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Overview
This document provides an update to the original description of echo that was
submitted to NIST. echo embodies the goal of reusing—and thereby echoing—
as many aspects of the Advanced Encryption Standard (AES) [58] as possible.
This is not just in terms of operations, though only AES operations are used in
echo, but also in terms of simplicity and analysis. echo replicates the structure
of the AES in several ways and has the following features:

1. The smooth support—using the same implementation—of any hash out-
put of length from 128 to 512 bits.

2. The smooth support—using the same implementation—of both the single-
pipe and double-pipe strategy.

Update: Some SHA-3 submissions use single-pipe constructions. While
we prefer the security provided by a double-pipe construction, we note that
echo can easily be adapted to support a single-pipe construction giving a
significant performance improvement at the same time.

3. Avoiding a key schedule. It is well-known that the design of a “key sched-
ule” or some form of “message mixing” for a hash function is deceptively
difficult. This has been the problem at the root of the MD/SHA family and
has even been reported as a potential problem for the AES itself [13, 12].

Update: Any NIST SHA-3 submission with a key schedule needs to sub-
stantiate its resistance to such attacks. It was a deliberate design decision
to not have a key schedule in echo and the opportunity to interfere with a
compression function computation once it has begun has been eliminated.

4. An established design approach with attendant security arguments. This
allows a particularly accurate differential security analysis and gives a very
significant–and independently analysed–margin for security.

Update: Many different sophisticated analysis have been recently con-
ducted on echo. The best distinguishing attack for the echo compression
function covers 4.5 rounds (out of 8) for the 256-bit hash output (which
can be improved to 7 rounds if the salt can be controlled by the attacker)
and covers 7 rounds (out of 10) for the 512-bit hash output. Concerning
collision resistance, the best free-start collision attack for the echo com-
pression function covers 3 rounds (out of 8) for the 256-bit hash output
and covers 3 rounds (out of 10) for the 512-bit hash output. The best
collision attack for the echo hash function covers 4 rounds (out of 8).

5. The ability to reuse AES implementation advances, whether these offer im-
proved performance or improved resistance to side-channel analysis. Also
echo can directly exploit AES-inspired processor developments such as
Intel’s AES instruction set for Westmere chips [29].
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Update: Benchmarks on the recent AES-NI capable Intel Core i5 CPU
give 6.8 cycles/byte for the 256-bit version of echo and 12.6 cycles/byte
for the 512-bit version (resp. 5.8 cycles/byte and 8.4 cycles/byte for the
single-pipe construction).

We note that echo is the only SHA-3 candidate to support both a double-pipe
mode and the possibility to exploit the AES instruction set.

In this updated version of the original submission document, we keep a full
description of echo and an overview of our design considerations. However we
have added some new and improved performance figures for all implementations,
and we provide some additional information that will help to provide points of
comparison with other submissions.
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Part I

Specifications

The hash function echo takes a message and salt as input. The output from
echo can be of any length from 128 to 512 bits. However we fix our attention
and our description on the four must-satisfy [63] values of 224, 256, 384, and 512
bits. Similarly, while echo has the flexibility to take a message up to 2128 − 1
bits long, our primary focus is on a version of echo that hashes messages up
to 264 − 1 bits in length. The salt is 128 bits long and if for some reason it is
unneeded or left unspecified, then it takes the all-zero value by default.

echo consists of the serial application1 of a compression function and follows
the well-understood Merkle-Damg̊ard paradigm [20, 55]. At the same time we
avoid certain deficiencies [21, 37, 43, 42] by carrying a large state from one
iteration to the next and by adopting features from the HAIFA model [8, 9].
These features lend additional functionality to the basic design.

As is well-known, a compression function in the Merkle-Damg̊ard paradigm
updates the value of a chaining variable under the action of a fixed-size block
of message and (optionally) some other inputs. The specifications of echo will
be divided into the following parts:

• Section 1 establishes the notation and conventions.

• Section 2 describes how the compression function in echo is used to hash
a message of arbitrary length.

• Section 3 defines the compression function for hash outputs between 128
and 256 bits in length.

• Section 4 defines the compression function for hash outputs between 257
and 512 bits in length.

1However the design offers significant opportunities for internal parallelism.
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1 Notation and Conventions

The basic computational unit in echo is 128 bits long. However there is an
underlying byte-oriented structure which gives a flexible implementation profile.
A padding rule (see Section 2.2) will be applied to the message M input to
echo and this guarantees that the padded messageM′ has a length n that is a
multiple of 128. A padded message can therefore be represented as a bitstring

b0 b1 b2 . . . bn−2 bn−1

or equally, as a sequence of s = n
8 bytes (where we use ‖ to denote concatenation)

B0 = b0‖b1‖ . . . ‖b7
B1 = b8‖b9‖ . . . ‖b15

...
Bs−1 = bn−8‖bn−7‖ . . . ‖bn−1

echo is built around the AES and there will be an interplay between a se-
quence of 128 bits and their conceptual arrangement in a 4 × 4 array of bytes.
Throughout we use the same convention as the AES [58] and we have the fol-
lowing packing of bytes from a word into an array:

B0‖B1‖ . . . ‖B15 −→

B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

Equally an input string can be viewed as a sequence of r = n
128 128-bit words,

and we will denote the packing of bytes into words as

w0 = B0‖B1‖ . . . ‖B15 = b0‖b1‖ . . . ‖b127

w1 = B16‖B17‖ . . . ‖B31 = b128‖b129‖ . . . ‖b255
...

...
wr−1 = Bs−16‖Bs−15‖ . . . ‖Bs−1 = bn−128‖bn−127‖ . . . ‖bn−1

In echo the compression function will operate on sixteen 128-bit strings which
can be packed into a 4× 4 array in a similar way to the AES:

w0‖w1‖ . . . ‖w15 −→

w0 w4 w8 w12

w1 w5 w9 w13

w2 w6 w10 w14

w3 w7 w11 w15

The bit-string representation of an integer value will have the least significant
byte to the left and, within a byte, the most significant bit to the left.

6



2 Domain Extension

Depending on the length of the hash output, echo will use one of two com-
pression functions; compress512 or compress1024. The subscript refers to the
length of the chaining variable, to be denoted Csize, and at iteration i both
compression functions take four inputs:

1. The current value of the chaining variable, Vi−1, which is of length Csize.

2. The current message block being processed, Mi. The length is Msize bits
where Msize = 2048−Csize.

3. The total number of unpadded message bits hashed at the end of this
iteration, Ci.

4. The salt.

For a hash output of length up to 256 bits compress512 will be used. For hash
outputs of length between 257 and 512 bits we use compress1024. Outputs less
than 256 or 512 bits in length, respectively, will be obtained by truncation (see
Sections 3.5 and 4.1). The initial values to the chaining variable are denoted V0

(see Section 2.1) and at iteration i, for 128 ≤ Hsize ≤ 256, we will compute

Vi = compress512(Vi−1,Mi, Ci, salt)

while for 257 ≤ Hsize ≤ 512 we will compute

Vi = compress1024(Vi−1,Mi, Ci, salt).

As we will see, the two compression functions are almost identical.
While echo has the design flexibility to use a 128-bit counter Ci (see Sec-

tion 3.1), practical applications requiring such large counters are difficult to
envisage. So the primary version of echo uses a 64-bit counter Ci and hashes
messages up to 264 − 1 bits in length. The lengths of the compression func-
tion inputs and outputs for the must-satisfy values required by NIST [63] can
therefore be summarised as:

hash uses chaining message
length compression variable block counter salt

(Hsize) function (Csize) (Msize) length length
224 compress512 512 1536 64 or 128 128
256 compress512 512 1536 64 or 128 128
384 compress1024 1024 1024 64 or 128 128
512 compress1024 1024 1024 64 or 128 128
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The chained iteration of the compression function over t iterations is illus-
trated below. Details of the feedforward and exclusive-or will be given later (see
Sections 3.4 and 4). As previously mentioned, the initial value to the chaining
variable V0 is defined (see Section 2.1) while T denotes optional truncation (see
Sections 3.5 and 4.1).

M1 C1 salt

computation

compress

V0
-s

6

-
? ?s

?
-i V1 · · ·

Mt Ct salt

computation

compress

-s
6

-
? ?s

?
-i Vt -T- h

2.1 Initialisation

At the start of hashing the counter C is set to C0 = 0. This counter is used
to count the number of message bits being hashed. The initial value of the
chaining variable is set so that each word of the chaining variable is the 128-bit
encoding of the intended hash output size. For those hash function outputs that
use compress512, namely hash outputs of size 128 ≤ Hsize ≤ 256, the chaining
variable consists of four 128-bit strings V0 = (v0

0 , v
1
0 , v

2
0 , v

3
0). For the two NIST

must-satisfy values in this range the initial values are, for 0 ≤ i ≤ 3,

vi0 =
{

E0000000 00000000 00000000 00000000 for Hsize = 224
00010000 00000000 00000000 00000000 for Hsize = 256

For those hash function outputs that use compress1024, namely hash outputs
of size 257 ≤ Hsize ≤ 512, the chaining variable consists of eight 128-bit strings
V0 = (v0

0 , v
1
0 , v

2
0 , v

3
0 , v

4
0 , v

5
0 , v

6
0 , v

7
0) and for the two NIST must-satisfy values in

this range the initial values are, for 0 ≤ i ≤ 7,

vi0 =
{

80010000 00000000 00000000 00000000 for Hsize = 384
00020000 00000000 00000000 00000000 for Hsize = 512

2.2 Message Padding

Padding of an input message M is always performed. The result is a padded
message M′ that has a length which is a multiple of Msize. Assuming that
the message to be hashed is of length L bits, then padding is performed by
appending the following quantities in the stated order:

1. A single “1” bit is added to the end of the message M.

2. Append x (possibly none) “0” bits where

x = Msize− ((L+ 144) mod Msize)− 1.
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3. A 16-bit binary representation of Hsize is added next. For the purposes of
this document, the possible values as bit strings in hexadecimal notation
are E000, 0001, 8001, and 0002.

4. Finally the 128-bit representation of the length L is included.

The result is a padded message of the following form (with bit lengths indicated):

M′ =

n︷ ︸︸ ︷
L︷ ︸︸ ︷
M ‖ 1 ‖

variable︷ ︸︸ ︷
0 · · · · · · 0 ‖

16︷ ︸︸ ︷
Hsize ‖

128︷ ︸︸ ︷
L

Some implications of this style of padding are detailed in Section 3.1.

3 Compression for 128 ≤ Hsize ≤ 256

The padded message M′ is divided into t message blocks M1 . . . Mt, each
Msize = 1536 bits long. These are processed in turn using the compression
function compress512. The t + 1 values of the chaining variable that will be
generated during the hash computation are denoted Vi, for 0 ≤ i ≤ t. The
initial value V0 is given in Section 2.1 and, at iteration i, we compute

Vi = compress512(Vi−1,Mi, Ci, salt)

where Ci equals the number of message bits that will be processed by the end
of the iteration. Each message block Mi can be split into 128-bit strings:

Mi = m0
i ‖m1

i ‖m2
i ‖m3

i ‖m4
i ‖m5

i ‖m6
i ‖m7

i ‖m8
i ‖m9

i ‖m10
i ‖m11

i .

The chaining variable Vi−1 is viewed as a sequence of four 128-bit values:

Vi−1 = v0
i−1 ‖ v1

i−1 ‖ v2
i−1 ‖ v3

i−1 .

The mixing of the chaining variable and message during compression requires a
series of operations on the state S, and S can be viewed as a 4× 4 array:

w0 w4 w8 w12

w1 w5 w9 w13

w2 w6 w10 w14

w3 w7 w11 w15

At the start of the ith iteration of the compression function, the chaining variable
and message are loaded as follows:
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v0
i−1 m0

i m4
i m8

i

v1
i−1 m1

i m5
i m9

i

v2
i−1 m2

i m6
i m10

i

v3
i−1 m3

i m7
i m11

i

The other inputs to the compression function, apart from the chaining variable
and the message block, are the salt and counter Ci. The salt will be used
as is during compression while Ci is used to provide the initial value to an
internal counter κ. The computation in compress512 runs over eight steps
of BIG.round which, in turn, consists of the sequential application of the
following three functions:

BIG.SubWords(S, salt, κ)
BIG.ShiftRows(S)
BIG.MixColumns(S)

This is the same form as one round of the AES and the similarities are even
closer if we consider each operation in turn.

