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Abstract. This report summarizes readings in the area of the crypt-
analysis of block ciphers. Historically, the academic field started in 1981
with the first CRYPTO conference and observations on some undesir-
able properties of the DES. Practically, most cryptanalytic techniques
were developed in the 1990s. A number of them are variants of two
decisive progresses in the field. Differential cryptanalysis was found by
Biham and Shamir and presented at CRYPTO 90. Linear cryptanaly-
sis was developed by Matsui and presented at EUROCRYPT 93. From
these times plenty of papers tried to take advantage of these techniques
in different attempts to break public ciphers and some of these papers
introduced original improvements. These two techniques also led to the
development of criteria for security evaluation of block ciphers. Recently
designed block ciphers like the Advanced Encryption Standard Rijndael
have been based on the idea of provable security against these two attacks
and their improvements. This work tries to list and give an intuitive de-
scription of the most important cryptanalytic techniques published up to
2002. No technical details are given and the interested reader is referred
to the bibliography if exhaustive information is requested.

Introduction

Cryptanalysis is a fast moving area of research and its most important re-
sults were presented during conferences. As a consequence, very few reports are
dedicated to the presentation and survey of cryptanalytic results. Although this
report is not complete and it could also be largely improved, it seemed to us that
it could be a useful tool for students interested in the design and cryptanalysis
of block ciphers.

Practically, the report is structured into different sections that present some
of the most important cryptanalytic techniques published up to 2002. Sections
are presented as reading notes as they practically result from the readings of
different students and researchers in UCL Crypto Group. For every section, we
tried to give an intuitive description of the attack, illustrate how it can be a threat
for block ciphers security, give some examples of practical implementations and
describe possible countermeasures. For these purposes, we assume that the reader
is familiar with the basics of block cipher theory.



The different sections are (with no chronological significance):

1. Linear cryptanalysis.
2. Differential cryptanalysis.
3. Characteristics vs differentials, multiple approximations and key indepen-

dence.
4. Extensions of differential and linear cryptanalysis:

(a) Differential-linear cryptanalysis.
(b) Non-linear cryptanalysis.
(c) Chosen-plaintext linear cryptanalysis.
(d) Partial or truncated differential.
(e) Higher order differentials.

5. Miss in the middle attacks - impossible differentials.
6. Boomerang - rectangle attacks.
7. Interpolation attacks.
8. Square saturation - integral - multiset attacks.
9. Related key attacks.

10. Slide attacks - secret s-box cryptanalysis.
11. Complementation property attacks and weak keys.
12. Conclusion: future work in cryptanalysis.

Finally, the reader should be aware that this report is ”just” reading notes. It
probably includes mistakes and imprecisions. As a consequence, we would be
grateful to any reader for sending comments, corrections, ... of the text.

1 Linear cryptanalysis

Introduction: In its basic version, linear cryptanalysis is a known plaintext
attack that uses a linear relation between inputs and outputs of an encryption
algorithm that holds with a certain probability. This approximation can be used
to assign probabilities to the possible keys and locate the most probable one.

Analysis of components: The first part of a linear cryptanalysis is a systematic
analysis of the components of the cipher. Usually, the only non-linear part of
a block cipher is the substitution layer composed of a number of S-boxes. The
basic idea is to approximate these boxes with an expression that is linear. Such
an expression is of the form:

Xi1 ⊕Xi2 ⊕Xi3 ⊕Xi4 ⊕ ...⊕ Yi1 ⊕ Yi2 ⊕ Yi3 ⊕ Yi4 = 0 (1)

Where Xi, Yi respectively are the S-box inputs and outputs. For a n-bit input,
m-bit output S-box, there are (2n−1) × (2m−1) possible linear approximations
of the box. The cryptanalyst will investigate every possible linear approximations
and the probabilities that these approximations hold. As S-boxes have 2n possible
inputs, if x is the number of times a linear approximation holds, the resulting
probability is computed by p = x

2n and the corresponding bias is defined as
ε = p− 1

2 .



Combining the linear approximations through the cipher: Once linear approxi-
mations of the S-boxes have been found, the problem is to find a way to combine
them so that a final approximation of the cipher only involves plaintext bits,
ciphertext bits and key bits.
Such a combination will propagate a single linear approximation through the
cipher, involving a number of S-boxes and therefore, a number of linear ap-
proximations. The following lemma allows deriving the probability of a linear
approximation through several S-boxes.

