blocks. Another example is the vulnerability
to active attacks of a plaintext encrypted in Cipher Feedback Mode (CFB). Due to
the self-synchronization properties, any modification in the ciphertext will cause a
corresponding modification to the plaintext and will subsequently garble the next part
of the plaintext. When the error has shifted out of the feedback register, the ciphertext
will be deciphered correctly again. If the last part of the ciphertext is modified, it
is completely impossible to detect this. If the garbling occurs in the middle of the
plaintext, it can only be detected based on redundancy, as will be discussed in the
next paragraph.

In other modes (e.g. CBC) every ciphertext bit is a complex function of the previous
plaintext bits and an initial value. If the modification of a single ciphertext bit results
in ¢ bits of the plaintext being garbled, the probability that the new plaintext will be
accepted as meaningful equals 27¢P, where D is the redundancy in the information.
In case of natural language D ~ 3.7, and this probability is negligible for ¢ > 8.
However, if D = 0 all messages are meaningful, and encryption offers no authentication,
independently of the encryption algorithm or of the mode. This means that an attacker
can modify messages or forge messages of his choice. The limitation is that he does not
know on beforehand what the corresponding plaintext will be, but many applications
can be considered where such an attack would cause serious problems. Note that
even if redundancy is present, a human checker or a designated computer program is
required to check its presence. A detailed discussion of the use of different modes for
authentication purposes will be given in chapter 5.

The second illustration of the independence of privacy and authentication is given
by the use of public-key algorithms. From section 1.3.1 it is clear that two independent
operations and two independent key pairs are necessary to protect both privacy and
authenticity.

A third example is the use of a Message Authentication Code or MAC to protect

8 CHAPTER 1. AUTHENTICATION AND PRIVACY

the authenticity, as discussed in section 1.3.2. A widely accepted and standardized
way to compute a MAC is to encrypt the plaintext in CBC mode. The ciphertext
corresponding to the last block depends on the secret key, on the initial value, and on
all bits of the plaintext, hence it can be used as a MAC. In case the plaintext has to
be encrypted, it is very appealing to use the same key for the encryption and for the
calculation of the MAC, but a different initial value. However, it can be shown that this
approach is insecure [167], and that a different key should be used for authentication
and encryption purposes. This is discussed in more detail in chapter 5. A similar
observation is made in [91] for an authentication scheme based on a stream cipher.
The last argument is an interesting series of toy examples with a two bit key and
a one bit plaintext [202] illustrating that a cipher can offer either perfect secrecy, or
perfect authenticity or both. The conclusion is that “..secrecy and authenticity are

independent attributes of a cryptographic system ...”

1.4 Three approaches to the authentication problem

In present day cryptography, three approaches can be identified to solve most prob-
lems comprising information secrecy and information authenticity. These approaches
differ in the assumptions about the capabilities of an opponent, in the definition of a
cryptanalytic success, and in the notion of security. This taxonomy is based on the
taxonomy that was developed for stream ciphers by R. Rueppel [287], and deviates
from the taxonomy for authentication developed by G. Simmons [310].

A first method is based on information theory, and it offers unconditional security,
i.e., security independent of the computing power of an adversary. The complexity
theoretic approach starts from an abstract model for computation, and assumes that
the opponent has limited computing power. The system based approach tries to pro-
duce practical solutions, and the security estimates are based on the best algorithm
known to break the system and on realistic estimates of the necessary computing power
or dedicated hardware to carry out the algorithm. In [310] the second and third ap-
proach are lumped together as computationally secure, and in [287] a fourth approach
is considered, in which the opponent has to solve a problem with a large size (namely
examining a huge publicly accessible random string); it can be considered as both
computationally secure and information theoretically secure.

The properties of the three approaches are compared in table 1.1. It should be noted
that the information theoretic approach is impractical for most applications because
of the size of the secret key. Sometimes the complexity theoretic approach allows for
efficient constructions, but in a practical scheme the dimensions of the scheme are fixed
and the proof of security has only a limited value.

1.4.1 Information theoretic approach

This approach results in a characterization of unconditionally secure solutions, which
implies that the security of the system is independent of the computing power of the

1.4. THREE APPROACHES TO THE AUTHENTICATION PROBLEM 9

computing power security practicality
of opponent
information theoretic unlimited provable (unconditional) impractical
complexity theoretic polynomial asymptotic (assumptions) impractical
system based fixed no proof efficient

Table 1.1: Comparison of the three approaches in cryptography.

opponent. E.g.. in case of privacy protection, it has been shown by C. Shannon that
unconditional privacy protection requires that the entropy of the key is lower bounded
by the entropy of the plaintext. It should be remarked that both unconditional privacy
and unconditional authenticity are only probabilistic: even if the system is optimal with
respect to some definition, the opponent has always a non-zero probability to cheat.
However, this probability can be made exponentially small. The advantage of this
approach lies in the unconditional security. Like in the case of the Vernam scheme,
the price paid for this is that these schemes are rather impractical.

The cryptographer considers a game-theoretic model, in which the opponent ob-
serves [messages and subsequently tries to impersonate or substitute messages. The
cryptographer will encipher his messages under control of a secret key. Because the
goal of the cryptographer is now the protection of the authenticity (or the combination
of secrecy and authenticity), the transformation will be called an authentication code.
The information theoretic study of authentication has now been reduced to the design
of authentication codes, that are in some sense dual to error correcting codes [310]. In
both cases redundant information is introduced: in case of error correcting codes the
purpose of this redundancy is to allow the receiver to reconstruct the actual message
from the received codeword, and to facilitate this the most likely alterations are in
some metric close to the original codeword; in case of authentication codes, the goal of
the redundancy is to allow the receiver to detect substitutions or impersonations by an
active eavesdropper, and this is obtained by spreading altered or substituted messages
as uniformly as possible.

The advantage of this approach lies in the unconditional security. Like in case of
the Vernam scheme, the price paid for this is that these schemes are rather impractical.

1.4.2 Complexity theoretic approach

The approach taken here is to define at first a model of computation, like a Turing
machine [5] or a Boolean circuit [98]. All computations in this model are parameterized
by a security parameter, and only algorithms or circuits that require asymptotically
polynomial time and space in terms of the size of the input are considered feasible.
The next step is then to design cryptographic systems that are provably secure with
respect to this model. This research program has been initiated in 1982 by A. Yao
[331, 332] and tries to base cryptographic primitives on general assumptions. Exam-

10 CHAPTER 1. AUTHENTICATION AND PRIVACY

ples of cryptographic primitives are: secure message sending, cryptographically secure
pseudo-random generation, general zero-knowledge interactive proofs, Universal One-
Way Hash Functions (UOWHF), Collision Resistant Hash Functions (CRHF), and
digital signatures. It will be shown that the latter three are relevant for information
authentication. Examples of general assumptions to which these primitives can be
reduced are the existence of one-way functions, injections, or permutations, and the
existence of trapdoor one-way permutations. A third aspect is the efficiency of the re-
duction, i.e., the number of executions of the basic function to achieve a cryptographic
primitive, and the number of interactions between the players in the protocol.

Several lines of research have been followed. A first goal is to reduce cryptographic
primitives to weaker assumptions, with as final goal to prove that the reduction is
best possible. A different approach is to produce statements about the impossibility
of basing a cryptographic primitive on a certain assumption [150]. One can also try to
improve the efficiency of a reduction, possibly at the cost of a stronger assumption. If
someone wants to build a concrete implementation, he will have to choose a particular
one-way function, permutation, etc. The properties of a particular problem that is
believed to be hard can be used to increase the efficiency of the solutions. Examples
of problems that have been intensively used are the factoring of a product of two large
primes, the discrete logarithm problem modulo a prime and modulo a composite that
is the product of two large primes, and the quadratic residuosity problem.

The complexity theoretic approach has several advantages:

1. It results in provable secure systems, based on a number of assumptions.

2. The constructions of such proofs requires formal definitions of the cryptographic
primitives and of the security of a cryptographic primitive.

3. The assumptions on which the security of the systems is based are also defined
formally.

The disadvantage is that the complexity theoretic approach has only a limited impact
on practical implementations, due to limitations that are inherently present in the
models.

1. In complexity theory, a number of operations that is polynomial in the size of
the input is considered to be feasible, while a superpolynomial or exponential
number of operations in the size of the input is infeasible. In an asymptotic
setting, abstraction is made from both constant factors and the degrees of the
polynomials. This implies that this approach gives no information on the secu-
rity of concrete instances (a practical problem has a finite size). Secondly, the
scheme might be impractical because the number of operations to be carried out
is polynomial in the size of the input but impractically large.

2. The complexity theoretic approach yields only results on the worst case or av-
erage case problems in a general class of problems. However, cryptographers
studying the security of a scheme are more interested in the subset of problems
that is easy.

1.4. THREE APPROACHES TO THE AUTHENTICATION PROBLEM 11

3. Complexity usually deals with single isolated instances of a problem. A crypt-
analyst often has a large collection of statistically related problems to solve.

It is interesting to remark that the starting point of this approach was the informal
definition of a one-way function and a trapdoor one-way permutation in the seminal
paper of W. Diffie and M. Hellman [95]. The first practical public-key cryptosystems
were based on the hardness of factoring the product of two large primes (the RSA
system proposed by R. Rivest, A. Shamir and L. Adleman [278]) and on the subset
sum or knapsack problem (proposed by R. Merkle and M. Hellman [210]). However, it
is not possible to show that the security of these systems is equivalent to solving the
underlying hard problem. The best illustration of this fact is the fate of the knapsack
public-key cryptosystems, that are almost completely broken [32, 92]. Although no one
has been able to show that the security of RSA public-key cryptosystem is equivalent
to factoring, no attack on the RSA scheme has been proposed that is more efficient
than factoring the modulus. Historically, the attempts to prove the security of RSA
resulted in the construction of new schemes for which it was possible to prove that
breaking the scheme is equivalent to factoring. The next step was to design systems
based on other assumptions and finally to generalize these assumptions.

1.4.3 System based or practical approach

In this approach schemes with fixed dimensions are designed and studied, paying spe-
cial attention to the efficiency of software and hardware implementations. The objec-
tive of this approach is to make sure that breaking a cryptosystem is a difficult problem
for the cryptanalyst.

By trial and error procedures, several cryptanalytic principles have emerged, and it
is the goal of the designer to avoid attacks based on these principles. Typical examples
are statistical attacks and meet in the middle attacks. An overview of these principles
for cryptographic hash functions will be given in chapter 2.

The second aspect is to design building blocks with provable properties. These
building blocks are not only useful for cryptographic hash functions, but also for the
design of block ciphers and stream ciphers. Typical examples are statistical criteria,
diffusion and confusion, correlation, and non-linearity criteria. The study of these
criteria leads to the study of fundamental properties of Boolean functions in chapter 8.

Thirdly, the assembly of basic building blocks to design a cryptographic hash func-
tions can be based on theorems. Results of this type are often formulated and proven
in a complexity theoretic setting, but can easily be adopted for a more practical defini-
tion of “hardness” that is useful in a system based approach. A typical example is the
theorem discovered independently in [66] and [213], stating that a collision-resistant
hash function can always be constructed if a collision-resistant function exists, where
the first reference uses a complexity theoretic approach and the second a more prac-
tical definition. A similar observation holds for the theorem that hash functions can
be parallelized efficiently under certain assumptions, where a complexity theoretic ap-
proach was proposed in [66] and a practical approach independently by the author in

12 CHAPTER 1. AUTHENTICATION AND PRIVACY

[252]. But even if the results are formulated directly in a practical approach, interest-
ing results can be produced. A nice example is the design of a collision resistant hash
function [213] based on the assumption that the underlying block cipher is random.

1.5 Outline of the thesis

In this thesis cryptographic hash functions will be studied according to the three
approaches that have been presented in the previous section.

Chapter 2 contains an overview of cryptographic hash functions. This comprises
practical definitions of the basic concepts, a discussion of applications, a general model
for constructions of hash functions, and an extensive taxonomy of attacks on hash
functions.

Chapter 3 contains a brief overview of the information theoretic approach to au-
thentication, with the emphasis on the practicality of the constructions for authenti-
cation without secrecy.

In chapter 4 the complexity theoretic approach is presented. The uniform notation
and definitions to describe the different schemes will make the complexity theoretic
results more accessible to non-experts in this domain.

Our research concentrated on the practical approach. First an overview of three
types of practical schemes will be given, and subsequently some design criteria for
basic building blocks are discussed. In chapter 5, which is the most extensive chapter,
cryptographic hash functions based on block ciphers are discussed. This comprises a
brief introduction explaining the origin of the concept of an MDC, and subsequently
the discussion of a large variety of schemes. Also three new schemes are proposed in
this chapter.

In chapter 6 a survey of cryptographic hash functions based on modular arithmetic
is given.

In chapter 7 proposals for dedicated hash functions are reviewed, and design criteria
for these hash functions are discussed.

In chapter 8 the study of basic building blocks of cryptographic hash functions
leads to the study of Boolean functions. Here new criteria are defined, and functions
satisfying these criteria are studied. Extensions of these criteria to S-boxes will also
be mentioned.

Chapter 9 contains the conclusions from this thesis and discusses some open prob-
lems.

1.6 Main contributions

One of the main contributions of this thesis is that it is the first text that gives an
extensive treatment of cryptographic hash functions according to the information theo-
retic, complexity theoretic, and system based approach. The emphasis in our research
lies on the more practical schemes, and in the interaction between theoretical and

1.6. MAIN CONTRIBUTIONS 13

practical constructions. In chapter 5 it is explained how the concept of cryptographic
hash functions has developed from the redundancy that is added before encryption.

The contributions of chapter 2 are the establishment and discussion of a general
model for hash functions. Also a taxonomy for attacks on hash functions is presented
that can be used as a checklist for the evaluation of a hash function.

In chapter 3 that deals with the information theoretic approach, the efficiency of
schemes that provide authentication without secrecy is compared for practical param-
eters.

In chapter 5, 6, and 7 all practical proposals published in the literature are described
and evaluated. For hash functions based on block ciphers a synthetic approach was
developed for the case where the size of the hashcode equals the block length of the
underlying block cipher. This approach is applicable to the study of both MDC’s and
MAC’s and can be extended to hash functions based on modular exponentiation. Three
new hash functions based on a block cipher are proposed. In these chapters twelve
new attacks on published hash functions are discussed, and for many other schemes
an improved evaluation is presented. For some schemes this evaluation is based on an
expression for the number of operations to obtain a multiple collision, that is derived
in appendix B.

In chapter 5 and appendix C the technique of differential cryptanalysis is extended
to hash functions based on block ciphers. In the same chapter the treatment of the
addition schemes is generalized, as well as the treatment of the interaction between
MAC calculation and encryption. In chapter 7 design criteria for dedicated hash
functions are discussed.

The main contribution of chapter 8 is the definition of a new criterion for Boolean
functions that generalizes existing criteria. Also, properties of quadratic functions are
characterized through connections with matrix and graph theory. It proved useful to
determine the number of graphs with a given minimum degree (appendix D). Functions
that satisfy new and existing criteria are studied. Moreover this chapter proposes
a new construction for bent functions and an efficient way to count the number of
bent functions of 6 variables (which was previously unknown). Finally a new class of
functions is presented that has some interesting properties.

14

CHAPTER 1.

AUTHENTICATION AND PRIVACY

Chapter 2

Cryptographic Hash Functions

To know that we know what we know, and that
we do not know what we do not know, that is
true knowledge. Henry David Thoreau

2.1 Introduction

Hash functions are functions that compress an input of arbitrary length to a result
with a fixed length. If hash functions satisfy additional requirements, they are a very
powerful tool in the design of techniques to protect the authenticity of information. In a
first section cryptographic hash functions will be informally defined, and subsequently
it will be discussed how hash functions can be used in a variety of applications. Next
a general model will be presented together with a brief discussion of some specific
constructions. Finally an extensive taxonomy is given of methods of attack on hash
functions. These attacks are mainly relevant for the system based approach, that
will be followed in chapters 5 to 8. However, the models and attacks presented in
this chapter make it easier to understand the unconditionally secure and complexity
theoretic constructions that are presented in chapter 3 and 4 respectively.

Many articles have discussed general aspects and applications of hash functions and
the definitions have grown organically. Although a specific reference has been made
wherever possible, the following valuable references on hash functions could not be
indicated at a specific location: [6, 39, 64, 70, 71, 74, 86, 128, 129, 136, 166, 167, 168,
169, 170, 183, 211, 216, 220, 223, 230, 233, 250, 264, 280, 295, 335]. The most important
contributions of this chapter are the establishment and discussion of a general model
and the taxonomy for attacks. Part of the results in this chapter have been published
in [253, 254, 256, 261].

15

16 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

2.2 Practical definitions

In the first chapter, it was explained how the authenticity of information can be verified
through the protection of the secrecy and/or the authenticity of a short imprint or
hashcode. In this section informal definitions will be given for a hash function that
uses a secret key (Message Authentication Code or MAC) and for a hash function
that does not make use of a secret key (Manipulation Detection Code or MDC). This
last category can be split in two classes, depending on the requirements: one-way
hash functions (OWHF) or weak one-way hash functions and collision resistant hash
functions (CRHF), collision free hash functions, or strong one-way hash functions.

A brief discussion of the existing terminology can avoid confusion that is found in
the literature. The term hash functions originates historically from computer science,
where it denotes a function that compresses a string of arbitrary input to a string
of fixed length. Hash functions are used to allocate as uniformly as possible storage
for the records of a file. The name hash functions has also been widely adopted
for cryptographic hash functions or cryptographically strong compression functions,
but the result of the hash function has been given a wide variety of names in the
cryptographic literature: hashcode, hash total, hash result, imprint, (cryptographic)
checksum, compression, compressed encoding, seal, authenticator, authentication tag,
fingerprint, test key, condensation, Message Integrity Code (MIC), message digest,
etc. The terms MAC and MDC originated from US standards and are certainly not
perfect (a MAC or an MDC are actually no codes, and both can serve for message
authentication), but the adoption of these terms offers a practical solution to the
momentary “Babel of tongues”. One example of the confusion is that “checksum” is
associated with the well known Cyclic Redundancy Checks (CRC) that are of no use
for cryptographic applications. In this thesis the names MAC and MDC will also be
used for the hashcode obtained with a MAC and an MDC respectively. Sometimes a
MAC is called a keyed hash function, but then one has to use for an MDC the artificial
term unkeyed or keyless hash function. According to their properties, the class of
MDC’s will be further divided into one-way hash functions (OWHF) and collision
resistant hash functions (CRHF). The term collision resistant hash function (CRHF)
is preferable over strong one-way hash function, as it explains more clearly the actual
property that is satisfied. The term collision free hash function proposed by I. Damgard
is also more explicit, but can be slightly misleading: in fact collisions do exist, but it
should be hard to find them. An alternative that was proposed in [339, 341] is collision
intractible hash functions. The term weak one-way hash function was proposed by
R. Merkle in [213], in order to stress the difference with a strong or collision resistant
hash function. Finally note that in a complexity theoretic context the term universal
one-way hash function (UOWHF) was proposed by M. Naor and M. Yung in [233].
The main characteristic of this one-way hash function is that it is randomly selected
from a large set and independently of the data to be hashed. This implies trivially that
producing collisions for a single hash function is useless. To avoid confusion between
this very specific definition and the more general one-way hash function, this term will
only be used in the complexity theoretic approach. The relation between the different

2.2. PRACTICAL DEFINITIONS 17

hash functions can be summarized in figure 2.1.

cryptographic hash function

MAC MDC

N

OWHF CRHF

Figure 2.1: A taxonomy for cryptographic hash functions.

In the following the hash function will be denoted with h, and its argument, i.e.,
the information to be protected with X. The image of X under the hash function h
will be denoted with h(X) and the secret key with K.

2.2.1 One-way hash function (OWHF)

The first informal definition of a OWHF was apparently given by R. Merkle [211, 213]
and M. Rabin [274].

Definition 2.1 A one-way hash function is a function h satisfying the following
conditions:

1. The description of h must be publicly known and should not require any secret
information for its operation (extension of Kerckhoffs’s principle®).

2. The argument X can be of arbitrary length and the result h(X) has a fixed length
of n bits (with n > 64, cf. section 2.5.1).

3. Given h and X, the computation of h(X) must be “easy”.

4. The hash function must be one-way in the sense that given a Y in the image of
h, it is “hard” to find a message X such that h(X) =Y and given X and h(X)
it is “hard” to find a message X' # X such that h(X') = h(X).

The first part of the last condition corresponds to the intuitive concept of one-wayness,
namely that it is “hard” to find a preimage of a given value in the range. In the case
of permutations or injective functions only this concept is relevant. The second part
of this condition, namely that finding a second preimage should be hard, is a stronger
condition, that is relevant for most applications. Formal definitions of a OWHEF can be
obtained through insertion of a formal definition of “hard” and “easy” in combination

!The Dutchman A. Kerckhoffs (1853-1903) was the first to enunciate the principle that the security
of a cipher must reside entirely in the secret key.

18 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

with the introduction of a security parameter. In the complexity theoretic approach (cf.
chapter 4) this means that the number of operations is superpolynomial in the size of
the input. For a practical definition, one still has several options. In the case of “ideal
security”, introduced by X. Lai and J. Massey [183], producing a (second) preimage
requires 2" operations operations. However, it may be that an attack requires a number
of operations that is smaller than O(2"), but is still computationally infeasible.

2.2.2 Collision resistant hash function (CRHF)

The first formal definition of a CRHF was apparently given by I. Damgard [64, 65]
and will be discussed in chapter 4. An informal definition was given by R. Merkle in
[213)].

Definition 2.2 A collision resistant hash function is a function h satisfying the
following conditions:

1. The description of h must be publicly known and should not require any secret
information for its operation (extension of Kerckhoffs’s principle).

2. The argument X can be of arbitrary length and the result h(X) has a fixed length
of n bits (with n > 128, cf. section 2.5.1).

3. Given h and X, the computation of h(X) must be “easy”.

4. The hash function must be one-way in the sense that given a Y in the image of
h, it is “hard” to find a message X such that h(X) =Y and given X and h(X)
it is “hard” to find a message X' # X such that h(X') = h(X).

5. The hash function must be collision resistant: this means that it is “hard” to find
two distinct messages that hash to the same result.

In section 4.3.3 a result will be given that suggests that in certain cases the first part
of the one-way property follows from the collision resistant property. Similarly formal
definitions of a CRHF can be obtained through insertion of a formal definition of
“hard” and “easy” in combination with the introduction of a security parameter. For
a practical definition, several options are available. In the case of “ideal security” [183],
producing a (second) preimage requires 2" operations and producing a collision requires
O(2™/?) operations. This can explain why both conditions have been stated separately.
One can however also consider the case where producing a (second) preimage and a
collision requires at least 0(2”/ 2) operations, and finally the case where one or both
attacks require less than O(2"/2) operations, but the number of operations is still
computationally infeasible (e.g., if a larger value of n is selected).

2.2.3 Message Authentication Code (MAC)

Message Authentication Codes have been used for a long time in the banking commu-
nity and are thus older than the open research in cryptology that started in the mid
seventies. However, MAC’s with good cryptographic properties were only introduced
after the start of open cryptologic research.

2.3. APPLICATIONS OF HASH FUNCTIONS 19

Definition 2.3 A MAC is a function satisfying the following conditions:

1. The description of h must be publicly known and the only secret information lies
in the key (extension of Kerckhoffs’s principle).

2. The argument X can be of arbitrary length and the result h(K,X) has a fixed
length of n bits (with n > 32...64, cf. section 2.5.1).

3. Given h, X and K, the computation of h(K,X) must be “easy”.

4. Given h and X, it is “hard” to determine h(K,X) with a probability of success
“significantly higher” than 1/2". Even when a large set of pairs { X;, h(K, X;)} is
known, where the X; have been selected by the opponent, it is “hard” to determine
the key K or to compute h(K, X') for any X' # X;. This last attack is called an
adaptive chosen text attack 2.

Note that this last property implies that the MAC should be both one-way and collision
resistant for someone who does not know the secret key K. This definition leaves
open the problem whether or not a MAC should be one-way or collision resistant for
someone who knows K. In the next section, some applications will be discussed where
this property could be useful, and in chapter 5 some new MAC’s based on a block
cipher will be proposed that satisfy one or both properties.

2.3 Applications of hash functions

In chapter 1 it has been explained that cryptographic hash functions can be used
to protect information authenticity and to protect against the threat of repudiation.
In this section both applications will be discussed in detail, together with the more
specific problem of authentication for messages with more than one recipient. It will
also be discussed how one can use hash functions for identification with passwords, and
how one can derive an encryption algorithm from a hash function. The example of
protection of a computer program against viruses will be used to illustrate the different
concepts.

2.3.1 Information authentication

The basic idea of the use of cryptographic hash functions is to reduce the protection
of the authenticity of information of arbitrary length to the protection of the secrecy
and/or authenticity of quantities of fixed length. First, a distinction will be made
between protection of authentication with and without secrecy. The second option is
whether the protection of authenticity will depend on the secrecy and authenticity of
a key or on the authenticity of an information dependent hashcode.

2.3.1.1 Authentication without secrecy

In this case there is only a plaintext available, which significantly reduces the number
of options.

2For a more extensive discussion of attacks on a MAC the reader is referred to section 2.5.

20 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

MAC The simplest approach is certainly the use of a Message Authentication Code
or MAC. In order to protect the authenticity of the information, one computes the
MAC and appends this to the information. The authenticity of the information now
depends on the secrecy and authenticity of the secret key and can be protected and
verified by anyone who is privy to this key. Essentially the protection of authenticity
has been reduced to the problem of secure key management. This scheme can only
protect against outsider attacks, as all parties involved have the same capabilities and
hence should trust each other.

The scheme can be made even more secure but less practical if also the authenticity
and/or secrecy of the MAC of every plaintext is protected. A possible implementation
could consist of an exchange of messages via a high speed communication link, while the
corresponding MAC’s are sent via a slower channel, that protects authenticity and/or
secrecy. A simple authentic channel can be a telephone line (with voice recognition)
or the conventional mail system (with manual signatures). The advantage is that
it becomes impossible for any of the parties that know the secret key to modify an
existing message and the corresponding MAC.

An issue of discussion is whether it should be “hard” for someone who knows the
secret key to construct two arguments with the same MAC for that key. This will
strongly depend on the application: in general an internal procedure has to be estab-
lished to resolve disputes. A third party can make no distinction between the parties
involved, but it is possible that, although both parties have the same capabilities, a
certain asymmetry exists in their relation, e.g., the bank versus a customer. This
procedure should specify what happens if someone denies a messages or subsequently
claims he has sent a different message. If some additional protection against insider
attacks is obtained from protection of the MAC, this property should be satisfied.
However, also physical solutions based on tamper resistant devices can offer such pro-
tection. Nevertheless, a better way to solve disputes is to provide for non-repudiation
through digital signatures.

MDC The alternative for a MAC is the use of an MDC. In this case the authenticity
of the information is transferred to the authenticity of a string of fixed length. The
advantage over a MAC is that there is no need for key management. In exchange for
this, an authentic channel has to be provided for every MDC. This means that the
capacity of the channel will increase with the number of messages. Although the life
time of a key is also related to the number of times it has been used, it is clear that
the authentic channel for the MDC will need a significantly greater capacity than the
channel that protects both authenticity and privacy of the secret key for a MAC.

Just as in case of a MAC, the parties that use this approach are supposed to trust
each other, but it is important to consider what will happen if a dispute arises, or what
will happen if an insider will attack the system. An insider will try to find a collision,
i.e., two plaintexts X and X’ such that h(X) = h(X'). Subsequently he will protect
the authenticity of X through h(X), but at any time later he will be able to substitute
X' for X. In order to avoid this attack, h should be a CRHF.

2.3. APPLICATIONS OF HASH FUNCTIONS 21

However, one can certainly imagine applications where this attack is not relevant.
In that case one only has to be protected against outsiders, hence it suffices that h is
a OWHEF": an outsider can not select X, but will only be able to observe X and h(X)
and subsequently try to come up with an X’ such that h(X) = h(X’).

1. The parties involved completely trust each other, which is trivially the case if
there is only one party. One could think of someone who protects the integrity
of his computer files through the calculation of an MDC that he stores in printed
form in this vault. Every day he can repeat the calculation and verify the result.

2. The computation of the h(X) involves a random component, that can not be
controlled by the insider [213]: X can be randomized before applying h through
encryption of X with a good block cipher using a truly random key, that is added
to the resulting ciphertext [211], or through the selection of a short random prefix
to X [64]; h itself can be randomized through randomly choosing h from a family
of functions indexed by a certain parameter.

The advantage of a OWHEF is that its design is easier and that storage for the hash-
code can be halved (64 bits instead of 128 bits). The price paid for this is a degrading
of the security level proportional to the number of applications of h: an outsider who
knows a set {h(X) | X € Domain(h)} of size s has increased his probability to find an
X'’ with a factor s. This limitation can be overcome through the use of a parameterized
OWHEF.

2.3.1.2 Authentication with secrecy

If both authentication and secrecy are protected, this can be used in certain cases to
simplify the overall system. For insider attacks, the additional encryption makes no
difference, as an insider knows the secret key for the encryption. This means that for
certain applications it should be hard to find collisions. For an outsider, an attack on
the scheme becomes in general harder, as his knowledge decreases.

Although it is tempting to use this fact to lower the requirements imposed on the
hash functions, this is certainly not a good practice. The additional protection offered
by the encryption is dependent on the encryption algorithm and on the mode of the
encryption algorithm (cf. appendix A). Examples of this can be found in chapter 5.

MAC Several options can be considered, but all share the problem of a double key
management: one for the authentication and one for the encryption. It is tempting
to use the same key twice, but this has to be discouraged strongly: not only are
there dangerous interactions possible between the encryption scheme and the MAC
(these are extensively discussed in section 5.4.1), but the management of both keys
should be different (e.g. lifetime, storage after use). The advantage of this approach
is a high security level, owing to the complete separation of protection of privacy and
authentication.

The most straightforward option is to calculate the MAC, append it to the in-
formation and subsequently encrypt the new message. An alternative is to omit the

22 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

encryption of the MAC. The third solution is to calculate the MAC on the enciphered
message. The advantage is that the authenticity can be verified without knowing the
plaintext or the secret key of the encryption algorithm, but in general it is preferable to
protect the authenticity of the plaintext instead of the authenticity of the ciphertext.

MDC The advantages for using an MDC are a simplified key management and the
fact that the authentication is derived directly from the privacy protection. The key
management will be simplified because only one key will be necessary to protect both
privacy and authenticity. The fact that the authentication is based on the privacy
protection implies that it requires no additional secret key or authentic channel. In
the context of the ISO Open System Interconnect Reference Model [151] integrity and
confidentiality can be protected at different layers. No secret information would be
necessary at the layer that calculates the MDC. The disadvantage is that the protection
of authenticity depends on the privacy protection: if the encryption algorithm is weak,
the protection of authenticity will also be jeopardized.

The most straightforward option is to calculate the MDC, append it to the in-
formation, and subsequently encrypt the new message. An alternative is to omit the
encryption of the MDC. This approach seems to be more vulnerable to outsider at-
tacks, but it should cause no problem if the MDC satisfies the imposed conditions. The
third solution is to calculate the MDC on the enciphered message. However, this ap-
proach can not be recommended: the result has to be protected now with an authentic
channel, and an important advantage of this approach is lost.

A special warning should be added in case the encryption algorithm is an additive
stream cipher where the opponent knows the plaintext [167, 169]: in that case he can
easily compute the key-stream sequence. Subsequently he can modify the plaintext,
calculate the MDC, and encrypt both the new plaintext and the new MDC. This attack
depends only on the mode of operation of the encryption and is independent of the
choice of the MDC. A solution suggested by R. Jueneman is to let the MDC depend
on a random initial value IV (cf. section 2.4.1) that is added to the plaintext, which
means that it can not be known by an adversary. This is equivalent to using a MAC
and adding the key for the MAC to the plaintext. In a communication environment
this could be realized in practice by making the MDC in a message dependent on the
previous message and on the previous MDC. The MDC in the first message should be
based on a secret random component that was sent by the receiver when the session
was established. The last message should contain and end-of-session symbol, the MDC
of the previous message, and the MDC of the current message. This approach is limited
to systems where sessions are established in real-time.

2.3.2 Authentication of multi-destination messages

In some applications a user Alice wants to send an authenticated message X to more
than one receiver. To reduce communication bandwidth, only a single message is
sent (e.g., in electronic mail applications this would allow that the message is only
replicated where it needs to be). To simplify the treatment, it will be assumed that

2.3. APPLICATIONS OF HASH FUNCTIONS 23

there are only two intended receivers, Bob and Cecile. The results can be generalized
easily to more receivers. It is assumed that Alice and Bob share a secret key Kap,
and Alice and Cecile share a secret key Kac. Bob and Cecile both trust Alice, but
Cecile will try to cheat Alice and Bob by sending a message X’ to Bob and claiming
that it was sent by Alice. This problem together with some solutions were considered
in [218]. In this context it seems natural to use digital signatures based on public-key
techniques, as will be discussed in the next section, but in some cases this is excluded
for performance reasons or because of legal restrictions. The use of a secret key for
every group of intended receivers is not secure (group members can cheat each other)
and it is not practical (the management of group keys is complex). Three solutions
will be discussed based on a MAC, and it will be shown that the requirements for the
MAC can be different.

e The most straightforward solution is that Alice calculates a MAC of the message
X using the secret key K 4p which will be denoted with MAC(K 4, X). Similarly
she computes MAC(K 4¢, X) and appends both MAC values to the message.
Subsequently she sends the complete message to Bob and Cecile. Both can
easily verify the authenticity of X, and Cecile can not cheat because she does
not know K4p. The disadvantage of this scheme is that Alice has to compute
twice a MAC.

e To reduce the computational load, a scheme was proposed where the MAC is
computed only once with a single session key Kg [192]: MAC(Kg, X). This
key is sent together with the message under encrypted form such that Kg can
be retrieved by both Bob and Cecile. The MAC is encrypted under K,p and
under K¢ and appended to the message. The complete message will have the
following form:

E(Kap,Ks), E(Kac,Ks), E(Kap, MAC(Kg, X)), E(Kac, MAC(Kg, X)), X .