3.1 BIG.SubWords(S, salt, κ)

This operation is, in effect, an S-box look-up. The S-box is a substitution on
128-bit words and directly uses two AES rounds without change. Given a 128-
bit word w, we can denote the action of one AES round function on w, using
subkey k, by

w′ = aes(w, k)

Here the AES round function is the full round that consists of SubBytes,
ShiftRows, MixColumns, and AddRoundKey in this order (using the FIPS 197
terminology in [58]).

The “subkeys” for the AES rounds will be given by the salt and the internal
counter κ. The internal counter κ is initialised with the value of Ci. The counters
κ and Ci are the same length2 and the internal counter κ will be incremented
during the compression computation. Ci is not incremented during compression,
but instead Ci is used to count the total number of message bits hashed by the
end of the iteration. Note that this is the number of message bits, and not the
number of padded message bits. Thus Ci will typically have a value that is a
strict multiple of Msize. The only exceptions to this concern the penultimate
and final iterations where the compression function might process both padding
bits and message bits. If both message and padding bits are processed in the
penultimate or final compression function then Ct−1 or Ct, respectively, will take
the value L. If the final iteration only processes padding bits and no message

2As stated before, a 128-bit counter is naturally supported (see later in this section).
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bits (which can happen for example when L is a multiple of Msize) then we set
Ct to the value 0.

In the basic version, the internal counter κ is 64 bits long and the two round
subkeys k1 and k2 are derived as:

k1 = κ ‖
64︷ ︸︸ ︷

0 · · · 0 and k2 = salt.

The operation BIG.SubWords(S, salt, κ) can now be described and each word
wi of the state S is updated to give the word w′i as

w′0 = aes(aes(w0, k1), k2), and then increment κ by one
w′1 = aes(aes(w1, k1), k2), and then increment κ by one

...
w′15 = aes(aes(w15, k1), k2), and then increment κ by one

Note that after every computation of some w′i we increment the counter κ by
one (or modulo 2128 for the longer counter below). Thus the “subkey” k1 that
is used in the AES operation changes from one step to the next. Since the offset
we apply to κ for any given word of the state can be readily computed, the
operation BIG.SubWords can be efficiently parallelised. Note that we continue
to increment κ throughout all the rounds, and so the second BIG.round of
computation will begin with κ = Ci + 16.

Applications that require exceptionally long message inputs.

In practical applications, it is hard to conceive of situations where echo would
be used with messages having a length close to 264 bits. Consequently a 64-bit
counter is almost certainly going to be more than adequate. However for those
that need it, the design naturally supports exceptionally long messages up to
2128−1 bits. For this the counters Ci and κ are implemented over 128 bits. The
two subkeys k1 and k2 used in the AES rounds will then be defined as:

k1 = κ and k2 = salt.

To ensure compatibility between versions of ECHO using different length
counters, we require that a 128-bit counter must be used when the message
length is 264 − 160 or greater.

3.2 BIG.ShiftRows(S)

The BIG.ShiftRows operation is an exact analogue of the ShiftRows opera-
tion in the AES. The 4× 4 array that holds the state S is permuted by shifting
rows of 128-bit words in exactly the same fashion as the byte-array is permuted
in the AES. We can therefore describe the action of BIG.ShiftRows on the
words w0, . . ., w15 as

w′i+4j = wi+4((i+j) mod 4) for 0 ≤ i, j ≤ 3 .
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This can be described pictorially as

w14

w15

w13

w12

w5w1

w4w0

w6w2

w7w3

w10

w11

w9

w8 w12w4w0 w8

w1w13w5 w9

w6w2w14w10

w15 w7w3 w11

3.3 BIG.MixColumns(S)

This operation is an exact analogue of the MixColumns operation in the AES.
The MixColumns operation performs an MDS-based mixing of four bytes, and
in the AES it processes each of the four columns of the state table in turn.

This process is extended in the obvious way to echo where we view the four
128-bit columns of the state S as 64 columns that are each a byte wide. Then
we apply the AES MixColumns operation to each of these columns in S.

w14

w10

w15

w11

w13

w12

w10

w11

w9

w5w1

w9

w4

w8
w8

w0

w6w2

w7w3

w13

w12

w14

w15

w5

w4

w6

w7

w1

w0

w2

w3

AES MixColumns

More formally, consider four 128-bit entries wi, . . ., wi+3 for i ∈ {0, 4, 8, 12}
that form a column in S. Writing these as byte strings we have

wi = (B16i, B16i+1, . . . , B16i+15)
wi+1 = (B16i+16, B16i+17, . . . , B16i+31)
wi+2 = (B16i+32, B16i+33, . . . , B16i+47)
wi+3 = (B16i+48, B16i+49, . . . , B16i+63)

Using FIPS-197 notation [58] we compute, for i ∈ {0, 4, 8, 12} and 0 ≤ j ≤ 15,
B′16i+j

B′16i+16+j

B′16i+32+j

B′16i+48+j

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·


B16i+j

B16i+16+j

B16i+32+j

B16i+48+j


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This is merely the AES MixColumns operation where the field arithmetic is
defined by the Rijndael polynomial x8 + x4 + x3 + x+ 1; more details are given
in [58].

3.4 Finalising Compression for 128 ≤ Hsize ≤ 256

The complete compression function compress512 can be described in terms of
the constituent operations:

repeat
BIG.SubWords(S, salt, κ)
BIG.ShiftRows(S)
BIG.MixColumns(S)

eight times
BIG.final

The operation BIG.final is used to derive the output value of the chaining
variable. It incorporates a feedforward of the inputs and if we denote the final
values in S as w0, . . ., w15 then BIG.final (for compress512) is described as:

v0
i = v0

i−1 ⊕m0
i ⊕m4

i ⊕m8
i ⊕ w0 ⊕ w4 ⊕ w8 ⊕ w12

v1
i = v1

i−1 ⊕m1
i ⊕m5

i ⊕m9
i ⊕ w1 ⊕ w5 ⊕ w9 ⊕ w13

v2
i = v2

i−1 ⊕m2
i ⊕m6

i ⊕m10
i ⊕ w2 ⊕ w6 ⊕ w10 ⊕ w14

v3
i = v3

i−1 ⊕m3
i ⊕m7

i ⊕m11
i ⊕ w3 ⊕ w7 ⊕ w11 ⊕ w15

3.5 The Hash Output for 128 ≤ Hsize ≤ 256

The final value of the chaining variable is viewed as a 512-bit string

v0
t ‖ v1

t ‖ v2
t ‖ v3

t .

To provide a hash output h of Hsize bits we output the Hsize leftmost bits.
Thus, for instance, for Hsize = 256 the output is given by

h = v0
t ‖ v1

t .

The hash outputs for other values of Hsize can be easily derived.

4 Compression for 257 ≤ Hsize ≤ 512

If a hash output larger than 256 bits is required, we use the compression function
compress1024. This is identical to compress512 except:

1. The padded3 messageM′ is divided into t message blocks M1 . . . Mt, each
of which is 1024 bits long.

3Recall from Section 2.2 that padding includes an encoding of the hash output length.
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2. The chaining variable consists of eight 128-bit words Vi = v0
i . . . v

7
i and is

initialised as described in Section 2.1.

3. At the start of compression, the chaining variable and message block are
loaded into the 4× 4 state array as:

v0
i−1 v4

i−1 m0
i m4

i

v1
i−1 v5

i−1 m1
i m5

i

v2
i−1 v6

i−1 m2
i m6

i

v3
i−1 v7

i−1 m3
i m7

i

4. Computation consists of ten iterations of BIG.round (instead of the eight
iterations used in compress512).

5. If we denote the final values in S as w0, . . ., w15, the operation BIG.final
to derive the new chaining variable is given by:

v0
i = v0

i−1 ⊕m0
i ⊕ w0 ⊕ w8 v4

i = v4
i−1 ⊕m4

i ⊕ w4 ⊕ w12

v1
i = v1

i−1 ⊕m1
i ⊕ w1 ⊕ w9 v5

i = v5
i−1 ⊕m5

i ⊕ w5 ⊕ w13

v2
i = v2

i−1 ⊕m2
i ⊕ w2 ⊕ w10 v6

i = v6
i−1 ⊕m6

i ⊕ w6 ⊕ w14

v3
i = v3

i−1 ⊕m3
i ⊕ w3 ⊕ w11 v7

i = v7
i−1 ⊕m7

i ⊕ w7 ⊕ w15

4.1 The Hash Output for 257 ≤ Hsize ≤ 512

The final value of the chaining variable is viewed as a 1024-bit string:

v0
t ‖ v1

t ‖ v2
t ‖ v3

t ‖ v4
t ‖ v5

t ‖ v6
t ‖ v7

t .

To provide a hash output h of Hsize bits we output the Hsize leftmost bits.
Thus, for instance, for Hsize = 384 we have

h = v0
t ‖ v1

t ‖ v2
t

while for Hsize = 512 the output is given by

h = v0
t ‖ v1

t ‖ v2
t ‖ v3

t .

The hash outputs for other values of Hsize can be easily derived.

5 Supporting Single-Pipe Applications

For those preferring a single-pipe mode, it is straightforward to adapt echo to
accommodate this. We will refer to this version of echo as echo-sp.
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5.1 Compression for 128 ≤ Hsize ≤ 256 with Single-Pipe

In this case the input message block becomes

Mi = m0
i ‖m1

i ‖m2
i ‖m3

i ‖m4
i ‖m5

i ‖m6
i ‖m7

i ‖m8
i ‖m9

i ‖m10
i ‖m11

i ‖m12
i ‖m13

i

the chaining variable becomes

Vi−1 = v0
i−1 ‖ v1

i−1

and the chaining variable and message are loaded as:

v0
i−1 m2

i m6
i m10

i

v1
i−1 m3

i m7
i m11

i

m0
i m4

i m8
i m12

i

m1
i m5

i m9
i m13

i

The rest of compression and message padding continues as before but with Csize
set to 256. The output chaining variable is given by

v0
i ‖ v1

i

with v0
i = x0

i ⊕ x2
i and v1

i = x1
i ⊕ x3

i where

x0
i = v0

i−1 ⊕m2
i ⊕m6

i ⊕m10
i ⊕ w0 ⊕ w4 ⊕ w8 ⊕ w12

x1
i = v1

i−1 ⊕m3
i ⊕m7

i ⊕m11
i ⊕ w1 ⊕ w5 ⊕ w9 ⊕ w13

x2
i = m0

i ⊕m4
i ⊕m8

i ⊕m12
i ⊕ w2 ⊕ w6 ⊕ w10 ⊕ w14

x3
i = m1

i ⊕m5
i ⊕m9

i ⊕m13
i ⊕ w3 ⊕ w7 ⊕ w11 ⊕ w15 .

5.2 Compression for 257 ≤ Hsize ≤ 512 with Single-Pipe

In this case the input message block is given by

Mi = m0
i ‖m1

i ‖m2
i ‖m3

i ‖m4
i ‖m5

i ‖m6
i ‖m7

i ‖m8
i ‖m9

i ‖m10
i ‖m11

i

the chaining variable is given by

Vi−1 = v0
i−1 ‖ v1

i−1 ‖ v2
i−1 ‖ v3

i−1 .