Piling-Up Lemma: Let Xi be independent random variables of which the values
are 0 with probability pi and 1 with probability 1−pi. Then the probability that
X1 ⊕X2 ⊕X3 ⊕X4 ⊕ ...⊕Xn = 0 is

1
2

+ 2n−1
n∏

i=1

(pi − 1
2
) (2)

If the number of active S-boxes (i.e. involved in the linear approximation of the
cipher) is n, and the probability that these active S-boxes hold is pi, we can easily
derive the probability of a global linear approximation of the cipher. Equation (2)
shows the importance of considering the bias of a linear approximation. We will
see that the bigger the bias is, the better the attack works.

The attack: If R is the number of rounds of the algorithm, linear cryptanalysis
needs a R−1 rounds linear approximation of the cipher. Then, only some bits of
KR are needed to expand the linear approximation to R rounds, corresponding
to the ”active” boxes of round R− 1; let us denote these bits by kR. The linear
approximation used can thus be written as:

X[i1, ..., im]⊕ F−1(Y, kR)[j1, ..., jn] = K[l1, ..., lp] (3)

where X represents the plaintext, Y the ciphertext, and K the key. X[i1, ..., im]
denotes the sum of bits i1, ..., im of X. For example, X[i1, ..., im] := Xi1 ⊕ ...⊕
Xim .

We implement this last round for every possible kR. Then for each key can-
didate ki

R, let Ti be the number of plaintexts such that the linear approximation
of the cipher holds, Tmax the maximal Ti, Tmin the minimum Ti and N the
number of computed plaintexts.

1. If |Tmax − N
2 | > |Tmin − N

2 |, then adopt the key candidate corresponding to
Tmax.

2. If |Tmax − N
2 | < |Tmin − N

2 |, then adopt the key candidate corresponding to
Tmin.

If enough plaintexts are computed, we will probably recover kR. As the linear
approximation involves plaintext bits, ciphertext bits and key bits, an additional
XOR relation between key bits can be obtained.



Key guess: The procedure to expand a r − 1 approximations to r rounds by
trying all possible keys involved in this expansion is called key guess and is often
used in cryptanalysis. We can usually guess the key on the first and last rounds
but sometimes also on the second and r − 1 ones.

Complexity of the attack: Let ε represent the bias corresponding to the proba-
bility that the linear expression for the cipher holds. In his paper, Matsui shows
that the number of known plaintexts required in the attack (let us denote it by
N) is proportional to ε−2, so it is reasonable to approximate N by

N ' 1
ε2

(4)

The probability of success of the attack (i.e. the probability that the key recov-
ered is indeed the right one) increases with the number N of plaintexts consid-
ered. In practice, it is generally reasonable to expect some small multiple of ε−2

known plaintexts are required.

Countermeasures: The effectiveness of linear cryptanalysis depends on the prob-
ability that a global approximation of a cipher holds. Therefore, to provide re-
sistance against linear cryptanalysis:

1. The bias of the linear approximations of the single S-boxes or other possible
non-linear elements in the cipher must be as low as possible.

2. The number of active S-boxes or other non-linear elements in any approxi-
mation of the cipher must be as high as possible. In this respect the diffusion
layer plays an important role.

It is important to note that resistance against linear cryptanalysis gives no proofs
of security because similar attacks could be imagined using other approximations
of the cipher (higher order approximations for example). Other attacks could also
be imagined.

2 Differential cryptanalysis

Introduction: In its basic version, differential cryptanalysis is a method that
analyses the effect of particular differences in plaintext pairs on the difference of
the resultant ciphertexts. These differences can be used to assign probabilities
to the possible keys and to locate the most probable key.

Analysis of components: The first part of a differential cryptanalysis is a sys-
tematic analysis of the components of the cipher. Usually, the only non-linear
part of a block cipher is the substitution layer composed of a number of S-
boxes. Linear transformations like bit permutations or key additions only affect
differences between 2 texts in a deterministic and bijective way. On the other
hand, for a non-linear S-box, knowledge of the input difference of a pair cannot
guarantee knowledge of its output difference. However, every input difference of



a substitution box suggests a probabilistic distribution of the possible output
differences.
For a n-bit input, m-bit output S-box, there are 2n possible input difference and
for every possible input difference, 2m output differences are a priori possible.
The cryptanalyst will investigate every possible input difference and compute the
number of occurrences of every output difference. We define a S-box differential
as a pair:

∆X
p→ ∆Y (5)

which means that an input difference ∆X causes an output difference ∆Y with
probability p. One can tabulate the complete data for a S-box in a difference
distribution table.