In this case, Cecile will be able to obtain both Kg and MAC(Kg, X). If Cecile
can find an X’ such that MAC(Kg, X’) = MAC(Kg, X), she will be able to
replace X by X’ and convince Bob that Alice has sent to him X’. Note that if
the MAC intended for Bob was not encrypted under K 4p, it would be trivial
for Cecile to replace X by X’ and to update the MAC accordingly. If Cecile can
select a message that has to be sent by Alice, it is even sufficient that she can
produce a pair X, X’ such that MAC(Kg, X') = MAC(Kg, X), for the given key
Kg. If Kg is generated randomly before the MAC calculation, Cecile will not
know this key, and the equality will have to hold for a reasonably large subset
of the key space in order to make the attack work. If on the other hand Kyg is
predictable, the MAC should be collision resistant for someone who knows the
key.

The first way of cheating can be thwarted if the MAC is one-way in both senses
as defined in definition 2.1. This was also remarked in [218], but it was only
stated there that finding a preimage should be hard. The fact that the MAC

24 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

proposed in [192] was not one-way allowed C. Mitchell to break the scheme [221].
To thwart the second attack, Alice should randomize every message that she
wants to authenticate, or the MAC should be collision resistant as stated above.
The solution for this case that is proposed in [218] is to use a CRHF and to
encrypt the result with Kg.

e In order to extend the lifetime of the shared secret keys, one can also generate
a different session key for every intended receiver of the message: in this way
the requirements to be imposed on the MAC are less stringent (an attacker does
not know the value of the MAC), but the computational overhead for MAC
calculation will again be higher [218].

The results in this section can easily be generalized to the case where both secrecy and
authenticity have to be protected.

2.3.3 Non-repudiation

The technical term non-repudiation of origin [151] denotes a service whereby the recip-
ient is given guarantee of the message’s authenticity, in the sense that the recipient can
subsequently prove to a third party that the message is authentic even if its originator
subsequently revokes it. The need for a “purely digital, unforgeable, message dependent
signature” has been identified by W. Diffie and M. Hellman in their 1976 paper [95].
In the same paper the authors propose an elegant solution based on trapdoor one-way
permutations. The first practical proposal of a public-key system with digital signature
capability as suggested by the title of the original paper was the RSA cryptosystem
[278]. Its security is based on the fact that it is “easy” to find two large primes, but
“hard” to factor their product. Subsequently new schemes appeared, based on the
other number theoretic problems like the discrete log problem [100]. The complexity
theoretic approach has resulted in provably secure digital signature schemes based on
claw-free pairs of permutations [128, 129], one-way permutations [233], and finally on
one-way functions [284], which can be shown to be optimal. A remarkable evolution
here is the intertwining in some schemes between the signature and the hashing opera-
tion. The 1988 CCITT X.400 and X.500 recommendations [44, 45] (cf. also [219]) and
in particular CCITT X.509 [46] are an example of recent standards that offer security
facilities that are based on digital signatures. Digital signature schemes based on the
practical approach were further optimized but have not received too much attention.
Some of these schemes will be discussed briefly.

However, it is not within the scope of this thesis to give an extensive treatment of
digital signature schemes. For such an overview the reader can consult [223]. We will
limit ourselves to the interaction between these schemes and hash functions: first it
will be discussed how digital signature schemes can be optimized using hash functions,
and subsequently it will be shown how practical signature schemes can be constructed
based on one-way functions.

2.3. APPLICATIONS OF HASH FUNCTIONS 25

2.3.3.1 Optimization of digital signature schemes

The basic idea to speed up all digital signature schemes is to compress the information
to be signed with an MDC to a string of fixed length. Instead of signing the information
one signs the hashcode, that is also called the “imprint” in standards terminology. In
order to verify a signature, the outcome of the verification process of the signature is
compared to the hashcode that can be calculated from the information. The advantages
of this approach are the following:

1.

The size of the signature can be reduced from the size of the information to one
block length, independent of the length of the signed information. If no use is
made of an MDC, it is of course possible to store only the signed information,
and to compute the information from the signature whenever it is needed, but
this solution involves a significant computational overhead.

. The sign and verify function of most known signature schemes are several orders

of magnitude slower in hardware and software than symmetric encryption func-
tions, MAC’s or MDC’s. An example of highly optimized assembly code for a
16 MHz IBM PS/2 Model 80: the verification operation for 512-bit RSA takes
about 330 milliseconds (1, 550 bit/sec), the signing operation with a small public
exponent a few milliseconds (100 Kbit/sec). This should be compared to an en-
cryption speed for the block cipher DES [8, 108] of 97 useconds (660 Kbit/sec)
and for the hash function MD4 (cf. chapter 7) of 6.3 Mbit/sec.

. If no MDC is used, and the information to be signed is longer than one block, it is

easy to manipulate these individual blocks. The simplest example is a reordering
of blocks.

. The algebraic structure of the message space can be destroyed. In the case of

RSA the message space has a multiplicative structure, i.e., the signature of the
product of two messages equals the product of their signatures. A generalization
is described in [102]. A similar property holds for the ElGamal signature scheme
[223]. Examples of how this algebraic structure can be exploited in a protocol
are described in [133, 232].

. The reblocking problem can be avoided. This problem occurs when both privacy

and authentication are protected with the RSA public-key cryptosystem. If the
sender first encrypts the message with the public key of the receiver (to protect
privacy), the result might be larger than his modulus. Before he can apply his
secret key (to protect authenticity) he has to reblock the message. It is not too
hard to overcome the reblocking problem: a simple solution is to let the order of
the operations depend on the size of the two moduli. However, it is preferable
to have no reblocking problem at all.

. The signature protocol will not be useful for an opponent trying to obtain the

plaintext corresponding to encrypted messages. This can only happen if one uses

26 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

the same key and digital signature scheme for privacy protection or authentica-
tion.

One has to be careful with the selection of the hash function, as an unfortunate inter-
action between the digital signature scheme and the hash function can result in specific
vulnerabilities (cf. section 2.5.3).

Again the problem arises to determine the properties that have to be satisfied by
the MDC. To protect against an attack of an outsider, if suffices that the MDC is a
OWHF. He is not able to select the messages that he will attack, and hence he has
to come up with a new message with the same hashcode as one of these messages. It
is of no help for him to have a set of collisions that are randomly distributed over the
message space. For an insider the situation is completely different: if he is able to find
two messages say X and X’ with the same hashcode, he can sign X and at a later
stage claim that he has signed X’. Note that the insider is not necessarily the owner of
the secret key: it is sufficient that he can construct messages that this person is willing
to sign. In order to thwart this type of attack it is clear that the MDC should be a
CRHF. One can argue that a OWHEF would be sufficient if a randomization occurs in
the signature process (X is randomized or h is randomly selected). The problem with
this randomization is that it should not be under control of the insider.

Because this type of attack can only be performed by an insider, namely the person
who produces the messages to be signed, it is not possible to repeat it too often: other
users would not trust him any more. Nevertheless, digital signature schemes are used
in cases where a repudiation could cause problems, and hence it is not acceptable that
even one repudiation is possible. The only exception is an environment where digital
signatures are used for message authentication solely for the purpose of information
authentication: they could be preferred over a MAC because of the flexibility of the
verification, i.e., they can be verified by anyone that knows the correct public key.

The hashcode can also be generated with a MAC, which implies that only persons
privy to this secret key can verify the signature. The disadvantage of this approach
is the management of an additional secret key: for digital signatures it is sufficient to
guarantee the authenticity of the public key of the signer. One can however indicate
some advantages with respect to outsider and insider attacks. For an outsider his
knowledge of the system decreases. Breaking the scheme will require a chosen text
attack on the system with the secret key for the MAC in place, and hence no paral-
lel attacks are possible. A similar observation holds for an insider who can prepare
messages to be signed, but who does not know the secret key. For an insider who
knows the secret key it should be hard to construct collisions, which means that the
requirements on the MAC are very strong.

For the signature schemes based on zero knowledge techniques, e.g., Fiat-Shamir
[107], Guillou-Quisquater [266] and Schnorr [296], the hash function forms an integral
part of the signature process. First a random number is generated, that is transformed
with a one-way function to obtain y. The hash function is then applied to the con-
catenation of y and the message. The hashcode is subsequently transformed with the
secret signature key. The signature then consists of the outcome of this transformation

2.3. APPLICATIONS OF HASH FUNCTIONS 27

together with y. From the discussion it follows that it is sufficient for the hash function
to be a OWHF: an attacker can not completely control its input.

Note that if short messages are to be signed, the only argument to use a hash
function is the destruction of the algebraic structure of the message space. An alter-
native to a hash function is the addition of well chosen redundancy to the information.
An elegant proposal to avoid multiplicative attacks against the RSA digital signature
scheme can be found in [137, 155]. Other solutions and their analysis can be found in
[79, 80].

2.3.3.2 Practical digital signatures based on a one-way function

One-way functions are closely related to one-way hash functions; the only difference
is that the input now has to be of fixed length. Although several definitions exist for
one-way functions, it is sufficient here to modify the second condition in the defini-
tion of a OWHF and a CRHF to obtain the definition of a one-way function (OWF)
and of a collision resistant function (CRF). Again formal definitions can be obtained
through insertion of a formal definition of “hard” and “easy” in combination with the
introduction of a security parameter.

Definition 2.4 A one-way function (OWF) is a function g satisfying the following
conditions:

1. The description of g must be publicly known and should not require any secret
information for its operation (extension of Kerckhoffs’s principle).

2. The argument X has a fixed length of m bits and the result g(X) has a fixed
length of n bits (with n > 64, cf. section 2.5.1).

3. Given g and X, the computation of g(X) must be “easy”.
4. The function must be one-way in the sense that given a Y in the image of g, it

is “hard” to find a message X such that g(X) =Y and given X and g(X) it is
“hard” to find a message X' # X such that g(X') = g(X).

Definition 2.5 A collision resistant function (CRF) is a function g satisfying
the following conditions:

1. The description of g must be publicly known and should not require any secret
information for its operation (extension of Kerckhoffs’s principle).

2. The argument X has a fixed length of m bits and the result g(X) has a fixed
length of n bits (with n > 128 cf. section 2.5.1).

3. Given g and X, the computation of g(X) must be “easy”.

4. The function must be one-way in the sense that given a Y in the image of g, it
is “hard” to find a message X such that g(X) =Y and given X and g(X) it is
“hard” to find a message X' # X such that g(X') = g(X).

5. The function must be collision resistant: this means that it is “hard” to find two
distinct messages that yield the same result.

28 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

Several digital signatures have been proposed based on the practical definition of
a one-way function. The choice between a CRF and a OWF is based on the same
arguments: if the attacker is able to select X, the function should be a CRF.

The first scheme is the Diffie-Lamport one time signature [95]. In order to sign
a single bit message, Alice randomly selects a pair z1,22 € Dom(g) and computes
y1 = g(x1) and y2 = g(x2). Next she puts y;,y2 in an authenticated public file. If
Alice wants to sign the message, she reveals x; if the message bit equals 0 and x5 if the
message bit equals 1. Bob can subsequently easily verify that y; = g(x;). A signature
scheme for M possible k-bit messages requires for every user pair a public storage of
2MEn bits. If M = 220 and k = n = 128 then this amounts to 4 Gigabytes. The
signer needs 2k applications of g for every message, while the verifier needs only &
applications of g. Note that if k is large, one can always apply a CRHF to reduce its
size to about 128 bits and sign subsequently this hashcode.

A first improvement can be obtained through coding of the message. The basic
observation is that, if one forgets about z; and y;, it becomes easy for Bob to change
a 1 into a 0, by simply denying that he ever received xy. If a k-bit message has to
be signed, this can be solved by appending the count of the 0 bits to the message,
resulting in an improvement with a factor

2

as only k* = k +logy k (x4, g(z;)) pairs are necessary. An additional improvement was
proposed by R. Winternitz and is described by R. Merkle in [212]. It reduces the size
of the signature at the expense of an increased computation. If y; is obtained from 2¢
repeated applications of g to x;, every y; an be used to sign an a-bit message, hence
the size of the signature can be reduced with a factor of a. If both optimizations are
implemented, signer and verifier need about k2! applications of g, while the storage
requirements are reduced to Mkn/« bits. For the same example and o = 6 the public
storage capacity will now be 360 Megabytes. The main limitations of these schemes is
that they are one time signatures, i.e., the authenticated public quantities can be used
only once. This is reflected by the fact that the public storage grows linearly with M.

The tree authentication scheme proposed by R. Merkle [212] results in a significant
reduction of the storage requirements. Without going into the details, one can mention
the following conclusions. The public storage will be only k bits. The size of the signa-
ture grows logarithmically with M and is equal to 2k*nlogy, M. The signing operation
will require on average about 3k* log, M applications of g (this comprises the use of g
to generate pseudo-random variables instead of using truly random quantities) and a
memory of size (logy M)?n/2. The verification operation requires about k*logy M ap-
plications of g. For the example this means only 3.1 Kbytes for the computations and
8100 applications of g. The length of a signature is 84.4 Kbytes. The author indicates
that further optimizations are possible, that reduce the number of applications of g
with a factor 4. Note that the logarithmic dependence on the number of messages to
be signed M implies that this number can be increased significantly without requiring
excessive storage.

2.3. APPLICATIONS OF HASH FUNCTIONS 29

The advantage of these schemes is that they can be based on any one-way function,
and that one has an informal proof of their security. The disadvantage is that the pub-
lic storage is rather large compared to the 64 bytes for a public key for RSA (in the
case of a small public exponent) and that it depends on the number of messages that
will be signed. The number of operations is comparable: the speed of the fastest one-
way functions (e.g., functions based on DES or derived from existing hash functions) is
about three orders of magnitude faster than the speed of a modular exponentiation (cf.
section 2.3.3.1). An overview of the size of the parameters for 4 signature schemes (Ra-
bin, Diffie-Lamport, Winternitz and Merkle) is given in table 2.1. The Rabin scheme
[274] is a scheme with probabilistic verification depending on a security parameter t:
the probability that an invalid signature is accepted by the verifier is approximately
V/7t/2% which means that ¢ should be &~ n/2 to obtain a similar security level.

operations size
signing verification | public storage signature
Rabin (kK =n) 2t t 4Mtn 2tn
Diffie-Lamport k k ME*n k*n
Winternitz k20—t k20—t MFk*n/a k*n/o
Merkle 3k*logg M k*logy M | (logy M)?n/2 2logy Mk*n

Table 2.1: Parameters for 4 signature schemes based on a one-way function.

2.3.4 Identification with passwords

An MDC can be used to generate from a password or a passphrase a publicly acces-
sible (readable) password file: one stores the MDC corresponding to the password or
passphrase, instead of the password itself. Subsequently one has to protect only the
integrity of the password file. In most applications it should be infeasible to derive a
valid password from an entry in the file, which implies that a OWHF is sufficient. This
is in fact one of the few cases were only finding a first preimage should be hard. His-
torically this is probably the first application of one-way functions. If a passphrase of
arbitrary size has to be compressed, one will need a one-way hash function. A related
application is commitment to a string without revealing it.

2.3.5 Encryption algorithms based on hash functions

Without going into details, one can remark that every hash function can be used in
several ways to produce an encryption algorithm. A first possibility is to use the hash
function as the F-function in a Feistel cipher [104, 105]. The text input of the round
can be used as the chaining variable of the hash function (cf. section 2.4.1), and the
key can go to the data input. An alternative is to have a fixed chaining variable and
to concatenate the data to the key. Interesting theoretical results can be shown if the

30 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

hash function is pseudo-random and if the round keys are independent (e.g. [340]).
A second possibility is to construct a key stream generator with a mode where the
output of the hash function is fed back to the input, or where the input is derived from
a counter. In case of a MAC the design can even be simpler, as the use of a secret
key is already part of the algorithm. It is certainly possible to design more efficient
encryption algorithms from scratch, but this type of solutions could be acceptable for
applications where encryption is required occasionally.

2.3.6 Application to software protection

To illustrate the use of a MAC, MDC, and a digital signature scheme, it will be
explained how these three techniques can be applied to protect the integrity of software
[216]. The two parties involved in the application are the software vendor (who is also
supposed to be the author of the software) and the user. The attacker will try to
modify the software: this can be a computer virus, a competitor or even one of the
parties involved. For this application there is clearly no need for secrecy. The three
approaches will be discussed together with their advantages and disadvantages.

MAC: the software vendor will use his secret key to compute the MAC for the program
and append the MAC to the program. The main problem here is the distribution
of the secret key to the user through a channel that protects both its secrecy and
its authenticity, which induces a significant overhead. This secret key has to be
protected carefully by both software vendor and user: if a compromise at one
place occurs, the protection is lost. Both software vendor and user can modify
the program and the corresponding MAC, and thus in case of a dispute, a third
party can not make any distinction between them. The vulnerability of the
secret key implies that it is mandatory that every user shares a different key
with the software vendor. The advantage of this approach is that the secret
storage is independent of the number of programs to be protected, but depends
on the number of users (for the software vendor) and on the number of different
software vendors (for the user).

MDC: the software vendor will compute the MDC for the program. The main prob-
lem here is the distribution of the MDC to the user through a channel that
protects the authenticity of the MDC. This is easier than the distribution of a
secret key, but for every update of the program or for every new program a new
transmission of an MDC is necessary. If the authenticity of the MDC is compro-
mised, the protection is lost: the software vendor, the user, and any third party
can modify the program and the corresponding MDC. If a dispute occurs, one
has to show to a judge that the value of an MDC is authentic: it is generally
not possible to prove to the judge who actually modified the authentic channel
and the program. The main advantage is that this approach requires no secret
storage. Every program needs an authentic storage both at the user’s site and
at the vendor’s site.

2.4. GENERAL CONSTRUCTIONS 31

Digital signature: the software vendor will append to the program a digital sig-
nature that is computed with his secret key. The main problem here is the
distribution of the corresponding public key to the user through a channel that
protects its authenticity. The secrecy and authenticity of the secret key have to
be protected carefully by the software vendor: if it is compromised, anyone can
modify programs and update the corresponding signature. If the authenticity of
the public key is compromised, the protection is also lost: anyone can replace
it with the public key corresponding to his secret key. The difference with the
previous approaches is the asymmetry: only the software vendor can generate a
signature, but anyone can verify it. This implies that the vendor can be held
liable to a third party if the program contains a virus. The only way he can
escape is by claiming that his secret key was stolen. He can however not repeat
this type of fraud, as he will loose quickly the trust of his customers. Every
vendor has to store one secret key, while every user needs an authentic storage
for the public key of every vendor.

The selection of a particular solution will depend on the one hand on the number of
users, vendors and programs, and on the other hand on the availability of authentic
and/or secret storage and communication. The digital signature is clearly the only
solution that can protect the users against a malicious software vendor.

A similar verification process can be executed when the program is loaded from
disk to the Central Processing Unit. If the disk is not shared, non-repudiation is not
required, but it is still attractive to use a digital signature scheme: the CPU has to
know only the public key corresponding to the disk. An alternative is to provide for
authentic storage of the MDC of a file that contains the MDC'’s of all programs. In
[69] a scheme is described that combines a digital signature for checking new software
with a MAC for verification at run-time.

2.4 General constructions

In this section a general model will be established for a hash function. Based on this
model the relation will be discussed between the properties of the hash function and the
properties of its building block, the “round function”. Subsequently a tree construction
for hash functions is described and cascading of hash functions is discussed.

2.4.1 General model

The general model for describing a hash function will be sketched. All known hash
functions are based on a compression function with fixed size input; they process every
message block in a similar way. This has been called an “iterated” hash function in
[183].

The information is divided into ¢ b-bit blocks X7 through X;. If the total number
of bits is no multiple of the block length b, a padding procedure has to be specified.

32 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

A number of examples of padding rules with increasing strength are given, where the
roles of 0’s and 1’s can always be interchanged.

e The simplest padding rule is to complete the information with 0’s. This padding
rule is ambiguous as it not clear how many trailing 0’s are part of the information.
However this can be acceptable if the length of the information is known in
advance or if it is included in the information.

e Padding of the information on the right with a 1 followed, if necessary, by 0’s
until it becomes complete. If the last block is complete, a supplementary block
is added to the information, equal to a 1 followed by 0’s.

e Padding of the information with z 0’s except for the last r bits; these contain
the r-bit binary representation of z. If no r bits are left in the incomplete last
block, one or more blocks have to be added.

e Padding of the information with z 0’s except for the last r bits; these contain
the length of the information in bits. If no r bits are left in the incomplete last
block, one or more blocks have to be added. If this padding rule is applied, no
message can be obtained from another message by deleting the first blocks.

The choice between these different rules depends on the application, but it will be-
come clear that the last one offers a larger security level, and is therefore strongly
recommended.

The hash function h with compression function or round function f can then be
defined as follows:

Hy=1V
Hz’:f(Xi;Hi—l) 1=1,2,...1
hX)=H,.

Here H; are the intermediate variables or chaining variables that have a length of n
bits, and the X; are b-bit blocks. The result of the hash function is denoted with h(X)
and IV is the abbreviation for Initial Value. This corresponds to the description of
a finite state machine with initial state I'V, input X; and next state function f. In
some cases the input is subjected to preprocessing. This preprocessing stage introduces
additional redundancy to increase the strength of the hash function. This redundancy
consists of constant bits, a repetition of bits, or even a more complex procedure. The
price paid for this redundancy is a decreased speed of the hash function.

The specification of a hash function requires the description of f, IV, a padding
procedure, and optionally a preprocessing stage. If a hash function h is collision
resistant, this implies that it should be hard to find an input pair X, X’ such that
h(X) = h(X'), for a given IV, padding procedure and preprocessing stage. The
same holds for the one-way property. Several attacks on hash functions have been
described that attack the hash function for a different I'V. The following cases can be
distinguished:

2.4. GENERAL CONSTRUCTIONS 33

e If a collision pair can be found for an IV’ # IV, this also creates suspicion on
the security of the hash function, depending on the size and nature of the sets of
IV’s: if IV is the outcome of a pseudo-random process, this is not so dangerous,
as the probability of hitting the right IV is negligible.

e The situation is different for a CRHF if a pair X, X’ is constructed that results
in the same hashcode if IV and respectively IV’ are used as initializing variables
of the hash function. It is clear that this deviates significantly from the strict
definition of a collision, and therefore we suggest the term “pseudo-collision”.
Most hash functions are not designed to meet this criterium. Of course it is
a nice property if even finding such a pseudo-collision is hard, but it is only
relevant for applications where I'V can be modified by an attacker, or where the
hash function is constructed in a different way (cf. section 2.4.4).

e A similar remark applies if a preimage can be found for an IV’ # IV for a large
class of constructions it is always possible to find such a “pseudo-preimage”. If
the attack yields an IV’ that is the outcome of a pseudo-random process, the
probability of hitting the right IV is as small as finding a random preimage.
However, finding a “pseudo-preimage” should not be too easy, as one can trans-
form a pseudo-preimage into a preimage with a so called meet in the middle
attack (cf. section 2.5.2.1).

One can conclude that every specification of a hash function should fix an initial value
IV (or a small set of initial values), together with a motivation for the choice. If IV is
generated pseudo-randomly, the algorithm should be described: a proposal is to take
the all zero block or the hash value (with IV = 0) of a block consisting of all zeroes.
If IV is not specified, it should be hard to produce collisions for any I'V. In that case
it is clearly necessary to add the length of the message at the end, in order to avoid
trivial attacks, like omitting one or more blocks at the beginning of the message. If
the first message block is derived from IV, say X7 = g(IV) (note that in some cases it
is insecure to take the identity function), one can show that finding a pseudo-preimage
is not easier than finding a preimage: an attacker can go backwards till the first stage,
but he will not be able to come up with an IV such that f(IV,g(IV)) = H;. Note
that in the case of a digital signature it is easy to protect against pseudo-collisions: it
is sufficient to sign I'V together with the hashcode.

It has been indicated that adding the length of the message in the padding proce-
dure can thwart trivial attacks in case I'V is not specified. Moreover it can also protect
against fixed point attacks (cf. infra) and against attacks that produce a second preim-
age for a long message in less than 2" operations. The long message attack is basically
due to R. Winternitz [328], and it was improved in [183]. Here a further generalization
is given, that takes into account the required storage.

Proposition 2.1 Given a t-block message X, a second preimage for h(X) can be
found in 2™ /r+1r computations of the round function f and with a storage requirement

34 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

of r n-bit quantities, under the restriction
1 <r < min(t,2"?).

Proof: One calculates and stores the first r intermediate values H; of the compu-
tation of h(X). After computing 2" /r values for H{ = h(IV, X{) with randomly chosen
X1, the probability for a match between H] and some H;, say for i = i* is approxi-
mately 63% (cf. appendix B). Then the message X' = (X1, Xj*+1,...,X;) hashes to
the same value as the message X (note that the probability that X’ = X is negligible).
It is clear from the expression for the number of computations that if ¢ > 2"/2 it does
not make sense to choose r larger than 2"/2: this would imply that evaluation of the
intermediate values of h(X) requires more computations of the round function than
finding a second preimage. n

If there are no storage limitations, » will be chosen equal to its maximal value.
This generalization is motivated by the fact that in general 2" computations is easier
to achieve than storage (and sorting) of 2" m-bit quantities. The main problem is
the access time of the memory (cf. section 2.5.1.3). It is clear that this attack is not
possible if the length of X is added as the last block.

A second problem with long messages is the “loss of memory” problem. It was
posed by H. Block in an oral communication at Eurocrypt’84, and was mentioned by
D. Davies in [72]. Assume that for a fixed X;, f is a random injective mapping. If a
large number of variations of the first blocks are chosen, all 2" states will be reached
at some point. However, if the next message blocks are kept constant, it can be shown
that the fraction of states y[i] at stage i is given by the recursion

yli +1] = 1 — exp(—yli]).
With y[0] = 1 (for convenience) one finds that

. 2
i~ T o
One can conclude that this is clearly an argument to let f be a bijection for fixed X;.
If this is not the case, it has to be checked to what extent this effect occurs (f might
behave even worse than a random mapping). Moreover the message size has to be
limited, or the size of the chaining variables has to be increased. Observe that this is
only a problem if n is relatively small, which might happen in the case of a MAC.

As a conclusion one can state that one should either fix the initial value IV or add
the total length of the message in the padding, and that it is strongly recommended
to take both measures. Moreover, one should specify an upper bound on the size of
the input.

In case of a MAC, it is a common mistake to choose the IV equal to the secret key.
If this is the only way the key is involved in the MAC calculation, one can append an
arbitrary number of blocks to the message and update the hashcode without knowledge
of the secret key. Therefore the secret key should be involved both at the beginning

2.4. GENERAL CONSTRUCTIONS 35

and at the end of the computations, but it is recommended that f depends on the
secret key.

Research on hash functions has been focussed on the question: what conditions
should be imposed on f to guarantee that h satisfies certain conditions ? This approach
is based on the fact that one of the problems in assessing the security of a hash function
is caused by the arbitrary size of the input. It is clear that weaknesses of f will
generally result in weaknesses of h, but the converse does not hold in general. The
main problem is to derive sufficient conditions on f. An important result that was
achieved is that under certain conditions a CRHF or OWHEF can be derived from a
fixed size compression function that is collision resistant or one-way.

2.4.2 Conditions on the function f for a OWHF

The “composition theorem” by M. Naor and M. Yung [233] shows that a specific
OWHF (namely a Universal One-Way Hash Function or UOWHF) can be constructed
if a specific one-way function can be constructed that compresses a single bit. Their
result will be discussed in detail in chapter 4.

Below four conditions are discussed that have to be verified to assess the security
of a OWHEF'. These conditions have to be met to thwart certain attacks. It is assumed
that the function f is not trivially weak, which means that it is linearly dependent or
even not dependent on one of its inputs.

Direct Attack: the most straightforward attack is to simply invert f w.r.t. X;. This
can be thwarted by imposing the requirement that f is one-way w.r.t. X;, or
given H, 1, H;, (and X;) it must be “hard” to find an X/ # X, such that
f(X!,H;—1) = H;. The expression “for a given ...” implies that H;_; and H;
can not be selected directly by an attacker. This attack can be used to construct
either a preimage or a second preimage. If a direct attack requiring 2° operations
can be mounted such that only n’ < n bits of H; are matched, finding a (second)
preimage will require 2"~ 5 operations, which is more efficient than exhaustive
search if s < n/.

Forward Attack: an attacker can always replace X; by X J’ At a later stage, say
iteration ¢ with ¢ > j, he will have to bring the two chains together again. This
implies that given H;_1, H]_;, and X;, it must be “hard” to find an X/ such that
f(X],H]_,) = f(X;,Hi—1) = H;. This attack can only be used to construct a
second preimage. If only n’ bits can be matched in 2% operations, one finds again

that 2n—n'+s operations will be necessary for a complete match.

Backward Attack: it should be hard for an attacker to go backwards through the
chain, i.e., given H; to produce a pair (X;, H;—1) such that f(X;, H;—1) = H;.
The motivation to forbid this is the existence of meet in the middle attacks (cf.
section 2.5.2.1), that can help an attacker as follows [183]:

36 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

Proposition 2.2 If it takes 2° operations to go one step backwards in the chain,
then a pseudo-preimage can be found in 2° operations, and a (second) preimage

for a fixed IV in l+ge operations.

It is clear that if s = n this attack does not yield any improvement. The following
generalization can be made if only n/ bits of H; can be matched:

Proposition 2.3 If it takes 2° operations to go one step backwards in the chain,
while providing a match for only n' < n bits of H;, a pseudo-preimage can be
21+n+ SETL

found in 2"~"'*$ operations, and a (second) preimage for a fixred IV in
operations.

Proof: The number of operations for the preimage follows from the fact that
the remaining n — n’ bits will be correct with a probability of 9~ (n—n'),

For the (second) preimage attack one computes H| = f(Xi, Hy) for ontEg

randomly chosen values of X;. Then one constructs gn—=5+ pairs of (Xo, HY)
for which f(X2, H{) agrees in n’ positions with Hs. One expects that all n

positions of Hy will be correct for 1 value in 27", yielding 275" useful pairs
(X2, H{'). The attack succeeds if a match occurs between an H] and an HY (cf.
section 2.5.1.3). The probability that this happens is approximately equal to
63% (cf. appendix B). The number of operations for both phases is equal, which

results in a total of 21 T7+ %+

operations. [

Fixed Point Attack: a fixed point is a pair (X;, H;—1) such that f(X;, H;—1) = H;_1.
An extension of this concept is a fixed point of the r-fold iteration of f. If an
attacker can easily find an X; for a chosen H;_1, it is a special case of a backward
attack. On the other hand, if X; can be chosen, and subsequently a corresponding
value of H; 1 is obtained, or if the pair (X;, H;—1) is obtained from a random
process, the value is much more limited: it can only be used to find a pseudo-
preimage or a second preimage of a hashcode equal to H;_1. If the values of H;_
are uniformly distributed, this attack is not better than a random search for a
preimage.

The first three conditions are clearly necessary, and the first two are a special case
of the backward attack. They have been described because they will form the basis of
a classification of hash functions based on block ciphers in section 5.3.1.4. In [183], it
was shown that if the padding contains the length of X, and if the message (without
padding) contains at least 2 blocks, ideal security of f against a backward attack is
necessary and sufficient for ideal security of h with fixed IV (cf. section 2.2).

Proposition 2.4 Assume that the padding contains the length of the input string, and
that the message X (without padding) contains at least 2 blocks. Then finding a second
preimage for h with a fived IV requires 2™ operations if and only if finding a second
preimage for f with arbitrarily chosen H;_1 requires 2" operations.

2.4. GENERAL CONSTRUCTIONS 37

The proof is based on the fact that if IV /H;_; can be chosen freely, the security
of f is equivalent to the security of h.

2.4.3 Conditions on the function f for a CRHF

A construction for a CRHF based on a collision resistant function (CRF) was pre-
sented at Crypto’89 both by R. Merkle [212] and (independently) by I. Damgard [66].
R. Merkle called his construction the “meta method”, and presented it together with
a scheme based on DES (cf. section 5.3.2.2). I. Damgard [66] gave a more formal con-
struction and proof that will be discussed in chapter 4. The idea of the construction
is to select for f a CRF with input the concatenation of its arguments X; and H;_;.
It can then be shown that the fact that f is a CRF implies that i is a CRHF. The
proof will only work if the padding contains the length of the input string X.

The “meta method” takes an elegant approach, but might be too restrictive for
practical applications. The converse of the theorem is certainly not true: it might be
that f is not a collision resistant function, while A clearly is. The main observation is
that the role of the information blocks X; and the chaining variables H; in the hashing
process is essentially different: in the construction of a collision for A the attacker
can completely control X;, but H; is either the fixed initial value or the image of X;
and H;_ 1 under f. Note that this is not true if IV can be chosen freely. The main
problem to determine a set of conditions for f and to prove that these are necessary
and sufficient for A to be CRHF, is that nothing can be said on the distribution of
the H;’s: an attacker can not simply select them, but the designer can not show that
the attacker can not control their distribution in a way that helps him to produce a
collision.

Again four types of attacks can be identified:

Direct Attack: the most straightforward attack is to simply replace X; by X/. This
can be thwarted by imposing the requirement that f is collision resistant w.r.t.
X, or for a given H;_; it must be “hard” to find a pair (X;, X]) with X; # X/
such that f(X;, Hi—1) = f(X/, Hi—1). The expression “for a given H;_;” implies
that H;_1 can not be selected directly by an attacker. If only n’ bits of H; can
be matched, one obtains the following proposition:

Proposition 2.5 If it takes 2° operations for a direct attack, while providing a

match for onlyn’ < n bits of H;, a collision can be found in oIt ts operations.

Forward Attack: an attacker can always replace X; by X]’ At a later stage, say
iteration ¢ with ¢ > j, he will have to bring the two chains together again.
This implies that for a given pair (H;_1, H/_;), it must be “hard” to find a pair
(Xi, X]) such that f(X;, H;—1) = f(X/, H/_;). This is not equivalent to imposing
the condition that f should be collision resistant: this would be the case if the
attacker is able to select (H;_1,H] ;). It is clear that proposition 2.5 can be
extended to this attack.