The chaining variable and message are loaded as:

v0
i−1 m0

i m4
i m8

i

v1
i−1 m1

i m5
i m9

i

v2
i−1 m2

i m6
i m10

i

v3
i−1 m3

i m7
i m11

i
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The rest of compression and message padding continues as before but with Csize
set to 512. The output chaining variable is given by

v0
i ‖ v1

i ‖ v2
i ‖ v3

i

where

v0
i = v0

i−1 ⊕m0
i ⊕m4

i ⊕m8
i ⊕ w0 ⊕ w4 ⊕ w8 ⊕ w12

v1
i = v1

i−1 ⊕m1
i ⊕m5

i ⊕m9
i ⊕ w1 ⊕ w5 ⊕ w9 ⊕ w13

v2
i = v2

i−1 ⊕m2
i ⊕m6

i ⊕m10
i ⊕ w2 ⊕ w6 ⊕ w10 ⊕ w14

v3
i = v3

i−1 ⊕m3
i ⊕m7

i ⊕m11
i ⊕ w3 ⊕ w7 ⊕ w11 ⊕ w15 .

16



Part II

Design Rationale and
Implementation

In this second part we highlight some of our design decisions and we provide an
overview of the anticipated performance profile of echo.

Summary

• echo has a simple design that stays close to the AES and facilitates a clear
and in-depth security assessment. This is corroborated by the important
amount of cryptanalysis published so far on echo.

• echo can directly leverage advances in the implementation of the AES.
This gives performance benefits and improved know-how with regards to
side-channel analysis.

• We provide estimates for the software performance of echo with a wide
range of estimates going down to 6 cycles per byte using the new Intel
AES instruction set. We also cover implementation estimates for smart
cards and the performance of echo in hardware.

• echo supports randomized hashing via the salt and naturally supports
the HMAC construction of FIPS 198-1 [60].

• There are no pre-computation or table-generation start-up costs for echo.

• The only S-box in echo is the AES S-box from FIPS 197 [58]. There are
no constants or other arbitrarily-chosen parameters in echo.

• While we believe that the security offered by a double-pipe construction is
required for SHA-3, echo smoothly supports the single-pipe construction
for those that prefer to trade more performance for a little less security.

• The hash output of echo is not restricted to the four must-satisfy values
of 224, 256, 384, and 512 bits.

• echo is a flexible and suitable replacement for SHA-2 in all applications
including those covered by NIST FIPS 186-2 [59], FIPS 198-1 [60], SP
800-56A [61], and SP 800-90 [62].
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6 Design Rationale

Throughout the design period we have attempted to build on trusted and known
components. Compared to our knowledge of block ciphers at the start of the
AES process, the research-level understanding of hash functions is much less
well-developed today. Over the past years we have seen some radically different
new design approaches, some of which feature among submissions to the SHA-3
process.

However, instead of embracing a new and relatively untested approach we
decided to return to block ciphers and to use the AES as a foundation for our
security. After DES [57] the AES is perhaps the most scrutinised block cipher
and it makes an interesting point of departure. In addition, new advances in
processor design (see Section 7.3) provide the opportunities for ever faster (and
more secure) implementation. We can therefore take this into account and
design a hash function with clear performance benefits in the near future. Here
we highlight some of the design features.

Simplicity.

We have attempted to make a simple, aesthetically pleasing, and some-
what provocative design. The main computation in echo is round-based
and so reduced-round versions that might be of interest to cryptanalysts
are easily defined. We encourage independent analysis of our proposal.

Security.

A simple design encourages analysis. With regards to the anticipated
security margins, we have adopted a conservative position. Not only do
we reuse trusted components from the AES, but we use a double-length
chaining variable to carry additional state through the hash computation.
While this has had some impact on the headline performance of echo, we
believe that the driving factor behind the adoption of SHA-3 should remain
security. For those that prefer a little more performance and are happy to
move to a single-length chaining variable, echo smoothly accommodates
this change.

Using the AES.

We use the 128-bit AES round computation as a building block in echo.
This allows us to directly exploit any future advances in AES implementa-
tion or processor-support. We also replicate the AES “square”-like struc-
ture so as to provide a simple framework for analysis. However, we decided
not to use the entirety of the AES as the basis of a construction. Analy-
sis [68] has shown that one would need at least five calls to the single-key
AES (when using standard design techniques) to achieve a 256-bit hash
output and at least eight calls to achieve 512-bit hash outputs. By reusing
internal rounds of the AES—rather than the entirety of the AES block
cipher—we are able to get much better performance.
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Avoiding a Key Schedule.

The classical approach to many hash functions—especially the MD/SHA
family—is to base the hash computation on a rather unusual block cipher
with a large input/output block and a large key. However, at the same
time, the “key schedule” or “message mixing” tends to be relatively simple
and this can allow differentials during the hash computation to be tamed
and controlled by a sophisticated adversary.

To avoid this some adopt a more complex key schedule. The alternative,
however, is to remove the opportunity to manipulate or interfere with a
computation once it has begun. This is our approach and as well as re-
moving this opportunity for the cryptanalyst, we avoid the need to design
an effective key schedule with the attendant additional cost to run-time
performance.

Being Input Neutral.

In the hash function literature—especially in the MD/SHA family—the
message and the chaining variable that accumulates the results of the
hashing process, are used in different ways. Given the prominence given
to academic attacks that exploit manipulations of the chaining variable,
we are not sure that such a distinction is entirely appropriate. Instead
both inputs are treated in the same way in echo and this has the pleasing
side-effect of making design and analysis more straightforward.

Smooth Parameter Handling.

The SHA-3 requirements are exacting in several regards, but the require-
ment to support four distinct hash lengths is one of the more challenging.
In echo we wanted a design that handled such a requirement as smoothly
as possible, and our design effectively allows the same implementation to
be reused for all required values.

Performance, Future Performance, and Parallelism.

In any design there are performance trade-offs. Most often it is secu-
rity levels that are traded against performance and, as noted earlier, we
have favoured security. But there can be other compromises, such as how
to deal with the massive range of deployed, and future, processors. We
decided to look more to the future. Without neglecting the needs of cur-
rent deployments, we aim to capture the benefits of future design trends
since these will define the high-performance environments over the next
30 years. In 2014 or beyond, applications with the highest performance
demands will need to benefit from the latest instruction-sets and internal
parallelism. This is where we have targeted our design.
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7 Performance Overview

7.1 Rule-of-Thumb

Since echo builds on the AES it is illustrative to make a back-of-the-envelope
calculation of their comparative performances. When using compress512 each
iteration of BIG.SubWords uses two AES round operations. Over the totality
of the compression function this amounts to 256 AES rounds with which we hash
192 bytes. This gives a hashing rate of 192

256 = 0.75 bytes per AES-round. When
using compress1024 this drops to 128

320 = 0.4 bytes per AES-round. Turning to
the AES we observe that 16 bytes are encrypted over 10 rounds for AES-128
and over 14 rounds for4 AES-256. The encryption rates are therefore 16

10 = 1.6
or 16

14 ≈ 1.1 bytes per AES-round respectively.
Given that we have ignored both the overheads in echo and the key schedule

demands in the AES, there is a lot of leeway in this guidance. However we feel
that a reasonable shorthand to estimate the software performance of echo is to
assume that it will be half the speed of AES-128 for hash lengths up to 256 bits,
and around one quarter the speed of the AES-128 for hash outputs between 257
and 512 bits. Implementation results confirm the validity of this rough measure.

With this kind of performance it is not surprising that echo is not the
fastest SHA-3 submission on the NIST reference platform. However echo has
a speed that we are very comfortable with, particularly when we consider the
additional positive design factors in echo. These include the ability to leverage
advances in the implementation of the AES and to deliver a simple design with
an advanced security analysis. Moreover, unlike many SHA-3 candidates, echo
performances are very acceptable on legacy processors and we also prefer to
attain a truly dramatic performance on modern processors, as is discussed below
(see Section 7.3).

7.2 Software Implementations

Our implementations give the following performance figures under compilers
for the NIST reference platform (Core 2 Duo 6600, 2.4 GHz, 2 GB of RAM)
running both Vista and Linux Debian etch amd64. All figures are given in
cycles per byte and the accuracy of our rule-of-thumb that the performance for
257 ≤ Hsize ≤ 512 is roughly half that obtained for 128 ≤ Hsize ≤ 256 can be
observed.

4Arguably AES-256 would offer a more comparable security level.
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128 ≤ Hsize ≤ 256
operating ANSI C ANSI C

compiler system 32-bit 64-bit
MS 2005 (cl 14.0, Option /Ox) Vista 51 38
MS 2008 (cl 15.0, Option /Ox) Vista 50 37
Intel (icl 10.1, Option /fast) Vista 45 35
Intel (icc 10.1, Option -fast) Linux 45 35

257 ≤ Hsize ≤ 512
operating ANSI C ANSI C

compiler system 32-bit 64-bit
MS 2005 (cl 14.0, Option /Ox) Vista 96 71
MS 2008 (cl 15.0, Option /Ox) Vista 93 69
Intel (icl 10.1, Option /fast) Vista 83 66
Intel (icc 10.1, Option -fast) Linux 83 66

These figures suggest the following software performance in ANSI C on the
NIST reference platform:

• 63 − 69 MBytes/sec. (64-bit implementation) and 47 − 53 MBytes/sec.
(32-bit implementation) for echo with hash outputs 224 and 256 bits.

• 34 − 36 MBytes/sec. (64-bit implementation) and 25 − 29 MBytes/sec.
(32-bit implementation) for echo with hash outputs 384 and 512 bits.

No initial computations are required to build up internal tables.
We note that code aimed at any particular platform, e.g. the NIST refer-

ence platform, will give very different results when run elsewhere and much will
depend on the amount of cache memory available. A range of implementations
using different techniques is underway, but assembly implementations are more
likely to give the best guide to the final performance we might expect. With this
in mind, the current results and our anticipated results for the NIST reference
platform are given below. All figures are given in cycles per byte. For compar-
ison with SHA-3 submissions that adopt the single-pipe construction, we note
that echo smoothly supports this option and offers a performance gain. These
figures are given below.

128 ≤ Hsize ≤ 256 257 ≤ Hsize ≤ 512
64-bit 32-bit 64-bit 32-bit

assembly (echo) 28.3 32.5 50.3 59.7
assembly (echo-sp) 24.4 26.7 35.3 40.7

A more extensive set of figures for optimized implementations for a wide
range of platforms is given in Appendix A.

7.3 Future Directions: AES Accelerators and Intel

The news that Intel would include an AES instructions set in a range of products
was warmly welcomed by the cryptographic community. Not only does this
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provide additional resistance to a range of side-channel attacks [4, 65], but it
also provides direct performance benefits.

echo was designed with such progress in mind and our goal was that echo
should directly benefit from any efforts to accelerate AES operations. Our design
uses the AES round untouched and these rounds can be performed directly using
the Intel AES instructions set. This gives dramatic performance figures.

The chips with the new instructions set are now available [35]. During the
first round of the SHA-3 process this was not the case yet, and we had to use
a new methodology to estimate what would be the performance of echo with
such instructions (see [3] for more details). It turns out that the initial estimates
were accurate as our benchmarks on the Intel Core i5 CPU confirm.

Full implementations using the new instructions set are available on the web
page of echo. We have the following performance measurements in cycles/bytes
where 224- and 384-bit outputs are obtained by truncating 256- and 512-bit
outputs:

128 ≤ Hsize ≤ 256 257 ≤ Hsize ≤ 512
Using AES-NI 64-bit 32-bit 64-bit 32-bit
echo 6.8 8.3 12.6 15.3
echo-sp 5.8 7.1 8.4 10.1

Using the new aesenc instruction we can compute a full AES round using
the following instruction with syntax:

aesenc xmm, xmm/mem128

where xmm is a 128-bit register and mem128 is a 128-bit word. The first operand
holds the AES state, the second holds the round key. The result of the AES
encryption is stored in the first operand. Thanks to the fully pipelined archi-
tecture of future AES-based units, it is possible to launch one aesenc per cycle
provided there is no data-dependency breaking the parallelism. The design of
echo uses 32 AES encryptions per round of the compression function, and these
can be divided into a first set of 16 independent encryptions (with the counter
κ as a key), and a second set of 16 independent encryptions with the salt as a
key. Incrementing κ after each aesenc could introduce unwanted data depen-
dencies, but we can deal with that by having a precomputation stage in the
compression function that fills a 2048-byte array. We can then use the 16 xmm
registers to hold the state and to parallelize 2× 16 aesenc instructions (which
have a dependency after 16 instructions). We have also implemented a 32-bit
variant of the code using half of the available xmm registers (8 instead of 16 in
amd64 mode). The performance figures remain very competitive as reported on
the table.
The advantages of using the AES instructions set—as well as increased resistance
to side-channel attacks—are clear.
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7.4 Smart Cards and 8-bit Implementations

Given modern trends in smart card design, new devices no longer pose the ex-
treme challenges that were seen even as recently as during the AES process.
While there remain smart cards with very limited memory in use, they are not
representative of the kind of cards that would be used for new applications.
Smart cards that were viewed as high-end ten years ago (during the AES pro-
cess) are now much cheaper and used routinely. Cards with at least 500 bytes
and more usually 1 Kbyte of RAM are common-place and 500 bytes is more
than enough for echo.