Constructing differential characteristics: Once the differential information has
been compiled for the non-linear components of the cipher, we have the data to
proceed with the determinations of a useful differential characteristic of the over-
all cipher. Such a differential characteristic combines single S-boxes differentials
and finally involves plaintext and ciphertext bits only.

Probability that the differential characteristic holds: Assuming that occurrences
of pairs of input and output differences in active S-boxes are independent from
each other, the differential characteristic probability is given by:

n∏

i=1

pi (6)

where n is the number of active S-boxes and pi the probability of the difference
propagation in S-box i.

The attack: If R is the number of rounds of the algorithm, differential crypt-
analysis needs a R − 1 rounds differential characteristic of the cipher with a
suitably large enough probability. Let KR denote the key involved in the last
round. Typically, only some bits of KR are needed to expand the differential
characteristic to R rounds, corresponding to the ”active” S-boxes of round R;
let us denote these bits by kR. If we implement this last round for every pos-
sible kR, and count the number of occurrences of our differential characteristic
for every kR, after a sufficient number of plaintext pairs the correct one can be
distinguished.

Complexity of the attack: We denote the plaintext difference of a characteristic
by ΩP and the corresponding difference after R− 1 rounds by ΩC . Any pair of
plaintexts with a plaintext difference of ΩP and a difference of data after round
R − 1 of ΩC is called a right pair. It can be shown that the number of chosen
plaintext pairs required to distinguish right pairs when trying subkey candidates
is

c

p
(7)

Where p is the characteristic’s probability for the R− 1 rounds and c is a small
constant.



Signal to noise ratio: The attack effectiveness can be evaluated independently
from the number of plaintext pairs by computing S/N . If we are looking for k
key bits, then we count the number of occurrences of 2k possible key values in
2k counters. The counters contain an average count of m.α.β

2k counts where m is
the number of pairs, α is the average number of keys suggested by each pair of
plaintext and β is the ratio of non-discarded pairs to all pairs. The right key value
is counted about m.p times using the right pairs where p is the characteristic
probability. The signal to noise ratio of a counting scheme is therefore:

S/N =
m.p

m.α. β
2k

=
2k.p

α.β
(8)

If S/N ≤ 1, then a differential attack will not succeed.

Countermeasures: The effectiveness of differential cryptanalysis depends on
the probability that a differential characteristic of a cipher holds. Therefore, to
provide resistance against differential cryptanalysis:

1. The difference propagations inside the single S-boxes or other possible non-
linear elements in the cipher have to be as low-probable as possible.

2. The number of active S-boxes or other non-linear elements in any differential
characteristic of the cipher must be as high as possible.

It is important to notice that resistance against differential cryptanalysis gives
no proofs of security because similar attacks could be imagined using other char-
acteristics (higher order for truncated differentials for example). Other attacks
could also be imagined.

3 Characteristics vs differentials, multiple approximations
and key independence

Introduction: Predictions of linear and differential cryptanalysis are done using
approximations for which the probability is hard to evaluate.

Characteristics vs differentials: In a differential characteristic, only the plaintext
difference ∆P and the last ciphertext difference ∆C are relevant to the attack.
This means that the intermediate differences can be arbitrary selected. The
notion of differentials was introduced to account this observation:

– A differential is a pair formed of an input difference ∆0 and an output
difference ∆R.

– A characteristic is a sequence of differences (∆0;∆1; ...;∆R) where the dif-
ference after each round is given.

The problem is that where the probability of a r-round characteristic can be
easily computed as the product of the probabilities of r one-round characteristics,
the probabilities of a differential (∆P, ∆C) seem hard to evaluate.



Even though the existence of good characteristics is sufficient to mount efficient
attacks, to prove security against differential attacks, we need to ensure that
there are no differentials with high enough probabilities to enable successful
attacks.

Linear hulls: The concept of linear hulls was introduced to underline the same
phenomenon of multiple possible intermediate patterns in linear cryptanalysis.
As both linear hulls and differentials are difficult to predict, designers usually
make use of approximations in order to predict an upper bound of their proba-
bilities.

Multiple approximations: Multiple approximations usually exist inside block
ciphers and it was also attempted to efficiently combine the approximations in
order to improve the efficiency of cryptanalysis. However, the problem of their
combination is complex because the sign of the bias of different approximations
is needed if we want to combine them. As this sign depends on the key, addi-
tional guesses have to be made if we want to use multiple approximations. It
practically resulted only in limited improvements and the question of the optimal
combination of multiple approximations in cryptanalysis is still open.