38 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

Backward Attack: it should be hard for an attacker to go backwards through the
chain, i.e., for a given H;, it must be “hard” to find a pair (X;, H;—1) such that
f(X;, H;—1) = H;. The motivation to forbid this is the existence of meet in the
middle attacks (cf. section 2.5.2.1). These attacks are not generally applicable, as
they can only yield a pseudo-collision. Nevertheless it should not be too easy to go
backwards, as one requires from a CRHF that it is also one-way. Proposition 2.5
can be extended to this case if collision is replaced by pseudo-collision.

Fixed Point Attack: the definition of a fixed point is discussed in the previous sec-
tion. If an attacker can easily find an X; for a chosen H;_1, it is a special case
of a backward attack. On the other hand, if X; can be chosen, and subsequently
a corresponding value of H;_; is obtained, or if the pair (X;, H;_1) is obtained
from a random process, the applications are much more limited: it can only be
used to find a collision for an IV = H;_ 1. If the values of H;_; are uniformly
distributed, the probability that the exact IV will be matched is smaller than
the probability for a random collision. Moreover this type of collisions can be
avoided easily by adding the length at the end of the message.

The two first conditions are clearly necessary, and the third and fourth condition will
thwart a certain class of attacks. We have for the time being no idea whether or not
these conditions are sufficient to trust a practical hash function.

A possible solution for the problem concerning the distribution of the chaining
variables could be to introduce the assumptions that f is a random mapping, which
would imply that all intermediate values H; will be random. The expression “for a
given H;” implies then that the chaining variables H; are uniformly distributed and
independently selected random variables. It is not obvious that in this case the four
conditions are sufficient, because other attacks are applicable, that operate on more
than one block at a time. The opponent can try to solve the following problem: find
for a given H;_9 two different pairs (X;_1,X;) and (X/_;, X/) such that

F(Xi, f(Xio1, Hi—2)) = f(X], f(Xi_1, Hi—2)).

This type of attack can of course be extended to more steps. It seems that the ran-
domness of the intermediate values makes this attack as difficult as directly attacking
the hashcode with a birthday attack (cf. section 2.5.2.1), but no formal proof of this
has been given.

The “meta method” also requires some trust: one has to trust that f is a collision
resistant function. The main advantage is that one has to study only a function with a
fixed size argument. For constructions where this method is not applicable, one has to
trust that the function f satisfies less stringent requirements and that the conditions
are sufficient to guarantee that h is a CRHF.

2.4.4 Tree approach to hash functions

The linear structure for a hash function can also be replaced with a tree structure for
different reasons:

2.4. GENERAL CONSTRUCTIONS 39

e to speed up the evaluation of h with a time-processor trade-off,

e to authenticate only a single leaf from the input: this requires knowledge of only
O(logn) entries and only O(logn) computations instead of O(n) computations
to verify the whole tree [85, 211, 212].

In this case it should be hard to find a pseudo-preimage or a pseudo-collision for the
round function f. The first argument was independently discovered by the author
[252] and by I. Damgard [66], who also gave a formal proof of the correctness in case
that the building function f is collision resistant. For universal hash functions (cf.
section 3.3.2), a similar construction was suggested by M. Wegman and J. Carter in
[325].

If one disposes of a suitable round function f that hashes m bits to n bits, the
evaluation of h for a k-bit input can be done with % processors with

o(ty ()

evaluations of f. For the simple case where k = 27 for some integer ¢ and m = 2 - n,
this results in

Hil:f(XQi—laXQi) izl,...,Qq_l
Hijzf(H%i_}lvH%i_l) izlv'-‘72q7j (j:27"'7k_1)
H = f(Hy™' Hy™").

The time to compute the result is O(logk) instead of O(k). A trade-off between
chaining and tree approach allows for a speedup with about a factor ¢ when ¢ processors
are available. Note that with this approach a different hash function is obtained for
every value of the parameter k.

2.4.5 Cascading of hash functions

This section contains two simple observations concerning cascading hash functions,
inspired by similar results for stream ciphers [205]. If h1() and ho() are hash functions,
and g() is a one-way function, then

o h(X1,X5)=g(hi(X1) | h1(X2)) is a CRHF if hy() is CRHF and g() is a CRF,

o h(X1) =g(hi(X1) || ho(X1)) is a CRHF if either hq() or he() is a CRHF and g¢()
is a CRF,

o h(X1) =hi(X1) || h2(X1) is a CRHF if either hi() or ha() is a CRHF.

Here || denotes the concatenation of two strings. The first part is equivalent to the
tree construction. The second part constructs a CRHF that is at least as strong as the
strongest of two collision resistant hash functions, provided a CRF is available. Note
however that in both cases one could replace g() by a OWF with a result of 128 bits.
The resulting hash function will be a CRHF if finding collisions for g() is not too easy.

40 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

For the third part the function g() is omitted, but the hashcode will now be at least
256 bits long. The two last constructions increase the security level at the cost of a
decreased performance. Note that this result can easily be extended to more than two
functions.

2.5 Methods of attack on hash functions

The goal of this section is to give an overview of the known methods of attack on hash
functions. The large number of possible attacks will be classified in five types:

. attacks independent of the algorithm,

. attacks dependent on the chaining,

1
2
3. attacks dependent on an interaction with the signature scheme,
4. attacks dependent on the underlying block cipher,

5

. high level attacks.

Before treating these attacks in detail, the assumptions on the information available
to an attacker will be discussed. In case of an MDC, all information is public, and the
attacker simply faces the task to produce a preimage or a different element with the
same image in case of a OWHF or a collision in case of a CRHF. One can make a
distinction between the following cases, depending whether the value of IV is different
from the specified value:

Preimage: here an attacker tries to find a preimage for a given hashcode.

Second preimage: here an attacker tries to find a second preimage for a given hash-
code.

Pseudo-preimage: here an attacker tries to find a preimage for a given hashcode,
with IV #£ IV,

Second pseudo-preimage: here an attacker tries to find a second preimage for a
given hashcode, with IV’ # IV (note that this case will not be discussed in the
following).

Collision: here an attacker tries to find a collision.
Collision for different IV: here an attacker tries to find a collision for IV’ # IV.

Pseudo-collision: here an attacker tries to find for some I'V’ and IV" a pair X', X",
such that Ay (X/) = h[V//(X//>.

It is clear from the definitions that finding a pseudo-collision can be not harder than
finding a pseudo-preimage, and that finding a collision can be not harder than finding
a (second) preimage. A similar taxonomy was suggested in [183], but they make
no distinction between second preimage and preimage. Their terminology for second
(pseudo-)preimage is “(free-start) target attack”, and the two last collision attacks are
called “semi-free-start” respectively “free-start collision attack”.

2.5. METHODS OF ATTACK ON HASH FUNCTIONS 41

For a MAC the situation is more complicated. The proposed taxonomy is equivalent
to the taxonomy of [129] for digital signature schemes. Depending on the information
available to an attacker, the following types of attacks are distinguished:

Known plaintext attack: here an attacker is able to examine some plaintexts and
their corresponding MAC.

Chosen plaintext attack: here an attacker is able to select a set of plaintexts, and
subsequently he will obtain a list of MAC’s corresponding to these plaintexts.

Adaptive chosen plaintext attack: this is the most general attack where an at-
tacker will choose a plaintext and immediately receive the corresponding MAC:
the choice of a plaintext can depend on the outcome of previous questions.

“Breaking” a MAC can have different meanings:

Total break: this means that an attacker can determine the secret key K.

Universal forgery: in this case an attacker can find an algorithm that is functionally
equivalent to the MAC evaluation algorithm.

Selective forgery: here an attacker can determine the correct MAC for a particular
plaintext chosen a priori by him.

Existential forgery: here an attacker can determine the MAC for at least one plain-
text. As he has no control over this plaintext, it may be random or nonsensical.

The fourth requirement in definition 2.3 can now be restated as follows: it should
be “hard” to perform an existential forgery with an adaptive chosen plaintext attack.
Note that obtaining a MAC for a plaintext from the owner of the secret key is not
considered as a forgery.

An evaluation of a scheme for message authentication or a digital signature strongly
depends on the information at the disposal of an adversary, the actions he can under-
take and finally on the consequences of both a successful and an unsuccessful attack.
In general, a conservative approach is recommended. This implies that one assumes
that a MAC will be considered to be broken if an attacker can commit an existential
forgery based on an adaptive chosen message attack with the only restriction on the
number of plaintexts coming from limited storage and computation capacities.

2.5.1 Attacks independent of the algorithm

This class of attacks depends only on the size of the hashcode n and the size of the secret
key k (for a MAC), and is independent of the nature of the algorithm. It is assumed
that the hashcode is a uniformly distributed and independent random variable: if this
is not the case this class of attacks will be even more successful.

42 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

2.5.1.1 Random attack

The opponent selects a random message and hopes that the change will remain un-
detected. If the hash function has the required random behavior, his probability of
success equals 1/2" with n the number of bits of the hashcode. A major difference
between a MAC and an MDC is that for a MAC the attack has to be carried out
on-line, and hence the attack depends on two elements:

e The number of trials T that can be carried out, which depends on the speed of
the implementation and on the time an attacker has access to the system with the
key in place. The number of trials can be limited by undertaking a special action
(e.g., perform manual verifications) if the number of erroneous results exceeds a
certain threshold. An example where a large number of trials is possible, is the
control of a satellite authenticated by a MAC.

e The expected value V' of a successful attack. In wholesale banking this can be
on the order of 100 million $ or even more.

The expected value of an attack equals then 7" - V/2™. If the number of trials can be
limited, or if the expected value is limited like in retail banking, a value of n = 32
is sufficient. However, for most applications it is recommended that the size of the
hashcode is at least 64 bits.

For an MDC the attack can be carried out off-line and in parallel. This means
that the length of the hashcode n should be at least 64 bits. If a significant number
of messages can be attacked at the same time, it is advisable to select a larger value
of n. In section 2.4.1 it has been shown that finding a preimage for long messages is
easier, unless the length of the message is included in the padding.

2.5.1.2 Exhaustive key search

An exhaustive search for a key is only applicable to a MAC. It is a known plaintext
attack, where an attacker knows M plaintext-MAC pairs for a given key. He will
precompute the MAC for every possible key in order to eliminate wrong keys. The
size of the key space is equal to k bits, and the expected number of keys that remain
will be denoted with K.z,,. If M is sufficiently large, it is possible to determine the key
uniquely or K¢;, ~ 1. The relation between Kczp,, M and n can be determined [236]
under the assumption that the MAC is a random mapping, and that no key clustering
occurs, i.e., that there are no equivalent keys. For the correct key, an attacker will
perform M MAC calculations, while for a bad key the probability that exactly i trials

are performed is equal to
(1 - 1) g~ n(i—1)
2n
The expected number of trials is given by the following expression:

1N & 1
<1_2n) Z on(i—1) < 1_9-n"

i=1

2.5. METHODS OF ATTACK ON HASH FUNCTIONS 43

The total number of trials to identify the key is upper bounded by

2k —1
M+ ———- 2.1
+ 1—92-n’ ()
and the number of keys that remains is expected to be
2k —1
Kexp =1+ oMn (22)

This means that the number of plaintext-MAC pairs to determine the key uniquely is
slightly larger than k/n. After the birthday attack it will be discussed how large k has
to be in order to offer sufficient security for the next decades.

2.5.1.3 Birthday attack

The idea behind this attack is that for a group of 23 people the probability that at
least two people have a common birthday exceeds 1/2 [106] . Because this number of
people is significantly smaller than what one would expect, this has also been called the
“birthday paradox”. For some applications a related problem is relevant: if two groups
of people have 17 persons each, the probability that two people in the two different
groups have a common birthday will also exceed 1/2. Note that these results assume
that birthdays are randomly distributed over the year; as this is not the case the
probability will be even higher. This can be generalized as follows. If two samples of
size r1 and 7o are drawn from a set of n elements, and if 179 = n with 71,73 = O(y/n),
then the probability of a match equals 1 — 1/e or 63%. Note that if the attacker is
unlucky, it is sufficient to increase the size of 1 and 7y slightly, which will increase
the success probability significantly. If r1 4+ ro has to be minimized, one can show that
this corresponds to r1 = ro = y/n. This explains why attacks based on this property
have also been called “square root” attacks. For a more detailed discussion of the
probabilities the reader is referred to appendix B.

The first attack based on this property was proposed by G. Yuval [335]. He showed
how to attack a digital signature scheme of Rabin [274], more in particular he shows
that it is easier to construct collisions for a one-way function than to find a preimage
of a given element in the range. A collision can be produced in the following way.

e The adversary generates r; variations on a bogus message and r9 variations on
a genuine message. This is very easy, even if r1 and ro are large: it is sufficient
to have logy(r1) respectively log,(r2) positions where one has two alternatives or
synonyms. If r; = ro = r = y/n the probability of the existence of a match will be
63%. Note that in case of a MAC the opponent is unable to generate the MAC
of a message. He could however obtain these MAC’s with a chosen plaintext
attack. A second possibility is that he collects a large number of messages and
corresponding MAC’s and divides them in two categories, which corresponds to
a known plaintext attack.

44 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

e The search for a match does not require r? operations: after sorting the data,
which requires O(rlogr) operations, comparison is easy.

An algorithmic improvement has been the collision search algorithm proposed by
J.-J. Quisquater [267, 270]. It is based on Pollard’s p-method for finding cycles [300]
in periodic functions on a finite domain. It eliminates almost completely the storage
requirements if the attacker is able to call the function (it does not work if a match
has to be found in stored data). If a MAC is attacked this corresponds to an adaptive
chosen text attack. The basic idea is that if a random mapping is iterated (the output
is fed back to the input), it will arrive after a tail with length A into a cycle with
period p. At the point where the tail enters the cycle (the point of contact), one
has found two values z and z’ such that f(xz) = f(2/). A graphical representation
of this process will correspond to the Greek letter p. The storage requirements can
be reduced to a negligible quantity by only storing points with specific characteristics
(distinguished points). The expected number of function evaluations is equal to p =
At = /mn/8+/mn/8 = \/mn/2 (for a proof, see [113]). This result is also applicable
to several other attacks: it is possible to produce pseudo-collisions for a single iteration
step or collisions with initial values chosen from a small set. Other extensions will be
discussed in the rest of this section.

Feasibility An important problem is to decide which computations should be consid-
ered feasible for the time being and within 10 and 20 years from now. This discussion
is partially based on [273]. In terms of computations, one can start from the following
facts (mid 1992):

e a single PC or workstation is able to perform a function evaluation in about
25 psec, which corresponds to 240 function evaluations per year,

e a supercomputer like the Cray-3 or the Cray Y-MP C90 (both with 16 processors)
is capable of performing 16 Gigaflops on 64-bit words [348, 349]. If one function
evaluation takes 64 operations, this corresponds to 2°? function evaluations per
year.

Based on the observation that the speed of computers is multiplied by four every three
years this means that 21 years from now (which seems a reasonable time scale for a
number of applications) a single super computer will be able to perform 256 function
evaluations per year. It will require 4096 simple processors to perform the same num-
ber of operations. However, it can be expected that in the near future even inexpensive
computers will have many processors built in, as increasing the number of processors is
the most effective way to increase the computational power without excessive increase
of the cost (economy of scale) [349]. Hence it is realistic to assume that this comput-
ing power will be available in any small size organization. It can be shown that many
problems in cryptanalysis can be easily adapted to such a distributed environment
[272]: it are probably the applications that will achieve the highest performance on
massive parallel machines. These predictions can be extended to dedicated cryptan-
alytic hardware, if one accepts the assumption that hardware will remain about two

2.5. METHODS OF ATTACK ON HASH FUNCTIONS 45

orders of magnitude faster. This corresponds to a factor of 26...27. The disadvantage
of dedicated hardware is the higher cost.

For memory requirements, the situation is more complex, as the size of the avail-
able memory depends on the access time [265]. Moreover the access time to memory
decreases much slower than the cycle time of the processor, and this can be solved only
partially by using cache memories. An efficient attack will balance the use of differ-
ent types of memories such that the access times are comparable to the calculations
that have to be done in between. An example of such an attack using one central
hardware board that is connected to a large number of PC’s with a few Megabytes
of memory has been described in [169]. Predictions can be based on the observation
that memory devices increase in capacity by a factor of four every three years. Today’s
supercomputers have a main memory of up to 32 Gigabytes, a disk capacity of 50— 100
Gigabytes and a high-performance mass storage system of 200 Gigabytes [349]. For
storage with still slower access, like tapes, capacity in the order of several Terabytes is
currently available, and in the next decade this will become Pentabytes. The memory
available in workstations is much smaller. Fast cache memories have currently a ca-
pacity between 256 and 512 Kbytes. For dynamic RAMs, 4 Mbit chips are currently
in mass production, which means that main memory of 32 Megabytes is becoming the
standard in workstations. For disk storage, 1 Gigabyte can be considered state of the
art.

One can conclude that for attacks that require no storage, a size of 128 bits cor-
responding to 264 operations is sufficient for the next 10 years, but it will be only
marginally secure within 20 years. One can predict that a storage of about 64 Giga-
bytes with an acceptable access time will be available on a single workstation within 10
years. If one has 1024 machines of this type available, this amounts to 64 Terabytes.
With this constraint, attacking a 64-bit hashcode requires only 22! operations, but
probably the access time to the memory would be dominant. For a 96-bit hashcode
this amounts to 2°% operations corresponding to a few years on these machines, and
to a few months if dedicated hardware is available for the computations. For a 128-bit
hashcode this would require 286 operations, which is probably not realistic for the next
20 years (in fact the storage capacity will be a factor 64 larger by then, which yields
280 operations). It is clear that a hashcode of 160 bits offers a sufficient security level
for 20 years or more.

2.5.2 Attacks dependent on the chaining

This class of attacks depends on some high level properties of the elementary function
f-

2.5.2.1 Meet in the middle attack

This attack is a variation on the birthday attack, but instead of the hashcode, interme-
diate chaining variables are compared. The attack enables an opponent to construct a
message with a prespecified hashcode, which is not possible in case of a simple birthday

46 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

attack. Hence it also applies to a OWHF. The opponent generates r; variations on
the first part of a bogus message and ry variations on the last part. Starting from the
initial value and going backwards from the hashcode, the probability for a matching
intermediate variable is given by the same formula. The only restriction that applies
to the meeting point is that it can not be the first or last value of the chaining variable.
The probability to find a match as a function of 1 and ry is described in appendix B.
The cycle finding algorithm by J.-J. Quisquater can be extended to perform a meet
in the middle attack with negligible storage [270, 273]. The attack can be thwarted
by avoiding functions f that are invertible to the chaining variable H;_; and to the
message X; (cf. section 2.4.2 and 2.4.3).

2.5.2.2 Constrained meet in the middle attack

This type of attack is based on the same principles as the meet in the middle attack,
but it takes into account certain constraints that have to be imposed on the solution.
Examples of restrictions are that the sum modulo 2 of all blocks should be constant,
or that a block of the CBC encryption of the solution with a given initial value and
key should take a prespecified value.

2.5.2.3 Generalized meet in the middle attack

This attack was extended [56, 123] to break the p-fold iterated schemes. In these
schemes the message is repeated p times or p hash values are computed corresponding
to p initial values. With the extended attack, breaking these schemes does not require
O(2'Z) but only O(10P - 2%) operations. The size of the message in this construction
is 2 - 10P~! blocks. Modest trade-offs between time, storage, size of the message and
processing are possible.

2.5.2.4 Correcting block attack

This attack consists of substituting all blocks of the message except for some block
Xj. This block is then calculated such that the hashcode takes a certain value, which
makes it also suitable to attack a OWHF'. It often applies to the last block and is then
called a correcting last block attack, but it can also apply to the first block or to some
blocks in the middle. The hash functions based on modular arithmetic are especially
sensitive to this attack.

A correcting block attack can also be used to produce a collision. One starts with
two arbitrary messages X and X’ and appends one or more correcting blocks denoted
with ¥ and Y’, such that the extended messages X||Y and X'||Y’ have the same
hashcode.

One can try to thwart a correcting block attack by adding redundancy to the
message blocks, in such a way that it becomes computationally infeasible to find a
correcting block with the necessary redundancy. The price paid for this solution is a
degradation of the performance.

2.5. METHODS OF ATTACK ON HASH FUNCTIONS 47

2.5.2.5 Fixed point attack

The idea of this attack is to look for a H;_1 and X; such that f(X;, H;—1) = H;—1. If
the chaining variable is equal to H;_1, it is possible to insert an arbitrary number of
blocks equal to X; without modifying the hashcode. Producing collisions or a second
preimage with this attack is only possible if the chaining variable can be made equal
to H;_1: this is the case if IV can be chosen equal to a specific value, or if a large
number of fixed points can be constructed (if e.g., one can find an X; for every H;_1).
Of course this attack can be extended to fixed points that occur after a number of
steps. This attack can be prevented easily: one can append a block count to the data
or one can (for theoretical constructions) encode the data with a prefix-free code [66].

2.5.2.6 Key collisions

This type of attack can only be applied to hash functions based on block ciphers. If
the chaining mode is poorly designed, attacks can be launched based on key collisions.
A key collision is a pair of keys K1, Ko such that E(K;, P) = E(Ks, P) for a plaintext
P. The number of collisions for a given plaintext can be obtained from theorem B.2.
In the case of DES [8, 108], with a block length of 64 bits and a key size of 56 bits, the
number of k-fold collisions for a given P is indicated in table 2.2. Key collisions can

k| 2 3 4) 6 7
470 374 274 171 6.5 -4.3

Table 2.2: Binary logarithm of the expected number of k-fold key collisions for a given
plaintext in the case of DES.

be constructed with an ordinary birthday attack, but J.-J. Quisquater has shown how
the efficient cycle algorithms combined with the method of the distinguished points
can produce a collision in about 233 operations [267, 270] and with negligible storage.
An important observation is that doubling the number of operations yields a squaring
of the number of different collisions.

The attack can be extended to the case of double encryption [270]. In this case a
key collision consists of two pairs of keys (K1, K2) and (K1, K}) (with K; # K]) such
that

E(K3, E(K1, P)) = E(K3, E(K1, P)).

It is also possible to produce a single key pair such that E(Ks, E(K1, P)) = C for a
given plaintext P and ciphertext C.

The collision search is feasible for any block cipher that behaves as a random
mapping if the key size is significantly smaller than 128, but a good design of the hash
function can make the collisions useless. There is however no easy way to guarantee
this, and every scheme has to be verified for this attack (cf. chapter 5).

48 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

2.5.2.7 Differential attacks

Differential cryptanalysis is based on the study of the relation between input and
output differences and is applicable to both block ciphers and hash functions [20, 21,
22, 23, 24, 25, 182]. The attack is statistical as one searches for input differences that
are likely to cause a certain output difference. If one is looking for collisions this output
difference should be equal to zero. In case of hash functions based on block ciphers,
the situation is slightly different: depending on the mode one requires that the output
difference is zero or that the output difference is equal to the input difference (in case of
feedforward of the plaintext). It applies only to iterated ciphers that satisfy particular
conditions, the so-called Markov ciphers. It turns out that most known iterated ciphers
(DES [8, 108], FEAL [225, 228], LOKI [33, 34], PES or IDEA [181, 182, 184], etc.)
are of this nature. For well designed block ciphers this attack will find the key based
on a large number of plaintexts with a chosen difference, or an even larger number of
known plaintexts. One can remark that this class of attacks is in fact more natural in
case of an MDC, where there is no secret information. A chosen message attack is the
standard way of attacking an MDC, and in this case all calculations can be performed
off-line and in parallel.

2.5.2.8 Analytical weaknesses

Some schemes allow manipulations like insertion, deletion, permutation and substi-
tutions of blocks. A large number of attacks have been based on a blocking of the
diffusion of the data input: this means that changes have no effect or can be cancelled
out easily in a next stage. This type of attacks has been successful for dedicated hash
functions [12, 22, 61, 62, 321] and for hash functions based on modular arithmetic
[252].

2.5.3 Attacks dependent on an interaction with the signature scheme

In some cases it is possible that even if the hash function is a CRHF, it is possible
to break the signature scheme. This attack is then the consequence of a dangerous
interaction between both schemes. In the known examples of such an interaction
both the hash function and the signature scheme have some multiplicative structure.
Examples are the attack by D. Coppersmith on a hash function based on modular
arithmetic [58] and the attack by B. den Boer that is discussed in [65]. It was shown in
[64] that the security of a digital signature scheme which is not existentially forgeable
under a chosen message attack will not decrease if it is combined with a CRHF.

2.5.4 Attacks dependent on the underlying block cipher

Certain weaknesses of a block cipher are not significant when it is used to protect the
privacy, but can have dramatic consequences if the cipher is used in one of the special
modes for hashing. These weaknesses can be exploited to insert special messages or to
carry out well chosen manipulations without changing the hashcode. The discussion

2.5. METHODS OF ATTACK ON HASH FUNCTIONS 49

will be limited to the weaknesses of DES [8, 108], LOKI [33] and its improved variant
LOKI91 [34], and PES [181] and its improved variant IDEA [182, 184].

2.5.4.1 Complementation property

One of the first properties that was known of DES was the symmetry under comple-
mentation [146]:

VP K :C =DES(K,P) < C =DES(K,P)

It can reduce an exhaustive key search by a factor 2 but it also allows to construct
trivial collisions.

A more extended set of related properties of LOKI was described independently in
[22, 180] and by B. den Boer [82]. They can be exploited to attack several hash modes,
and also to speed up an exhaustive key search with a factor 256. In the new version
of LOKI [34] it can be shown that only the complementation property holds.

2.5.4.2 Weak keys

Another well known property of DES is the existence of 4 weak keys [74, 231]. For
these keys, encryption equals decryption, or DES is an involution. These keys are also
called palindromic keys. This means that E(K, E(K, P)) = P, V P. There exist also
6 pairs of semi-weak keys, for which E(Ky, E(K;, P)) = P,V P. This property can be
exploited in certain hash functions to construct fixed points after two iterations steps.
Compared to DES, LOKI had more weak keys, but LOKI91 has the same number of
weak and semi-weak keys [34].

It was remarked by B. den Boer that a similar property holds for PES and IDEA:
for the all zero key the cipher is an involution.

2.5.4.3 Fixed points

Fixed points of a block cipher are plaintexts that are mapped to themselves for a
certain key. As a secure block cipher is a random permutation, it will probably have
fixed points (for every key there is a probability of 1 —e~! that there is at least a single
fixed point). However, it should be hard to find these. Under some conditions it is
easy to produce fixed points:

e For DES, this can be done based on a property of the weak keys [231]: for every
weak key K, there exist 232 values of P that can be easily found for which
DES(K,, P) = P. A similar property holds for the anti-palindromic keys: these
are 4 semi-weak keys for which there exist 232 values of P that can be easily

found for which DES(K,,, P) = P.
e The block cipher LOKI has 256 simple fixed points where the key is of the

with i = g @ h [22]. Here g, h and i are 4-bit numbers in hexadecimal notation.
For every weak key there exist 232 fixed points.

50 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

2.5.5 High level attacks

Even if the above attacks would not be feasible, special care has to be taken to avoid
replay of messages and construction of valid messages by combining others.

For authentication of transmitted messages, attacks at this level can be thwarted
by adding a nonce, this is a quantity that is never transmitted twice in a given context,
and through the use of sound cryptographic protocols. It is essential to authenticate
the integrity of the nonces together with the message.

Timestamps: the date and time of the moment at which the message is sent. If the
resolution of the time is sufficiently high, it will provide a unique identifier of
the message. For a resolution of one second, 5 to 6 bytes are sufficient. The two
main problems are the cost of maintaining reasonably well synchronized clocks at
both ends of the communication line and of delays in communication channels.

Serial numbers: a unique number is assigned to every message. A size of 4 bytes
should be sufficient for most applications, depending on the lifetime of the key.
If every user keeps a different sequence number for every user he communicates
with, the serial numbers should be consecutive, and the deletion of a message
can be detected. If every user has only one sequence number for all his commu-
nications, one has to check that the serial numbers form an increasing sequence.
This is only possible if every user stores the highest sequence number of every
communication. This system does not allow for checking for deleted messages.
A serial number is less expensive than a time stamp, but the timeliness of the
information can not be checked. This should be no problem for applications like
electronic mail.

Random numbers: a sufficiently long random number is added to the message. To
thwart a birthday attack on the number, it has to be larger than the square of the
maximal number of messages that will be sent with a key. For most applications
this means a size of about 8 bytes. A random number is not very useful if all
previous random numbers have to be stored to detect a replay. However, if the
random number is used in the next step of the protocol, it can offer an adequate
protection.

In the case of stored information, a ‘replay’ attack becomes a ‘restore’ attack [74].
The serial numbers have to be replaced by version numbers, and a separate file is
necessary that contains a single date and time stamp and for every file the current
version number. If rearrangements of units that are protected by a different MAC is a
problem, the address in the memory space can be protected together with the stored
information.

2.6 Conclusion

In this chapter several types of cryptographic hash functions have been defined, with
the emphasis on the system based or practical approach. It has been shown how

2.6. CONCLUSION 51

cryptographic hash functions provide an efficient way to protect integrity and to speed
up digital signatures. A general model has been introduced that allows for a compact
description of iterated hash functions and attacks.

52

CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

Chapter 3

The Information Theoretic
Approach

Faith is an island in the setting sun. But proof
is the bottom line for everyone. Paul Simon

3.1 Introduction

The information theoretic approach results in a characterization of unconditionally
secure solutions, which implies that the security of the system is independent of the
computing power of the opponent.

This chapter starts with a brief summary of the basic theory of unconditionally
secure authentication schemes and discusses some optimal schemes. Subsequently some
schemes that are close to optimal are treated, with the emphasis on universal hash
functions, as this concept will also be used in the next chapter. Finally it will be
discussed whether these schemes are practical and how other, more practical schemes
can be derived from them. The main contribution of this chapter is the comparison of
the efficiency of the different schemes.

3.2 Basic theory

The first result on unconditionally secure authentication appeared in 1974 in a paper
by E. Gilbert, F. MacWilliams, and N. Sloane [118]. Subsequently the theory has been
developed by G. Simmons, analogous to the theory of secrecy systems that was invented
by C. Shannon [303]. An overview of this theory can be found in [309, 310]. From
the brief but clear summary by J. Massey in [202] we can cite the following statement
“The theory of authenticity is in many ways more subtle than the corresponding theory
of secrecy. In particular, it is not at all obvious how “perfect authenticity” should be

53

54 CHAPTER 3. THE INFORMATION THEORETIC APPROACH

defined. This is caused by the fact that there are different bounds that can be met with
equality. This section will give the basic definitions and will introduce a taxonomy.
The most important theoretical bounds will be discussed (without proof).

3.2.1 Definitions and notations

According to the definitions that are used in the literature on this subject, the infor-
mation to be communicated is called the source state, while the information that will
be sent to the receiver is called the message. A mapping between the space of source
states and the message space is called an encoding rule. The set of source states,
messages and encoding rules is called an authentication code. In the following we will
keep the more usual terminology of plaintext, ciphertext and key. The set of plaintext,
ciphertexts, and keys will be denoted with {P}, {C}, and {K} respectively. The size
of plaintext, ciphertext, and key space will be denoted with p, ¢, and k respectively.

In the theory of authenticity, a game with three players is considered like in the
theory of secrecy systems. First one has the sender Alice, who wants to send informa-
tion to the receiver Bob under the form of a cryptogram. The opponent of Alice and
Bob is the active eavesdropper Eve, who can perform three types of attacks:

e Eve can send a fraudulent cryptogram to Bob as if it came from Alice (imper-
sonation attack).

e Eve can wait until she observes a cryptogram and replace it by a different cryp-
togram (substitution attack).

e Eve can choose freely between both strategies (deception attack).

The probability of success (when the strategy of Eve is optimal) will be denoted with
P;, P;, and P, respectively. A first result which follows from Kerckhoff’s assumption
(namely that the strategy to choose the key is known by Eve) is that

Pd = maX(Pi, PS) .
This model can be extended in several ways [310]:

e If one also assumes that Alice and Bob are mutually distrustful, one needs a
fourth person to resolve their disputes: the arbiter. This can be more than one
person, who may have access to secret information. In this case the situation is
much more complex, and one should also consider attacks by Alice, Bob, and by
one or more arbiters. The difference with digital signatures is that a signature
can in principle be verified and disputes can be resolved by any other person.

e Eve can wait until she observes [cryptograms, and subsequently perform a substi-
tution or impersonation. It is obvious that here one should take care of the special
case of simply replaying an old cryptogram or reordering the cryptograms (this
can be solved by inserting a sequence number into the plaintext). The schemes
that are resistant to this type of attack are called [-fold secure. If this extension
is not considered, the authentication schemes are, just like the Vernam scheme,

3.2. BASIC THEORY 95

one-time schemes: the secret key can be used only once. Only a few results will
be described in this more general setting.

e The mapping from plaintext to ciphertext can be probabilistic. In this case one
speaks of an authentication code with splitting.

In [88, 90] the model is extended to take into account the economical value of the
plaintexts.

A basic distinction that can be made in this theory is between authentication codes
with and without secrecy. In the latter case the plaintext can be derived easily from
the ciphertext. The corresponding codes are called Cartesian. In this case one can
write the ciphertext as the concatenation of the plaintext P with an authenticator,
Message Authentication Code or MAC. The number of authenticators is denoted with
r.

3.2.2 Bounds on authentication codes

The simplest bound that can be given is for an impersonation attack: if the enemy
selects C completely at random from the ¢ cryptograms that occur with nonzero prob-
ability in the authentication code, this probability of success can be lower bounded by
the following expression:

Theorem 3.1 (Combinatorial Bound for Impersonation)

P> %’. (3.1)

One can show that this bound can not be met with equality if splitting occurs. For
Cartesian codes this bound reduces to P; > 1/r.
If no splitting occurs, a similar bound can be given for substitution.