For estimates of the 8-bit performance of echo one can turn to figures for
the implementation of the AES. Since the fundamental component of echo is
the AES round echo inherits the same byte-oriented architecture. Over the
course of one iteration of the compression function compress512 we compute
256 AES rounds. Since the AES is typically implemented in smart cards with
on-the-fly key generation, we might reuse exactly the same number of cycles per
round that are estimated for the AES, and assume that this covers the actions
of the salt and κ in echo. Thus, we can start our estimates by multiplying
the cycles per round for an AES implementation by 256. The most significant
additional cost in echo would be the 64 additional AES MixColumns operation
that figure in BIG.MixColumns and we estimate this by 20×64 = 1280 cycles
per round. Taken together these lead to the following indicative figures for echo
with 128 ≤ Hsize ≤ 256. For echo with 257 ≤ Hsize ≤ 512 the performance
can be expected to drop by a factor of 8

15 .

AES AES echo
Extrapolating from . . . cycles/round cycles/byte cycles/byte

8051 AES estimates [17] 254 159 595
68HC705 AES estimates [40] 946 591 1314

ARM AES estimates [30] 289 181 439

A first-cut implementation of echo with 128 ≤ Hsize ≤ 256 on the Atmel
AT90SC (3.68 MHz) runs at roughly 360 cycles/byte. This is slightly better
than the extrapolations given above.

7.5 Hardware Implementations

Over the years much work has been done on FPGA and ASIC implementations
of the AES. As is well-known, the range of possible performance trade-offs for
hardware implementations is significant, depending on whether cost, through-
put, or area/energy consumption is a priority. It is therefore impossible to
capture the performance profile of any algorithm in just a few figures.

AES implementation work has often focused at the two extremes of the
hardware profile; implementations that attempt to maximise throughput and
implementations that attempt to minimise any area/cost/energy demands. All
of this work can be applied to echo and so, for instance, techniques that provide
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some of the smallest AES implementations [25] can be extended to implemen-
tations of echo. However, we question the usefulness of making such low-cost
estimates for SHA-3 candidates since the must-satisfy parameter choices and
security properties [63] are not particularly relevant to resource-constrained
environments.5 Our focus at this stage, therefore, will be on estimating the
throughput of echo using existing AES implementations for which throughput
is a priority.

The performance of a hardware implementation will depend on two main
factors; the size of the architecture (i.e. 32-bit or 128-bit) and the use of loop
unrolling and pipelining. The fastest AES implementations will be 128-bit ar-
chitectures while the value of loop unrolling and pipelining will depend on the
mode of operation of the AES. For echo the issue is somewhat simplified since
we do not need to support different modes of operation. Instead, when hashing a
single message we can only compute the second iteration of a compression func-
tion when the first one is finished, which makes it similar to what are termed the
feedback modes of operation for the AES. For a single message there is probably
little additional benefit in considering a fully-unrolled implementation, though
it is true that independent hash inputs could be interleaved to ensure that any
fully-enrolled circuit always remains busy. In general terms a hardware imple-
mentation of echo will inevitably be significantly larger than one for the AES.
However these additional costs should be mitigated a little since:

• we do not need to support decryption,

• we replace the key schedule with a simple counter, and

• there is a two-fold opportunity for parallelism, both within the AES round
and across the state6 table S.

Estimates for the hardware performance profile of echo might go as follows.
Here we consider the two extremes of (i) maximum throughput but large area,
and (ii) minimum area with potentially limited throughput.

(i) For the highest throughput it is possible to fully unroll and pipeline all the
stages of the echo compression function. The state S is made of 16 cells,
each one being processed independently during the two AES rounds of
BIG.SubWords. The output is then available for the BIG.MixColumns
operation, which can also be performed in parallel using 64 dedicated cir-
cuits. The whole combination of operations would be repeated 8 or 10
times depending on the echo variant. Pipelining allows to process the
core operations of the compression function in 8 (resp. 10) cycles, plus
one cycle for the feedforward step. This strategy has been implemented
in [50, 51] where a front-end serial to parallel module is used to feed the
state with chunks of incoming message, and a Finite State Machine is used

5In many low-cost applications there is no need for collision-resistance and an 80-bit secu-
rity level is often viewed as adequate, particularly if there is a need to minimize cost.

6By construction, actions on S replicate the AES structure at a higher level.
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to control the data path inside the rounds. For ASIC implementations,
VHDL simulations for 0.13 µm CMOS technology indicate a throughput
of 14.85 Gbps at 87.1 MHz for 128 ≤ Hsize ≤ 256, and a throughput
of 7.75 Gbps at 83.3 MHz for 257 ≤ Hsize ≤ 512. Similar results were
obtained for FPGA implementations (Xilinx Virtex 5 technology). Using
some optimization tricks on the AES modules, even a better throughput
of 26.4 Gbps has been achieved on Virtex 5 (30 Gbps on Virtex 6) with
a reasonable impact on the area for 128 ≤ Hsize ≤ 256. This implemen-
tation will soon be available on the echo website.

(ii) For a reduced area implementation of echo, it would be possible to use
only one copy of the iterated one-round AES block (with 16 SBoxes)
BIG.SubWords throughout (in 32 cycles), and a small circuit that mixes
columns in 128-bits chunks. Some 2048-bit registers are necessary to store
the data waiting to be processed between the input, the BIG.SubWords,
the BIG.MixColumns and the final stage that produces the hash output.
Such a design, implemented in [50, 51], shows a throughput of 0.37 Gbps
at 66.6 MHz for 82.8 KGates on ASIC technology. One can imagine bet-
ter results would be obtained by using a single-round AES block with
only 1 SBox unit and only 1 MixColumns unit for BIG.SubWords and
BIG.MixColumns: the MixColumns unit will be shared throughout the
whole Compress. Such a strategy has been implemented on Virtex 5
FPGA in [6], where echo takes only 127 slices and one memory block
on the area while running at 72 Mbps (with a 352 MHz frequency).

Between these two extreme designs there are many different variants using
different levels of parallelism to give different throughputs and area require-
ments. A simple approach would be to find a suitable compromise between fully
parallelized and fully iterated echo. For instance, one can use 8 AES blocks
instead of 16, making two iterations for each half of the state, and then using
only 32 cells for the BIG.MixColumns stage. While the number of cycles for
one iteration of the compression function would be roughly doubled, this does
allow us to get a range of results. Extrapolating from previous published results
on ASIC [50], a very crude estimate would give the following approximations
for a 128 ≤ Hsize ≤ 256 hash output (supposing that the area requirement of
an AES two-round block is around 30 KGates):

• 16 AES blocks — 500 KGates @ 14.85 Gbps

• 8 AES blocks — 290 KGates @ 7 Gbps

• 4 AES blocks — 170 KGates @ 3 Gbps

• 2 AES blocks — 120 KGates @ 1 Gbps

These figures don’t take into account bottlenecks and constant-cost effects on the
area and the throughput, but they do reflect the interesting range of trade-offs.
As already stated, more variants could be designed using a one-round block AES
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as the starting point, or even using different basic AES-block implementations
depending on the target architecture. And since surveys such as [32] show that
the AES can attain encryption speeds close to 70 Gbps in a high-throughput
implementation, improving the hashing rates over 30 Gbps for echo is entirely
plausible.

In short, the design space for implementing echo (and of course echo-sp)
is vast and a more complete evaluation of the possible trade-offs will gradually
take shape. Nevertheless, since echo builds directly on the AES we believe this
evaluation will be quickly achieved and, instead of reinventing the implementa-
tion wheel, existing work on the AES, with regards to both performance and
resistance to side-channel attack, can be leveraged directly.
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Part III

Security Claims and Analysis

In this final part of the document we provide a security assessment of echo.

Summary

• When echo is used to generate a hash output of n bits, where n takes the
values 224, 256, 384, and 512 bits, we claim that

– the work effort to compromise collision resistance is 2
n
2 operations,

– the work effort to compromise preimage resistance is 2n operations,

– there are no efficient distinguishing attacks against the HMAC con-
struction using echo, and that

– full security is provided against the message/salt attack described by
NIST in [63].

In short, the best attacks on echo are generic attacks.

• The number of rounds in echo can be viewed as tunable parameter. We
do not envisage any attack on six or more iterations of BIG.round that
would compromise the above security claim for 128 ≤ Hsize ≤ 256. Nor
do we envisage any attack on eight or more iterations of BIG.round that
would compromise the above security claim for 257 ≤ Hsize ≤ 512.

• The expected probability of the best characteristic over four BIG.round
operations in echo, averaged over salt and counter, is upper-bounded by
2−750.

Update: A recent improvement of the proof shows that the expected proba-
bility of the best characteristic over four BIG.round operations in echo,
averaged over salt and counter, is actually upper-bounded by 2−1200.

• The expected probability of the best differential over four BIG.round
operations in echo, averaged over salt and counter, is upper-bounded by
1.1× 2−452.

• In a direct parallel to the AES, structural distinguishers can be applied to
reduced-round echo. These reflect the AES-structure underlying echo
and help to set the security bounds.

• The internal counter κ is vital to the security of echo. Without this
counter, symmetries leading to trivial weaknesses can be identified.
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• echo uses the double-pipe strategy [52] which eliminates generic attacks,
such as multi-collision and herding attacks, on the Merkle-Damg̊ard con-
struction. echo is also resistant to length-extension attacks.
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8 Security Claims

In an iterated hash function, the relationship between the length of the hash
output and the length of the chaining variable has an impact on the security
offered. In the table below, we give the expected security levels against different
generic attacks when the chaining variable and the hash output are both n bits
in length and different iterated constructions are used.

Attack
Ideal Merkle

haifa
Hash Damg̊ard

Preimage 2n 2n 2n

2nd-preimage 2n 2n

k

2n

(k blocks)

Collision 2n/2 2n/2 2n/2

k-multi-collision 2
n(k−1)

k dlog2 ke2
n
2 dlog2 ke2

n
2

Details on these generic attacks (and extensions such as herding attacks) and
the security offered using different techniques is given in Section 10. However,
in echo we use a chaining variable that is twice the size of the hash output n
(the double-pipe strategy). This results in the following security claims for a
hash output of n bits.

Attack
Double

echo echo-sp
Pipe

Preimage 2n 2n 2n

2nd-preimage 2n 2n 2n

(k blocks)

Collision 2n/2 2n/2 2n/2

k-multi-collision 2
n(k−1)

k 2
n(k−1)

k dlog2 ke2
n
2
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9 The Compression Function

The compression function of echo operates on a large internal state of 2048 bits.
In some sense this was a natural consequence of our design philosophy since the
most effective way to guarantee a simple analysis was to directly replicate the
AES structure. We had tried smaller states before, but we were dissatisfied with
the strength of the security arguments we could make.

However once we have arrived at a larger state, then there are various ad-
vantages to be had. A large state allows us to carry a larger chaining variable,
which has obvious advantages against domain extension algorithm attacks and
for our security claims (see Section 8). And provided the large state has good
cryptographic mixing, i.e. good confusion and diffusion, we can drive down the
success probabilities of an attacker attempting to manipulate a differential path.
We now explore this issue in more detail.