Key independence: Another hypothesis used to compute the probabilities of
linear or differential attacks is the assumption that all the round keys are uni-
formly random and independent. Practically, the round keys are often derived
from a master key using a key scheduling algorithm. As a consequence, there are
some small differences between what an attacker can expect to see and what he
actually sees when performing the attacks. Nevertheless making this hypothesis
remains very reasonable.

4 Extensions of differential and linear cryptanalysis

4.1 Differential-linear cryptanalysis

Introduction: A chosen plaintext attack where the linear cryptanalysis was used
to provide a differential characteristic.

Interest: Basic linear or differential cryptanalysis uses prohibitive amounts of
known or (worse) chosen plaintexts. The goal of differential-linear cryptanalysis
is to reduce the amount of texts required. An eight round attack against DES
recovers 10 bits of key with only 512 chosen plaintext. However, expansions to
higher number of rounds have not been found.

The attack on DES: The key point of the attack is the observation that toggling
2 bits in the second round of the cipher will leave the output bits of Matsui’s
best 3-round linear relation unchanged.
If we consider this chosen pair of plaintexts and an 8-round attack using Matsui’s
3-round characteristic twice, the input bits of the second 3-round approximation



are unchanged with probability 1 and its output bits are unchanged with prob-
ability p2 + (1 − p)2 where p is the probability that the 3-round relation holds.
Indeed these bits will not change if either:

1. The second relation holds twice: p2.
2. The second relations fail twice: (1− p)2.

Then, we extend this differential characteristic to the ciphertext bits, involving
one s-box. So we have to guess 6 key bits.
The remaining problem is to find a way to toggle adequate bits in the second
round. This can be done by guessing another 6 key bits (but only 4 new ones)
and therefore, we can generate the adequate pair of plaintexts with a certain
probability.
Finally, 10 key bits are recovered with about 512 chosen plaintexts.

Countermeasures: The attack is possible because some bits may remain un-
changed after a number of rounds. Therefore, differential-linear cryptanalysis
can by avoided by designing a cipher where overall diffusion is provided in a
small number of rounds, so that a change in an input bit will produce a possible
change of every output bit.

4.2 Non-linear cryptanalysis

Introduction: It is an improvement of linear cryptanalysis that decreases the
number of texts required to cryptanalyse the cipher. One proposes to use non-
linear approximations in order to get better s-boxes approximations (better prob-
abilities).

Motivation: As a motivational example, the best linear approximation of a DES
s-box holds with an absolute valued bias of 20

64 , yet there is a relatively simple
non-linear approximation which holds with absolute bias 28

64 .

The problem of joining non-linear approximations: Let Ci
h be the left input

bits of round i and Ci
l be the right input bits. Ci

h[α] denotes a general and
unspecified and linear sum of bits of the data block Ci

h and Ci
h[p(α)] denotes a

general and unspecified non-linear relation between bits of the data block Ci
h.

Forming a round approximation as we have in linear cryptanalysis is difficult
because it requires that we can combine bits. For example, for a Feistel cipher,
we need:

(Ci−1
h ⊕ Ci

l )[p(α)] = Ci−1
h [p(α)]⊕ Ci

l [p(α)] (9)

And for a non-linear p(.), this will not, in general, hold.

Practically, to extend the approximation across a DES s-box to the entire round,
we need to guess additional key bits. Indeed, the input bits of the s-box xi

are combined with key bits ki to form the expansion function output bits zi:
xi ⊕ ki = zi. Therefore, the expansion of, say x0x1 to the round input bits will



depend on key bits. For example, if (k0, k1) = (0, 1), we have x0x1 = z0z1 ⊕ z0.
This involves an additional guess on these key bits. In non-linear cryptanalysis,
not only the sign of the bias depends on the key, its value does also.

The attack: Despite of difficult combination, non-linear approximations can still
be used in a variety of ways:

1. The inputs (resp. outputs) to an approximation to the first (resp last) round
of some ciphers need not be combined with any other approximations. Con-
sequently, approximations of these rounds can equally be linear or non-linear
if we can fix some plaintext bits, making the key-dependency of first (resp
last) rounds known to the attacker.

2. Linear cryptanalysis of Feistel ciphers makes certain bits of the input to the
second (or penultimate) round available to the cryptanalyst. Consequently,
non-linear approximations can potentially be used in these rounds also.