Theorem 3.2 (Combinatorial Bound for Substitution)
p—1
c—1"

The next bound is based on the concept of mutual information. Therefore some
definitions have to be introduced:

Py >

(3.2)

Definition 3.1 Let {p(x)},cx be a probability distribution on a finite set X. The
entropy H(X) is defined as

H(X) ==Y p(z)logp(z).

zeX

Definition 3.2 Let X andY be two sets and let {p(z,y)},cx ey be a joint probability
distribution on their Cartesian product. The conditional entropy H(X | Y) (or
equivocation) of X given 'Y is defined as

HX|Y)=- Y plzy)logp(z|y).
zeX,yeY

56 CHAPTER 3. THE INFORMATION THEORETIC APPROACH

Definition 3.3 Let X and Y be two sets. The mutual information I(X;Y) is
defined as
I(X;Y)=H(X)+H(Y)—-H(XY).

This can also be written as I(X;Y)=H(X)-H(X |Y)=H(Y)-H(Y | X).
The following information theoretic bound can now be given on the probability of
impersonation.

Theorem 3.3 (Authentication Channel Capacity)
P; > 27 1(GK) (3.3)

For the shortest proof known until now and a discussion of the recent improvements
on this bound by R. Johannesson and A. Sgarro the reader is referred to [202]. A
formulation in words is that the difference between the amount of information trans-
mitted through the channel and that needed by the receiver to resolve his uncertainty
about the plaintext can be used to authenticate the plaintext, and conversely no better
result can be achieved [310]. One can now show the following corollary, which was first
proven by E. Gilbert, F. MacWilliams, and N. Sloane [118].

Corollary 3.1

1
Py>—. 3.4
az (3.4)
For [-fold secure schemes where an opponent can first observe [ciphertexts, this
can be extended to [103]

Theorem 3.4 1
Py > T (3.5)
The next step is to define perfect authenticity to mean that equality holds in (3.3).
However, even if a system is perfect, P; will only be small if the cryptogram C reveals
much information about the key K. Two simple examples of perfect authentication
codes are given in table 3.1 [202].

K| P=0|P= K| P=0|P=1
00 00 10 00 00 10
01 01 11 01 01 00
10 00 11 10 11 01
11 01 10 11 10 11

Table 3.1: A perfect Cartesian authentication code and a perfect authentication code
that also provides perfect secrecy.

One can conclude that perfect authenticity schemes are less efficient in terms of
key bits than schemes that provide perfect secrecy [201]: if a p/-bit plaintext is mapped

3.3. PRACTICAL CARTESIAN AUTHENTICATION CODES 57

to a ¢/-bit ciphertext, the number of key bits per plaintext bit for perfect authenticity
with P; and Ps equal to the combinatorial bound is at least (¢ —p’)/p’, which is much
larger than 1 if p/ is small. Note that P; = 1/2¢7', so ¢ — p/ can not be small.

3.2.3 Characterization of perfect Cartesian authentication codes

A large number of authentication codes have been proposed in the literature that
meet these bounds (or a subset of them). We will not attempt to overview all these
constructions, but we will concentrate on characterizations. A characterization of an
authentication code with certain properties shows that these codes can be obtained
essentially in one way, which means that all other constructions are equivalent. For
the time being no general characterization of perfect authentication codes is known.
For Cartesian codes some characterizations exist in terms of combinatorial structures.

For Cartesian authentication codes that meet the bound (3.4) with equality, a
characterization was given by M. De Soete, K. Vedder, and M. Walker [93] based on
nets. This result was in fact a generalization of the work by E. Gilbert, F. MacWilliams,
and N. Sloane [118].

For Cartesian authentication codes that meet the combinatorial bound for imper-
sonation and substitution with equality, a characterization was given by D. Stinson
[313] based on orthogonal arrays. It should be noted that only for a subset of these
codes the bound (3.4) is met with equality. For general codes that meet the two
combinatorial bounds, D. Stinson has derived characterizations based on balanced in-
complete block designs.

3.3 Practical Cartesian authentication codes

In the following more practical authentication schemes will be discussed that are still
unconditionally secure. To be more in line with the other chapters, the notation will be
changed: an m-bit message will be authenticated with a n-bit MAC. The problem with
the perfect constructions is that a key of at least 2m bits is required. The basic idea
to make these schemes more efficient is to allow that P, increases with an acceptable
factor under the assumption that this will reduce the size of the key.

In [91] a different approach was also explored: it was shown how the description
and calculations for the scheme can be made extremely simple at the cost of increasing
the key size to (n + 1)m bits.

It will be discussed how the perfectly secure schemes behave in a practical context,
and several schemes based on universal hash functions will be compared. The theory
of universal hash functions will be discussed in more detail, as this concept will turn
out to be useful in chapter 4 on the complexity theoretic approach.

3.3.1 The perfect schemes

The property of the perfect schemes with minimal key size based on nets [93] is that
P, = P, = 27" and the key size is 2n bits. One can show that in this case 2" < 2" +1

58 CHAPTER 3. THE INFORMATION THEORETIC APPROACH

or m < n, and hence the key size is larger than 2m. In a practical problem, one designs
a system with given P; and size of the plaintext. One can distinguish between three
situations:

e For very small messages (m < n), these schemes are very inefficient because the
key size is much larger than twice the message size.

e For medium sized messages (m ~ n) the key size will be equal to 2m, and hence
the schemes make optimal use of the key.

e For large messages (m > n), it follows that the key size will be equal to about
2m, but Py will be much smaller than required. This can be avoided by splitting
the message in n bit blocks and authenticating these separately: the efficiency
in terms of key bits will remain the same, but the calculations will be on smaller
blocks, and hence the scheme will be more efficient [91].

3.3.2 Universal hash functions

Universal hash functions have been proposed by J. Carter and M. Wegman [42, 43| and
were studied further by D. Sarwate, [293], M. Wegman and J. Carter [325] and D. Stin-
son [312, 314]. J. Carter and M. Wegman proposed to use universal hash functions
for unconditionally secure authentication schemes and for probabilistic algorithms for
testing set equality. Ten years later universal hash functions were shown to be a useful
building block for provably secure hash functions, as will be shown in chapter 4.

3.3.2.1 Definitions

A universal hash function is a mapping from a finite set A with size a to a finite set B
with size b. For a given hash function g and for a pair (z,2’) with x # 2’ the following
function is defined:

dg(z,2") = 1 if g(z) = g(2')
0 otherwise.

For a finite set of hash functions G (in the following this will be denoted with a class of
hash functions), d¢(z, ') is defined as 3, dg(x,2), or dg(x,2") counts the number
of functions in G for which z and 2’ collide. When a random choice of g is made,
then for any two distinct inputs x and 2/, the probability that these two inputs yield
a collision equals dg(z,z")/ | G|. In the case of a universal hash function, the goal is
to minimize this probability together with the size of G.

A lower bound on d¢(z,2")/ | G | has been proven in [293] (improving slightly a
bound in [325]):

Theorem 3.5 For any class of hash functions from A to B, there exist distinct ele-
ments x and ©' such that

dalo. ') > 57—

TR

3.3. PRACTICAL CARTESIAN AUTHENTICATION CODES 59

Moreover, equality will hold only if a is a multiple of b. For a > b the right hand of
the equation can be approximated by 1/b.

Definition 3.4 Let € be any positive real number. An e-almost universaly class (or
e — AU; class) G of hash functions from a set A to a set B is a class of functions from
A to B such that for any distinct elements x,x' € A

[{9€G:9(z) =9(")} |=dc(z,2)) <e- |G .

This definition states that for any two distinct inputs the probability for a collision
is at most €. Because of theorem 3.5 the lowest possible value for ¢ is 1;(%7_:‘1)' This
class of functions is called optimally universal [293]. In [42] the case e = 1/b is called

universal.

Definition 3.5 Let € be any positive real number. An e-almost strongly universal,
class (or e — ASUy class) G of hash functions from a set A to a set B is a class of
functions from A to B such that

o for every x € A and for every y € B,

g€ Grgla) =y} 1= 191,

o for every x1,79 € A (x1 # 12) and for every y1,y2 € B (y1 # y2),

[{g € G:g(x1) =y1,9(x2) =y2} [S € ’Cb;‘
The first condition states that the probability that a given input x is mapped to a
given output y equals 1/b. The second condition implies that if x; is mapped to y,
then the conditional probability that x5 (different from z) is mapped to ys is upper
bounded by e. The lowest possible value for € equals 1/b and this class has been called
strongly universaly functions in [325].

If more than two inputs at the same time are considered, the following generaliza-
tions can be made.

Definition 3.6 Let € be any positive real number, and let v be an integer with r > 2.
An e-almost strongly universal, class (or e— ASU, class) G of hash functions from
a set A to a set B is a ¢ — ASUy class of hash functions from A to B such that for
any distinct elements x1, xo,...x, € A and for any (not necessarily distinct) elements

Y1,Y92,---Yr EB Zf
[{geG:gl@)=y1 Aglz2) =y2 A Aglar) =y} [S e |G .

Note that this is equivalent to saying that the random variables {g(x) |z € A} are
uniform and r-wise independent. The case e = 1/b" has been called strongly universal,
in [325]. More work has to be done to characterize universal, hash functions. To
simplify the notation, the index 2 will be omitted from universals from hereon.

60 CHAPTER 3. THE INFORMATION THEORETIC APPROACH

3.3.2.2 Constructions

Universal and strongly universal hash functions can be constructed both with simple
direct methods and with recursive methods, i.e., by composition of other hash func-
tions. The examples of direct constructions that have been given for any prime power
q [312, 314] are summarized in table 3.2. Other constructions can be found in [42, 43].

type a b |G| € expression
e— AUy | ¢* q¢ q 1/q b—ax
e—ASUs | ¢* ¢ ¢ 1/¢ xz+ay+bz
e—ASUy | ¢ q ¢ 1/q x+ay

Table 3.2: Summary of direct constructions of universal hash functions. Here ¢ is a
prime power; a, b are elements of GF(q); x, y, and z are independent variables.

It will be shown that for authentication codes it is required that |G| is small. For
the € — ASUs; constructions in table 3.2, the number of functions is larger than the
product of a and b, which is a corollary from theorem 3.10. M. Wegman and J. Carter
showed how to obtain an ¢-ASUj [325] from a 2/b-ASUy with ¢ = (2/b) - log, log, a'.
The idea is to use a universal hash function that maps 2s-bit strings to s-bit strings
(with s = logy b+ logy log, log, a) in a tree structure. The number of functions is equal
to

|G |=4slogylogs a .

The following theorems of D. Stinson [314] show how (strongly) universal hash
functions can be used in recursive constructions. These theorems generalize similar
constructions that were given before. These theorems can be further generalized to
universal, hash functions.

Theorem 3.6 (Cartesian Product) If there exists an e— AUy class G of hash func-
tions from A to B, then, for any integer i > 1, there exists an e — AU, class G* of hash
functions from A' to B* with |G |=|G"|.

Theorem 3.7 (Composition 1) If there exists an e — AUz class Gy of hash func-
tions from A to B and an ea — AUy class Go of hash functions from B to C, then

there exists an € — AUs class G of hash functions from A to C, where e = €1 + €2 and
|Gl=[G1]-|Gal.

Theorem 3.8 (Composition 2) If there exists an € — AUz class Gy of hash func-
tions from A to B and an eo — ASUsy class Go of hash functions from B to C, then

there exists an e — ASUs class G of hash functions from A to C, where ¢ = €1 + €2 and
|Gl=[G1]-|Gal.

n fact they claim that ¢ = (2/b), but this has been corrected by D. Stinson.

3.3. PRACTICAL CARTESIAN AUTHENTICATION CODES 61

Based on these recursive constructions, the schemes described in table 3.3 can be
obtained [314].

type a b |G| €

e— AUy | ¢* q¢ ¢ i/q
e—ASUy | ¢* q ¢ (i+1)/q
e—ASUs | ¢ ¢ ¢** i/¢®+1/q

Table 3.3: Summary of recursive constructions of universal hash functions. Here q is
a prime power, and ¢ is an integer > 1.

A simple example of a universal, family is obtained by chopping the first n bits of
a polynomial of degree r — 1 over the finite field GF(2™) [325]:

Ga07a17~~~7ar—1 =
{gao,al,,,,yar_l(x) = chop” (ao +ajx+ -+ ar,lmr_1> | ap, a1, ...,ar—1 € GF(Qm)})

2n7m

Here chop™() returns the first n bits of its m-bit argument. Note that exactly
elements in the domain have the same value in the range.

3.3.2.3 Authentication codes based on universal hash functions

The following theorem indicates how e-ASUjy classes of hash functions can be used to
construct an authentication code [314].

Theorem 3.9 If there exists an e-ASUs class G of hash functions from A to B, then
there exists a Cartesian authentication code with a plaintexts, b authenticators and
k =|G| keys, such that P; =1/b and Ps <.

A lower bound on the number of keys can be obtained with the following theorem
[314].

Theorem 3.10 If there exists an e-ASUs class G of hash functions from A to B, then

a(b—1)?
ebla—1)+b—a’

1G> 1+

Schemes that achieve this bound will be called optimal e-ASUy schemes. No con-
structions are known that achieve this lower bound, except when ¢ = 1/b, but this
corresponds to the well known case where Py = P;.

In the following it will be assumed that a = 2 and b = 2". The scheme proposed
by M. Wegman and J. Carter results in an authentication code with Ps; = 2log, m /2"
and with a key of 4(m+log, log, n) logy n bits. The recursive construction by D. Stinson
(the second scheme in table 3.3) yields an authentication code with Ps; = (logym —
logon + 1)/2™ and with a key of (logy m — logy n + 2)n bits.

62 CHAPTER 3. THE INFORMATION THEORETIC APPROACH

In order to obtain schemes that are I-fold secure, one can construct an authenti-
cation code based on an e-ASUj;; [325]. This construction will be very inefficient in
terms of use of key material: the key size will grow as the [4+ 1th power of 1/P;. A
more efficient and more general solution will be described in the following section.

In [49] a very simple scheme is suggested to produce an e-ASUs with € = 3(m-+n)/2"
under the condition that m > n > 64. The key consists of two elements: an n-bit prime
p that is larger than 2”1 and an n-bit integer v. This means that the key size is equal
to 2n —logy(2n In2). The function is defined as

g(x) = [(z - 2") mod p + v] mod 2".

Based on theorem 3.9 one can show that this generates an authentication code with
P;=2""and Ps = 3(m+n)/2".

An even better and more elegant scheme was proposed recently by B. den Boer
[84]. It produces an e-ASUjy with € = (m/n)/2". The key consists of 2 elements of
GF(2") denoted with p and v. The argument z is split in elements of GF(2") denoted
with z1, z9, ..., x¢, hence m =t - n. The function is then defined as follows:

t
glx) =p+ @i,
i=1

where the addition and the multiplication are in GF'(2"). It is easy to prove that this
function is an e-ASUsy. Given z, g(z), and v, there is exactly one corresponding value
of . Moreover, if one knows a pair g(z), g(z’) with « # 2/, one can solve for u and v
as follows. Subtract the two equations in order to eliminate p. This yields an equation
in v of degree ¢, that has at most t solutions, which results in the claimed value for e.
From theorem 3.9 it follows that one has an authentication code with P, = 27" and
P, = (m/n)/2". It is clear that this scheme can be generalized to any finite field, but
the arithmetic will be more complicated. B. den Boer has indicated other fields for
which efficient implementations exist [84]. Observe that if m = n this construction
reduces to the construction by E. Gilbert, F. MacWilliams, and N. Sloane [118].

3.3.3 A comparative overview

Table 3.4 gives an overview of the probability for impersonation and substitution, and
the key size for the authentication codes that have been discussed. It is assumed that
an m-bit message is mapped to an n-bit hashcode. For all schemes the probability of
impersonation P; = 1/2".

A concrete example for an authenticator with n = 64 bits is worked out in table 3.5.
It can be seen that the scheme by D. Chaum et al. is most efficient in terms of key bits,
at the cost of a significant increase in P;. For large values of m, this factor is equal to
3m. If this factor is substituted for ¢ in the equation for the optimal e-ASUs schemes,
one finds that the scheme by D. Chaum et al. has a key that is about logy(3m) bits
larger than for the optimal construction. The scheme by B. den Boer yields a smaller

3.3. PRACTICAL CARTESIAN AUTHENTICATION CODES 63

P key size k (bits)

perfect 1/2" 2m

opt. e-ASUy t/2n log, (1 + (2™m(2" — 1)2)/(t(2™ — 1) + 2" — 2™))

Wegman-Carter (2logy m) /2™ (n + log, log, m)4log, m

Stinson (logy m — logyn +1)/2™ (logy m — logyn + 2)n

Chaum et al. 3(m+mn)/2" 2n — logy(2n In2)

den Boer (m/n)/2" 2n

Table 3.4: Probability of substitution Ps and key size k of the perfect scheme, the op-
timal scheme with minimal key size based on e-ASUs, and the schemes by M. Wegman

and J. Carter, D. Stinson, D. Chaum et al., and B. den Boer.

scheme m = 64 m = 2%0

P key size k (bits) P key size k (bits)
perfect 1/264 128 1/254 221
opt. e-ASU, t/264 128 — logy t /264 128 —logy(t — 1)
Wegman-Carter | 12/264 1,598 1/2587 5,466
Stinson 1/264 128 1/260-1 1,024
Chaum et al. 1/255-4 122 1/2424 122
den Boer 1/264 128 1/2%0 128

Table 3.5: Ps and key size k for the perfect schemes, the optimal scheme with minimal
key size based on e-ASUs, and the schemes by M. Wegman and J. Carter, D. Stinson,
D. Chaum et al., and B. den Boer. The size of the authenticator n is equal to 64 bits.

64 CHAPTER 3. THE INFORMATION THEORETIC APPROACH

increase of Ps, while the key is only about logy(m/n) bits larger than for the optimal
construction.

In fact one could also think of a more realistic scenario where not n and m are
given, but where the size of the message m and P; are imposed. In this case one has
to determine n and k. For large m (m > n) one obtains the following approximate
formulas for the scheme by D. Stinson:

k = (—logy Py + log, logy m) - (logy m + 2 — logy (— logy Py + logy logy m))
~ (—logy Py + log, logy m) - (logg m + 2)
n = —logy Py +logy logy m .

Under these conditions the scheme by D. Chaum et al. yields:

k = —2logy Py + 2logym + 2logy 3
n = —logy Py + logy m + logy 3.

For the scheme by B. den Boer one finds approximately:

k = —2log, Py + 2logy m — 2logy(—logy Py + logy m)
n = —logy Py + logy m — logy(— logy Py + logym) .

From these equations one can conclude that the authenticator of the scheme by
B. den Boer will be at most logy m bits larger than for the scheme by D. Stinson,
which approximates the perfect schemes very closely. On the other hand the key size
for the scheme by D. Stinson is about (—logy Py) - logy m, while the key size for the
scheme by B. den Boer is approximately equal to —2logy Py + 2logy, m. The scheme
by D. Chaum et al. performs slightly worse than the scheme by B. den Boer.

From an implementation point of view, one can note that the constructions by
M. Wegman and J. Carter, by D. Stinson, by D. Chaum et al., and by B. den Boer
require only very simple operations (multiplication and addition in a finite field GF(¢™)
or GF(q) with g about n bits in size, followed by chopping of bits, or a modular
reduction modulo an n-bit prime). Note however that this will be about five to ten
times faster than a conventional MAC based on the CBC mode of the DES algorithm,
that will be discussed in chapter 5. The basic practical problem however is that a new
secret key has to be exchanged for every message. This is mainly a problem if there
are many small messages. In that case one could however use the following approach:
protect the individual messages with a practical and fast MAC, and apply from time to
time a provably secure scheme to all collected messages. Other solutions are to derive
the key from the from the previous key, or to design the scheme such that every key
can be used [times.

In the first case the key can be generated from a small seed with a computationally
or practically secure scheme, which implies that the scheme is no longer unconditionally
secure. For a computationally secure scheme one will use a secure pseudo-random
string generator. For a practically secure scheme one can choose between a stream

3.4. CONCLUSION 65

cipher and a mode (e.g. OFB mode) of a block cipher. In both cases the exchange
and storage of the key material will decrease, but the computational overhead will
increase. This will probably make the schemes of B. den Boer and of D. Chaum et
al. more efficient. On the other hand these schemes are more expensive in terms of
storage for the authenticator (at least if the messages are larger than 100 Kbytes),
which might be a small disadvantage for some applications. A second disadvantage,
which only applies for the scheme by D. Chaum et al., is that the generation of a new
key, that comprises primality tests, is more than three orders of magnitude slower than
performing the key scheduling for the DES algorithm.

In the second case an [-fold secure scheme is designed. This means that a particular
key can be used to authenticate | messages. This is possible if the authenticator is
encrypted with a good cipher. Again a distinction between three cases can be made:

1. M. Wegman and J. Carter suggest in [325] to use the Vernam scheme, which
implies that the scheme will be still unconditionally secure. The number of
additional key bits to authenticate [messages will be equal to In.

2. A second proposal by G. Brassard [29], is to use a secure pseudo-random string
generator (cf. chapter 4), which implies that the security is now based on com-
plexity theoretic assumptions.

3. A practical and efficient scheme can be obtained by simply encrypting the hash-
code with a ‘good’ block cipher or stream cipher.

In all three cases the messages should contain a sequence number to avoid replay and
reorder attacks. In the scheme by D. Chaum et al. one can also modify part of the key,
but this implies that after [+ 1 messages the probability of substitution will increase
to

from which it follows that [should not be too large. This can be avoided by modifying
the complete key after every message. Similarly, one could modify the scheme by
B. den Boer such that only u is replaced.

3.4 Conclusion

In this chapter an overview has been given of schemes that can protect the authen-
ticity of information unconditionally. The theory of these schemes is rather subtle,
and therefore it is developing more slowly than the theory of unconditionally secure
secrecy. A characterization in terms of combinatorial constructions can only be given
for a small subclass of schemes. The schemes that come closest to practical schemes
are unconditionally secure Message Authentication Codes or MAC’s based on strongly
universal hash functions. One can always derive both complexity theoretic and prac-
tical constructions from these schemes, but for the time being it seems more efficient
to design this type of schemes directly.

66

CHAPTER 3. THE INFORMATION THEORETIC APPROACH

Chapter 4

The Complexity Theoretic
Approach

Out of intense complexities intense simplicities
emerge. Winston Churchill

4.1 Introduction

The background of the complexity theoretic approach is the definition of a model of
computation. In the uniform model this is a Turing machine [5], while a Boolean
function is the model of computation in the non-uniform model. No detailed discus-
sion will be given on the difference between the two models, but it is important to
remark that only in the non-uniform model precomputations, that are carried out by
an adversary before the start of the protocol are included. All computations in this
model are now parameterized by a security parameter and the asymptotic behavior of
algorithms is studied. In the uniform model, only algorithms that require time and
space polynomial in the size of the input are considered to be feasible. Algorithms
that require exponential time and/or space in the size of the input are considered to
be infeasible. Along the same lines, an exponentially small fraction is considered to be
negligible. Note that in this context a birthday attack does not make sense: it reduces
the number of operations to the square root of the number of operations for a brute
force attack. However, the square root of a polynomial is still a polynomial and the
square root of an exponentially growing function still grows exponentially.

Before a complexity theoretic treatment of a OWHF and a CRHF is possible, some
basic definitions have to be discussed, together with some background on pseudo-
random string generators and one-way functions. Subsequently, a definition and some
important constructions for a OWHF and a CRHF will be given. An extension of
the concept of a OWHF will be studied, and it will be discussed how computationally
secure perfect authentication codes can be constructed.

67

68 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

Finally it is remarked that some complexity theoretic constructions can be obtained
from unconditionally secure schemes, as it has been discussed in the previous chapter.

4.2 Complexity theoretic definitions

4.2.1 Basic definitions

The set of all integers will be denoted with IN. The alphabet considered is the binary
alphabet ¥ = {0,1}. For n € IN, ¥" is the set of all binary strings of length n. The set
of all strings of arbitrary length will be written as ¥*. The concatenation of two binary
strings = and y will be denoted with x|ly. Let I(n) be a monotone increasing function
from IN to IN, and f be a function from D to R where D = J,, Dy, D,, € £" (in most
cases D, = ¥"), and R = J,, Rn, Rn C ") D is called the domain and R is called
the range of f. The restriction of f to X™ will be denoted with f,,. The function f is
polynomial time computable if there is a polynomial time algorithm computing f(x),
Vx € D. In the following it will be assumed that there is a description of f, of length
polynomial in n and that f, is polynomial time computable. The composition f o g of
two functions f and g is defined as (fog)(z) = f(g(z)), and the k-fold composition of
f is denoted by f*). The size of a set S is denoted with | S|.

A probability ensemble E, with length I(n), is a family of probability distributions

{En i) 0,1],n € N}. The uniform ensemble U with length I(n) is the family

of uniform probability distributions U,, where each U, is defined as U, (z) = 1/2"),
Vz € X, By z e 1" we mean that z is randomly selected from %! according
to F,, and in particular by z €r X" we mean that z is chosen from the set X"
uniformly at random. F is samplable if there is an algorithm M that on input n,
outputs an z €5 ¥ and polynomially samplable if the running time of M is also
polynomially bounded.

The siblings of x under a function f is the set S, of elements that are mapped
to f(x), and sy, is the number of strings in " for which | S; | > 1. A function f is
called an injection if each f, (n > ng) is a one-to-one function, which is equivalent to
| Sz | < 1,Vx (with |z| > ng), or s, =0, n > ng. In some cases a slightly more general
concept is necessary. A function f is called a quasi-injection if the following holds: for
any polynomial @) and for sufficiently large n: s, < 1/Q(n). An even more general
concept is a function with small expected preimage size. This implies that there exists
a polynomial @ such that for z €z X", the expected size of f~1(f(z)) < Q(n). A
function f is called a permutation if each f, is a one-to-one and onto function.

In this chapter chop, denotes the function from X" to ¥" that drops the ¢ right-
most bits of its argument.

Let {no,} and {n1,} be two (increasing) sequences such that ng, < ny, for all i,
but there exists a polynomial @ such that Q(no,) > ni,, then these two sequences are
polynomially related.

The important concept of a function family has been defined in [65]. A simplified
version will be given here.

4.2. COMPLEXITY THEORETIC DEFINITIONS 69

Definition 4.1 A function family F is an infinite family of finite sets {Fy,}. -

n=1>
where Fy, is the set of instances of size n. An instance f € F,, is a tuple,

S = (fn’ D’ R))
where fn is a function f, : Dy — R,. The following requirements have to be imposed:
o F, is accessible, or there is a polynomial time algorithm, which on input n outputs

an instance chosen uniformly from F,.

o D, is samplable, or there is a polynomial time algorithm, which selects an element
uniformly from D,.

o fn is polynomial time computable, or given x € D,, there is a probabilistic poly-
nomial time algorithm (polynomial in n and in |z|) that computes fn(x).

4.2.2 Pseudo-random string generators

Definition 4.2 A statistical test is a probabilistic polynomial time algorithm T that
on input x outputs a bit 0/1.

Definition 4.3 Let P be a polynomial, and E' and E? be ensembles both with length
I(n). E' and E? are called indistinguishable from each other, iff for each statistical
test T, for each polynomial Q, and for all sufficiently large n,

1

| Pr{T(x1) =1} — Pr{T(x2) =1} | < m,

where 1 € X | 1y € XH),

Definition 4.4 A polynomially samplable ensemble E is pseudo-random if it is in-
distinguishable from the uniform ensemble U with the same length.

Definition 4.5 A string generator extending an n-bit input into an l(n) bit output
(here l(n) > n), is a deterministic polynomial time computable function g : D — R.

In the following g will also be denoted by {g, | n € IN}. Let g,(U) be the probability
distribution defined by the random variable g,(x), where x €r X", and let g(U) =
{gn(U) | n € IN}. g(U) is polynomially samplable. The definition of a pseudo-random
string generator (PSG) can now be given [331].

Definition 4.6 g = {g, | n € IN} is a pseudo-random string generator (PSG)
iff g(U) is pseudo-random.

Another important aspect of pseudo-random sequences is that given a part of the
sequence, it should be hard to predict the remaining part.

70 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

Definition 4.7 Let | be a polynomial, and E be an ensemble with length l(n). Then
FE passes the next bit test iff for each statistical test T', for each polynomial @, and
for all sufficiently large n the probability that on input of the first i bits of a sequence
x randomly selected according to E and i < l(n), T outputs the i + 1th bit of x is
polynomially close to 1/2, or

1 1

Pr{T(ml,...,xi) :$i+1} < 54‘%3

where x €g UDN

A key result is the equivalence between the unpredictability and indistinguishability
[331].

Theorem 4.1 Let E be a polynomially samplable ensemble, the following statements
are equivalent:

e F passes the next bit test.

o FE is indistinguishable from the uniform ensemble U.

4.2.3 One-way functions

An intuitive definition of a one-way function is that it is a function that should be hard
to invert. Of course one can always take a polynomial number of inputs S and evaluate
the function for the values in S: for all values in Image(.9) it is now easy to invert the
function with a simple table lookup. The solution is to require that it should be hard
to invert the function almost everywhere. Many flavors of one-way functions exist, and
the subtle differences can only be captured in a formal definition. In practice it can
be shown that in the most important cases these definitions are equivalent.

Definition 4.8 A one-way function family F is a function family that satisfies the
following condition. Let x be selected uniformly in D, and let M be a probabilistic
polynomial time algorithm that takes as input fn(z) € R, and outputs M (fn(z)) € Dy,
For each M, for each polynomial Q, and for all sufficiently large n

1

If D = R, one has a one-way permutation family.

Observe that = can also be selected according to a different distribution, but in order to
avoid unnecessary complications, it will always be assumed that x is selected uniformly
in D,.

A more complex definition can be given if it is only required that inverting more
than a negligible fraction of the instances of a given size is hard [65]. It can be shown
that the existence of one-way permutations according to this definition is in fact implied
by the existence of permutations that are one-way in a much weaker sense. Moreover

4.2. COMPLEXITY THEORETIC DEFINITIONS 71

if the function involves some group structure, it can be shown that if the function can
be inverted on a non-negligible fraction of its images, it can be inverted everywhere
with non-negligible probability.

The fact that f is a one-way function implies that given f(z) there are at least
O(logn) bits of = that are hard to predict. If such a bit is not biased, it is called a
hard bit of f. A formal definition of a hard bit is given below:

Definition 4.9 Let f be a one-way function. Leti(n) be a function from IN to IN with
1 <i(n) < n. Thei(n)th bit is a hard bit of f iff for each probabilistic polynomial
time algorithm M, for each polynomial Q), and for sufficiently large n,

Pr{M(f(2)) = 2} } < % * Q(ln) !

where x € X" and x;(n) is the i(n)th bit of an o’ € X" satisfying f(x) = f(a).

If a sufficient number of bits of x are given, it is always possible to find the remaining
bits by exhaustive search. This concept is captured in the definition of a computing
resource.

Definition 4.10 One has a computing resource for k bits if given the output of
a one-way function and n — k bits of the input string, one can find the remaining k
bits of the input string by exhaustive search.

It can be shown that all the hard bits of f are independent. Given only f(x), any
string of hard bits is indistinguishable from a random string. This is formally stated
as follows.

Definition 4.11 Let f be a one-way function, and let I = {iy,...i} be a subset of
{1,2,...n} with t <n — k. Denote by E£ and Ef the probability distributions defined
by the random variables x;, () - . - Ty, () || f(x) and 1 ... 71| f(z) respectively, where x €r

X" and rj €r X. Let BT = {E,IZ |n e]N} and Ef = {Eff | n e]N}. Then the bits

Tiy(n) - - - Tiy (n) are simultaneously hard if ET and ER are indistinguishable.

The collection of all simultaneously hard bits of a one-way function f is called the
hard core of f. In the following it will be assumed that the size of the hard core is
at least k£ 4+ 1 bits. The maximal number of simultaneously hard bits is smaller than
n — k. Tt will be denoted with n — k*, where k™ (n) is a function that grows slightly
faster than k(n).

Finally it is remarked that for any one-way function one can construct O(logn)
hard core predicates: O. Goldreich and L. Levin [127] showed that for any one-way
function f, given f(z) and p €p 2!zl the inner product of z and p is a hard core
predicate of f, which means that it can not be predicted with a success probability
that is better than 1/2 4+ 1/Q(n) for any polynomial Q.

72 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

4.3 Complexity theoretic constructions

4.3.1 Universal hash functions and uniformizers

For the definition of universal hash functions and for an overview of some constructions,
the reader is referred to section 3.3.2. If these functions have to be defined correctly in
a complexity theoretic setting, one has to state that they should be polynomial time
computable. Moreover one has to replace the concept class of functions by the concept
of a function family.

J. Carter and M. Wegman suggest to use universal hash functions for uncondition-
ally secure authentication schemes (cf. section 3.3.2) and for probabilistic algorithms
for testing set equality. Ten years later universal hash functions were shown to be a
useful building block for provably secure hash functions. However, their use in these
constructions requires an additional property, namely that it should be easy to find
collisions. This property was first suggested in [233], but here the slightly extended
version of [87] will be given.

Definition 4.12 A (strongly) universal, family G has the collision accessibility
property iff, given a requirement g;(x1) = y1 A ... A gi(x;) = yr, it is possible to
generate in polynomial time a function g; uniformly among all functions in G that
obeys the requirement.

For the constructions in [233, 342] the requirement is of the form g;(z1) = gi(x2) =
-++ = g;(x,). This will be called the “weak collision accessibility property”.

A concept closely related to a strongly universal hash function is that of a pair-wise
independent uniformizer, defined in [341].

Definition 4.13 A pair-wise independent uniformizer family V from n-bit strings
to n-bit strings is a collection {v;} of permutations of X" such that:
Vn, Y(x1, x2) with x1,x9 € X" and x1 # x9 and ¥(y1,y2) with y1,y2 € X" and y1 # y2,
there are exactly
[Val
2n(2n — 1)

permutations in V, that map x1 to y1 and x2 to ys.

4.3.2 Universal One-Way Hash Functions (UOWHF)

The concept of a UOWHF was introduced by M. Naor and M. Yung [233]. They
suggested the definition and gave a provably secure construction based on a strongly
universal hash function and a one-way permutation. They use the concept to construct
a provably secure digital signature scheme based on a one-way injection, which is a
less stringent requirement than a trapdoor one-way function which was necessary for
the scheme proposed in [15].