9.1 Confusion and Diffusion

Shannon’s famous terms confusion and diffusion [71] often feature in block ci-
pher design and analysis. These notions can be loosely transferred to hash
functions even though there is now no secret key. The concepts are somewhat
imprecise and have been interpreted by commentators in different ways, but
confusion is often used to capture the idea of making the relationship between
input bits complicated, while diffusion is often used to describe the distribution
of change or influence.

It is not always easy to identify exactly how each component contributes
to the net gain in confusion or diffusion and, as a result, such analysis should
not be taken too seriously. But we know from results on the AES that the
S-box is a good source of confusion and makes an ideal contribution to the
resistance of the cipher to differential and linear cryptanalysis. Since we build
on the AES, this is a property that we inherit. Added to this, we can stress the
importance of the internal counter κ in the compression function of echo. The
counter κ determines the subkeys that are used in BIG.SubWords, and since
the counter changes from cell to cell each set of two AES-rounds embodies a
different transformation. The bit counter Ci that determines the initial value of
κ never takes the same value during the hashing of a message and this property
is inherited by the initial values of the internal counter κ. For very long messages
it is possible for κ to return to zero during a compression function computation
but this is of no consequence. In a similar vein, it is possible for the same values
of κ to appear in two successive calls to the compression function, for instance in
the last two calls to the compression function for a message of a suitable length.
But it is not possible for κ to take the same values at the same corresponding
positions of the compression function computation. Even if this were not the
case, having distinct values of κ between compression function calls was not a
design goal and their potential recurrence is of no consequence.

The actions of the S-boxes and κ are integrated into a very successful dif-
fusion mechanism that is directly inherited from the AES. To analyse diffusion
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in the BIG.round function, we will appeal to the classical result that over two
rounds of the AES a change to a single byte in the input to the AES influences
all 16 state bytes after two encryption rounds. A similar result can be claimed
for any two BIG.round operations, if we change our reasoning from bytes to
words, i.e. that a change to a single 128-bit word in the input to BIG.round has
an influence on all 16 words after two BIG.round operations. In fact, a closer
analysis shows that the modification of any internal state byte in compress512

or compress1024 potentially impacts every internal state byte after two iter-
ations of BIG.round. While we have these useful results on diffusion, there
are still some decisions to make on the placement of the inputs to compress512

and compress1024 in the state S. We elected to pack the chaining variable
and message words in such a way as to ensure that the input chaining variable
potentially impacts the whole internal state with the first BIG.MixColumns
transformation since BIG.ShiftRows is applied to the internal state before
the BIG.MixColumns transformation.

9.2 Differential Cryptanalysis

Differential cryptanalysis [10], while primarily viewed as a tool for block cipher
cryptanalysis, has also been one of the most successful ways to attack hash func-
tions. Indeed the collision is, in effect, a very carefully controlled differential
path and many of the considerations that apply to the differential cryptanalysis
of block ciphers apply equally well to hash functions. Interestingly, many recent
attacks exploit the relatively weak “key schedule” that is found in many con-
temporary hash function designs, and this has given many differential attacks a
new flavour. In this section, therefore, we concentrate on establishing the level
of resistance of echo to the many differential techniques that are available to
the cryptanalyst.

9.2.1 Notation

For ease of exposition we will need to consider the action of the compression
functions compress512 and compress1024 without the BIG.final and feedfor-
ward operations. What remains after removing these operations is, in fact, a
block cipher and it is the block cipher that naturally arises from our extension of
the AES. We will therefore call this derived cipher echo.aes. It has a 2048-bit
block size and consists of the composition of r round functions echo.round
that each take as input the state of the block cipher S and a 4096-bit round key
K. The round key can be viewed as a sequence of 128-bit words and it consists
of the sixteen (k1, k2) pairs for each of the cells in S:

K = k0
1 ‖ k0

2 ‖ k1
1 ‖ k1

2 ‖ · · · ‖ k15
1 ‖ k15

2 .

This round function is almost identical to BIG.round though it takes as input
(S,K) instead of (S, salt, κ). The round function echo.round is therefore
defined as the sequential application of the three functions:
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echo.SubWords(S,K)
echo.ShiftRows(S) (identical to BIG.ShiftRows)
echo.MixColumns(S) (identical to BIG.MixColumns)

The function echo.SubWords(S,K) is very closely related to the function
BIG.SubWords and is defined as:

w′0 = aes(aes(w0, k
0
1), k0

2)
w′1 = aes(aes(w1, k

1
1), k1

2)
...

w′15 = aes(aes(w15, k
15
1 ), k15

2 )

For analysis purposes we will use echo.sbox to denote the AES-based permu-
tation on 128-bit words w parametrized by two 128-bit keys k1 and k2:

echo.sbox(w, k1, k2) = aes(aes(w, k1), k2) .

We emphasize that the cipher echo.aes is only a tool to allow the analysis of
the echo compression function. This helps us to derive our security results.
However echo.aes should not, in itself, be viewed as a secure block cipher
proposal.

9.2.2 Basic concepts

The differential properties of the AES have been extensively studied. Before
applying them to our construction let us recall a few definitions. For 128-
bit input and output differences ∆w and ∆w′, and two fixed keys k1 and k2,
we will use dp2A[k1, k2](∆w,∆w′) to denote the differential probability of the
echo.sbox transformation.7 This is classically defined as

dp2A[k1, k2](∆w,∆w′) =

#{x ∈ {0, 1}128|echo.sbox(x⊕∆w, k1, k2)⊕ echo.sbox(x, k1, k2) = ∆w′}
2128

Note that this value does not depend on k2 since k2 is exclusive-ored at the end
of the second AES round. With this definition to hand we can now define:

edp2A(∆w,∆w′): the expected differential probability, the average of the dif-
ferential probability over all keys, and

medp2A: the maximum expected differential probability, the maximal value of
edp2A(∆w,∆w′) for all non-zero ∆w and ∆w′.

7We use the subscript 2A to emphasize its composition as two AES rounds.
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Similar values can be defined for the composition of r rounds of the transfor-
mation echo.round(S,K) and we will denote the corresponding values

DPr[K1, . . . ,Kr](∆S0,∆Sr)
EDPr(∆S0,∆Sr)
MEDPr

respectively, where ∆S0 is the input difference to the first round and ∆Sr is the
output difference from the rth round.

So far we have considered what is, in essence, a differential behavior since we
have paid no attention to the intermediate difference values generated at each
AES round. At times, however, we will need to define a characteristic, and so
we will adopt the following notation:

Ω = (∆S0,∆S′0,∆S1,∆S′1, . . . ,∆Sr−1,∆S′r−1,∆Sr) ,

where ∆Si denotes the input to the (i+ 1)st round and ∆S′i denotes the inter-
mediate difference after the first AES round in the (i + 1)st echo.SubWords
operation. The probability of the characteristic Ω is defined as the expected
probability of the characteristic over all keys and will be denoted ECPr(Ω).
The maximal expected characteristic probability, maxΩ ECPr(Ω), will be de-
noted MECPr.

As is usual in the literature on differential cryptanalysis, for a characteristic
Ω we say that any echo.sbox with a non-zero input/output is active. Similarly,
in an active echo.sbox, any specific AES S-box with a non-zero input/output
will be called an active AES S-box.

9.2.3 Characteristics and differentials

We are now ready to state our results on the differential properties of the cipher
echo.aes. This is the underlying component that is derived from the com-
pression function of echo, and our results will carry over to the compression
function, and then on to echo itself.

The case of characteristics is easily handled using existing results on the
AES. Indeed one can show, as for the AES [15], that characteristics over four
rounds of echo.aes require at least 25 active echo.sbox. In turn, each active
echo.sbox implies at least five active AES S-boxes, and so any characteristic
over four rounds of echo.aes will have at least 125 active AES S-boxes. Since
the maximal differential probability of the AES S-box is 2−6 this gives the
following result:

Theorem 1. The maximal expected probability for a characteristic over four
rounds of echo.aes is upper-bounded by

MECP4 ≤ 2−750 .
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This result can be improved by using the Super-Sbox view [16, 19, 18] of an
AES-like permutation. One can write four rounds of echo.aes as

BSW ◦BSR ◦BMC ◦BSW ◦BSR ◦BMC ◦ (1)
BSW ◦BSR ◦BMC ◦BSW ◦BSR ◦BMC.

It is obvious that the linear part BSR ◦ BMC at the end of the fourth
round has no impact on the number of active AES S-boxes. Moreover, we can
commute the layers BSW and BSR and we are left with

BSR ◦BSW ◦BMC ◦BSW ◦BSR ◦BMC ◦BSR ◦BSW ◦BMC ◦BSW.

Again, the first BSR layer has no impact on the number of active AES S-
boxes and we can see the 512-bit Super-Sboxes BSW ◦BMC ◦BSW appearing.
We denote SBSW = BSW ◦BMC ◦BSW and we have to analyse

SBSW ◦ (BSR ◦BMC ◦BSR) ◦ SBSW.

It is clear that the SBSW layer updates all the 512-bit columns indepen-
dently and we denote by minSBSW the minimal number of active AES S-boxes
through SBSW . We know that through BMC an active 512-bit column will
contain at least 5 active words on its input and output. Therefore, we can di-
rectly conclude that at least five columns will be active on the input and output
of the middle layer (BSR ◦BMC ◦BSR). Thus, the minimal number of active
AES S-boxes in a characteristic over four rounds of echo is 5×minSBSW .

Since BIG.SubWords is composed of two AES rounds, we can write one
512-bit Super-Sbox

SB ◦ShR ◦MC ◦SB ◦ShR ◦MC ◦BMC ◦SB ◦ShR ◦MC ◦SB ◦ShR ◦MC.

Using the same commutation technique as before, we deduce that we have
to analyse

SB ◦MC ◦ SB ◦ ShR ◦MC ◦BMC ◦ ShR ◦ SB ◦MC ◦ SB.

We can see the 32-bit Super-Sboxes SB ◦MC ◦ SB appearing. We denote
SSB = SB ◦MC ◦ SB and we are left with

SSB ◦ (ShR ◦MC ◦BMC ◦ ShR) ◦ SSB.

The middle layer ShR◦MC◦BMC◦ShR forces that at least 8 columns of 32
bits will be active on its input and output (because the byte branching number
of MC ◦ BMC is equal to 8). Moreover, it is well known that the minimal
number of active AES S-boxes through SSB is 5. Finally, we can conclude that
minSBSW = 8×5 = 40 and the minimal number of active AES S-boxes through
four rounds of echo is equal to 200.

Theorem 2. The maximal expected probability for a characteristic over four
rounds of echo.aes is upper-bounded by

MECP4 ≤ 2−1200 .
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Figure 1: The SDS transformation, where S denotes a keyed m-bit to m-bit
bijection, and D denotes a bijective GF(2)-linear mapping over the set of n-
tuples of m-bit words, with n = 4.

Generally speaking, it is not as straightforward to derive upper bounds for
differentials as it is for characteristics. However, due to our design, we are able
to give a strong upper bound for the probability of any differential over four
rounds of echo.aes. To start, we will use the following result on the exact
value of the MEDP of two rounds of AES that is due to Keliher and Sui [41].
Note that this value is exactly the MEDP of echo.sbox.

Lemma 1. The exact value of the MEDP for two rounds of AES is

medp2A =
53
234
' 1.7× 2−29 .

To use this result we will need a generalisation, to be given below, of a result
of Hong et al. [33]. This result is concerned with the MEDP of what is termed a
substitution-diffusion-substitution (SDS) transformation. Let S denote a keyed
m-bit to m-bit bijection, and let D denote a bijective GF(2)-linear mapping over
the set of n-tuples of m-bit words. The SDS transformation associated with D
and S is illustrated in the keyed transformation T that appears in Figure 1. The
keys of the 2n mappings S involved in T are assumed to be independent and
uniformly distributed. The linear mapping D is said to be Maximal Distance
Separable (MDS) if its branch number is equal to n + 1; that is each non-zero
input-output pair contains at least n+ 1 non-zero m-bit words.

Let ∆x and ∆y denote the input and output differences to the SDS trans-
formation and ∆z denote the difference after the first layer of S permutations.
The SDS transformation is said to be Markovian [48] if, for all input and output
difference values ∆x and ∆y, the following equality holds:

EDP(∆x,∆y) =
∑
∆z

EDP(∆x,∆z) · EDP(D(∆z),∆y) .

Let MEDP(S) (resp. MEDP(T )) denote the maximal expected differential prob-
ability of S (resp. T ). Then one can prove the following lemma:

Lemma 2. If D is GF(2)-linear and MDS and the SDS transformation is
Markovian, then

MEDP(T ) ≤ MEDP(S)n .
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D′S

Figure 2: An example of a nested SDS transformation.

Proof. The proof is similar to the one in [33] which assumes that the keyed
permutation S consists of the exclusive-or of a round key to the state followed
by the application of a fixed S-box, which yields a special case of Markovian SDS
transformation. We also observe that while the proof of [33] uses the assumption
thatD is GF(2m)-linear, it can be easily extended to the more general case where
D is GF(2)-linear. The remainder of the proof is unchanged.

We can now apply this result in a recursive manner to echo.aes using an
idea due to Rijmen [69] and also used by Ohkuma et al. [64]. Consider the en-
tirety of the nested construction that is depicted in Figure 2, and where we now
observe that the keyed permutation S is, itself, another SDS transformation.
Provided that the linear mappings D and D′ are MDS and that the Marko-
vian property holds for both SDS transformations S and T , then we can apply
Lemma 2 to both levels of the nested construction T to give the upper bound:

MEDP(T ) ≤ MEDP(S′)n
2
,

where n is the number of parallel permutations S′ in each substitution layer of
the SDS transformation S.

But how do we apply this nested SDS to echo.aes? This next step is due
to an observation of Rijmen [69] and Ohkuma et al. [64] who showed that four-
round AES can be viewed as an instance of just this kind of nested construction
in Figure 2. There is a difference in the fixed initial and final linear mappings,
but these have no effect on the MEDP value that is derived. In this way, an
upper bound of 2−6×16 = 2−96 was derived for the MEDP on four-round AES,
though the tighter upper bound of

(
53
234

)4 ≈ 1.881× 2−114 was later established
in [41].
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Figure 3: An equivalent representation of four-round echo.aes using the
fact that echo.SubWords and echo.ShiftRows commute. Recall that
echo.sbox is keyed (the input keys are not represented). In a slight abuse
of notation the echo.MixColumns denoted here represents the restriction of
the full echo.MixColumns to a single column of the state.
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Since echo directly replicates the AES structure, the observation of Ohkuma
et al. can be easily transposed to the four-round version of echo.aes. The
rewriting of four rounds of echo.aes as a nested SDS transformation is shown
in Figure 3. Recall that each round of echo.aes consists of echo.SubWords,
echo.ShiftRows, and echo.MixColumns and also that echo.SubWords
and echo.ShiftRows commute. We can therefore represent four rounds of
echo.aes as in Figure 3. It is now easy to see that if we ignore the initial
echo.ShiftRows and the final echo.MixColumns and echo.ShiftRows
transformations, then we get an instance of the nested SDS construction of
Figure 2. The parameters are m = 128 and n = 4 and dotted lines are used
to group the second-level internal SDS transformations as well as the top-level
linear mapping D. Then, to complete the derivation of our result, we note the
following.

1. The linear mapping D′ applied to each column of echo.MixColumns is
MDS with respect to 128-bit words.

2. The linear mapping

D = echo.ShiftRows ◦ echo.MixColumns ◦ echo.ShiftRows

is MDS with respect to 512-bit words. This easily follows since a non-
zero input to D requires that at least one of the four instances D′ in
echo.MixColumns is “active” which means that at least five of the four
128-bit input and four output words of D′ are non-zero. These four 128-
bit inputs (resp. output) words belong to four distinct 512-bit groups at
the input (resp. output) of D.

3. The inner and outer SDS transformations in Figure 3 are Markovian.
This follows since the second subkey k2 is exclusive-ored at the end of the
echo.sbox transformation.

Using Lemma 1 we can now state the following result:

Theorem 3. The maximal expected differential probability for four rounds of
echo.aes is upper bounded by (medp2A)16, that is

MEDP4 ≤
(

53
234

)16

≈ 1.055× 2−452 .

While the bounds in Theorems 1 and 3 are good enough for our purposes,
we strongly believe that both bounds are not tight. In Section 9.2.6 we will
bring these results together and make our security claims for echo.

9.2.4 Fixed-key characteristics

Moving from bounds on the expected probability of a characteristic over all
keys, to an estimate with a particular key is not so easy. With this in mind,
some authors have considered the case of characteristics for fixed keys. Daemen
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and Rijmen have introduced the notion of plateau characteristics [16]. Given a
characteristic Ω related to a keyed mapping, Ω is called a plateau characteristic
if the characteristic probability CP[K](Ω) associated with a key K can only take
the values 0 and pΩ 6= 0. It is interesting to note [16] that all the two-round
characteristics of AES are plateau characteristics and that the maximum value
of CP[K](Ω) over all keys and non-trivial 2-round characteristics is equal to
25

232 = 2−27. This analysis on two rounds of the AES, and the accompanying
preliminary analysis of its extension to four rounds, indicates that even over
more AES rounds, the ratio between the maximum value of CP[K](Ω) over all
keys and non-trivial characteristics and the MECP remains moderate no matter
which key is chosen. Any significant divergence from the expected behavior
of a characteristic occurs with a very low probability and this suggests that
the maximum fixed-key differential probabilities encountered in an AES-based
algorithm, such as the compression function of echo, are not expected to vary
dramatically from the average case when we fix the salt and counter.

9.2.5 Truncated differentials

Truncated differentials are a special class of differential attacks. Instead of
considering characteristics for which the difference value at each round is entirely
specified, we might represent the difference as an n-tuple

(γ1, · · · , γn)

where the entirety of a w-bit block is viewed as, say, n blocks of m bits (with w =
n×m) and γi takes a one-bit value depending on whether a givenm-bit sub-block
is active or not. The probabilities associated with truncated differentials are
often higher than for regular differentials since less detail needs to be specified.
However they are typically most applicable to the analysis of highly-structured
primitives. One such example is given by the analysis [66] of Grindahl [45] which
also reused AES components. It is therefore worth considering the vulnerability
of echo to truncated differentials.

While there is no obvious characterization of truncated differential attacks
on echo.aes, particularly ones that would allow an adversary to construct a
collision or pseudo-collision for the compression function, it is natural to as-
sume that the difficulty of a truncated differential attack on compress512 or
compress1024 would be related to the difficulty of finding a high-probability
truncated differential for echo.aes. In the notation above, this will amount to
finding a byte-wise output difference vector (γ1, · · · , γ256) with an exceptionally
low Hamming weight t � 256 indicating that not many of the 256 possible
byte positions are active. Strong evidence against this eventuality is given by
considering the two most natural attack strategies:

1. Start from a high-weight input difference pattern (or let the weight of a
difference pattern grow freely in the first rounds of echo.aes) and grad-
ually reduce the weight of the difference pattern during later rounds.
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2. Find a truncated characteristic in which the initial and all intermediate
difference patterns have an exceptionally low weight.

For the first approach, there appear to be no truncated differentials of non-
negligible probability that would allow a high Hamming weight truncated dif-
ferential, with say close to 256 active bytes, to be reduced to a low Hamming
weight truncated differential with, say, 128 active bytes. To see this we note
that among the elementary byte-oriented transformations inside echo.aes only
the MixColumns operation can effect the number of active bytes. This operation
was analysed in [66] and approximate values for the base two logarithm of the
probabilities associated with any four-byte input difference, represented by a
binary quartet of Hamming weight ωi, being mapped to any four-byte output
difference, represented by a binary quartet of Hamming weight ωo, are given
below.

ωi\ωo 0 1 2 3 4
0 0 −∞ −∞ −∞ −∞
1 −∞ −∞ −∞ −∞ 0
2 −∞ −∞ −∞ -8 0
3 −∞ −∞ -16 -8 0
4 −∞ -24 -16 -8 0

So if ωi > ωo are the input and output Hamming weights of any binary quartet
that represents a four-byte difference pattern, then the associated approximate
probability is upper bounded by 2−8(ωi−ωo). If we now consider any truncated
characteristic over several rounds for which the input difference pattern has
weight H and the output difference pattern has weight L, then the probability is
upper-bounded by a quantity close to 2−8(H−L). Thus if H ≥ 228 and L ≤ 128,
say, then the probability of any truncated differential characteristic with these
input and output weights is upper-bounded by about 2−800.

The success of the second approach depends on finding a very sparse trun-
cated differential that holds over sufficiently many rounds of echo.aes. To see
that this is very unlikely, we consider an analysis of 128-bit words, rather than
the byte-level analysis we used before. Any echo.aes state difference can be
represented by a 16-tuple (∆w0, · · · ,∆w15) of 128-bit words and an associated
truncated difference pattern γ = (γ0, · · · , γ15) of sixteen binary values. Now
consider any non-trivial truncated differential characteristic over four consecu-
tive echo.aes rounds. Denote by γ1, γ2, γ3, and γ4 the difference patterns at
the inputs to the first through fourth rounds, where none of the γi is trivial.
Then at least one of the four patterns from γ1 through to γ4 has a Hamming
weight at least eight. So for any message pair that satisfies this truncated dif-
ferential, at least one half of all sixteen 128-bit difference values in at least one
round are active, and the excellent diffusion properties of the AES that we have
inherited in echo make it very difficult to maintain a lightweight truncated
differential over many rounds.
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Summary: Truncated differentials.

We know of no cryptographic primitive that affords a formal proof of resistance
to truncated differential cryptanalysis. In this regard echo.aes and echo are
no different. That said, the inherent structure within the design of echo is
very strong, and this allows us to give very good analytical evidence that trun-
cated differential cryptanalysis is highly unlikely to be successful, particularly
in producing pseudo-collisions or collisions in echo.

9.2.6 Differential cryptanalysis and echo

Taken together, our results show that the different flavours of differential crypt-
analysis are very unlikely to be applicable to echo. Our results on charac-
teristics and differentials in echo.aes carry over to the compression functions
of echo. It is important to note that the attacker fully controls the compres-
sion function inputs and can increase the potential for a differential attack by,
for example, choosing the input words adaptively, by using neutral bits tech-
nique [7], by message modification [74, 75, 76, 77], and by using boomerang
techniques [38]. We conservatively assume, therefore, that an attacker is only
unable to control four rounds of the compression function (half of the scheme
for 128 ≤ Hsize ≤ 256 and less than half the scheme for 257 ≤ Hsize ≤ 512).
Even then, our best differential attacks gives a complexity that far exceeds the
difficulty of compromising echo by brute-force techniques.

9.3 Resistance to Other AES Attack Methods

Since the compression function of echo is so closely related to the AES, we can
investigate its resistance to various dedicated attack methods that have been
proposed against the AES. Taken together with our differential cryptanalysis,
these have helped us set the appropriate number of rounds for compress512

and compress1024.

9.3.1 Structural attacks

Some of the most efficient attacks against reduced-round versions of AES are
based upon efficient distinguishers. Two of the most efficient distinguishers
are the three-round integral distinguisher of the Square attack [15] and the
four-round integral distinguisher used in the improved integral cryptanalysis of
round-reduced AES [26].

Given the design of echo the transposition of these distinguishers to echo
is straightforward. If we apply a three-round echo.aes encryption to a set of
2128 2048-bit blocks which take all possible values on one of the sixteen 128-bit
word positions and some constant value in all the others, then the sum of all
the 2048-bit output blocks is equal to zero. Similarly, if we apply a four-round
echo.aes encryption to a suitably chosen set of 2512 2048-bit blocks, then the
sum of the obtained output blocks will be equal to zero.
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The efficient four-round distinguisher used in the so-called bottleneck attack
on round-reduced AES [27] can also be transposed to echo.aes. One would
obtain a four-round distinguisher requiring about 2256 partial computations to
distinguish the four-round echo.aes instance associated with a random un-
known key from a random permutation. This however is unrelated—even if
we were to ignore the considerable gap in the number of rounds—to the at-
tack properties that would be required after eight or ten rounds in trying to
compromise echo, particularly if we take into account BIG.final.