4.3. COMPLEXITY THEORETIC CONSTRUCTIONS 73

4.3.2.1 Definition
A formal definition of a UOWHEF can be given as follows.

Definition 4.14 A Universal One-Way Hash Function family H is a function
family and a polynomially bounded function | : IN — IN.
A member of H, is a function f: X" —s XM,

A collision string finder F' is a probabilistic polynomial time algorithm that on input
n outputs an initial value r € X", and then given a random h € H, outputs either “?”
or an ' € X" such that h(z") = h(x).

H must satisfy the following condition:
for all collision string finders F', for all polynomials Q, and for sufficiently large n

holds that)
Pr{F(h,x) # “?"} < ——,
() # 47} < 5is

where the probability is taken over all h € H,, and the random choices of F.

The collision string finder first selects an input string z and subsequently gets a ran-
domly selected hash function. The philosophy behind a UOWHEF is that if first the
input is selected and subsequently the hash function, it does not help an opponent to
find collisions for the hash function. Collisions are only useful if first the function is
fixed and subsequently one can search for two colliding inputs.

This definition was generalized in [341], where a UOWHF is defined as a three
party game with an initial string supplier S, a hash function instance generator G and
a collision string finder F'. Here S is an oracle with unlimited computing power, and
G and F' are probabilistic polynomial time algorithms. The game consists of three
moves:

1. S outputs an initial string x € X™ and sends it to both G and F.
2. G chooses an h €p H, independently of x and sends it to F.
3. F outputs either “?” or an 2’ € X" such that h(z') = h(x).

F wins the game if its output is not equal to “7?”. The input x is selected by S
according to a certain distribution. In the most general case this is the collection of all
ensembles with length n. If a different ensemble is introduced, a different definition is
obtained. In the original definition of M. Naor and M. Yung the initial string supplier
and the collision string finder were the same algorithm, which imposes the unnecessary
restriction that x should be selected according to all polynomially samplable ensembles
(the collision string finder has to be a polynomial time algorithm). The construction
by M. Naor and M. Yung also satisfies this more general definition. On the other hand
their definition is less complicated: in fact it does not really make sense for S to send
x to G, as G chooses subsequently h independent from z. In [341, 342] the hierarchy
between different types of UOWHEF has been studied.

First two general methods will be described to construct a UOWHF. Subsequently
some specific schemes will be given, namely the scheme of Naor and Yung based on

74 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

Figure 4.1: Method 1 for serial extending and compressing (M. Naor and M. Yung).

strongly universal hash functions, the first scheme of Zheng, Matsumoto, and Imai, the
schemes by De Santis and Yung, the scheme by Rompel, the second scheme of Zheng,
Matsumoto, and Imai, and the scheme of Sadeghiyan and Pieprzyk.

4.3.2.2 General construction methods

Two general methods have been described to construct a UOWHF from a more simple
UOWHEF. It has been pointed out by Y. Zheng, T. Matsumoto, and H. Imai [341] that
these two general constructions are related to similar constructions for pseudo-random
string generators. This can be explained by the duality between a PSG and a UOWHEF:
the first extends an input of fixed length to a polynomial size result, while the second
compresses an input string of polynomial length into a string of fixed length. The
construction of a UOWHEF by M. Naor and M. Yung is related to the construction of a
PSG by repeatedly applying an extension operation to the input string (cf. figure 4.1),
while the construction of I. Damgard is the dual of the PSG scheme due to Boppana
and Hirschfeld (according to [7]) (cf. figure 4.2).

The basic idea behind the construction by Naor and Yung is that the composition
of two or more UOWHF families is again a UOWHF family. In fact a UOWHF was
defined such that this property would hold.

Definition 4.15 Let Hi,Ho, ..., H; be families of functions such that for all © and for
all hy € H; (with ni—1 < n;), h; : X" — ¥"-1. The [-composition of Hy, Ha, ... H;
is the multiset HY = {h | h="hyohgo---oh}.

Lemma 4.1 (composition lemma) Let HWO be an 1-composition. If there exists a
collision string finder F' which, when given an initial value x and a uniformly random
h e HW, produces an output # “?” with probability Pr {F(h,z) # “?”} > €, then there
exists an i with 1 <1 <1 and an algorithm F' such that

e I’ produces an initial value x; € X",

4.3. COMPLEXITY THEORETIC CONSTRUCTIONS 75

Figure 4.2: Method 2 for serial extending and compressing (I. Damgard).

e Then on input h; € H; tries to find a x} such that h;(x;) = h;(z}).

7

o Pr{F'(h;,x;) # “?”} > €/l, where the probabilities are taken over h; € H; and
the random choices of F'.

e The running time of F' is polynomially related to that of F.

Theorem 4.2 (composition theorem) Let {no,}, {ni1,}, {n2,}, ... be a sequence of
increasing sequences, let Uy, Us, . .. be a sequence of families of UOWHEF such that U; =
{Him}, _y, where Yh € Hypy 5 h o X"m — E%-1m let | : IN — IN be a polynomial
time computable function such that Q(no,,) > nym),, for some polynomial Q. Let

H%m)) be the I(m)-composition of H1m, Ham; - -+ Higm)m, and let U = {U;};2,.

Then U is a family of UOWHF if the U; are simultaneously hard, that is for every
polynomial P and for every probabilistic polynomial time algorithm F, there is an myg
such that Ym > mg, F can not succeed in finding collisions with probability 1/P(n;,,)
for alli>1.

It is interesting to note that this composition theorem also holds for a CRHF.

The general construction by I. Damgard [66] as illustrated in figure 4.2 was intended
for the design of a CRHF based on a Collision Resistant Function. Therefore it will
be discussed in more detail in the corresponding section. It will become clear that if
specific conditions are imposed on a compression function with a fixed size input, this
general construction can also yield a UOWHEF.

4.3.2.3 The scheme of Naor and Yung

As a result of the general construction method by M. Naor and M. Yung, the construc-
tion of a UOWHF is reduced to the construction of a UOWHF that compresses one
bit. This is achieved with the composition of a strongly universal hash function with
a one-way permutation.

76 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

Theorem 4.3 (Naor-Yung) Let f be a one-way permutation on X".

Define H, = {h=go f | g € Gy}, where G, is a strongly universaly family of hash
functions from X" to X', which has the weak collision accessibility property. Then
U={H,},>, is a UOWHF family compressing n-bit input strings into n—1-bit output
strings.

Note that the notations are slightly simplified here: if the formalism is followed
completely, f should be replaced by a function family, where f, is an instance of size
n.

Based on the composition theorem one can obtain a UOWHEF for which the size
of domain and range are two increasing sequences that are polynomially related. This
construction can be extended for the case that f is a one-way injection. The problem
with this construction is that it is not very practical: the size of the hash function is
O(n?) where ny is the size of the input. This can be improved with a factor log(n;) by
using a strongly universaljog(,,) hash function. A more efficient approach will be to use
a block hashing technique in a tree configuration: if the primitive function compresses
2t bits to t bits, the size of the function is O(t? log(n1)) bits. The number of blocks has
to be polynomial in ¢ to keep the proof valid. The original construction requires O(n;)
applications of the one-way function, and the first improvement reduces this with a
factor log(ny). The block hashing technique needs O(n;) applications of the one-way
function. Moreover for every message that has to be hashed a new hash function has
to be generated and stored.

4.3.2.4 The first scheme of Zheng, Matsumoto, and Imai

This construction is based on the combination of a quasi injection, a pair-wise indepen-
dent uniformizer, and a strongly universal hash function [342]. The basic motivation
is to reduce the complexity assumptions.

Theorem 4.4 (Zheng-Matsumoto-Imai) Let f be a quasi injection with input
length n and output length l(n). Define H, = {h=gnovpof | gn € Gn,v € V. },
where Gy, is a strongly universal family from S to =1 and V,, is a pair-wise
independent uniformizer. Then U = {Hy},> | is a UOWHF family compressing n-bit
input strings into n — 1-bit output strings.

4.3.2.5 The schemes of De Santis and Yung

The major contributions of these schemes are the simplification of the original scheme
of Naor and Yung, the improvement of the efficiency, and the reduction of the complex-
ity assumptions. The simplification is based on the composition lemma for strongly
universal hash functions. The construction is given for one-way injections [87].

Theorem 4.5 (De Santis-Yung) Let f be a one-way injection with input length n
and output length l(n). Define H, = {h =gnogny1o-ogmof | gi€ Gi}, where

G, is a strongly universal family from X% to ¥=1. Then U = {H,},2| is a UOWHF
family compressing n-bit input strings into n — 1-bit output strings.

4.3. COMPLEXITY THEORETIC CONSTRUCTIONS 77

The authors also give new constructions based on the following weaker complexity
assumptions:

e The existence of a function with small expected preimage size or the property
that the expected size of the preimage of an element in the range is small when
an element in the domain is randomly chosen. An example of such a function is
squaring modulo an RSA modulus.

e The existence of a function where for a given element in the range, an estimate
with polynomial uncertainty on the size of the preimage set is easily computable.
A particular case is a regular function, i.e., a function where every image of an
n-bit input has the same number of preimages of length n. Other examples are
the decoding of random linear codes and the subset sum (cf. section 7.2.8.1).

For the formal definitions and constructions the reader is referred to [87].

4.3.2.6 The scheme of Rompel

J. Rompel [284] describes an interesting scheme to turn any one-way function in a
UOWHEF. The idea is to construct a series of functions, each one closer to the goal of a
UOWHF. First a function is constructed for which most siblings are easy to find, but
a non-negligible fraction are provably hard to find. Next a function is constructed such
that most siblings are provably hard to find. Subsequently a length increasing function
is constructed for which it is almost always hard to find any sibling. Finally this is
turned into a length-decreasing function with the same properties. The construction is
only of theoretical interest: it can be shown that one-way functions are necessary and
sufficient for secure digital signatures. The number of applications of f is polynomial
in the size of the input, but the scheme is completely impractical as the exponents are
larger than 30.

4.3.2.7 The second scheme of Zheng, Matsumoto, and Imai

The goal of this construction by Y. Zheng, T. Matsumoto, and H. Imai [341, 343] is to
improve the efficiency rather than to reduce the complexity assumptions. This is the
first construction that does not rely on universal hash functions, which implies that
the description of the hash function is more compact. This construction processes the
message in s-bit blocks. Therefore the [(n)-bit message = has to be divided into s-bit
blocks denoted by x1, w9, ..., x:, where t = (@] and x; € X° for each 1 < ¢ < t.
(note that if [(n) is not a multiple of s a padding procedure has to be specified, cf.
section 2.4.1).

Theorem 4.6 (Zheng-Matsumoto-Imai) Let f be a one-way permutation with in-
put length n+ s. One can assume w.l.0.g. that the hard core of f are the s rightmost
bits of f. Let 1 be a polynomial with I(n) > n, and Hy be an initial value € X™. Then
define

H, = ChOpt (f (Hi—luxt—i—&-l)) fori=1,2,...,t.

78 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

Define H, = {h | h(x)= H;}. ThenU = {H,},>, is a UOWHF family compressing

n=1
l(n)-bit input strings into n-bit output strings.

4.3.2.8 The scheme of Sadeghiyan and Pieprzyk

The goal of this scheme is to further increase the efficiency. Assume that one has a
computing resource of k bits (cf. definition 4.10). The idea of this scheme is to construct
from a one-way permutation with £ + 1 hard bits a one-way permutation for which
each bit is a hard bit. This can be done through combination with permutations that
have specific properties. The resulting permutation can then be used in an efficient
construction of a UOWHF and of a PSG [289, 290].

Definition 4.16 Let v be a permutation of .. Then v is a k + 1-bit perfect per-
mutation iff

e v is complete, or each output bit of v depends on all input bits.

e k+1 bits of v are pair-wise independent, or their correlation equals zero.

Definition 4.17 A strong one-way permutation w is a permutation with the maz-
imal number of t = n — k™ simultaneously hard bits.

Clearly this is equivalent to stating that each bit of w is a hard bit of w and given w(z)
and any t < n — k bits of the preimage x, it is hard to find the complete preimage x.

One can show (cf. section 4.2.3) that given a one-way function f one can find a
function g such that f = O(logn) bits of f o g are simultaneously hard. A simple ex-
ample for g is the inner product with a random string. To turn a one-way permutation
into a strong one-way permutation, it is sufficient to find a permutation for which it
is hard, given t < n — k bits of its input and ¢ < n — k bits of its output, to guess any
additional output bit. Such a permutation effectively hides any k bits of its output,
hence it is called a hiding permutation.

Definition 4.18 Let h be a permutation of ¥". Let iy,...1; and ji ... Ji be functions
from IN to IN, where 1 < i;(n),ji(n) < n. Then h is a hiding permutation iff for
each probabilistic polynomial time algorithm F, for eacht < n—k™, for each polynomial
Q, and for sufficiently large n

1 1
|Pr{F(xit,...:cilHyjn,...yjk+) :yjk,...jyjl}—ﬁ |< W’

where x € X", y = h(x), and k = O(logn).

Any one-way permutation that acts on all its bits is a hiding permutation.

The following theorems, given in [289] and [290] respectively, show how to turn a
one-way permutation into a strong one-way permutation. Both constructions use a
hiding permutation. The first construction is based on a k+ 1-bit perfect permutation,
while the second requires only a linear function over GF'(2").

4.3. COMPLEXITY THEORETIC CONSTRUCTIONS 79

Theorem 4.7 Let f be a one-way permutation, let v be a k+1-bit perfect permutation,
and let h be a hiding permutation. Define w = fovoh. Then w is a strong permutation.

Theorem 4.8 Let f be a one-way permutation, let g = px + q where p,q €g GF(2"),
and let h be a hiding permutation. Define w = fogoh. Then w is a strong permutation.

The concept of a strong one-way permutation can be used to construct a UOWHF
as follows.

Theorem 4.9 (Sadeghiyan-Pieprzyk) Let f be a strong one-way permutation on
¥". Define H, = {h = chop,of}, wheret =n—k*. ThenU = {H,},> | is a UOWHF

family compressing n-bit input strings into n — t-bit output strings.

A variant of this method is to replace the chop function by a universal hash function.
Parameterization of this UOWHEF is possible through a parameterization of f or of the
chopping function (other bits than the last ¢ bits might be chopped). The efficiency of
this method relies on the fact that it requires only one application of a strong one-way
permutation for the processing of n — k — 1 bits, where a strong one-way permutation
consists of 2 one-way permutations and a k + 1-bit perfect permutation or a linear
function over GF'(2").

A final remark is that if a strong one-way permutation is used as primitive func-
tion f, the second scheme of Zheng, Matsumoto, and Imai reduces to the general
construction method of Damgard [289].

4.3.3 Collision Resistant Hash Functions (CRHF)

The formal definition of a Collision Resistant Hash Function (CRHF) (or Collision
Free Hash Function) has been introduced by I. Damgard [64, 65]. He also suggested
the first provably secure constructions.

4.3.3.1 Definition
A formal definition of a CRHF can be given as follows.

Definition 4.19 A Fixed Size Collision Resistant Hash Function family H' is
a function family and a function | : IN — IN, such that l(n) < n.
A member of H!, is a function h' : ¥" — X1,

A collision string finder F' is a probabilistic polynomial time algorithm that on input
n and a function h €g H, outputs either “?” or a pair x,z’ € X" with ' # x such
that h(z'") = h(x).

H' must satisfy the following condition:
for all collision string finders F, for all polynomials Q, and for sufficiently large n
holds that)

wpm o -
Pr{F(h) # “?7} < IOk

where the probability is taken over all h € H,, and the random choices of F.

80 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

Definition 4.20 A Collision Resistant Hash Function family H is a function
family and a polynomially bounded function [: IN — IN.
A member of Hy, is a function h : £* — %),
H must satisfy the following condition:
for all collision string finders F, for all polynomials @Q, and for sufficiently large n

holds that)
Pr{F(h) # “?7} < o)

where the probability is taken over all h € Hy, and the random choices of F.

The main difference between definition 4.19 and definition 4.20 is that the second one
imposes no restrictions on the lengths of the inputs of the functions. Of course a
polynomial time algorithm can only hash messages of polynomial length.

The practical advantage of a CRHF over a UOWHEF is that in case of a CRHF one
is not forced to generated a new hash function for every input. A CRHF is however
harder to design. From the definition of a CRHF it follows that it is also a UOWHEF. A
more difficult question is whether a CRHF is also a one-way according to definition 4.8.
The answer is rather complicated, but a lemma of I. Damgard [66] that was slightly
corrected by J.K. Gibson [119], gives some orientation:

Lemma 4.2 (Damgard) Let H' be a fized size collision resistant function family,
and let h be an instance of size n. Let Ejy be the probability distribution on L1
generated by selecting x €g X" and outputting h'(x).

Assume that for all but an exponentially small fraction of x € X" there exists a
' € X" with W (z) = h'(2').

Then no algorithm inverting h' on images selected according to Ey succeeds with
probability larger than 1/2 +1/Q(n) for any polynomial Q.

If By is the uniform distribution over the image of h' or if n—I(n) is O(n), then no
inversion algorithm succeeds with probability larger than 1/Q(n), for any polynomial

Q.

Note that in cryptographic applications an opponent will not select an x € X"
(as required by the definition of a one-way function) but an h'(x) €r R,: the property
that can be proven is not really the property that one would like to have. However,
the selection of an z € X" will result in a uniform distribution for A'(z) if A" is a ¢ to
1 mapping for constant ¢ (which is the case for a fixed size one-way function, but not
necessarily for a hash function), or if n — I(n) is O(n). Another solution is to assume
that Ej is the uniform distribution over the image of h'.

A general construction is based on a fixed size CRHF. It is believed that the
existence of one-way functions is sufficient for the existence of CRHF’s, but for the
time being a proof is lacking. Currently reductions have been given to claw resistant
functions, distinction resistant permutations, and claw-resistant pseudo-permutations.
Note that in the original papers these were called claw free functions, distinction in-
tractible permutations, and claw free pseudo-permutations. In order to remain consis-
tent, the names had to be changed.

4.3. COMPLEXITY THEORETIC CONSTRUCTIONS 81

4.3.3.2 Fixed size CRHF

First it is noted that the composition theorem for a UOWHF (theorem 4.2) also holds
for a CRHF. One can however also construct of a CRHF based on a fixed size CRHF
family [66].

Theorem 4.10 Let H' be a fized size CRHF family mapping n bits to [(n) bits. Then
there exists a CRHF family H mapping strings of arbitrary length (polynomial in n)
to l(n) bit strings.

Because of its practical importance, the construction will be described here. To
simplify notations [(n) will be written as [. Two cases have to be distinguished:

n — [> 1: split the message into ¢ blocks of size n—[—1 bits and apply an unambiguous
padding rule (cf. section 2.4.1). The sequence H; is then defined by:

Hy = H(07" | z1)
HZ:h,(HZ,1 || 1” xz) fOI‘ZZQ,?),t
The hashcode h(x) is equal to H;.

n — [= 1: here the message is processed bit by bit. First, select uniformly an [-bit
string Hp. The sequence H; is then defined by:

Hi = h/<HZ'_1 H l‘z) for i = 1,2,3,...t.
The hashcode h(z) is equal to H;.

The second version will also work if Ej, is the uniform distribution over the image of
B orif n —1(n) is O(n). It is slightly more efficient as it allows hashing an additional
bit per application of A'.

4.3.3.3 Claw resistant permutations

The concept of a function family has to be generalized to allow for an elegant definition
of claw resistant permutations [65]. It will only be used in section 4.3.3.

Definition 4.21 A function family F is an infinite family of finite sets {F,}oo,
where F,, is the set of instances of size n. An instance f € F,, is a tuple,

S=(for--- fr-1,D% ..., D"\ R),

where Vi, 0 < i <r, —1, fi is a function: f; : D' — R, and U;"Qal Im(f;) = R. Here
rn, 1s called the set size of F. The following requirements have to be imposed:
e 1, s polynomially bounded as function of n.

e I, is accessible, or there is a polynomial time algorithm, which on input n outputs
an instance chosen uniformly from F,.

82 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

o D' is samplable, or there is a polynomial time algorithm, which on input S and
i selects an element uniformly from D'.

e f; is polynomial time computable, or given S, i, and x € D* there is a probabilistic
polynomial time algorithm (polynomial in ¢ and in |x|) that computes f;(x).

A family of claw resistant functions can now be defined as follows:

Definition 4.22 A claw resistant function family C is a function family with the
property that for any instance S = (fo,... fr,—1, D% ..., D™V R), fiis at to 1
mapping for some constant t and Im(f;) = R, V0 <i<r, —1.

A claw finder is a probabilistic polynomial time algorithm F that on input S outputs
either “?” or a tuple (x,2',i,5) such thatx € D', ' € DI, 0<4,j <r,—1,i# j and
fil@) = f;().

C must satisfy the following condition:
for all claw finders F', for all polynomials Q, and for sufficiently large n holds that

1
Pr{F(S) # “?"} < ——,
(F() # 07} < s
where the probability is taken over all f € F, and the random choices of F.
If D = D' = ... = D™= = R, then C is called a family of claw resistant

permutations.

Let X, be an alphabet with cardinality . The n-bit input block x is then trans-
formed into a prefix free encoding T over the alphabet X,.. Note that an efficient
algorithm exists to transform x to T such that the length of T is linear in the length
of x.

Theorem 4.11 Let C be a family of claw resistant permutations with set size r,, and
with domain the set of all finite words over ., . An instance of size n of h is defined

by

where I € D and fz(I) is defined as fz, (fo, (- fz,(L)--+)), with T = x1,2,...,T¢.
Then H is o« CRHF family.

The previous theorem reduces the existence of collision resistant hash functions to
the existence of claw resistant permutations. Several constructions for claw resistant
permutations have been proposed:

e Based on one-way group homomorphisms: the basic idea is, given the one-way
homomorphism f and a set of a; selected uniformly from D, to define the func-
tions f; as

filx) =a;- f(z).
Examples of one-way group homomorphisms can be constructed based on the
hardness of modular exponentiation and the discrete logarithm problem. Note
however that this is an indirect reduction in the sense that finding a claw does
not prove that the one-way function can be inverted in general.

4.3. COMPLEXITY THEORETIC CONSTRUCTIONS 83

e Based on the difficulty of factoring the product of two large primes. Several
schemes have been proposed and will be discussed in more detail in chapter 6.
For these constructions a direct reduction between the assumption and the claw
resistance can be proved.

e Based on a one-way function that permutes the cosets of a subgroup of its domain
[242]. Also in this case more concrete schemes will be discussed in chapter 6.

e Based on computing graph isomorphisms [30].

However, it remains an open problem whether claw resistant permutations can be
constructed based on one-way functions.

I. Damgard gives in his PhD thesis [65] a heuristic argument that shows that the
two flavors of one-way property are equivalent for a CRHF based on a claw resistant
permutations.

4.3.3.4 Distinction resistant permutations

The concept of distinction resistant permutations was introduced by Y. Zheng, T. Mat-
sumoto, and H. Imai [341, 343]. It is slightly more general than the concept of claw
resistant permutations: it should be hard to find two inputs for which the output dif-
fers at a particular position. To simplify notation, the definition is less formal than
definition 4.22.

Definition 4.23 A distinction resistant permutation family W is a function fam-
ily. A member of Wy, is a function w : X" — 3",

A near string finder algorithm F' is a probabilistic polynomial time machine that on
input w outputs either “?” or a pair x,z' € X" such that w(z") = w(x) e;(,). Here
e; denotes the ith unit vector [00...010...00].

W must satisfy the following condition:
for all near string finders F', for all polynomials Q, and for sufficiently large n holds

that)
Pr {F(U]) ?é “?”} < M,

where the probability is taken over all w € Wy, and the random choices of F.

If the one-way permutation in the second scheme of Y. Zheng et al. is replaced with
a distinction resistant permutation, the scheme yields a CRHF":

Theorem 4.12 Let w be a distinction resistant permutation with input length n + 1.
One can assume w.l.o.g. that the rightmost bit of w is a hard bit of w. Letl be a
polynomial with [(n) > n, and Hy be an initial value € X". Then define

H; = chop, (w (Hi—lufﬁl(n)—z‘)) fori=1,2,....1(n).

Define H,, = {h | h(z)= Hl(n)}' Then H = {H,},> | is a CRHF family compressing
[(n)-bit input strings into n — 1-bit output strings.

84 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

It it easy to show that the existence of distinction resistant permutations implies
the existence of a claw resistant pair of permutations. It is an open problem whether
it is possible to construct a distinction resistant permutation based on a claw resistant
pair of permutations.

4.3.3.5 Claw resistant pseudo-permutations

This concept was introduced by A. Russell [288]. A pseudo-permutation is a function
that is computationally indistinguishable from a permutation: it should be hard to
find a witness of non-injectivity or a collapse for f, i.e., a pair (z,2) with z # 2’ such
that p(z) = p(2').

Definition 4.24 A pseudo-permutation family P is a function family. A member
of P, is a function p : X" — Y™

A collapse finder algorithm F' is a probabilistic polynomial time machine that out-
puts either “?” or a pair x,z’ € X" with x # ' such that p(z’) = p(x).
P must satisfy the following condition:
for all collapse finders F', for all polynomials @), and for sufficiently large n holds that

«9» L
Pr{F(p) # “?"} < o0

where the probability is taken over all p € P, and the random choices of F.

One can now define a function family of claw resistant pseudo-permutations. As
pointed out in [288], the two aspects of these functions balance each other: if the
pseudo-permutations are close to permutations, there will exist more claws.

The main result in [288] is then the following theorem:

Theorem 4.13 There exists a collision resistant function family iff there exists a claw
resistant pseudo-permutation function family.

4.3.4 Sibling resistant functions (SRF)

The concept of a SRF was introduced by Y. Zheng, T. Hardjono, and J. Pieprzyk
[344]. Tt is a further generalization of a UOWHF.

4.3.4.1 Definition

Informally a Sibling Resistant Function (SRF) is a function family for which it easy
to find a function s under which k given strings x; collide, but for which it is hard to
find an 2’ that collides under s with the first k strings.

Definition 4.25 Let k be a fized integer. A (k,1) Sibling Resistant Function
family S is a function family that has the weak collision accessibility property, and a
function | : IN — IN, such that l(n) < n. A member of S, is a function s : ¥ —

i),

4.3. COMPLEXITY THEORETIC CONSTRUCTIONS 85

A sibling finder F is a probabilistic polynomial time algorithm that on input X
= {x1,22,..., 21} a set of k initial strings € ¥ and a function s € S, that maps the
x; to the same string, outputs either “?” or an x' € X" such that s(z') = s(x;).

S must satisfy the following condition:
for all sibling finders F, for all polynomials Q, and for sufficiently large n holds that

Pr{F(s, X) # “¢7} < Q(ln),

where s is chosen randomly and uniformly from SX C S,, the set of all functions in
Sp that map X = {x1,x2,...,z} to the same string in X", and where the probability
is taken over SiX and the random choices of F.

A SRF is a generalization of a UOWHF, as a UOWHEF is a (1,1)-SRF. Note that a
(k,1)-SRF is also a (k',1)-SRF with &' < k.

A possible application of a SRF is to authenticate k& pieces of information at the
same time: this could be a selection of k computer programs. It is then possible to
authenticate these programs through a single hashcode.

4.3.4.2 Construction

The following theorem [344] shows that a (1,1)-SRF can be transformed into a (2° —
1,1)-SRF for any s = O(logn).

Theorem 4.14 Letl1(n), l2(n), andl3(n) be polynomials with la(n)—11(n) = O(logn),
and let k = 220)=h() _ 1. Define S, = {s=wuoh | he€ H,,ucU,}, where H
is a (1,1)-SRF family from v to M) and U is a universaly11 hash function
family from $20) to 20 that has the weak collision accessibility property. Then
S ={S,}22, is a (k,1)-SRF from 1) o ™),

Combined with the result of J. Rompel, described in section 4.3.2.6, it follows that a
(k,1)-SRF can be constructed from any one-way function.

4.3.5 Perfect Authentication codes

In chapter 3 it has been shown how unconditionally secure Cartesian authentication
codes can be transformed into complexity theoretic constructions based on pseudo-
random string generators. For authentication codes with secrecy, direct complexity
theoretic constructions have been developed based on the work of M. Luby and C. Rack-
off [198] on randomizers. In [340] it was shown how these randomizers can be used
to construct provably secure block ciphers. If F}, is defined as the set of all functions
from X" to X", then for a function f € F;,, the permutation D € Fb, is constructed
as follows:

86 CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

where R,L € ¥". For a sequence of functions fi, fo,...f; € F,, the permutation
U(f1, fa,-.., fi) is defined as

¢(flaf2a""fi):‘Dfio”'onQODfl'

It was shown in [198] that if three function f, g, h are selected randomly and uniformly
from F,,, that ¥(f, g, h) can not be distinguished from a random permutation, hence
it is called an L-R randomizer. Note however that the permutation v (f, g, h) has no
polynomial description, and hence it is not polynomial time computable. A pseudo-
random permutation can be obtained if f, g, h are pseudo-random functions; in that
case 1 is called an L-R module.

J. Pieprzyk and R. Safavi-Naini show in [248] that if redundancy is added to the
message before encryption with one or more L-R randomizers, one obtains a perfect
authentication code. This implies that these codes are secure even if the opponent
observes a large number of plaintext-ciphertext pairs. Depending on the redundancy,
the following results are obtained under the assumption that f,g,h €gr F}, and ¢* is a
random permutation € Fj,:

e If the redundancy is secret and selected independently for each message:
Y =u1(f, 9" h).

e If the redundancy is a publicly known fixed quantity that is used as the L-input:
= wl(fa.% h) © ¢2(h;9*a f)

e If the redundancy is a publicly known fixed quantity that is used as the R-input:
¥ =v1(f,9,h) o tha(h, g, f) o ¥3(h, 9", f).

In order to make the authentication code polynomial time computable, one should
replace f,g,h and ¢g* by pseudo-random functions and permutations respectively. In
that case the quality of the authentication codes will depend on the quality of the
pseudo-random functions. The disadvantage of this method is that the size of the
redundancy is at least twice the size of the message.

A second proposal by R. Safavi-Naini [292] consists of replacing the function f in the
Luby-Rackoff construction with a generalized function f’ or an expansion, which means
that the range is larger than the domain. In this case it can be shown that only three
rounds (or a single L-R randomizer) are sufficient to obtain a perfect authentication
code. This construction has the advantage that it allows for more redundancy to
be added to the information. Based on this construction, the author also suggests a
new design principle for practical authentication systems, namely the combination of
confusion, expansion, and diffusion. It should however be noted that practical systems
rather perform a compression than an expansion.

4.4 Conclusion

The main contribution of the complexity theoretic approach is that it yields good
definitions of concepts that would otherwise remain vague. A second advantage is that

4.4. CONCLUSION 87

this approach yields provably secure constructions based on the hardness of specific
problems like factoring an RSA modulus or the discrete logarithm problem and even on
more general assumptions like the existence of one-way functions. Most constructions
in this chapter are completely impractical, and it is generally not possible to derive
practical schemes from these constructions. However, in some cases one can obtain
interesting design principles for more practical schemes.

88

CHAPTER 4. THE COMPLEXITY THEORETIC APPROACH

Chapter 5

Hash Functions Based on Block
Ciphers

All cases are unique and very similar
to others. T.S. Elliot

5.1 Introduction

Two arguments can be indicated for designers of cryptographically secure hash func-
tions to base their schemes on existing encryption algorithms. The first argument is
the minimization of the design and implementation effort: hash functions and block
ciphers that are both efficient and secure are hard to design, and many examples to
support this view can be found in this thesis. Moreover, existing software and hardware
implementations can be reused, which will decrease the cost. The major advantage
however is that the trust in existing encryption algorithms can be transferred to a
hash function. It is impossible to express such an advantage in economical terms,
but it certainly has an impact on the selection of a hash function. It is important to
note that for the time being significantly more research has been spent on the design
of secure encryption algorithms compared to the effort to design hash functions. It
is also not obvious at all that the limited number of design principles for encryption
algorithms are also valid for hash functions. The main disadvantage of this approach is
that dedicated hash functions are likely to be more efficient. One also has to take into
account that in some countries export restrictions apply to encryption algorithms but
not to hash functions. Finally note that block ciphers may exhibit some weaknesses
that are only important if they are used in a hashing mode (cf. section 2.5.4).

In the first part of this chapter, some older proposals will be reviewed that combine
encryption with redundancy to protect the integrity. These proposals are not based
on a hash function, but they gave birth to the idea of using hash functions in a
cryptographic context. In the next parts existing proposals for MDC’s and MAC’s

89

90 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

will be reviewed. This review comprises the description in a uniform and compact
notation, a classification of known attacks, a new evaluation of the security, and in
some cases the description of a new attack. In case of an MDC a distinction will be
made between hash functions where the size of the hashcode equals the block length of
the underlying block cipher and hash functions where the size of the hashcode is twice
this length. This is motivated by the fact that most proposed block ciphers have a
block length of only 64 bits, and hence an MDC with a result twice the block length is
necessary to obtain a CRHF. Other proposals are based on a block cipher with a large
key and on a block cipher with a fixed key. Several MAC proposals are reviewed, and
a generalized treatment is presented of the interaction between encryption and MAC
calculation if the same key is used for both operations.

The most important new contribution of this chapter is the synthetic approach
for the case where the size of the hashcode equals the block length of the underlying
block cipher: all existing proposals have been generalized and the secure schemes have
been classified. This result was partially presented in [260]. A second contribution
is the proposal of three new schemes together with a security evaluation. A third
contribution is the application of differential cryptanalysis to hash functions based on
block ciphers. A fourth contribution is a generalized treatment of the addition schemes
and of the interaction between MAC calculation and encryption. Finally seven new
attacks are presented on schemes proposed in the literature.

For a hash function based on a (non-randomized) block cipher, the following nota-
tions have to be fixed. The encryption operation with the underlying block cipher will
be written as C' = E(K, P), where P denotes the plaintext, C' the ciphertext, and K
the key. The corresponding decryption operation will be denoted with P = D(K, C).
If the emphasis lies on the protection of secrecy and authenticity, the plaintext will
also be denoted with X. The size of plaintext and ciphertext in bits is n, while the size
of the key is k. The description will follow the general model that has been established
in section 2.4.1.