While improved distinguishers against echo.aes and echo can never be
ruled out, the close relation of our design to the AES, and the amount of study
that has taken place on the AES, lends considerable strength to our believe that
integral or collision-based distinguishers represent little risk to echo.

9.3.2 Known-key distinguishers

In [46] Knudsen and Rijmen introduced a novel security requirement on block
ciphers, namely their resistance to so-called known-key distinguishers. This was
motivated by the observation that block ciphers are sometimes used in settings
where the algorithm inputs, outputs and keys are known of an adversary, and
that the security requirements in such settings, e.g. hashing, are not sufficiently
captured by the usual security definitions.

While the authors of [46] recognise that finding a rigorous and practical
definition of known-key distinguishers remains an open problem, they describe
a reasonably efficient known-key distinguisher on seven-round AES where the
MixColumns operation is omitted from the seventh round. This distinguisher
consists of generating, given any known key, a set of 256 plaintext/ciphertext
pairs such that in each of the 32 input or output byte positions, each byte value
occurs exactly 248 times. It can be reasonably conjectured that generating such
a set in the case of a random permutation over 128 bits would be computation-
ally intractable. The known-key distinguisher of [46] exploits the existence of
efficient integral distinguishers for AES encryption over the last four rounds and
for decryption over the first three rounds. The adversary starts from an appro-
priately chosen structure of 256 middle blocks and exploits these distinguishers
to build the plaintext/ciphertext pairs.

The transposition of this distinguisher to echo.aes is straightforward. It
would allow us to distinguish seven-round echo.aes without the transformation
BIG.MixColumns in the seventh round, using a structure of 27×128 = 2896

2048-bit blocks, and its complexity would be close to 2896 seven-round echo.aes
computations. However, due to the huge complexity and the number of input
blocks it involves, this distinguisher clearly does not threaten the security of
the echo compression function. Moreover, even if we assume that an improved
known-key distinguisher might be found in the future, it would be unlikely to
result in a distinguishing property for the echo compression function since the
BIG.final transformation has a convolution effect on the echo.aes output
distribution.
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9.3.3 Algebraic attacks

It is well-known that the AES has a relatively simple algebraic description [56]: it
can be described as a sparse and overdetermined multivariate quadratic system
of 5248 equations over GF(28) with 2560 state variables and 1408 key variables.
This observation can likely be extended to echo.aes, and in turn to echo,
but resulting in a much larger algebraic system. Given the lack of progress
in algebraic cryptanalysis on these kind of systems, we would be surprised if
algebraic cryptanalytic techniques were applicable to any great extent on echo.
We also note that since the path of each input bit can be tracked through 16 to
20 AES S-boxes, the total degree of the equations describing the compression
function of echo will have a very high degree. We believe this will provide
resistance to the recent cube attack of Dinur and Shamir [23].

9.3.4 Related-key attacks

The design of echo is such that we do not have a conventional key schedule;
the attacker is not able to control the chaining variable and the message inputs
in such a way as to generate differences that would be input part-way through a
computation. Once a difference in these quantities is input to the compression
function, they are not used elsewhere. The only additional inputs are the counter
κ and salt. These certainly are not available to the kind of manipulation that
we might see applied to the chaining variable and message; for instance salt
might not even be used and might be set to zero in most applications. However
some particularly sophisticated attacks might be worth considering.

Related counters.

In echo the value of the internal counter at the start of compression is assigned
by the value of Ci and so it can only be controlled in a very crude way by an
attacker. Moving blocks of message would allow differences to be invoked in the
two parallel instantiations of κ, but it would at the same time mean that the
attacker would have to control, or at least account for, the induced difference in
the chaining variable. Much of Section 9.2 was devoted to demonstrating how
hard this would be. If one were to consider a weakened version of echo where an
attacker could control the counter values absolutely, then we can demonstrate an
interesting interaction with the salt. However the probability of the resultant
differential is beyond our security bounds, and there are numerous reasons why
even this simplest approach does not apply to either the weakened or the full
version of echo.

Assume that at one iteration of the compression function there is no differ-
ence in the chaining variable or message input. Then suppose that a low-weight
difference is applied to κ so that the resultant differences in κ throughout the
compression function computation remain in a single byte. (This is possible
since κ increases by less than 256 during compression.) Then these one-byte
differences will be active during every BIG.SubWords call of the compression
function. More precisely, differences in κ will be added after the first AES round
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since κ is the first of two subkeys. The second AES round will then diffuse the
one-byte differences to four bytes using MixColumns in the AES round. The
second subkey is salt and we might assume that the attacker can choose the
appropriate difference to the salt so that differences created by κ are system-
atically erased by salt. This might be viewed as local collisions [14] in every
BIG.SubWords call, and the hope would be to obtain a collision at the end of
the compression function computation. However, for each local collision, under
the best conditions for the attacker only one AES S-box is active. Thus we have
16 local collisions per round, which gives a success probability upper bounded
by 2−96×r over r rounds. Already this is enough to see that such an attack is
very unlikely and this is before we have even considered whether such differen-
tials are structurally feasible given that salt is added in the same way across
all table entries across all rounds.

Related salts.

Since the counter κ is difficult to control and since it increments during com-
pression, the attacker might be more interested in trying to set up differences
between parallel hashes using values to salt that are related in some way. Here
we compute a bound on the probability of success for any differential path that
is generated in this way, whatever the input or output differences to the com-
pression function.

For this we introduce the following notation. Let nin
j be the number of active

128-bit words at the input to BIG.round j of the compression function, and let
nout
j be the number of active 128-bit words after the BIG.ShiftRows function

of BIG.round j but before BIG.MixColumns. This means that nout
j and

nin
j+1 are separated by the MDS-based BIG.MixColumns operation and it can

be seen that:
4nin

j+1 ≥ nout
j .

At every round, and in every 128-bit word of the state S, the application of
salt will introduce a non-zero difference during BIG.SubWords where salt
is used as the subkey to the second AES round. Therefore, for any round j,
the number of active words before BIG.SubWords plus the number of active
words after BIG.SubWords is at least 16. Since BIG.ShiftRows does not
affect the number of active words, we have that nin

j + nout
j ≥ 16 and over r

rounds
r∑
j=1

(nin
j + nout

j ) ≥ 16r .

Whatever the input and output differences, since nin
j also represents the num-

ber of active words before applying the BIG.SubWords function in round j,
for an r-round differential path the number of active echo.sbox is at least
min

∑r
j=1 n

in
j , where the minimum is taken over all valid values for nin

j and
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nout
j . Putting this together we have8:

r∑
j=1

(nin
j + nout

j ) ≥ 16r

r∑
j=1

nin
j + 4

r∑
j=2

nin
j + nout

r ≥ 16r

r∑
j=1

nin
j + 4

r∑
j=1

nin
j + nout

r − nin
1 ≥ 16r

5
r∑
j=1

nin
j ≥ 16r − nout

r + nin
1

5
r∑
j=1

nin
j ≥ 16(r − 1)

r∑
j=1

nin
j ≥

⌈
16(r − 1)

5

⌉
.

This analysis shows that any differential path using related salts will contain at
least ten active echo.sbox for four rounds and sixteen for six rounds. Since the
probability for an active echo.sbox is upper-bounded by 2−30 the probability
of a four-round differential path is upper bounded by 2−300 and a six-round
differential path by 2−480.

We stress that it is very unlikely that a differential path exists that meets
these bounds. To be valid such a differential path imposes numerous constraints
on salt, of which many are likely to be contradictory. Also our bound was
derived by considering any differential path; the goal of achieving a collision in
the compression function requires us to consider BIG.final which adds even
more constraints and further lowers the probability. In short we do not believe
that differential attacks on echo exploiting the relationship between salts are
viable.

9.4 New Analysis of AES-Based Hash Functions

Reflecting the simplicity and clarity of AES-like design techniques, some new
cryptanalysis based on truncated differentials [44] has recently been published.
These are particularly relevant to hash functions that use AES-like techniques
and it is interesting to note that results can be divided into five different types:

• simple truncated differential attacks [66],

• rebound attacks [54, 53],

8For the penultimate inequality nin
1 = 0 and nout

r = 16 covers the best candidate among
all differential paths.

45



• start-from-the-middle attacks [53, 67],

• super-Sbox attacks [28, 49, 67, 70], and

• multiple inbound attack [73].

The first type of attack, using regular truncated differential attacks, was
already considered during the design phase of echo. It was already known that
the very substantial use of the MixColumns transformation in echo effectively
eliminates this threat.

The second and third types of analysis, rebound attacks and start-from-the-
middle attacks, were applied on echo in [53]. It was claimed that the internal
permutation that lies within the echo compression function can be distinguished
from a random 2048-bit permutation with 2384 computations and 264 memory
when reduced to 7 rounds. However, an inconsistency was pointed out in regards
to the utilization of this technique for echo [34].

The fourth type of analysis is, perhaps, currently the most effective for col-
lision search on echo compression function. The latest such analysis [67, 70]
show that one can derive a distinguishing attack against 4.5 rounds of the 256-
bit version of the echo compression function with an effort of 296 computations
and 232 memory and against 6.5 rounds of the 512-bit version with an effort
of 296 computations and 232 memory. Regarding free-start collisions for the
compression function, 3 rounds of the 256-bit version can be attacked with 264

computations and 232 memory while 3 rounds of the 512-bit version can be
attacked with 296 computations and 232 memory.

Moreover, the full 8-round internal permutation can be distinguished from
a random 2048-bit permutation with 2512 computations and 2512 memory while
the 7-round version requires 2128 computations and 232 memory [67]. With so-
phisticated improvements concerning the Super-Sbox method, the complexity
has been reduced down to 2182 computations and 237 memory for the 8-round
version and down to 2118 computations and 238 memory for the 7-round ver-
sion [70].

It is interesting to note that the full number of rounds in the internal per-
mutation can be “reached” with the Super-Sbox analysis, as is the case with
other SHA-3 candidates such as Grøstl [67]. Such analysis reflects the simplicity
of design and, depending on the details of the analysis, it helps to measure the
inherent differential properties of these algorithms. However, when designing
echo the goal was not to build a seemingly-ideal 2048-bit permutation, but
rather to build a secure 256-bit or 512-bit hash function. The large internal
permutation is an important component of the compression function, but then
so is the final convolution that provides a major contribution to the diffusion
in echo. As a consequence, it is important to analyse the compression func-
tion in its entirety rather than to consider the internal permutation in isolation.
Indeed, this is the appropriate position since the attendant proofs of security
for the operational mode of a hash function require indistinguishability of the
compression function.
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Finally, the fifth type of analysis has proved to be efficient when studying the
hash function security, or distinguishers for the compression function. In [73],
the author describes a distinguisher for the 256-bit version of echo reduced to
5 rounds with 296 computations and 264 memory, while a collision attack on
4 rounds requiring 264 computations and memory is also given. Interestingly,
these attacks are not directly applicable to the corresponding echo compression
function because they exploit the final truncation phase at the end of the hash
function process. Therefore, these attacks are not showing weaknesses on re-
duced versions of echo, but rather that the incorporation of an output function
before the final truncation phase would be an interesting feature.

In [73] is also described a distinguishing attack against the 7-round reduced
256-bit version of echo compression function with 2152 computations and 264

memory. The same attack applies for the 512-bit version with a complexity of
2162 computations and 264 memory.

All the results are summarized in Table 1 with ongoing work showing similar
complexities for echo-sp. Note that in general the single-pipe versions of echo
compression functions are harder to distinguish because the attack complexity
can not be compared with the generic complexity for the double-pipe security
anymore. In conclusion, there have been a lot of cryptanalysis conducted on
echo thanks to the simplicity of its design that positively encourages analysis.
The echo security margin is still perfectly fine, even after the application of
very sophisticated methods that broke many SHA-3 candidates in the past years.
Moreover, unlike other AES-based SHA-3 candidates, both echo compression
and hash functions remain secure. Finally, even if aiming at double-pipe security
is much harder, our design philosophy has always been one of security first; just
as we resisted the temptation to compromise security with a single-pipe design,
we would prefer a solid margin for security in the compression function of echo.

9.5 New Analysis on the AES Itself

During 2009 there was much excitement about some recent advances in the
analysis of the AES. In several pieces of work [13, 11] attacks on different con-
figurations of the AES were highlighted. On closer examination, however, it is
clear that this analysis focuses on the key schedule of the AES and not on the
properties of the encryption routine. Indeed, we see very similar results begin-
ning to appear as was the case with SHA-1; the very light AES-256 key schedule
allows the attacker to build what are, in effect, local collisions during encryption
as a way to control and limit the propagation and spread of a difference.

Rather than being a threat to echo, this work actually gives very strong
confirmation for our design philosophy; in echo there is no key schedule and
once the compression function computation has begun there is no opportunity
for the attacker to control or limit any avalanche of change. Instead, this work
on the key schedule of the AES provides yet more evidence for the difficulty of
designing a good key schedule. Instead it is the SHA-3 submissions that use a
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Table 1: A summary of best cryptanalysis results for echo.

target rounds
comp. mem.

type ref.
req. req.

echo internal

permutation

7 2118 238 distinguisher [70]

8 2182 237 distinguisher [70]

echo (256-bit)

comp. function

3/8 264 232 free-start collision1 [67]

7/8 2152 264 distinguisher2 [73]

echo-sp (256-bit)

comp. function

3/8 264 232 semi-free-start collision [67]

6/8 2152 264 distinguisher [73]

echo (512-bit)

comp. function

2.5/10 232 232 free-start collision1 [67]

7/10 2162 264 distinguisher [73]

echo-sp (512-bit)

comp. function

3/10 264 232 free-start collision1 [67]

7/10 2152 264 distinguisher2 [73]

echo (256-bit)

hash function

4/8 264 264 collision [73]

5/8 296 264 distinguisher [73]

echo-sp (512-bit)

hash function

4/10 264 264 collision [73]

5/10 296 264 distinguisher [73]

key schedule that are more threatened by this kind of advance.

9.6 Further Notes

In this section, we briefly outline some other scenarios that we have considered
in our analysis of echo.

First one can remark that the main internal primitive used in echo is an S-
box composed of two AES rounds. An attacker could pre-compute and store the
S-box outputs for any input and for any counter or salt value. This would cost
him 2128×3 = 2384 operations and memory. Then, when the attacker tries to
mount an attack, he might use these huge tables to accelerate his basic operation
cost, such as finding an input that maps to a particular output after application
of the function BIG.SubWords. While we have observed no attack that can
be directly derived from this observation, it may remain a useful tool for future
analysis of the security of echo.

Secondly we have considered the inherent symmetry of the AES cipher.
When an AES internal state is filled with identical column values then it is
well-known that an application of the AES round will maintain this property.
In the case of the AES block cipher, this is prevented by the asymmetry in

1In a chosen-salt setting, this can be improved to a 3-round reduced semi-free-start collision
attack requiring 296 computations and 232 memory [67].

2In a chosen-salt setting, this can be improved to a 7-round reduced distinguishing attack
requiring 2107 computations and 264 memory [73].
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the key schedule. However, in our case the key schedule has been removed and
there might be the concern that such a vulnerability exists for echo. In fact,
this highlights the primary purpose of the internal counter κ which is different
for every BIG.SubWords call. This helps resist efforts to maintain symmetry
within both the inner- and the outer-AES components of echo.

10 The Domain Extension Algorithm

Our choice for the domain extension algorithm in echo may be a little surpris-
ing. The haifa framework [8, 9] is often mentioned as an alternative to the
so-called double-pipe strategy [52], in which the chaining variable is twice the
size of the hash output Hsize. However we have opted to combine the two. We
see numerous advantages in doing this, though the increased assurance we get
is somewhat offset by the performance implications.

The haifa framework, its security, and its practical advantages are already
covered elsewhere [8, 9]. Here we merely highlight some of the advantages that
made this approach an attractive choice for us.

Apart from its simplicity, the haifa framework has many nice features. A
variable output hash size can be supported in a secure way since both initialisa-
tion and padding depend on the output length. Varying initialization helps to
avoid hash outputs being related when truncation is used to get different hash
output lengths. Length-dependent padding also helps avoid birthday paradox-
based techniques being applied to the internal state to get related hash outputs.
In addition haifa has built-in support, via a salt, for a family of hash func-
tions that allows us to place the hash function within certain theoretical models.
We can also provide randomized hashing and, when the salt is unknown in ad-
vance, pre-computation attacks on the compression function or hash function
are avoided.

The haifa framework also has several practical and security advantages.
First, we inherit the advantages of Merkle-Damg̊ard such as the one-pass on-
line hashing property, which means that we are only required to keep a fixed
amount of memory for hashing each message block. On the security side, haifa
allows us to maintain the Merkle-Damg̊ard proof regarding collision-resistance,
namely, that if the compression function is collision-resistant then the hash
function is also collision-resistant.

As well as a salt, the haifa framework includes a bit counter as an input
to the compression function. This is a useful counter-measure and hinders an
attacker from exploiting any fixed points that might be found in the compression
function. When using Merkle-Damg̊ard with a traditional compression function,
then once a fixed point is found, it is straightforward to concatenate message
blocks so as to keep the output of the compression functions looping as often
as required. Dean [21] showed that this could be used to devise a second-
preimage attack and while this kind of attack might have little practical impact
because of the long messages required, many commentators would prefer to
avoid this possibility. In the case of haifa, the counter prevents an attacker
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from exploiting such a fixed point since the bit counter that is input to the
compression function changes at each iteration thereby disrupting the loop in
the computation. Note however that Davies-Meyer-like fixed points are avoided
in the compression function of echo.

The counter is also useful in avoiding message extension attacks, which is
sometimes viewed as a threat to certain message authentication code (MAC) con-
structions. For instance, the construction MACk(m) = hash(k‖m) is known
to be secure for an ideal hash function, but not with a Merkle-Damg̊ard con-
struction, even when instantiated with an ideal compression function. In haifa,
however, the number of bits hashed so far is input to the compression function
and this helps prevent extension attacks on the highlighted MAC construction.

One final advantage of the haifa framework is the improved resistance to
a spate of generic attacks that have been applied to the Merkle-Damg̊ard con-
struction; these include multi-collisions [37], long second preimage attacks [43],
and herding attacks [42]. On this issue, it is worth paying a bit more atten-
tion to exactly what haifa provides. Regarding multi-collisions attacks, for
instance, the haifa framework only prevents pre-computation by an adversary
thanks to the salt. Therefore if the effort to find an internal collision is, say,
2a operations, then a 2k-multi-collision can be found with k × 2a operations.
There is therefore no real gain over Merkle-Damg̊ard, and this is exploited in
applications of the herding attack [42]. And while herding attacks are made
more complex by an unknown salt, if the salt is chosen by the attacker then the
attacks will still apply.

It is for this reason that we decided to complement the haifa approach with
the double-pipe proposal [52]. We feel that while a salt has a very useful role it
is only a partial solution to structural problems with vanilla Merkle-Damg̊ard.
Further, when a hash function requires n-bit security the salt should be at
least n

2 bits long without the double-pipe. For hash outputs such as 512 bits,
as required by NIST, this begins to have an impact on the simplicity of the
underlying design.

Thus the salt in echo is primarily used to support randomized hashing. We
then complement the added functionality of haifa with a double-length chain-
ing variable. So for a Hsize-bit hash output, the chaining variable in echo is at
least 2×Hsize bits long. In our view it is the double-sized chaining variable that
protects us from recent structural attacks on Merkle-Damg̊ard and we get imme-
diate resistance to herding attacks and to multi-collision attacks. If no collision
attack on the compression function with complexity less than 2Hsize operations
can be found, then no multi-collision attack applies to echo. However, even if
a collision attack on the compression function in 2Hsize operations were to be
found, while our resistance to multi-collisions would default to that offered by
the haifa construction, collision-resistance of echo would still be maintained,
as is shown by the proof to the Merkle-Damg̊ard construction. We also get
increased resistance to attacks that might seek to exploit any fixed points in the
compression function. And, since only half the information in the final chaining
variable is present in the hash value, we obtain a natural resistance to extension
attacks.
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For more background and details the interested reader is referred to Section 4
of [9] for more study of the haifa framework, and to [52] for a security analysis
of the double-length chaining value.
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A Performance Figures

The following table gives the latest implementation results (cycles/byte) for
echo on a wide range of platforms. For echo-sp the anticipated performance
can be obtained by multiplying figures in the first column by 0.86 and those in
the second by 0.67.

Platform 128 ≤ Hsize ≤ 256 257 ≤ Hsize ≤ 512

Core i5 (x86)? 8.3 15.3
Core i5 (amd64)? 6.8 12.6

Core i7 (x86) 30.6 56.6
Core i7 (amd64) 25.7 47.5

Core 2 (x86) 32.5 59.7
Core 2 (amd64) 28.3 50.3

Phenom I/II (x86) 34.9 64.6
Phenom I/II (amd64) 28.4 52.5

Opteron K8 (x86) 32.3 59.0
Opteron K8 (amd64) 28.5 51.7

Athlon K8 (x86) 35.3 65.3
Athlon K8 (amd64) 28.4 52.5

Athlon K7 XP (x86) 40.7 75.3
Athlon ThunderBird (x86) 41.6 76.0

Pentium 4 (x86) 42.5 78.6
Pentium III (x86) 45.5 84.2
Pentium II (x86) 47 87
Pentium M (x86) 40.6 75.1

Atom (x86) 84.1 158.4
PowerPC G3† 66 122.1
IBM Power4† 59.0 101.0
Itanium IIα 33.9 60.9.0

SPARC‡ 95 175.8
ARMα 147 272

Cell Broadband (PlayStation 3)¶ 29.6 -
Nvidia GPU (GTX 295)¶ 0.85 -

? Using AES-NI instructions set.
¶ Implementations described in [78].
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All figures correspond to optimized assembly, except:
† optimized C code, further improvements are possible with assembly, especially
on G4 and G5 series where Altivec vector instructions set is enabled (a 30%
performance increase is expected).
‡ non optimized assembly, some improvements might be possible.
α non optimized C, significant improvements are possible with C and assembly.

Test configurations were as follows. The compilers were gcc 4.4 or 4.3 and the
OS were Debian GNU/Linux lenny or Ubuntu karmic koala –i386 and amd64–
except for ARM which was running Linux 2.6.15 embedded with gcc 3.4.3.

• Pentium 4: Pentium 4 Northwood @ 2 GHz and Xeon Prestonia @ 2 GHz

• Pentium III: Pentium III Coppermine @ 960 MHz

• Pentium II: Pentium II Klamath @ 300 MHz

• Pentium M: Pentium M @ 1.6 GHz

• Core 2: Core 2 Duo 6600 @ 2.4 GHz and Xeon E5420 @ 2.5 GHz

• Core i7: Core i7 920 @ 2.67 GHz

• Core i5: Core i5 M540 @ 2.53 GHz

• Opteron: AMD Opteron 850 @ 2.2 GHz

• Athlon K8: Athlon 64 3200+ @ 2 GHz

• Athlon K7: Athlon XP 2800+ @ 2 GHz

• Atom: Intel Atom N270 @ 1.6 GHz

• PowerPC G3: PowerPC 750FX @ 800 MHz

• SPARC: SPARC IIi Sabre @ 267 MHz

• ARM: ARM926EJ-Sid @ 500 MHz

The figures for the Athlon ThunderBird, the Phenom I/II, the IBM Power4
and the Itanium II have been extracted from the eBASH [79] results. The figures
for the multi-threaded Cell and GPU platforms are reported in [78].
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