The following definition characterizes the efficiency of a hash function based on a
block cipher.

Definition 5.1 The rate R of a hash function based on a block cipher is the number
of encryptions to process a block of n bits.

5.2 Authentication based on encryption and redundancy

Before the introduction of the concept of one-way hash functions, researchers were
well aware of the fact that encryption with a block cipher does not offer a sufficient
protection against active attacks.

The most natural approach to improve the authenticity protection is to add a
simple form of redundancy to the plaintext. The consequence of this redundancy is
that only a small part of the ciphertext space corresponds to genuine plaintext. It
will however be shown that adding the sum of the plaintext blocks or a secret key is

5.2. AUTHENTICATION BASED ON ENCRYPTION AND REDUNDANCY 91

generally not sufficient. But first two different approaches will be considered, namely
randomized encryption and special modes of use.

5.2.1 Authentication based on randomized encryption

The main goal of randomized encryption techniques is to improve the security of pri-
vacy protecting schemes against chosen plaintext and dictionary attacks. A system
where more than one ciphertext corresponds to a single plaintext is certainly harder
to cryptanalyze. Just like in case of the addition of redundancy to the plaintext, this
yields a ciphertext space that is larger than the plaintext space. However, it will be-
come clear that this redundancy can generally not help to protect the authenticity of
the plaintext. The discussions will be limited to the McEliece public-key cryptosystem
and a new mode of use of a block cipher.

In 1978, R. McEliece proposed a new public-key cryptosystem based on algebraic
coding theory [207]. The system makes use of a linear error-correcting code for which a
fast decoding algorithm exists, namely a Goppa code. The idea is to hide the structure
of the code by means of a transformation of the generator matrix. The transformed
generator matrix becomes the public key and the trapdoor information is the structure
of the Goppa code together with the transformation parameters. The security is based
on the fact that the decoding problem for general linear codes is NP-complete [17].
For each irreducible polynomial g(z) over GF'(2™) of degree ¢, there exists a binary
irreducible Goppa code of length n = 2" and dimension k& > n — mt, capable of
correcting any pattern of ¢ or fewer errors. As it is a linear code, it can be described
by its k X n generator matrix G. With the aid of a regular k x k& matrix S and an
n X n permutation matrix P, a new generator matrix G’ is constructed that hides the
structure of G:

G'=S5-G-P.

The public key consists of G, and the matrices S and P together with g(x) are the
secret key. The new matrix G’ is the generator matrix of another linear code, that
is assumed to be difficult to decode if the trapdoor information is not known. The
encryption operation consists of the multiplication of the k-bit message vector X by
G’ and the modulo 2 addition of an error vector e with Hamming weight ¢:

C=X-Ga®e.

The first step of the decryption is the computation of C' - P~!. Subsequently the
decoding scheme makes it possible to recover X - S from

C-P'=(X-S-G)@(e-PY.

The plaintext X is finally constructed by a multiplication with S~!'. At first sight
one would expect that this scheme offers some protection against active attacks: the
probability that a random ciphertext is decodable is equal to

t
ok=ngt with of = Z (n) ,

=0 ¢

92 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

which is about 2.5 - 10747, for the usual parameters n = 10 and t = 39. If the
variant by F. Jorissen is used [165], a small part of the error correcting capability is
retained at the cost of a decreased security level. This implies that a limited number
of random modifications can still be corrected by the code. However, if an attacker
wants to modify a particular plaintext bit, he simply has to add to the ciphertext the
corresponding row of the public generator matrix G'.

A solution to this problem was given by R. Safavi-Naini and J. Seberry in [291].
The idea is to start from a set of k’-bit messages (k' < k), and to transform these into
a set of k-bit messages with a systematic linear code that is kept secret:

X=X Gs.

Note that this method is a MAC as it is based on a secret key. One can show that
the probability of impersonation is equal to the combinatorial bound: 2% /2% (cf. sec-
tion 3.2.2). If a single cryptogram Cy is observed, an attacker gets some information
on the secret linear code. However, he is not able to exploit this information as he
is not able to compute the corresponding X;, which is equivalent to breaking the
McEliece public-key cryptosystem. If two cryptograms are observed, an attacker has
all information available to generate a new authentic message: it is sufficient to define
X3 = X7 ® X» (the authentic messages form a vector space). However, this assumes
that the attacker is able to obtain X; and X5, which is again computationally infeasi-
ble. However, it is not mentioned in [291] that it is trivial to perform such a selective
forgery with a known text attack. The protection of authenticity was also suggested
in [189] for the secret key variant of McEliece by T. Rao and K. Nam [275]. However,
it is very likely that this will increase the vulnerability of a scheme that has shown to
be insecure against a chosen plaintext attack [315].

A second scheme that will be discussed is a new mode of use for a block cipher that
was put forward in [188]. The main goal of the “random code chaining” (RCC)
mode is to make it easier to modify part of the plaintext, while keeping the chaining of
blocks and a limited error propagation. The disadvantage is the redundancy of 50%.
The ciphertext corresponding to ¢ n/2-bit plaintext blocks is equal to

C; =E(K,X,® R;_1||R;),

where R; (1 < i < t) are random n/2-bit blocks and Ry is a function of K. The
authors however wrongly claim that RCC makes the ciphertext resistant to authenticity
threats: it is true that any modification to the ciphertext will yield random plaintext,
but in spite of the redundancy no mechanism to verify the authenticity is present. The
problem is that the authenticity of the random information can not be checked (by
definition). The same applies for the less secure variations that are discussed in [188].

5.2.2 New modes of use

New modes apart from the 4 standard ones (ECB,CBC,CFB,OFB) (cf. appendix A)
have been introduced to improve characteristics like error propagation and integrity
protection.

5.2. AUTHENTICATION BASED ON ENCRYPTION AND REDUNDANCY 93

A first mode of use was proposed in 1975 by H. Feistel [105] and was called “block
chaining”. The basic idea behind the scheme was already suggested by the same author
in 1973 [104]. The idea is to append n’ bits of the previous ciphertext block to the
plaintext block of n — n/ bits, or:

CZ' = E(K, ChOpn_n/(Ci,1)|’Xi) 5

where Cp is a secret and time dependent IV, and the function chop, drops the r
least significant (or rightmost) bits of its argument (cf. chapter 4). It is suggested
that n’ < n/2, or the redundancy is at most 50%. The designer claims that any
modification will be detected with a probability of 1 — 2=, It is however clear that
an active attacker will look for two ciphertext blocks with the same n’ most significant
bits. After he has collected 2'/2*1 ciphertext blocks, his success probability is about
63%; this is in fact a birthday attack as described in section 2.5.1.3. If he has found
a match, he is able to substitute the corresponding blocks without being detected.
Observe that this attack does not require the knowledge of the plaintext blocks.

The mode proposed by S. Matyas and C. Meyer ([215], pp. 100-105) is called
“plaintext-ciphertext block chaining” (PCBC):

C; = E(K, X, X198 Ci—l) .

Some redundancy is added to the plaintext under the form of an additional block
X¢y1. This block allows for the computation of the ‘hashcode’ as the last ciphertext
block, or M DC' = Ci41. The authors suggest that X;1; can be either constant, or the
initial value I'V, or the first block X;. For completeness it has to be specified that Xg
equals the all zero block. The proposers also discuss the security of this mode. It is
stated correctly that if the ciphertext blocks C7 through C; are garbled, resulting in
C] through C/ and X through X/, a correct MDC will be obtained if

CiEBXZ':CQEBX{.

They conclude that it is infeasible to find a message X’ # X resulting in the correct
value for Cy11, as “under normal conditions an opponent will not know the secret cipher
key K, and without knowledge of this key it is computationally infeasible to compute
the authentication code or to make systematic changes to the ciphertext that would
escape detection”. It will be shown that this is not correct: if the message contains
more than n blocks and if the opponent knows the ¢ — n blocks X; (with n < i < t)
and n plaintext-ciphertext pairs, he can easily modify the message without affecting
the authentication code. The equation to be solved can be rewritten as:

PCie DK, C))=CioX;alV =T,.
J=1

The attacker will split the n blocks C} @ D(K,Cj) in two groups of size n/2 and
generate 22 — 1 possible linear combinations in every group. From section 2.5.1.3 it

94 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

follows that he is likely to find two values with a difference of 7; (note that he can add
T; to one of the two groups and look for a match).

A third mode of use was proposed in [163], namely “OFB with a Non-Linear
Function” (OFBNLF):

C; = E(Ki,X;) K;=FE(K,K;_).

It yields an infinite forward error extension in case of the deletion or insertion of
a message block, while the modification of a single ciphertext block results in only
one garbage plaintext block. It is clear that this approach depends on the internal
redundancy of the message, as there is no mechanism provided to distinguish between
authentic and garbage plaintext. Moreover, even if redundancy is present, the deletion
of the last blocks would not be detected. This can only be thwarted if a block count
field is introduced, but this prevents insertion or deletion of blocks for all other modes
too.

Finally it is remarked that in case of stream ciphers one can also improve the
protection against active attacks by selecting different modes. This can make it hard
for an attacker to produce the ciphertext corresponding to a specific plaintext [164],
but a receiver has to decide whether the plaintext is authentic based on its internal
redundancy.

5.2.3 Addition schemes

A third type of schemes consist of adding some simple redundancy to the plaintext,
namely the modulo 2 sum of the plaintext blocks. This construction can be considered
as the first simple proposal for a ‘hash function’. According to the general model it
can be described as follows:

f=Hi1®X;,

with IV = 0. The resulting MDC is appended to the plaintext, which is subsequently
encrypted in CBC (Cipher Block Chaining), CFB (Cipher Feedback), OFB (Output
Feedback), PCBC (Plaintext Ciphertext Block Chaining) mode, or OFBNLF (Output
Feedback with Non-Linear Function) using a secret key. It is clear that this scheme
can only be used if integrity protection is combined with privacy protection. Moreover
its security will depend on the mode of use of the encryption algorithm.

The scheme (combined with the first three modes) was proposed by the U.S. Na-
tional Bureau of Standards and [167] “found its way into a number of publications
(notably a draft of Federal standard 1026) and books [215], and enjoyed considerable
appeal due to its simplicity”. Because of this simplicity the security depends on the
mode of the encryption algorithm, but all proposed modes have been shown to be
totally insecure. The attacks that have been described have all been limited to the
first three modes [6, 166, 167, 209]. Table 5.1 indicates which manipulations can be
carried out at block level. In CFB, insertions are only undetected if the last ciphertext
block and the IV are not affected. Also for the CFB mode, one has to remark that
if the size of the feedback variable is maximal and equal to n, that permutations of

5.2. AUTHENTICATION BASED ON ENCRYPTION AND REDUNDANCY 95

blocks will also be undetected. This was not observed in the extensive treatment of
these schemes in [166, 167]. In case of the two special modes, PCBC and OFBNLF,
substitutions can be carried out if a set of plaintext-ciphertext pairs is known for a
given key. Of course insertion of one or more blocks can always be thwarted with a

mode | ¢BC | CFB | OFB | PCBC | OFBNLF |
insertion Vv Vv

permutation Vv Vv V

substitution Vv V V

Table 5.1: Manipulations that are not detectable for different modes of operation.

block count field. Note that these manipulations require no access to the secret key.
If the attacker has access to the key, these schemes can also be broken with a meet in
the middle attack (cf. section 2.5.2.1), as will be discussed in section 5.3.1.1.

For the three conventional modes, only the attack on the CBC mode will be dis-
cussed. For more details the reader is referred to [167]. It is sufficient to observe that
a manipulation of the ciphertext blocks C through C; goes undetected if the sum
modulo 2 of the resulting plaintext blocks remains equal to Hy41. This can be restated
as follows:

n n
Ha=IVo@C o DK, C).
i=1 i=1
It can be seen that permutations of blocks are not detectable, and the same holds for
an even number of insertions of a given block.

For the PCBC mode combined with an addition scheme, the attack described in
the previous section can be extended as follows. The modulo 2 sum of all plaintext
blocks can be written as

t—1

P (¢ @ D(K,C)) & IV & D(K,Cy).
j=1

The substitution leaves the first sum unchanged, and C} is not modified by assumption,
hence Cyy1 will not be altered.
In case of OFBNLF, the modulo 2 sum of the plaintext blocks is equal to

t

P DK, C).

J=1

If b plaintext-ciphertext pairs are known for a set of a keys K, a birthday attack
can produce a message with a given MDC if a - b ~ 22 On the other hand, if the
ciphertext corresponding to a chosen plaintext can be obtained, it is very easy to cancel
any known changes to the sum. If the scheme is used with care, i.e., the starting value
for the key is always different, it is very hard to obtain the required data. On the other

96 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

hand, it should be noted that it is a scheme with rate equal to 2. It will be shown that
more efficient and more secure solutions are available that are based on a secure hash
function.

Soon after the discovery of weaknesses a more secure generalization was proposed
by S. Matyas and C. Meyer:

f=Hi—1+X;)mod2™ m>1.
However, it has been pointed out [167] that not all weaknesses are avoided:

e CBC: inserting 2¢ identical blocks results in a probability of detection of 1/2™~,

e CFB with maximal size of feedback variables: inserting 2° identical blocks results
in a probability of detection of 1/2™~% (again this was not noticed in [167]).

e OFB: several subtle manipulations are possible if m < n. Two bits that are at
a distance of n and have a different value can be both changed. If their value is
not known, the probability of not being detected equals 1/2 if their position in
the block is smaller than m and 1 else.

Some of these weaknesses can be avoided by selecting a sufficiently large value of m.
However, this class of linear or near-linear schemes is still weak as was observed by
M. Smid [167]. If part of the plaintext is known, it is rather easy to calculate the error
term for the MDC. Subsequently the encrypted value of the new MDC is obtained
using a chosen plaintext attack. An alternative is to insert the ciphertext corresponding
to a correcting plaintext block.

Some proposals were made to replace the addition schemes by a simple CRC (Cyclic
Redundancy Check). Although it is clear that there will not be a comparable inter-
ference with the common modes of block ciphers, we believe that this should not be
recommended, as for these schemes it is very easy to modify the message without
affecting the checksum. Hence the security of the combination of a CRC and an en-
cryption algorithm should be checked for every algorithm, which implies that this can
never be a generally recommended or standardized solution.

5.2.4 A simple MAC

The simplest MAC that one can imagine is used for message authentication in the
military environment and has been described by G. Simmons [310]. The authentication
key is stored into a sealed tamper resistant box and it is used only once. The MAC
is simply equal to a secret key and is appended to the message. The security of
the system depends on the fact that subsequently the extended message is encrypted
with an algorithm that uses cipher or text feedback. Under the assumption that the
encryption algorithm is secure, and that the encryption key is not compromised, the
probability for an opponent to impersonate or substitute a message is 27", if the size of
the MAC is n bits. This system is not practical in an industrial environment, because
a different key is required for every message. Moreover its security depends completely
on the subsequent encryption. This is not the case if a MAC is used that satisfies the
definition given in section 2.2.

5.3. OVERVIEW OF MDC PROPOSALS 97
5.3 Overview of MDC proposals

In the first class of proposals, the size of the hashcode is equal to the block length n of
the underlying block cipher algorithm. At the time of their proposal, the requirements
to be imposed on hash function were not as well understood as today. It is not the
goal of this thesis to study the evolution of the concept but to indicate whether these
construction meet the current requirements for a OWHEF or a CRHF. It is clear from
the definitions of chapter 2 that a construction where the size of the hashcode equals
the block length will only yield a CRHF if the block length n is at least 128 bits.
This is not the case for the currently proposed block ciphers like DES [8, 108], FEAL
[225, 227, 304, 305], and LOKI [33, 34]. The designers of these scheme had the intention
to produce a OWHEF with the available block ciphers, and it should be carefully checked
whether or not these proposals do or do not yield a CRHF if n > 128. A second class
of proposals describes how to construct a CRHF with size of hashcode equal to 2n bits
based on a block cipher with block length equal to n bits. A third class of schemes
constructs a OWHF and a CRHF based on block ciphers with block length equal to
64 bits and key size twice as large. Examples of such ciphers are PES [181], IPES or
IDEA [182, 184], and FEAL-NX [228]. Finally a new class of proposals is made where
the key is chosen to be constant.

In order to avoid confusion, the attention of the reader is drawn to the fact that in
this chapter n is used for the block length of the block cipher, while this symbol was
used previously to denote the size of the hashcode. This is certainly no problem if both
are equal, and if two different symbols are required, which is the case in section 5.3.4,
the size of the hashcode will be denoted with h.

5.3.1 Size of hashcode equals block length

Three types of schemes can be distinguished: the first class is based on the simple
modes of use, the second class uses a chaining of blocks that allow an attacker to
go backwards in the chain, while the third class of schemes will not allow such an
operation. Subsequently a synthetic approach will be discussed, that explores a large
number of schemes and allows to identify a subset of these schemes that are secure.

5.3.1.1 Conventional modes of use

In fact these schemes were never proposed as such, but some confusion arose in some
overview papers [230, 254] because of the attacks described in [6]. These attacks are
in fact attacks on a MAC using these modes, where the attacker is privy to the key.
However, it is of interest to understand why these schemes are insecure if they are used
to generate an MDC.

The two modes that exhibit the required error propagation for the generation of
an MDC are the CBC and the CFB mode. As the computation may not involve any
secret quantities, it has to be assumed that both key and initial value are public.

CBC(C : f = E(K, H;, 4 @XJ .

98 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

In case of the CBC mode, it is very easy to change all blocks but the first one, compute
the new value Hi, and take Xy = D(K, H}) @ IV. This is a correcting block attack
(cf. section 2.5.2.4). For the CFB the following description can be given:

After encryption of the last block, the output H; is encrypted with key K and the last n
bits of ciphertext H; are obtained. The last step is added to avoid a linear dependence
of the MDC on the last plaintext block. If the feedback value is n bits long, the last n
bits are simply F(K, H;), but if it is shorter the hash value will comprise more than
one ciphertext block. Here a similar attack applies: modify all blocks but the first one,
compute the new value Hj, and take X; = E(K,IV) @ Hj. The limitation of these
attacks is that at least one block of the second plaintext will be random. This can be
solved by applying a meet in the middle attack (cf. section 2.5.2.1).

5.3.1.2 Invertible key chaining

This type of hash functions is based on the fact that a good block cipher can withstand
a chosen plaintext attack: this implies that it is computationally infeasible to determine
the key even if a large number of adaptively chosen plaintext and ciphertext pairs are
known. For a larger class of schemes, the function f can be defined by

[f=EX; ®s(Hi-1),H;—1),

with s a public function that maps the ciphertext space to the key space (in the case
of DES a simple example is the discarding of the parity bits). The first proposals for
s were the zero function [274] and the identity, attributed to W. Bitzer in [71, 86]. In
the first case, it is easily seen that the scheme is vulnerable to a meet in the middle
attack (cf. section 2.5.2.1), as was pointed out by R. Merkle.

However, R. Winternitz [327] has shown that this is also the case for s the identity
function: the idea is to assume a value of K = X; @ H;_1. The plaintext resulting
from the decryption of H; with key K is equal to H;_1, and X; can subsequently be
computed as K @& H;_1. Finally, it was remarked that any choice of s results in the
same attack [230].

Because all these schemes were considered to be insecure, the proposals were
amended to thwart the attacks. It will however be shown that all these proposals
are vulnerable to an extended meet in the middle attack. The first idea [70] was re-
peating the message p times, another one was repeating the whole scheme for p different
initial values. The first suggestion is very weak, as the meet in the middle attack will
still work if H; = IV, for 1 < i < p. However this implies that one can only produce
a collision and not a preimage of a given value. In [56] it was explained how the meet
in the middle attack can be extended to attack both suggestions for p = 2 and p = 3,
while a further generalization in [123] shows that an attack on a p-fold iterated scheme
would not require O(2'2) but only O(107-2%) operations. For n = 64 this is infeasible
for p > 8, but this would mean that the scheme becomes very inefficient.

5.3. OVERVIEW OF MDC PROPOSALS 99

A third proposal (attributed to R. Merkle in [70]) is first encrypting the message
in CBC or CFB mode (with a random non-secret key K and initial value I'V') before
applying the hash function. This implies a reduced performance: the rate equals
2. The idea is to thwart a meet in the middle attack by introducing a dependency
between the blocks that enter the hash function. We were able to extend the meet in
the middle attack to a constrained meet in the middle attack (cf. section 2.5.2.2) to
take into account this extension.

e Generate a set of r messages for which the last ciphertext block of the CBC
encryption with initial value IV and key K is equal to IV’ ; this can be done
easily with an appropriate selection of the last plaintext block (or with a meet
in the middle attack).

e Generate a second set of r messages and encrypt these messages in CBC mode
with initial value IV’ and key K.

e As the two message parts are now independent, one can use the set of two
‘encrypted’ messages in a simple meet in the middle attack.

It should be remarked that for all previous schemes the fact that one can go backwards
implies that it is trivial to produce a “pseudo-preimage” for a random initial value.

A fourth possibility suggested in the book of J. Seberry and J. Pieprzyk [299] is to
introduce additional redundancy X;41 in the message under the form of the modulo 2
sum of Xy through X;. However, a constrained meet in the middle attack can take into
account the redundancy. It is sufficient to require that the sum of all first variations is
equal to 77 and the sum of all second variations is equal to Ts, with X1 = T & Tb.

Finally note that when DES is used as the underlying block cipher, every scheme
of this type is vulnerable to an attack based on weak keys [327] (cf. section 2.5.4.2): for
a weak key K,, DES is an involution which means that E(K,, E(K,,X)) = X,V X.
Inserting twice a weak key as a message block will leave the hashcode unchanged in
all the schemes (even the modulo 2 sum of the blocks remains the same). Note that in
the proposal of R. Merkle the actual message block has to be computed by decryption
of the weak keys [6]. This attack can be thwarted by putting the second and third
key bits to 01 or 10: for all weak keys these bits are equal. As a consequence the rate
increase from 1.14 to 1.19, and the security level is at most 54 bits.

5.3.1.3 Non-invertible key chaining

The next type of hash functions is also based on key chaining, but tries to avoid the
backward recurrence. To simplify the notation, we define

EY(K,X)=E(K,X)® X

and

E¥(K, X)=EK,X)e X s (K).

Here s’ is a public function that maps the key space to the ciphertext space.

100 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

One scheme is proposed by S. Matyas, C. Meyer, and J. Oseas in [203], and referred
to as “Key Block Chaining” in [168]:

f=E®(s(Hi-1), Xi),

with s a public function that maps the ciphertext space to the key space. A second
scheme is attributed to D. Davies in [327, 328], and to C. Meyer in [73]. Therefore it
is denoted with the Davies-Meyer scheme in [223, 269]:

f=E%X;,Hi_1).

Also in [203], interleaving of the first two schemes is proposed. A third scheme was
proposed by the author and studied by K. Van Espen and J. Van Mieghem in [318].
It appeared independently in [226] as a mode of use for the N-hash algorithm. N-hash
is a dedicated hash function that has a Feistel structure [104, 105] and is based on
the same design principles as FEAL. It will be discussed in more detail in chapter 7.
In 1990 the same scheme was proposed by Japan as a contribution to DP 10118-2,
the ISO document that specifies a hash function based on a block cipher [161]. The
function can be described as follows:

f=E"(H;_1,X;).
Another variation was proposed as a mode of use for the block cipher LOKI [33]:
f= E@(Xi ® H;, 1, Hi—l) .

The goal of adding H;_; is to prevent the key from being weak if X; is equal to the
all zero or all one block. It was shown independently by E. Biham and A. Shamir
[22] and by B. den Boer [82] that weaknesses of LOKI (cf. section 2.5.4) can be used
to produce a second preimage (in fact 15 different preimages) in constant time. The
security of these schemes will be discussed in more detail in the next section.

5.3.1.4 A synthetic approach

A natural question that arises when all the previous schemes are considered is the
following: is it possible to find other schemes based on the same principles, or are the
described proposals the only ones that are secure? To limit the number of possibilities,
it will be assumed that the size of the key is equal to the block length of the algorithm.
This is not true for DES, but it could be easily satisfied if the first step of the key
scheduling is the discarding of the parity bits.

The block cipher has two inputs, namely the key input K and the plaintext input
P, and one output C'. One can select for the inputs one of the four values: X;, H; 1,
X, & H;,_1 and a constant value V. It is also possible to modify with a feedforward
F'F the output C by addition modulo 2 of one of these four possibilities. This yields
in total 4% = 64 different schemes.

If the function H; = f(X;, H;—1) is considered, five types of attacks have been
identified, extending the classification of section 2.4.2:

5.3. OVERVIEW OF MDC PROPOSALS 101

V — P
—) E
Hi —_—
FF ¢

Figure 5.1: Configurations for an MDC where the size of the hashcode is equal to the
block length. P, K, and F'F can be chosen from the set {V, X;, H;_1, X; ® H;_1}.

Direct Attack (D): given H;_; and H;, it is easy to find X;. All schemes that are
vulnerable to a direct attack can in principle be used for encryption, where the
encryption of X, is given by block H;. Of course the CBC and CFB mode belong
to this class.

Permutation Attack (P): in this case H; can be written as H;_1 & f'(X;), where
f! is a one-way function: X; can not be recovered from H; and H; 1, but the
hashcode is independent of the order of the message blocks, which means that a
second preimage or collision can be found easily. Moreover one can also insert
the same message block twice. These attacks are in fact trivial, as H; depends
only linearly on H;_;.

Forward Attack (F): given H; 1, H/ ;, and X; (note that this means that H; is

fixed), it is easy to find an X/ suclh that f(X/, H!_,) = f(X;,Hi—1) = H;.

Backward Attack (B): given H;, it is easy to find a pair (X;, H;—1) such that
f(X;,Hi—1) = H;.

Fixed Point Attack (FP): find H;_; and X; such that f(X;, H;—1) = H;—1. As was
already pointed out, this attack is not very dangerous: if the OWHF is secure,
it is hard to produce a message yielding this specific value H; 1 as chaining
variable.

The order of these attacks has some importance: the possibility of a direct attack
means that a forward and a backward attack are also feasible, but the converse does
not hold. In case of a permutation attack, one can also apply a backward attack by first
selecting X; and subsequently calculating H; ;. If a forward attack is possible, one
can easily construct a second preimage for a given hashcode, but it is not necessarily
easy to construct a preimage of a given element in the range. In case of a backward
attack, a preimage (or a second preimage) can be found with a meet in the middle
attack. It is easy to show that if both a forward and a backward or permutation attack

102 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

are possible, a direct attack is also feasible. Indeed, let us assume that a direct attack
does not work. In that case, the feasibility of a forward attack implies that the three
inputs are either constant or equal to X; ® H;_1. On the other hand, if one can go
backwards, or if a permutation attack applies, one is able to find a pair (X;, H;—1)
such that f(X;, H;—1) = H;. In fact one will in this case only determine X; & H;_1,
and hence given H;_1, one is able to find the corresponding X;, which contradicts our
assumption.

A table has been compiled that shows which attacks are possible for a feedforward
of a constant (w.l.o.g. V' is assumed to be equal to 0), X;, H;, and X; ® H;. The attacks
are indicated with their first letter(s), while a “~” means that the function f is trivially
weak as the result is independent of one of the inputs. If none of these five attacks
applies, a 4/ is put in the corresponding entry. An attack on the scheme in table 5.2
with a constant key and feedforward and plaintext equal to X; ® H;_1 (denoted with
a (%) in the table) has also been discussed in [203].

choice of P
’Choice of FF ‘ choice of K || X; H;, X,®H; 1V
% X; - B (Rabin) B -
H;, D - D -
X,9H,_1 |B B (Bitzer) F F
\%4 - - D (CBC) -
X; X; — B B —
H; \/ (Matyas et al.) D vV D
\%4 - D (CFB) B -
H;, 1 X, P FP (Davies-Meyer) FP P
H;, D - D -
X, 9 H,_1 |FP FP (Brown et al.) B B
\% D - D -
X, ® H;i X; P FP FP P
H; v/ (Miyaguchi-Preneel) D vV D
X, ®H;,_1 |B B F F
\%4 P D F (%) D

Table 5.2: Attacks on the 64 different schemes.

This large number of schemes can be reduced by considering linear transformations
of the inputs. A class of schemes that is derived from a single scheme by linear
transformation of variables will be called an equivalence class.

e In 7 equivalence classes the function depends on two independent inputs (X;
and H;_1), and 6 transformations are possible, as there are 6 invertible 2 x 2
matrices over GF'(2). It can be shown that in 2 cases the function is secure or is

5.3. OVERVIEW OF MDC PROPOSALS 103

vulnerable to a fixed point attack, and in 5 cases the function is vulnerable to a
direct attack, a permutation attack, or a backward attack.

e In 7 equivalence classes the function depends on a single independent input.
Hence one has three possible inputs, namely X;, H;—1, and X; & H;_1, cor-
responding to the 3 nonzero vectors of length 2 over GF(2). If the function
depends on the sum of the two inputs, it is not trivially weak. However, it is
vulnerable to a direct attack (2 cases out of 7) or to a forward attack (5 cases
out of 7).

e In 1 equivalence class the function is simply constant.
In table 5.3 an overview of the equivalence classes is given. A further classification is

made based on the number of constants in the choices C'I. To characterize a class, a
relation is given between plaintext P, key K, and feedforward F'F.

’C’I ‘ characterization ‘class size‘ - D P B F FP \/‘

0 FF =P, (P#K) 6 4 2
FF=Po K, (P#K) 6 4 2
FF =K, (P#K) 6 2 4
P=K,(FF #P) 6 2 2 2
FF=P=K 3 2 1

1 FF=V,(P#K) 6 2 4
P=V,(FF#K) 6 2 2
K=V, (FF#P) 6 4 1 1
FF=V,(P=K) 3 2 1
P=V,(FF=K) 3 2 1
K=V, (P=FF) 3 2 1

2 FF=P=V 3 2 1
FF=K=V 3 2 1
P=K-= 3 2 1

3 FF=P=K=V 1 1

| Total 64 15 14 5 13 5 8 4

Table 5.3: Overview of the 15 variants, sorted according to the number of constant
inputs, denoted with C1.

One can conclude that only 4 schemes of the 64 are secure, and that 8 insecure
schemes are only vulnerable to a fixed-point attack. These 12 schemes are listed in
table 5.4 and graphically presented in figure 5.2. The roles of X; and H;_; in the input
can be arbitrarily chosen, and the dotted arrow is optional (if it is included, the key is
added modulo 2 to the ciphertext). For the dash line, there are three possibilities: it
can be omitted or it can point from key to plaintext or from plaintext to key. There
are two equivalence classes that are secure, and their simplest representatives are the

104 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

scheme by Matyas et al. (no. 1 in the table) and the scheme by Miyaguchi and Preneel
et al. (no. 3 in the table). The properties of these 12 schemes are given in table 5.5
together with fixed points and some properties if the underlying block cipher is DES.
For each of these schemes it is possible to write a “proof” of their security based on a
black box model of the encryption algorithm, as was done for the Davies-Meyer scheme
(number 5 in the table) in [328]. The basic idea is that finding a (pseudo)-preimage
for a given hash value is at least as hard as solving the equation H; = f(X;, H;_1) for
a given value of H;. The expected number of evaluations of f() is shown to be 271,
The schemes will now be compared in more detail based on their vulnerability to
fixed point attacks, to attacks based on weak keys and on the complementation prop-
erty, and to differential attacks. The efficiency of the schemes will also be compared.

Figure 5.2: Secure configuration for an MDC based on an encryption algorithm and a
feedforward (size of hashcode = block length).

Fixed points Fixed points for the function f can only be found easily if X; is used
in the key port. A large set of fixed points can be found in that case, by varying the
parameter K. This implies that starting from any initial value, one can easily produce
a collision with a birthday attack. The equations are given for scheme 5, as discussed
in [227], but can be extended to schemes 5 to 12.

e Generate r values of D(K,0), by randomly selecting K.
e Generate r values of E(X1,IV) @ IV, by randomly selecting X;.
e The probability of finding a match is about 0.5 if r ~ 27/2.

This attack provides an efficient way to produce a preimage for the value D(K,0). If
only a pseudo-preimage is required, only constant time is necessary. However, if the
attacker gets a randomly selected H;, he will be unable to find the corresponding
value of K (this would mean that he can break the cryptosystem), and hence this

5.3. OVERVIEW OF MDC PROPOSALS

=
©

function expression
E(Hi_l,XZ') @Xz

Hi 1, X; ®H;_1)®X;®Hi
Hi 1, X)) X;®&Hi—
Hi 1, Xi®Hi1)®X;

i Hi—1) @ Hiq

X @Hio1) @ X, @ Hi
i Hio1) ® X; & Hi

0 Xi ® Hi1) ® Hiy

i ©Hi—1,X5) @ X;

i ®OHi_1,Hi—1) ® Hi—y

i O H; 1, X;) ®Hi

i O H;_1,Hi_1) ®X;

SQOOO\ICDU‘)-BOJI\DH
< s

SECECNECNSNGROEGNESNo NS

B EErEEE

—
[\

105

Table 5.4: A list of the 12 secure schemes for a one-way function based on a block

cipher.

no. fixed points properties if E = DES | differential
X H, 4 rate K, compl. attack

1 — — 1 0 vV X;

2 — — 1 0 Vv X;

3 — — 1 Ky - X;

4 — — 1 Ky - X;

6 K DK,K)Y®e K | n/k 0 Vv H;

7 K D(K,K) n/k Ky - H;, 1

8 K DK, 00K | n/k K, - H;

9 D(K,K) DK, Ky K| 1 0 Vv X, Hi 1

10 | D(K,0)® K D(K,0) n/k 0 vV H;

11 D(K,0) D(K,0)® K 1 Ky - X Hi

12 | D(K,K)® K D(K,K) n/k Ky - X, Hi

Table 5.5: Properties of the 12 secure schemes: fixed points, properties if DES is used
as the underlying block cipher, and variables to be modified in case of a differential

attack.

106 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

weakness is of no use to him. In case of collisions, the situation is different. This
attack yields in constant time collisions if the initial value can be selected by the
attacker. For a given initial value, this attack is not more efficient than a birthday
attack on the hashcode. A way to thwart a fixed point attack that was used in the
proofs for complexity theoretic constructions is the use of a prefix-free encoding of
the message. A more practical approach is adding the length of the message in the
padding scheme. The conclusion is that the fixed point attack is in practice not very
dangerous.

Weak keys and complementation property A second issue is attacks based
on (semi)-weak keys (cf. section 2.5.4.2) and on the complementation property (cf.
section 2.5.4.1). They are only relevant if the underlying block cipher is DES or if
it has similar properties. An attacker will try to use a weak key and one of the 232
corresponding fixed points. Note that these are fixed points for the block cipher and
not for the hash function. This implies that he has to be able to control the key input,
which is in general not possible for schemes 1 through 4. Secondly, the plaintext has to
be one of the 23? fixed points: this will happen after on average 229 iterations. Indeed,
the probability that a random plaintext is a fixed point for a weak key is equal to 2732,
and there are 4 weak keys. In case of a pseudo-preimage attack, one can easily control
both key and plaintext, and hence this attack is directly applicable to the 12 schemes.
Table 5.5 indicates whether the output will be equal to 0 or to the weak key K,,. For
the anti-palindromic keys, a similar attack can be applied using the anti-fixed points.
The output will then be 1 or the complement of the anti-palindromic key. This attack
is not very dangerous: it only shows that it is relatively easy to find many pseudo-
preimages and preimages of these values. It is also possible to extend the pseudo-
collision attack in [227] that uses the existence of (semi)-weak key pairs K, Ky such
that E(Ks, E(K1,P)) = P. Due to the complementation property one can construct
a second input that yields the same output (y/ in table 5.5) or the complement of that
output (- in table 5.5). In the case of DES, the problems with (semi)-weak keys and
the complementation can easily be solved [216]: fix bits 2 and 3 of the key to “01” or
“10”. The price paid for this modification is that k& will decrease from 56 to 54. This
will also limit the security level against random attacks, as will be shown below. The
vulnerability to weak keys was remarked by the author (in a 1988 proprietary report)
and independently in [216]. In 1990 an extensive study of the use of the combination
of (semi)-weak keys and the complementation properties was published [227]. For the
Matyas-Meyer-Oseas and the Davies-Meyer scheme they construct collisions for the
function f. However, this means no threat to these functions: these constructions only
yield a second pseudo-preimage in case of a OWHF or a pseudo-collision for a CRHF.

Differential attacks A third element is the resistance to differential attacks (cf.
section 2.5.2.7). The basic idea is to look for differences between the functions that
yield the same output with a high probability. The use of differential attacks on this
type of hash functions was suggested to the author by I. Damgard [67]. Similar ideas

5.3. OVERVIEW OF MDC PROPOSALS 107

were developed by E. Biham [24], without looking into a detailed optimization. For a
more detailed treatment the reader is referred to appendix C. An attacker will look for
a characteristic for the hash function that yields a collision, i.e., an output exor of zero.
This will have to be translated into properties for the characteristics of the underlying
block cipher. For all 12 schemes that are given in table 5.5, a characteristic is necessary
where the exor of the input is equal to the exor of the output. In the last column of
the table it is indicated which variables have to be modified. It is clear that it is easier
for an attacker to come up with two blocks X; with a given difference than to find two
messages for which the hash value after ¢ — 1 blocks has a given difference. One can
conclude that the first four schemes are more vulnerable to differential attacks.

The following differences with differential cryptanalysis of a block cipher used in
ECB mode can be indicated:

e The key is known (in some cases it can be even chosen by the attacker), which can
be used in several ways. First, the input data can be selected in such a way that
the characteristic will be satisfied trivially in the first 3 rounds (this argument
holds only for collisions and not if a second preimage is constructed). A second
element is that an early abort strategy will reduce the number of computations:
it can be checked after every round whether the characteristic is still satisfied. A
third element is that the characteristics with enhanced probability can be used:
in the case of DES one can show that if certain relations between key bits are
present, the probability of the best known iterative characteristic will increase
with a factor 1.6. Finally the attacks can be performed off-line and in parallel,
which renders them much more realistic.

e A single right pair is sufficient, i.e., a pair that follows the characteristic. Most
differential attacks on block ciphers need a large set of right pairs.

e [t is not possible to use a 1R~, 2R~ or 3R-attack: in these attacks the charac-
teristic is 1, 2, or 3 rounds shorter than the block cipher. This means that the
characteristic has to be 1, 2, or 3 rounds longer and will have a lower probabil-
ity. Moreover, a characteristic with an even number of rounds (namely 16) is
necessary to attack the scheme based on DES, but for the time being no good
characteristics with an even number of rounds are known.

The number of operations to construct a collision and a second preimage for one of
the 12 hash functions based on DES with ¢ rounds (¢ odd) is indicated in table 5.6.
The second column should be compared to a birthday attack that requires about 233
encryptions, while the third column should be compared to 2°6, the expected number
of operations to find a second preimage. Note that in case of a birthday attack the
number of solutions increases quadratically with the number of trials.

The attacks indicated can further be optimized by a more careful selection of the
inputs: if one only tries to look for a second preimage if the input satisfies certain
constraints, the number of operations will be comparable to the number of operations
to construct a collision. Another possibility is to start the attack in the middle, and to

108 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

number of rounds collision second preimage
logy(# encryptions) | logy(# encryptions)
7 14.4 21.6
9 19.6 26.8
11 26.6 33.8
13 34.0 41.2
15 41.2 48.4
17 48.3 55.5

Table 5.6: The number of encryptions for a differential attack on one of the 12 DES-
based hash functions if DES had an odd number of rounds.

work forwards and backwards: this could reduce the workload to produce a collision
with a factor 146. The major problem however is the search for good characteristics
with an even number of rounds. It would be interesting to prove a lower bound on the
probability of such characteristics, which could show that differential attacks are not
feasible.

A second remark is that by symmetry arguments this attack is also applicable to
functions where the message block is entered through the key port: keys with a specific
difference can be chosen to yield specific outputs to the F-function. However, in the
case of DES this will not be very useful, as the same key bit appears at different places
in the F-function in every round. Therefore it is expected that only a very small
number of rounds can be attacked in this way. A further extension could be an attack
where both key and plaintext differences are used.

A third remark is that if FEAL [225] or FEAL-NX [228] are used as the underlying
block cipher, schemes 1 to 4 become very weak. In [21] a 4 round iterative characteristic
is shown with probability 1/256, for which lower and upper halves of the difference
pattern are equal. This means that for FEAL or FEAL-NX with 4r rounds, a single
encryption will yield a second preimage with a probability of 278", For more details
the reader is referred to section 4 of appendix C.

The main conclusion is that if DES is used as the underlying block cipher, for the
time being differential attacks pose no serious threat to this type of scheme.

Efficiency A final element in the comparison of the different schemes is the efficiency.
If the message is used only in the key port, the rate will be equal to n/k, which is
equal to 1.14 in case of DES. If precautions against weak keys and the complementation
property have been taken, this increases to 1.19. A second less important issue is the
number of additional exors. Scheme 1 and 5 require only a single additional exor, while
all other schemes require 2 additional exors (note that in scheme 2 and 6 X; ® H;_1
has to be computed only once).

As a conclusion, one can state that the best solution is to avoid the situation where
an attacker can control the key input. This requires that the key input be fixed to

5.3. OVERVIEW OF MDC PROPOSALS 109

H,;_1, and leaves the possibilities 1 to 4: the plaintext and the feedforward value can be
either X; or X; @ H;_1. The advantage is that it becomes hard to force the key to be a
weak key, and block ciphers are designed to be secure for all possible plaintexts (there
should be not something like a “weak plaintext”). Hence precautions to avoid weak
keys are not very important: it should be difficult for an attacker to find a message
for which H; is a weak or a semi-weak key. Moreover in this case it is not possible
to construct fixed points. If k& < n, like for DES, there is another argument to select
as key input H;_;: the rate equals 1 instead of n/k. The main disadvantage of these
schemes is that they are more likely to be vulnerable to a differential attack. Finally
it should be remarked that scheme 1 is considered for ISO standardization [159], but
we feel that the other 3 schemes certainly have the same strength, namely a security
level of k bits. In the case of a block cipher that is vulnerable to differential attacks,
one of the other schemes should be selected.

If k # n, the question arises whether it is possible to use variables X; and H;_1 of
length maz(n, k), in order to maximize the security level. The idea is that bits that
are not used in the key or as plaintext might influence the output through some exors.
The following proposition shows that this is not possible:

Proposition 5.1 The security level of the OWHF is determined by the minimum of
k and n, with k the size of the key and n the block length.

Proof: This can be shown by checking systematically all 12 functions.

e For schemes 1 through 4 the situation is simple when k > n: as X; is not added to
the key in these schemes, additional bits of X; do not influence the output. They
could be concatenated to the ciphertext, but this yields only a linear dependence
of the output on these bits. Therefore n gives an upper bound to the security
level. If k < n the situation is more complicated.

For scheme 1 it is sufficient to find a match for one of intermediate k-bit H;_1’s
even if the hashcode has a size of n bits. It is not possible to use a larger chaining
variable as H;_; is used only as the key.

For scheme 2 it is possible to feed the n — k bits of H;_1 that are not used as
key bits to the input and output of the block cipher. If one of these bits is
modified, the plaintext could be kept constant through appropriate changes in
X;. Owing to the feedforward of both H;_1 and X, to the ciphertext, changes
will be cancelled out. This yields 2"* pairs (X;, H;_1) with the same image!
For scheme 3 the cancellation argument no longer holds, but the plaintext will
remain constant and the output will depend only linearly on the additional bits
of H;,_1. Therefore this can not be considered to be sufficiently secure.

For scheme 4 it is possible to keep the plaintext constant through appropriate
changes in X;. This yields again a linear dependence of the outputs on the
additional bits of H;_1.

e For schemes 5 through 8 the proofs can be copied by interchanging the role of
X; and H;_; in the previous arguments.

110 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

e For scheme 9 the situation is simple if £ > n. The additional bits of the plaintext

X; could be added to the key and concatenated to the ciphertext. However,
finding a preimage is not harder, as these bits can be easily obtained from the
output. If k£ < n, the security level can not be increased as the bits of H;_; are
used only in the key port. A similar proof holds for scheme 10.
For scheme 11, if £ > n, additional bits of X; are added to the key. However,
the key can be kept constant by appropriate changes in H; 1. As H; 1 is added
to the ciphertext, the output will depend only linearly on the additional bits of
X;. On the other hand if £ < n, it is clear that the additional bits of H; 1 will
be added to the ciphertext, yielding again a linear dependence. The arguments
for scheme 12 are similar to those for scheme 11.

Note that this proof only discusses the number of operations for a second preim-
age. It is clear that if one does not know a preimage for instance for scheme 1, that
determining H;_; and a corresponding X; will require 2" operations (one can do no
better than guess with a success probability of 27™).

To conclude this section, it will be discussed what the limitations are of the 12
secure functions. If they are used with a 64-bit block cipher (n = 64), it is clear that
they can only result in a OWHF. This means that it is always easy to produce for a
given I'V two inputs yielding the same output. This can be done with a conventional
birthday attack or with the more sophisticated collision search attack proposed by J.-
J. Quisquater (cf. section 2.5.1.3). In [227] it is shown how the key collisions described
in [267, 270] can be used to produce a pseudo-collision for scheme 1. However, this is
trivial in the sense that the number of operations for a key collision search attack is
comparable to the number of operations for a collision search based on the birthday
attack (that requires more storage). Moreover the key collision search algorithm can
as well be applied directly to the hash function.

The limitations of a OWHEF have been discussed in chapter 2: repeated use of these
functions will weaken them. Moreover if they are based on an iterative construction, it
is sufficient to find a preimage for one of the chaining variables. Hence if the function
has been applied to r t-block messages, the success probability of an attacker will
increase with a factor rt. The speed-up with the factor r could be avoided by selecting
a different I'V for every message, but this requires that the authenticity of the different
IV’s is protected. As discussed in chapter 2, the speed-up with the factor ¢ could be
thwarted by adding the message length in bits at the end of the message. This is
clearly more efficient than the proposal in [328] to add a running count to one of the
arguments of f that is increased at every iteration [328], and protected together with
the hashcode. This running count should not be reset for a new message, which means
that in practice it will have to be at least 28 or 32 bits. If DES is used as the underlying
block cipher this would not work since the chaining variable would become too small.

The second question that remains to be resolved is whether these schemes yield a
CRHF in case n,k > 128. For all methods that allow a backward attack, it will be
trivial to produce pseudo-collisions. Although these collisions do not form a real threat

5.3. OVERVIEW OF MDC PROPOSALS 111

to the system, it would be preferable to select constructions for which the function f
is not easily invertible. Otherwise it is possible with a meet in the middle attack to
produce the preimage for a given hashcode in 0(2"/ 2) operations, where this is O(2")
operations in the ideal case. Attacks based on fixed points are not so relevant: for
an initial value selected by an attacker they yield a collision in constant time, but for
a fixed initial value the construction of a collision is not more efficient than a simple
birthday attack. As a conclusion one can state that the best solution is to use one of
the schemes that is recommended for a OWHF in case n = 64.

5.3.2 Size of hashcode equals twice the block length

This type of functions has been proposed to construct a CRHF based on a block cipher
with a block length of 64 bits like DES. Therefore the functions in this section will be
intended for CRHF and not as a OWHF: for this class of functions the constructions
of the previous section offer a better solution.

5.3.2.1 Iteration of a OWHF

A very weak solution that is discussed in [6] is to keep as the result not only H; but also
H;_1. The scheme can be broken easily by fixing the last block and by subsequently
generating collisions for H; 1. A second class of proposals is based on the iteration of a
scheme with an n-bit result for two different values of a parameter. All these solutions
are straightforward and very appealing, but the vulnerability of the iterated schemes
to generalized meet in the middle attacks (cf. section 2.5.2.3) renders them suspected.

e In the first scheme the parameter is the key, as is discussed in [6] for the addition
scheme followed by CBC encryption. This scheme will succumb to a generalized
meet in the middle attack.

e A second proposal is the initial value, as suggested in [168, 347] for the Matyas-
Meyer-Oseas scheme. In this case, one can find a preimage for a given value in
only 2-2%4 operations, and a second preimage in 2- 2% operations if DES is used
as the underlying block cipher. The left and right halves of the hashcode will be
denoted with H1 and H?2 respectively, and s is a mapping from the ciphertext
space to the key space. The first message block X; is obtained from solving the
equation s(E(IV;, X1) ® X;) = s(H1), which requires 2°% encryptions. The next
message block X5 is obtained from the equation E(s(H1), X5) & X9 = H1; here
finding a solution requires about 264 encryptions. All subsequent message blocks
will then be chosen equal to X9, which implies that the left half of the hashcode
will always be equal to H1. Finding a match for H2 requires only 26 encryptions.
There is however a twist in this method: the value of H2; is obtained from an
injective mapping, namely F(s(H2;-1), X2) @ X2). This means that after about
228 operations the values of H2; will be repeating. If the whole procedure would
be restarted, the efficiency of the attack would decrease. If however a second
solution is found for Xs, denoted with X}, a sufficient number of values of H2;

112 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

can be obtained from several combinations of Xs and X}. In case of a second
preimage, it is sufficient to look for a match of the 112-bit chaining variables,
which requires only 2% operations.

If one of the IV’s is a weak key, it is known that finding a fixed point X; for
the block cipher is easy (cf. section 2.5.4). In this case one obtains H1 = 0,
which is again a weak key in the case of DES. The fact that the value of H2;
will be repeating fast can now be exploited to construct a collision in about 22®
operations.

This scheme was replaced by a more secure scheme MDC-2, where an interaction
between the chains is introduced. Therefore it will be called MDC-1. In the next
section its security will be compared to the security level of MDC-2 and MDC-4.

e A third proposal is BMAC, that was originally described in Internet RFC 1040
[193]. It uses the CBC mode (without the addition), and for the generation
of the second part of the hashcode the order of the message blocks is reversed.
A constrained meet in the middle attack (cf. section 2.5.2.2) is described in
[223, 224]. Let H; and H{ be the outcome of the CBC calculations if the message
is considered in normal and reverse order respectively. The message is split in
two parts: r variations on the first part are constructed such that they yield
with initial value IV’ a reverse CBC hashcode of H/, and r variations on the
second part are constructed such that they yield with initial value zero a reverse
CBC hashcode of IV’. This guarantees that the reverse CBC condition will be
fulfilled if a message from the first set is concatenated to one of the second set.
Finally an ordinary meet in the middle attack is applied: one looks for matching
values of the chaining variable in between the two blocks for the forward CBC
calculation. The probability of a match is sufficiently high if r = 27,

0 H,

H] v’ 0

Figure 5.3: Intermediate variables in the CBC computation for the attack on BMAC.

5.3.2.2 Schemes with rate greater than or equal to 2

The following schemes will be reviewed in this section: the proposal by Merkle, MDC-
2, MDC-4, the scheme by Zheng, Matsumoto, and Imai, and the Algorithmic Research
(AR) hash function.

5.3. OVERVIEW OF MDC PROPOSALS 113

The proposal by Merkle (Crypto’89) A first proposal [213] has the property that
its cryptanalysis requires at least 256 operations (in case of DES). Its construction is
based on the ‘meta-method’ that has been described in section 2.4.3. As a consequence,
it can be shown that the scheme is as secure as the underlying block cipher under
the assumption that this is a random function (black box model). Of course this
assumption does not hold if a specific block cipher is used: several deviations of random
behavior have been noted for e.g., the DES. The validity of the proof is limited by the
impact of these deviations on the security of the hash function. When the key length
equals k bits, the proposed function f reduces the input length of n + £ — 1 bits to 2k
bits. To simplify notation the expression E®(X) will be used, where the first k bits of
X will be used for the key and the next n bits for the plaintext. The function chop,
drops the r least significant (or rightmost) bits of its argument. Then the function f
is defined as follows:

f = chopyg [EZ(0 || Xi) || B9(1]| X2)] -

The rate of this hash function is very large, namely 2n/(n — k — 1), which is equal to
18.3 for DES. Another disadvantage in case of DES is the processing of data in blocks
of 119 bits.

The performance can be improved by working out the ideas. The security level
remains the same (2’“ operations), but the security proof becomes much more compli-
cated. A first improvement requires 4 DES applications for hashing 2k + n — 4 bits to
2n bits, resulting in a rate of 4n/(2k —n — 4), which is 5.8 for the DES. X is split in
2 parts of length k +n — 2 and k — 2, that are denoted with X? and X} respectively.

f=E®00] E°(10 | XP) | X}) || E®(01 | E®(11 | X7) || X})

A second variation reduces a 2(n + k — 3)-bit input (234 for DES) to a 2n-bit output
with 6 applications of DES. It can be described as follows: split X; in 2 parts of length
n+ k — 3, denoted with X? and X} respectively.

f=a:E® (OO || ¢ : chops [Eg (100 | X?)} || € : chop [Eé (101 I X})D I
b: E® (01 || d : chopy [E@ (110 I Xzo)} || f: chops [E§ (111 I Xil)])

The rate equals 3n/(k — 3), in case of DES about 3.62. The letters a, b, ¢, d, and f
denote intermediate values that will be used in the security proof.

The analysis of this scheme is rather involved. The security proof of the scheme will
be sketched, and it will be shown how the results described in appendix B on multiple
collisions allow us to tighten Merkle’s original bound for the security level from 52.5
to 56 bits. The proof is based on two definitions:

Random linkage map (rlm): two sets of 2°¢ tuples, where every tuple has 2 59-bit
elements. The tuple from the first sets are values {c, d} generated from a random
X0 and the tuple {e, f} are values generated from a random X1.

114 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

Doubly linked quadruple with respect to an rlm is a tuple {c, e, d, f}, where {c, d}
appears in the first set of the rlm, and {e, f} appears in the second set.

The philosophy behind the proof is that the collision finder algorithm gets an rlm for
free. This consists intuitively of all the useful information that any algorithm can ever
hope to obtain about the 4 intermediate values. The generation of an rlm requires
258 computations. The algorithm is subsequently only allowed to use function calls to
produce values for either a or b. Under these conditions it is shown that the expected
running time for an optimal algorithm F to produce a collision for f is as least as
long as the expected running time for an algorithm F’ to find a pair of doubly linked
quadruples such that both quadruples generate the same output.

The next step is to estimate the success probability of an algorithm F’. The idea
is first to produce a k-fold collision for the value of b, i.e., k inputs {d, f} that yield
the same value of b. If this can be done, the success probability of a collision for a
is equal to k/ 264 The security level of 296 is achieved if k < 256. A k-fold collision
for b can be produced in two ways: a value of d or f might occur more than once in
the same set and in the same position of an rlm, and identical inputs yield of course
the same value for b; a second possibility is that the same value for b is obtained with
either d # d or f # f'.

R. Merkle uses in his proof the following crude upper bound for the number of
k-fold collisions: if r balls are drawn with replacements from a set of n balls (n >),
the number of balls that occurs k times is upper bounded by on—k(n=r) For collisions
of d and f (r = 2%, n = 2%9), he obtains k¥ < 20 and for collisions for b (r = 2%,
n = 264)) this gives £ < 7. The number of inputs that yield this value of b is then
given by 20% + 7 - 202 = 2800. The corresponding security level is only 52.5 bits.

A better approximation of the number of k-fold collisions has been derived in
appendix B. The expected number of collisions is given by equation (B.17):

_oexp(—g) (r*
=S CE) (1)

The numerical results for the parameters of the Merkle scheme can be found in ta-
ble 5.7.

k 2 3 4 5 6 7 8 9 10 11
n T
259 256 [51.82 47.23 42.23 36.91 31.33 25.52 19.52 13.35 7.03 0.57
204 956 146.99 37.41 27.41 17.09 6.50 —4.30
204 955 145.00 34.41 23.41 12.09 0.51 —11.30

Table 5.7: Binary logarithm of the expected number of k-fold collisions for drawings
of r out of n with replacements.

If one wants to prove that the security level is at least 56 bits, any algorithm
is limited to 2°6 computations of @ or b. The following strategy is now suggested:

5.3. OVERVIEW OF MDC PROPOSALS 115

select 227 values of d and f for which the largest number of collisions can be found
in the rlm. From table 5.7 it can be seen that 2057 11-fold collisions are expected,
27:03 10-fold collisions, etc. This continues, until one completes the set with 22797
6-fold collisions. The average number of collisions in this set is equal to 6.26. Now all
values of d and f are combined to produce 2°° b-values, and with each value for b will
correspond 6.26% = 39.2 trials for a'. This operation is repeated with the roles of a and
b interchanged such that the total number of function evaluations is equal to 2°6. The
next step is to look for collisions among the b values. If for a certain b-value a k-fold
collision is obtained, the corresponding number of trials for a is equal to k - (6.26)2.
Indeed, one can write for this value of b

b(di, f1) = b(dz, f2) = ... = b(dg, fr) -

With every value of d; and f; correspond on average 6.26 other values in the rlm. The
mazximal number of trials for @ will be obtained if & = 6, and this number is equal to
235; this will occur only once. The expected number of collisions for b is approximately
equal to

[e.e]
2750 3" k*(6.26)%) -

k=1
This is equal to 1.00195 - 6.262 = 39.26. If the symmetry between a and b is not
used (which means that 256 computations for b are made and none for a), the average
number of collisions for d and f is equal to 6.18, and the average number of collisions for
b is equal to 1.00391-6.182 = 38.41. Note that the maximal number of collisions here is
230, and this occurs for 91 values of b. The conclusion is that this attack corresponds
to a security level of 64 — log,(39.26) = 64 — 5.3 = 59.7 bits. Hence the security level
of the scheme is lower bounded by 56 bits. Other suggestions by R. Merkle to tighten
the proof are to distribute the 256 operations over all computations, and to limit the
information that is given for free. It is important to remark that this scheme should be
modified to take into account attacks based on weak keys and on the complementation

property.

MDC-2 and MDC-4 The authors of the first papers that referred to these hash
functions are C. Meyer and M. Schilling, C. Meyer, and S. Matyas [216, 217, 204], while
the patent for MDC-2 and MDC-4 is on the names of B. Brachtl, D. Coppersmith,
M. Hyden, S. Matyas, C. Meyer, J. Oseas, S. Pilpel, and M. Schilling [28]. No security
proof has been given for either scheme, but on the other hand no attacks have been
demonstrated. The basic philosophy is to extend the Matyas-Meyer-Oseas scheme
(cf. section 5.3.1.3). MDC-2 is currently under consideration for standardization as
a collision resistant hash function based on a block cipher in ISO-IEC/JTC1/SC27
[159]. Note that a variant on MDC-2 was proposed in [161]. It will be discussed in
appendix C.

1This is in fact an approximation, as the average of the squares is not equal to the square of the
average.

116 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

MDC-2 can be described as follows:

T1; = E®(H1,1,X;) = LT1; || RT1;

T2; = E¥(H2;_1,X;) = LT2; || RT2;

H1; =LT1; || RT2;

H2, =LT2; || RT1;.
The chaining variable H1g and H2g are initialized with the values V7 and I'V5 respec-
tively, and the MDC is equal to the concatenation of H1; and H2;. A similar notation
will be used for the next schemes. A graphical representation is given in figure 5.4.
The rate of this scheme is equal to 2. In order to protect this scheme against attacks

based on semi-(weak) keys (cf. section 2.5.4.2), the second and third key bits are fixed
to 10 and 01 for the first and second encryption.

X;

|

H1; 4 D E® E® (H2; 4

C 1] 11

l l

Figure 5.4: One iteration of the MDC-2 hash function.

Part of the following evaluation of MDC-2 and MDC-4 is based on the work by
I. Damgard [67] on this scheme. The basic step of MDC-2 is certainly not collision
resistant: for any fixed choice of X;, one can find collisions for both H1; and H2;
independently with a simple birthday attack. As this scheme is based on the Matyas-
Meyer-Oseas scheme, all remarks on this scheme concerning efficiency, weak keys, and
complementation property can be transferred to this scheme. If the feedforward would
be omitted (the basic scheme would then be the dual of the Rabin scheme [274]),
the scheme would become invertible: producing a pseudo-preimage requires constant
time, hence a (second) preimage requires only about 2°* operations (this follows from

5.3. OVERVIEW OF MDC PROPOSALS 117

proposition 2.2). If the switch of the left and right part would be omitted, one would
have two independent chains and the following attack would apply: compute a large
number of inverses for both chains (which requires at least 2 message blocks)—for the
time being no feasible algorithm is known to do this—and look for a match between
the preimages of the two chains. Switching left and right halves thwarts this attack, as
both chains get mixed. Finally one can remark that fixing the key bits does not only
avoid weak keys, but this also guarantees that the two encryption keys are different.
This would be a serious problem if I'V; = I'V5.

The number of operations (without taking into account constant factors) for several
attacks on MDC-1, MDC-2, and MDC-4 (cf. infra) have been indicated in table 5.8.
The factors 2 and 4 indicate how many encryptions are required for every step, or how
many separate steps have to be performed. If one is looking for a preimage, one has a
trade-off between storage and computations: this is the case if a large number of values
can be attacked at the same time, or if some precomputations can be done. The number
of encryption operations is then the original number divided by the number of stored
variables (at most 25°). Note that in case of MDC-2 the size of these variables is 54 bits
and not 64 bits as claimed in [216]. The number of operations for a (second) preimage
for MDC-2 and MDC-4 is infeasible, but significantly lower than was estimated by the
designers.

A pseudo-collision can be found for MDC-1 and MDC-2 by choosing X; randomly,
taking I'V5 equal to the specified value and independently trying values for I'V;. For a
pseudo-preimage one can choose a random X7 and perform independent trials for I'V;
and I'V5. A pseudo-preimage can be used to compute a preimage faster than exhaus-
tive search based on proposition 2.2. A different way to construct pseudo-collisions
for MDC-2 was reported in [227]. First an attacker constructs key collisions (cf. sec-
tion 2.5.2.6) for a random plaintext P, that satisfy at the same time the constraints
on the second and third bit. The one-block message P with initial value K7, Ko will
yield the same hashcode as the message P with initial value K7, K3. B. den Boer
remarked that if IV, = I'V7, collisions can be produced in the following way: let P be
a plaintext such that E(IV;, P) = E(IV;, P) on the 54 positions that are selected from
the output (finding such a P requires about 2% encryptions). In that case P and P
hash to the same value. Collisions with random IV for MDC-1 can be found with less
effort because it is not guaranteed in this scheme that the two chains have different
keys. If IV is chosen equal to I'Va, both chains are identical.

The differential attacks against the Matyas-Meyer-Oseas scheme have been ex-
tended to MDC-2. In this case the input pair has to be a good pair for both char-
acteristics. Essentially all properties can be transferred, but the overall probability
of success will be the product of the probabilities, under the reasonable assumption
that both key values are independent. The only step where the approach is more
complicated is to satisfy the characteristic automatically in the second round of both
encryption instances. Here a careful selection of the inputs is necessary to produce an
input that is a right pair for both key values with probability 1. For more details the
reader is referred to appendix C. The final results are indicated in table 5.9.

118 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

| | MDC-1 | MDC-2 | MDC-4

preimage 2.204 [2.982 | 1.2109
2nd preimage 2.2% | 2.282 | 1.9109
pseudo-preimage 2. 2% 2. 254 1-2%
collision (fixed V) 2.25 [2.2 | 4.2
collision (random IV) | 2.2% | 2.2% | 2.92%
pseudo-collision 2.2%8 2.92%7 1.24

Table 5.8: Number of operations for preimage and collision attacks on MDC-1, MDC-2,
and MDC-4.

number of rounds collision second preimage
log, (# encryptions) | log,(# encryptions)
7 29.8 44.2
9 42.2 56.6
11 55.4 69.8
13 71.0 85.4
15 87.4 101.8
17 99.6 114.0

Table 5.9: The number of encryptions for a differential attack on MDC-2 for an odd
number of rounds.

The conclusion of appendix C is that only for 11 rounds or less the collision search is
faster than a birthday attack. A second preimage can be found faster than exhaustive
search if the number of rounds is less than 17. In order to be of the same order of
magnitude as a birthday attack for 15 rounds, a characteristic with probability of
2732 or better would be required (this would be 1/40 per two rounds for an iterative
characteristic). Again it should be remarked that no good characteristics are known
for an even number of rounds.

The following observation was made on the initial values that are proposed by
the designers (the hexadecimal values 256252525252525255 and 5252525252525252x):
they are chosen in such a way that differential attacks on the first iteration of MDC-
2 require 128 more operations than the optimal situation (for an attacker) that is
exploited in our attack.

One iteration of MDC-4 is defined as a concatenation of two MDC-2 steps, where
the plaintexts in the second step are equal to H2; 1 and H1;_1:

T2; = E®(H2;_1,X;) = LT2; | RT?2;

5.3. OVERVIEW OF MDC PROPOSALS 119

Ul; = LT1; || RT?2;

U2; = LT2; | RT1;

V1, = E®(U1;,H2; 1) = LV1; || RV,
V2, = E®(U2;, H1; 1) = LV2; | RV2;
H1; =LV1; | RV2;

H2; = LV2;| RV1;.

The rate of MDC-4 is equal to 4. It is clear that the “exchange” of H1;, 1 and H2;
in the second step does not improve the algorithm: after the exchange of right halves,
U1, and U2; are symmetric with respect to H1,_1 and H2;_;.

Both finding a preimage and finding a pseudo-collision is harder than in the case of
MDC-2, as indicated in table 5.8. On the other hand, collisions for the basic compres-
sion function of MDC-2 with the same value of (H1;_1, H2;_1) will also yield collisions
for MDC-4, but generally this property does not hold for other collisions for the basic
function like pseudo-collisions. Hence differential attacks that produce a collision for
MDC-2 will also produce a collision for MDC-4, but finding a second preimage with a
differential attack will be much harder: the probability that a single message block is
sufficient to find a second preimage is very small.

The improved pseudo-preimage attack is based on the fact that V'1; depends only
on H1;_1 through 26 bits of LT'1;, and that 10 bits of H1;,_1 (namely the 8 parity bits
and the 2 bits that are fixed in the key port) only influence the output in the second
half of the algorithm (this observation was suggested to the author by B. den Boer).

1. Choose a random value of X; and a 26-bit constant S.

2. Calculate T'1; for all 2°4 relevant values of H1;_ 1 (only the bits that are used in
the first half). Tt is expected that in 2% cases the 26 relevant bits of LT1; will
be equal to S (indeed, 4 parity bits in the first half are ignored and 2 more bits
are fixed).

3. Calculate T'2; for all 2°* relevant values of H2; ;. Next, extend H2;_; with all
possible values for the 10 unused bits, and compute V'1;, under the assumption
that LT1; = S (this blocks the influence of H1;_; on this calculation). This
requires in total 264 4254 DES encryptions, hence one expects to find the correct
value of V'1;. In this way H2;_1 is determined.

4. For the 228 cases with LT1; = S, extend H1;_; with all possible values for the
10 unused bits, and compute V2;. This requires in total 238 DES encryptions,
and the correct value is obtained with probability 2726,

5. If no match is obtained, one chooses a new value of X or for S; in the latter case,
one can avoid recomputing 7'1; and T2; at the cost of more storage.

One can conclude that finding a preimage requires 264 . 226 = 290 DES encryptions
and a storage of 22 54-bit quantities (if for every trial a new value for X is chosen).
With proposition 2.2, one finds that a (second) preimage requires about 2'%° DES
encryptions.

120 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

The improved pseudo-collision attack is based on the same principles:

1. Choose a random value of X; and of H2;_; (this can be the specified value).

2. Calculate T'1; for 2405 values of H1,_;. It is expected that there will be a 26-bit
integer S such that in 2!4? cases the 26 relevant bits of LT; will be equal to S
(in fact for 50% of the integers S there will be 2145 cases or more).

3. For these 2% cases with LT1; = S, extend H1;_, with all possible values for
the 10 unused bits, and compute V2; for the 2145110 = 9245 (different inputs.
The probability to find a collision for V2; is equal to 2224:5/265 = 2716 (cf,
section 2.5.1.3).

4. If no match is obtained, one chooses a new value for .S; one can avoid recomputing
T'1; if one stores 216 . 2145 = 2305 54 it quantities (about 10 Gigabytes).

One can conclude that finding a pseudo-collision requires 24> DES encryptions and a
storage of 2305 54-bit quantities.

The scheme by Zheng, Matsumoto, and Imai Another scheme based on a
collision resistant function was suggested with some theoretical arguments in [339, 343]
(cf. section 4.3.2.7). The weaknesses that have been identified in this scheme have been
presented at Auscrypt’92 [263]. The primitive function compresses a 224-bit input to
a 128-bit output and is based on xDES'. This block cipher is one of the extensions of
DES that has been proposed in [340]. xDES! is a three round Feistel cipher [104, 105]
with block length 128 bits, key size 168 bits, and with the F' function equal to DES.
One round is defined as follows:

Cliy1 =C2
C2i41 :Clz@DES(K“CQZ), 1=0,1,2.

Here the variables C1; and C'2; are 64-bit blocks, and the variables K; are 56-bit keys.
The block cipher is then written as

C23 || C13 = xDES! (K1 || K2|| K3, C10/|C20) .

Here C'1y and C'2(are the first and second part of the plaintext, and C23 and C'lg are
the first and second part of the ciphertext. The round function that is claimed to be
collision resistant consists of 2 xDES! operations:

f(Y1]]Y'2) = xDES! (chop;, (xDES'(IV||Y1,a)) |Y2,a) .

Here Y1 and Y2 are 112-bit blocks, « is a 128-bit constant, and I'V is a 56-bit initial-
ization variable. This variable has been added to clarify the description of the scheme.
The complete hash function has the following form:

H; = f(Hi-1]|Xi),

5.3. OVERVIEW OF MDC PROPOSALS 121

where H;_1 is a 128-bit block, and X; is a 96-bit block. The rate of this scheme is
equal to 4. Note that one could also start from xDES! and classify this as a single
length hash function.

If IV = K; and Y] = K3/ K3, it is very easy to produce collisions for the atomic
operation: every data bit is used only once in the key input of DES, which means that
it can be simply replaced by a key collision for the DES plaintext equal to the second
part of a with the algorithm described in [267].

A stronger scheme is obtained if I'V is equally distributed over K, Ks, and K3,
and if the size of IV is increased [345]. However, it will be shown that independently
of the size of IV, the security level can not be larger than 44 bits. If the size of IV is
equal to v bits (in the original proposal v = 56), the number of fixed bits of IV that
enter the key port of a single DES block is equal to v/3 (it will be assumed that v is
divisible by 3). It can be shown that the rate of this scheme is then equal to

664

R=os =2

The number of bits of Y7 that enter the key port will be denoted with y, hence y+v/3 =
56. The following attacks are now considered:

e For the fixed value of the right part of o and of the first v/3 bits of IV, one
can calculate and store a set of 27 different ciphertexts. The expected number of
collisions in this set is approximately equal to 22765 (cf. appendix B). If y > 32,
implying v < 72, a value of z = 33 is clearly sufficient to obtain a collision. If
on the other hand y < 32, one will take z = y, and the probability of success is
smaller than one. One can however repeat this procedure, (e.g., if one attacks a
DES block different from the first one, a different value can be chosen for the value
of the bits of Y7 that enter the first DES), and the expected number of operations
for a single collision is equal to 26°~¥, while the required storage is equal to 2Y.
An extension of the Quisquater algorithm could be used to eliminate the storage.
If the security level S is expressed in bits, it follows that S = max {65 — y, 33}.
With the relation between y and v, one obtains S = max {9 + v/3, 33}.

e A second attack follows from the observation that only v bits are kept from the
output of the first xDES! operation (hence the chop operation is chopping 128 —v
bits). It is clear that finding a collision for the remaining v bits requires only
2v/2+1 gperations, or S < v /2 + 1 bits. This attack is more efficient than the
first attack if v < 64 bits.

The relation between S and v can be summarized as follows:

v<64:5=0v/2+1
64 <v<72:S5=33
2<v<104:S=v/3+9.

The following table indicates the relation between S and the rate R. One can conclude

122 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

v |56 64 72 84 96 102
S 129 33 33 37 41 43
R| 4 48 6 96 24 96

Table 5.10: Relation between v (the number of bits of IV'), the security level S and
the rate R.

that producing a collision for the proposed compression function (with fixed size input)
requires significantly less than 264 operations. Depending on the allocation of the bits
of X; and H;_1 to Y7 and Y3, it might also be feasible to produce a collision for the
hash function with a fixed initial value: it is certainly possible to produce a collision
for the hash function if there is a single DES block where all key bits are selected from
X;.

Note that the scheme proposed by R. Merkle based on a large block cipher (cf.
section 5.3.1.3) will succumb to a similar attack if xDES! is used as the underlying
block cipher.

The Algorithmic Research (AR) hash function The AR hash function was
proposed by Algorithmic Research Ltd. and is currently used in the German banking
community. It has been circulated as a contribution within ISO [162]. The basic
mode of operation is an extension of the CBC mode: the last two ciphertext blocks are
added modulo 2 to the message block. This chaining is not secure, but two independent
iterations with two different keys are computed in parallel. The hashcode is computed
from the outcome of both iterations. The operation of a single chain can be described
as follows:

f=EKXi®oH 2@ Hi_1®n) ®X;.

Here n = 0123456789ABCDEFy (hexadecimal), and H_; and Hp are equal to the all
zero string. The keys for both iterations are equal to K = 0000000000000000x and
K’ = 2A41522F4446502A¢ respectively. The chaining variables of the second iteration
will be denoted with H]. Two mappings are then defined to combine the output of
both iterations:

g(K,H1,H2) = E(K,H1 ® H2) ® E(K,H1) ® E(K, H2) & H2

and
v(K,H1,H2,H3,H4) = g(g9(K,H1, H2),g(K, H3, H4)) .

Then the hashcode is computed as follows:
/U(Kv Ht—l) Ht7 Hé—la Hl{) ” U(Klu -Ht—lu Ht7 Hé—lv Hé) .

Although the rate is equal to 2, this scheme will in practice be faster than other
schemes with the same rate, as the key remains fixed. In the case of DES, which has

5.3. OVERVIEW OF MDC PROPOSALS 123

been proposed as the underlying block cipher, this scheme will be 2 to 4.5 times faster
in software than MDC-2 (see also section 5.3.4.1).

Several weaknesses have been identified in this scheme. The choice to initialize
the 4 chaining variables with 0 will facilitate certain attacks. Another problem is the
choice of the all zero key for K, which is a weak key for DES. For a weak key 23? fixed
points can be easily found (cf. section 2.5.4.3), and these can be used in the following
attacks:

Collision attack: if X; is chosen such that the input to DES is one of those fixed
points, the new value of the chaining variable will be equal to H;_o & H;_1 @ 7,
and thus independent of the fixed point. It is now very easy to use the 232
fixed points to produce a collision for the round function (and hence for the hash
function) in the other iteration. The success probability of this attack is 0.39 (cf.
section 2.5.1.3); if the attack fails, it can be repeated at a different position in
the message. Observe that this attack is independent of the initial values.

Fixed point attack: the fixed points of DES can be used to construct fixed points
for the round function after 3 iterations. The chaining variables for the iteration
with the weak key will be as follows: H_1, Hy, H_ 1 & Ho®n, H_1, Hy. In order
to obtain a fixed point for the second iteration (or Hy = H' ; and Hy = H))), the
following equations have to be solved:

Hi =X\ ®EK' X,&H | & Hjy®n)
H' | =Xo® E(K',Xo® Hy® H| ©n)
Hy=X3s®E(K'\ X3 H | & Hy &1).

Here X1, X5, and X3 are selected such that the plaintexts in the first iteration
are the 232 fixed points corresponding to the weak key K. The unknown H/
can be solved from the three equations, and every equation will yield 232
Under the assumption that DES is a random mapping, a common solution will
exist with a very small probability (approximately 1/232). If however H_; = Hy
and H' | = H|, (as specified), the second and third equation are equivalent, and
the probability for a common solution is about 1 — e~!. The total number of
operations for this attack equals 233 encryptions. The solution can be used to
construct collisions, but also to construct a second preimage for any message (in
fact an infinite number of preimages).

values.

One could try to thwart this attack by specifying different initial values; however,
finding message blocks such that the chaining variables become equal requires
only 234 encryptions. The fixed points can then only be used to produce collisions.
Assume that H'; and H|) are different. Then one can choose X1, Xs, and X3
such that H, = H). The equations to be solved are the following:

H = X10EK X10H ®H)®n) (5.1a)
H), = Xo® FE(K',X,® H{® H| ®n) (5.1b)
H), = X3®FE(K',X;®H;®H, ®n). (5.1c)

124 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

Choose for X the 232 values that are allowed, and compute from (5.1a) the
corresponding value of H]. Equation (5.1c) can be rewritten as follows:

D(K,,Xg@Hé)@Xg@Hé:H{EBT}.

Choose 23% values of X3 @ H} and use this equation to obtain a second set of
values of H]. A matching value for H] will be obtained with probability 1 —e~?;
this also fixes X7 and X3 @ H). Then one chooses for X, the 232 possible values,
and one computes with (5.1b) the 232 corresponding values of Hj. This also
yields 232 values of X3, and with high probability one of these values will be a
value that is allowed. If this is not the case, one has to choose more values of
X3 @ HY in the second stage, which will yield more solutions.

In this way one can increase the success probability of the fixed point attack at
the cost of increasing the number of operations to 234...236: if the first attack
fails, one looks for identical values of the chaining variables, and one repeats the
attack. The solution can now only be used to produce collisions.

I. Damgard and L. Knudsen [68] have identified weaknesses in the g and v function:
they become very weak if certain arguments are equal or are equal to 0. They can
exploit this weakness together with the fixed points of DES to find 232 messages hashing
to the same value (finding a single collision requires only one DES encryption, i.e., the
time to find two fixed points of DES). They also have presented different preimage
attacks; in order to obtain a success probability that is very close to 1, the attack
requires about 2% encryptions.

The AR hash function can be strengthened in several ways: fixed points attacks can
be blocked by including the message length in the padding scheme; the key K should
be replaced by a different key, that is not weak or semi-weak; four different initial
values have to be specified, and g and v should be replaced by stronger mappings.
Even with all these modifications the security of the scheme is questionable: the basic
chaining mode is very weak, and it is not clear that having two parallel versions of an
insecure scheme will yield a secure scheme.

5.3.2.3 Schemes with rate equal to 1

The following schemes will be reviewed in this section: the proposals by Quisquater-
Girault, Brown-Seberry-Pieprzyk, and Preneel-Govaerts-Vandewalle.

The scheme by Quisquater and Girault A scheme with rate 1 was proposed in
the abstracts of Eurocrypt’89 by J.-J. Quisquater and M. Girault [268]. It was also
submitted to ISO as a contribution to DP 10118. It allows no parallel evaluation of
the two encryptions:

5.3. OVERVIEW OF MDC PROPOSALS 125

Hl;,=H1,_1® H2; 1 0T2
H2,=Hl1, {®H2;,_19T1;.

If DES is used as the underlying block cipher, one still has to specify a mapping from
56 to 64 bits. A weakness of this scheme that was pointed out by the author is that
if the scheme is used with DES, complementing X has no effect on the hashcode (due
to the complementation property). Independently, the same weakness was reported
in [227], together with a number of pseudo-collisions. A more serious problem was an
attack by D. Coppersmith [271], that was only published recently in [59]. It resulted
in a new version in the proceedings of Eurocrypt’89 [269]. A different attack on the
first version by X. Lai and J. Massey [183] shows that finding a preimage with random
IV requires only 233 encryptions.

The attack by D. Coppersmith is limited to the case where DES is used as the
underlying block cipher. It exploits the existence of 232 fixed points for a weak key (cf.
section 2.5.4.3) to produce a collision in about 233 encryptions. The basic observation
behind the attack is the following: if X'1; is chosen to be a weak key (e.g., X1; = 0),
and X2; is chosen such that H1;, 1 @ X2; is a fixed point corresponding to that weak
key, T'1; will be equal to H1;_; and hence H2; = H2;_;. The attack can be described
as follows. Choose X1; = X1s = 0 (or any other weak key) and choose 2° values of
X 21 such that Hly @ X2; is a fixed point. For each of the resulting values of H1y,
on takes 2% values of X2y such that H1; @ X2, is a fixed point. It follows that
H2, = H2, = H2(, and one expects to find two identical values among the 233 values
for H1y (cf. section 2.5.1.3). One still has to prove that one can obtain a sufficient
number of values of X2y and X 23 in the second step. There are 232 fixed points, but
because of the mapping from the key space to the plaintext space, on average only one
in 2% can be obtained. This means that one expects to find 2%* fixed points.

D. Coppersmith [59] presents the attack as a correcting block attack with 6 cor-
recting blocks (cf. section 2.5.2.4) that requires 23° encryptions. Assume one starts
with 2 t-block messages X and X’. The first step is now to choose 232 plaintext block
pairs (X141, X2¢41) and (X1}, X2}) such that H2;,1 = H2{ ;. The rest of the
attack is similar; the main difference is that here one looks for matches between two
sets.

The pseudo-preimage attack by X. Lai and J. Massey will now be described. The
basic equations for the scheme are the following (the index 7 will be omitted in X1,
and X2;):

Hl;=Hl, 1®H2; 1 X1 E(X2,X1®X2® H2;_1® E(X1,X2® H1,4))
H2,=Hl,_ 1 ®H2_ 1 X206 E(X1,X2® H1,_ ;).
First the equations are simplified with the substitution
S=X1®E(X1,Hl,_1 & X2), (5.2)
which leads to:
Hl,=Hl,_1®H2, 1 X1®E(X2,X20 H2;_1®S)
H2;,=Hl, 1 ®H2, 1 X1®X2®S.

126 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

Subsequently the second equation is added to the first, and X2 & H1;_; is eliminated
from the second equation using (5.2):

Hl,®H2,=S® X200 E(X2,S®X2® H2;_1)
H2,=S®X1®D(X1,S® X1)® H2; ;.

Both equations can now easily be solved for H2; 1:

H2 =S&X2&D(X2,Se X2 Hl; & H2,)
H2% 1 =S®X1eD(X1,S®X1)® H2;.

A common solution for H2; 1 can be obtained by choosing S and selecting 23? random
values of X2 and X1 to evaluate the first and second equation respectively. The proba-
bility for a matching value for H2;_; will then be sufficiently large (cf. section 2.5.1.3).
Finally H1;_; can be calculated from (5.2). As this attack yields only random IV,
it can only produce a pseudo-preimage, or a pseudo-collision. Producing a preimage
with this attack requires 28! operations (cf. proposition 2.2), which is still completely
infeasible. Finally it is noted that both equations become equivalent if and only if
H1; = H2; = 0. In this case a pseudo-preimage can be found with a single decryption
and a preimage in 254 operations, by solving:

EX, Xi®oHl 1) X;®Hl,_1 ®H2_, =0,

with X1, = X2; = X;. If one chooses X; and H1;_1, this equation yields a random
H2; 1 (pseudo-preimage attack); a preimage can be found if the correct value of H2; 1
is obtained.

The improved scheme takes a different approach: the equations are much simpler,
but the construction of collisions or of a preimage is made more difficult by inserting
additional redundancy to the message: one adds the message blocks Xy = @Ll X;
and X0 = (Zle Xi> mod 2 — 1. The iteration procedure can be described as
follows:

T1; = BE(X1;, Hli1)

T2; = B(X2,T1; ® H2;_,)
Hl;=Hl;,_ 1 ®©H2,_1 ®T2;
H2,=Hl, 1 ®H2,_10T1;.

For this algorithm pseudo-collisions were reported as well in [227]. However, only
under special conditions these collisions are real collisions. It is sufficient to construct
key collisions for a plaintext IV, i.e., a pair of keys (K7,K>) such that E(K,IV) =
E(Ky,IV) (cf. section 2.5.2.6). If the second initial value I'V5 is equal to E(Ky, P)® P
and the first two message blocks are K7 and Ks, swapping those two blocks does not
affect the hashcode. The restriction is that the attacker should be able to choose
the second half of the initial value. However, if a random initial value is given the
probability that this attack will work is of the order of 2764,

5.3. OVERVIEW OF MDC PROPOSALS 127

Without redundancy, the scheme has several weaknesses. Finding a preimage with
chosen H1;_; requires only 233 operations. This follows from the equations:

Hl,® H2; = E(Xl,Hli_l) @E(XQ,HQZ @Hli_l)
H2, 1 =H2,®Hl, 1D E(Xl,HlZ‘_l) .

After selecting H1;_1, one can solve the first equation for X1 and X2 with a birthday
attack. The value of H2; 1 follows then from the second equation. A preimage can
be found in 257 encryptions, but with a success probability of only 2716: first X1 is
determined from the second equation, and subsequently X2 can be determined from
the first equation. In order to find a collision, one has to solve the following equations
for (X1,X2) and (X1, X2'):

E(X2,BE(X1,H1;_1) ® H2,_,) = E(X2 ,E(X1",H1;,_1) ® H2;_1)
E(X1,H1;_y) = E(X1,H1;_y).

With a birthday attack, key collisions for the second and subsequently the first equation
can be found in only 23* encryptions. However, because of the additional redundancy,
this is not sufficient for a collision for the complete hash function. From these equations
it can be seen that a pseudo-collision or a second pseudo-preimage can even be found
with only 2 decryptions, in which X1’ and X2’ can be chosen freely. If DES is used
as the underlying block cipher, one can again make use of fixed points. Here one will
choose blocks X1; and X2; such that H1; is a fixed point for a weak key; this requires
on average 2% operations (cf. section 5.3.1.4). If X15 is the corresponding weak key,
one finds again that H29 = H2;. Note that here a single block will be sufficient to
produce a collision for H1s, since no restrictions are imposed on X 2.

However, D. Coppersmith has recently published in [59] an attack to produce col-
lisions for the second scheme with redundancy in about 23° operations. The idea is to
produce key collisions as indicated above for 43 values of 7. This means that one has 43
pairs (X 1;, X17) and 43 pairs (X2;, X2/), where each alternative can be replaced by the
other one without affecting the hashcode. This yields in total 286 possible messages.
Then one chooses X;,1; in this way only 286 /256 = 230 combinations will remain. They
can be described as a 30-dimensional affine subspace of GF(2%). Within this subspace,
one has a sufficiently large probability of finding two matching values of X;1o. Again
this attack can be extended to a correcting block attack (cf. section 2.5.2.4). With
2 blocks one can make the chaining variables for both messages equal, from which it
follows that in total 88 correcting blocks are necessary.

The scheme by Brown, Pieprzyk, and Seberry A variation on the first scheme
of J.-J. Quisquater and M. Girault was proposed by L. Brown, J. Pieprzyk, and J. Se-
berry, the designers of the block cipher LOKI [33], who called it LOKI Double Hash
Function (DBH). They took the scheme from the abstracts of Eurocrypt’89 [268], and
modified the two keys with the chaining variables:

T1, = E(Hli—l ®X1;,Hl,_ 1 & XQZ) @ X2;

128 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

T2, = E(H2i_1 O X2, T, & H2;_1 & Xli) ® X1,
Hl; =H1l,_1®H2;_1®T2
H22' = Hli—l @HQi—l @Tll

This scheme is also vulnerable to a complementation attack, if DES, LOKI, or LOKI91?2
are used as the underlying block cipher. Moreover, weaknesses of LOKI (cf. sec-
tion 2.5.4) can be exploited to produce pseudo-collisions [22] and even collisions [82].

In [183] an attack that is independent of the block cipher was described to find a
pseudo-preimage in 233 operations. The scheme is simplified by means of several linear
transformations. We will show however that it follows directly from the equations that
this attack applies.

Starting from (again the index ¢ will be omitted in X1; and X2;)

Hli :Hli_l@H2i_1@XIEBE(XQ@HQZ‘_l,Xl@Hli_l@HZZ‘)
H2; :Hli—l@HQi—l@XQ@E(Xl@Hli_l,XQ@Hli_l),

one chooses S = X1@® H1;_1, which results in

H2i—1 :le@S@E(XQEBHz_I,S@HQZ)
H2, 4 :HQZ@XQ@le—l@E(S,XQEBHlZ_l)

A solution for H2;_; can be found with a birthday attack: choose 232 values of X2 @&
H?2;_1 and 23? values of X2 @® H1,_;, and look for a matching value. Once a solution
for H2;_1 is determined, one finds X2, H1;_1, and finally X1. In a similar way, both
equations will become equivalent if and only if H1; = 0. In that case one can find a
pseudo-preimage with a single encryption, while a preimage requires 2% encryptions.

The attack by D. Coppersmith [59] that exploits the existence of weak keys and the
corresponding fixed points can be extended to this scheme. Note that LOKI has more
fixed points than DES, and LOKI91 has the same number of fixed points as DES (cf.
section 2.5.4.3). If one chooses X 1; such that H1;_; & X1, is a weak key, and X 2; such
that H1;,_1 ® X2; is a corresponding fixed point, one obtains again that H2; = H2; 1.
The rest of the attack is similar to the attack on the first Quisquater-Girault scheme.

The scheme by Preneel, Govaerts, and Vandewalle This scheme was published
in [253]:

H]_i = C3 [Xll, EEB@ (Cl [Xlz, XQZ] , C2 [Hlifl, H2171])]
H2; = ¢4 [X2;, E%® (co [X1;, Hli1] 01 [X 24, H2,24])]
The functions ¢, co, c3, and ¢4 have to satisfy the following conditions:

1. they have to compress two n-bit variables to one n-bit variable,

2. their result must be uniformly distributed,

*Note that no hash mode was specified for LOKI91 [34].

5.3. OVERVIEW OF MDC PROPOSALS 129

3. at least one of their output bits must change if a single input bit is modified.

The choice of particular functions thwart attacks that exploit special properties of the
block cipher E. A different choice for ¢; and ¢y and for c¢3 and ¢4 can avoid certain
symmetries. A possible choice for the ¢; is the function E¥(), resulting in a rate of 4.
A second proposal is to choose the addition modulo 2 for all ¢;. This results in the
following scheme:

H;,=X1,oHl, &6 H2,_ 1 FE(X1;® X2;,,Hl;_1 ® H2;_,)
H2;, = X2, ®H1,_1® H2;_4 @E(Xli@Hli_l,XQi@HQi_l).

This scheme is not vulnerable to attacks based on the complementation property.
Its analysis is simpler because the two operations are independent: the goal was to
allow for an efficient parallel implementation. Several attacks, mainly attacks to find
collisions were tried during the design phase (and many other schemes were rejected),
but later it was shown that the parallel operation introduces several weaknesses. A
first attack finds a pseudo-preimage with a single decryption: the two equations will
be identical if and only if X1;, = H1,_1 ® H1; ® H2;, and X2; = H1; 1. In this case
the relation between the chaining variables is given by:

E(Hll @ H2;,Hl;, 4 @H2i_1) ®H2,_1=H2;.

For a chosen value of H2;_1, one obtains quickly H1;_1. If the attacker wants to find
a preimage, he will choose H2; 1 equal to the specified value. If he is very lucky, he
obtains the correct value for H1, 1 (the probability of this event is 2764).

A different method will find a preimage in 2% operations: choose X1; ® X?2;, then
X1; (and hence X2;) can be obtained easily from the first equation. A match for
the second equation will then be found with probability 2764, Unfortunately, together
with proposition 2.5 this fact can be used to produce a collision in only 233 operations.
The values of X1; and X2; corresponding to a choice of H1; can be obtained with a
single decryption (s = 0), which means that n’ = 64. If this is repeated 233 times, a
matching value for H2; will be found with very large probability (cf. section 2.5.1.3).

A weaker attack on this scheme, that requires 233 operations for a pseudo-preimage
was described in [183]. With the substitutions X = X; @ Xo, S = Xo ® H2;_1, and
T=H1l,_1®H2;_1®X;® Xy, one obtains the following simplified equations (omitting
the subscript i for X1 and X2):

Hl;=X20T®EX,X®T)
H2,=X260ToX®E(TaS,S).

It is possible to eliminate Xs, by adding the two equations, which yields:

EX,XeT)eXaHl,=ETaS,85) o H2;.

232

This equation can be solved easily by fixing 7', and subsequently choosing values

for X and S to find a match. Finally X2 can be computed from one of the above

130 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

equations. With the expressions for X, S, and T one finds X7, H2;,_1, and H1;_4
respectively.

The main reason why these weaknesses were not identified in the design stage,
is that we concentrated on protection against collision attacks: we believed that a
preimage attack would automatically be hard. This scheme however shows how a
partial preimage attack can be used to produce collisions based on proposition 2.5.
The lesson learned from this attack is that finding a solution (X1;, X2;) for one of the
equations should require at least 232 operations (and preferably 264).

Finally it is mentioned that the attack by D. Coppersmith [59] that exploits the
existence of weak keys and the corresponding fixed points can be extended to this
scheme. If one chooses X1; such that X1; ® H1;_1 is a weak key, and X2; such that
X2, ® H2; 1 is a corresponding fixed point, one obtains that H2; = H1;,_1. The rest
of the attack is similar to the attack on the first Quisquater-Girault scheme.

Conclusion To conclude this section, the attacks on the three schemes (excluding the
second scheme by J.-J. Quisquater and M. Girault) will first be compared in table 5.11.
For the two first schemes, the following remarks have to be made: if DES, LOKI or
LOKI91 are used as the underlying block cipher, collisions can be found immediately
with the complementation property, and for special values of H1; and H2; (depending
on the scheme), a pseudo-preimage can be found in time O(1), and a (2nd) preimage
can be constructed in time 24, Moreover for the three schemes a collision can be
produced in about 232 encryptions with an attack based on fixed points.

| [QG [LOKIDBH| P-GV |

(2nd) preimage 2281 2281 2. 264
pseudo-preimage 2.232 2.232 1
collision (fixed V) 2. 204 2.204 2.2%3
collision (random IV') 2. 232 2. 264 2.23%
pseudo-collision 1 2.232 1

Table 5.11: Number of operations and storage for preimage and collision attacks on
the three schemes studied in this section.

The main problem with these schemes with rate 1 is that their analysis is very
involved: one can try to verify that all 4 criteria of section 2.4.3 are satisfied, but there
does not seem to be a way to prove this. On the other hand, one should specify against
which attacks one wants to be protected: an attack on a single round implies solving 2
simultaneous equations. In case of a preimage attack, one can choose 2 variables (X1,
and X2;), while in the case of a pseudo-preimage, one can choose 4 variables (X1;,
X2;, H1;_1, and H2;_1). For a collision, the equations are different and will contain
at least 4 E() operations. If one searches for a collision, one can choose 4 variables
(X1;, X2;, X1,, X2/), for a collision with a random IV one can additionally choose

5.3. OVERVIEW OF MDC PROPOSALS 131

H1;_; and H2,_1, and in the case of a pseudo-collision one can also select H1,_; and
H?2_,, hence one has in total 8 variables.

We believe that it is not possible to come up with an efficient scheme with rate
1 that is ideally secure against all these attacks. One suggested line of research is to
come up with a synthetic approach like for the single length hash function, in order
to find the best scheme under these constraints. The problem here is not easy, as the
number of possibilities is equal to (2* — 1)6 = 11,390, 625 if no interaction between

the chains is considered, and ((2* — 1)(2° — 1)) = 100, 544, 625 with interaction. The
problem size can of course be reduced significantly by excluding trivially weak schemes
and by considering linear transformations of input and output, as suggested in [183].
The only result one can hope to achieve is to identify certain patterns that lead to
specific weaknesses. A first attempt could be the following;:

e Individual functions should be complete.
e It should not be possible to completely separate the chains.
e One of both equations should not be easily solvable for the two data blocks.

e The equations should not be easily solvable if symmetry between the two parts
is introduced.

e It should not be possible to make use of key collisions: a simple case is where a
message block is just entered once in the key port. It seems that adding some
redundancy is not sufficient to thwart this attack.

e It should not be possible to exploit the complementation property and the ex-
istence of weak keys and their corresponding fixed points. On the other hand
one should note that it seems better to block these possibilities: in the case of
DES it is sufficient to fix two key bits (cf. MDC-2). Moreover, for any scheme of
this type one can come up with a variant of a complementation property (such

as E(K, P) = E(K, P)) that will yield collisions.

e It should not be easy to go backwards (pseudo-preimage).

It would be very interesting to develop a computer program that identifies these pat-
terns in all possible schemes. For several criteria this is certainly rather complicated.
Moreover one should keep in mind that it will only be possible to verify attacks that
have been considered by the author of the program. The complexity of the evaluation
of this type of schemes suggests that further work has to be done in this area.

A second line of research is to check whether the most efficient schemes can be made
secure against all these attacks by adding a limited number of redundancy blocks,
which influences the rate only marginally. At the end of the message, one can add
the message length (as discussed in section 2.4.1), and the addition modulo 2 and/or
modulo 2% of the message bits, as suggested by J.-J. Quisquater and M. Girault. It has
however become clear that this will not help against collision attacks. At the beginning
of the message, one can derive the first message block from IV, or X1 = g(IV) (cf.
section 2.4.1): then finding a pseudo-preimage is not easier than finding a preimage.

132 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

5.3.3 Size of key equals twice the block length

Some block ciphers have been proposed for which the key size is approximately twice
the block length. Examples in this class are FEAL-NX [228] (a FEAL version with a
128-bit key) and PES/IDEA [181, 182, 184]. Triple DES with 2 keys has a key size of
112 bits and a block length of 64 bits and could hence also be considered to belong
to this class. Note that xDES! discussed in section 5.3.2.2 is not of this type, as the
key size is equal to 168 bits and the block length is 128 bits. Again one has to make a
distinction between single and double length hash functions.

5.3.3.1 Size of hashcode equals block length

A scheme in this class was proposed by R. Merkle in [211]. It can also be classified as
“non-invertible chaining”:

f=E(H;—1 | X, IV).

A parameterized version was proposed by the same author [212]:
fi=EIV' | Hiy || Xillill g, IV).

Here IV and IV’ are two constants that can be zero, and ¢ and j are numbers with
about 64 bits: j is a parameter of the hash function and ¢ results in a different function
for every iteration. An alternative scheme was suggested by X. Lai and J. Massey in
[183]:

f=FEHi-1 | Xi,Hi1).

These constructions can only yield a CRHF if the block length is larger than 128 bits
(R. Merkle suggested 100 bits in 1979), and if the key size is equal to 256 bits for the
first and third scheme and 384 bits for the second scheme. For smaller block lengths,
a OWHEF can be obtained. The security depends strongly on the key scheduling of the
cipher. If triple DES is used with three different keys, which is a block cipher with a
168-bit key size and a 64-bit block length, this construction can only yield a OWHEF.
This scheme would have a rate of 1.85 (the size of the chaining variable is 64 bits and
104 message bits are processed after 3 encryptions), which is not very efficient. In this
case the first scheme by R. Merkle can be broken with a key collision attack on double
DES (cf. section 2.5.2.6). If H;_; is used as key for the first DES and as first part of
the key of the second DES, a key collision search can be applied to the second and
third DES, under the constraint that the first 8 bits of the second key agree with the
corresponding value for H;_ .

5.3.3.2 Size of hashcode equals twice the block length

In order to obtain a CRHF based on a 64-bit block cipher, a different construction
is required. The first two schemes in this class were recently proposed by X. Lai and
J. Massey [183]. Both try to extend the Davies-Meyer scheme. One scheme is called

5.3. OVERVIEW OF MDC PROPOSALS 133
“Tandem Davies-Meyer”, and has the following description:

T; = E(H2;1|| X3, H1; 1)
Hl; =T, ® H1;
H2;, = E(XzHTza H22-_1) ®©H2;, 1.

The second scheme is called “Abreast Davies-Meyer”:

H1; = E(H2; || X, H1;_1) ® H1;
H2; = E(H2i_1|| X, H2io1) & H2i_1 .

Both schemes have a rate equal to 2, and are claimed to be ideally secure, or finding
a pseudo-preimage takes 22" operations and finding a collision takes 2" operations.
The security of this scheme has to be evaluated: e.g., certain weaknesses might occur
depending on the underlying block cipher.

5.3.4 A new scheme based on a block cipher with fixed key

In this section a new hash function will be presented that offers a trade-off between
security and performance. The scheme was published at Auscrypt’92 [262]. After
motivation of the most important design principles, the function will be described,
followed by a description of attacks, and a detailed security evaluation. Subsequently
some extensions are discussed, and the results are summarized. Note that in the
previous sections several schemes with a fixed key have already been discussed, since
it was more natural to treat them there.

5.3.4.1 Background and design principles

It is recalled that the rate of the scheme indicates the number of encryption operations
to process a number of bits equal to the block length. An encryption operation consists
of two steps: first the installation of a new key and subsequently an encryption with
that key. Several reasons can be indicated to avoid a modification of the key during
the hashing process:

Performance: in general, the key scheduling is significantly slower than the encryp-
tion operation. A first argument to support this is that the key scheduling can
be designed as a very complex software oriented process to discourage exhaustive
attacks. Here software oriented means that the variables are updated sequen-
tially, which reduces the advantages of a parallel hardware implementation. The
advantage of this approach is that the key can remain relatively small (e.g.,
64 bits), while an exhaustive attack is still completely infeasible. Even when the
key schedule is simple, it can be harder to optimize its implementation. For DES
software, the fastest version (code size 100 Kbytes) for the IBM PS/2 Model 80
(16 MHz 80386) runs at 660 Kbit/s without key change and 146 Kbit/s with
key change (a factor 4.5 slower). If the code size is increased to 200 Kbytes, a

134 CHAPTER 5. HASH FUNCTIONS BASED ON BLOCK CIPHERS

speed of 200 Kbit/sec is obtained (a factor 3.3 slower). For smaller versions this
factor is lower bounded by 2.5. Moreover, encryption hardware is in general not
designed to allow fast modification of the key. A key change can cause loss of
pipelining, resulting in a serious speed penalty.

Security: another advantage of keeping the key fixed is that an attacker has no con-
trol at all over the key. Hence attacks based on weak keys can be eliminat