3. Key dependency of non-linear approximations can be used to perform an-
other kind of key guess in the first (resp last) rounds of block ciphers. It
allows more flexibility than classical cryptanalysis.

Conclusions and countermeasures: There may be circumstances where non-
linear approximations can improve linear approximations. Moreover they can be
used if large S-boxes are used in order to make the key guess impractical. It
is then possible to perform the key guess on a non-linear approximation of the
s-box. Regarding countermeasures, remark that non-linear approximations are
limited to the outer rounds of an algorithm; consequently, in a cipher using a
large number of rounds, linear cryptanalysis should not be significantly improved
by non-linear approximations.

4.3 Chosen plaintext linear cryptanalysis

Introduction: It is an improvement of the linear cryptanalysis based on an
adequate choice of the plaintext, in order to reduce the number of active s-boxes
and therefore, reduce the number of required plaintexts. The resulting attack is
the fastest attack reported on DES.

Basic idea: In Matsui’s original linear cryptanalysis, one performs a key guess
in the first and last rounds of the cipher, corresponding to 12 key bits in DES.
By fixing the 6 input bits to the first active s-box, the key guess is reduced to 6
key bits in the last round. Since the noise of 63 wrong keys is less than the one
of 4095 wrong keys, the attack is expected to be of lower complexity than that
of Matsui.

Improvement: In addition to fixing the 6 key bits of the input to the active s-box
in the first round, one can try to do the same for a possible active s-box in the
second round, so that the probability of the characteristic is improved. Practi-
cally, we just fix the inputs to all s-boxes in the first round which output bits are
input to the active s-boxes in the second round. Consequently, the probability
of the linear characteristic is computed considering one round less.



Conclusions and countermeasures: Moving to the chosen plaintext context,
we can improve Matsui’s linear cryptanalysis significantly (a factor of ' 2.6 is
gained). However, this improvement is limited to the outer rounds of a cipher
because one tries to fix the input bits of active s-boxes and we can only access
input bits of outer rounds. Fixing bits is possible as long as the diffusion process
is not complete. In a cipher using a large number of rounds with good diffusion,
linear cryptanalysis should not be significantly improved by chosen-plaintext
attacks.

4.4 Partial or Truncated differentials

Introduction: In a conventional differential attack, (a, b) is a differential if a
difference a in the plaintext block yields a difference b in the ciphertext after
some rounds of encryption. Actually, it is not always necessary to predict the
full difference.

Interest: For some ciphers, secure against differential cryptanalysis, it is possible
to build truncated differentials with significant probabilities. Typically, these dif-
ferentials predict that some parts of the output difference is 0, while other parts
are non-0 (without more precision). For example, there is a 24-round truncated
differential for SKIPJACK that holds with probability one and the function
f(x) = x−1 in GF (2n) has 2-round truncated differential with probability one.

Countermeasures: Truncated differentials are efficient mainly against ciphers for
which all the layers operate on well aligned blocks, for example transformations
operating on bytes rather than individual bits. Using binary permutations (that
are optimal in hardware) is the adequate tool to provide resistance against it.

4.5 Higher order differentials

Introduction: It is possible to expand the notion of differential characteristic
to higher degrees. There exist ciphers that are secure against differential crypt-
analysis but susceptible to be broken by higher order attacks.

Derivative of a boolean function: The derivative of a function f at the point a
is defined as:

∆af(x) = f(x⊕ a)− f(x) (10)

Higher order derivatives: The i’th derivative of a function f at the point a1, ..., ai

is defined as:
∆i

a1,...,ai
f(x) = ∆ai(∆

(i−1)
a1,...,ai−1

f(x)) (11)

Note that the characteristics and differentials used by Biham and Shamir corre-
spond to a first order derivative.



Attacks using higher order differentials: There exist round functions resistant
against first order differentials but not against second order differentials. For
example, let f(x, k) = (x+ k)2 mod p (where p is prime) be the round function
of a cipher of block size 2 · log2p. Then every non-trivial one round differential
of f has a probability of 1

p and the second order derivative is a constant.

Another example is the round function f(x) = x2k+1 in GF (2n) described by
Nyberg. Higher order differentials allow performing improved attacks on (up to)
6-rounds ciphers. However, higher order differentials seem to be limited to this
low number of rounds. The problem is to find a method to iterate higher order
differentials to more than two rounds in the same way as first order differentials.

Computing the non-linear order: The following test using higher order differ-
entials can be used to compute the non-linear order of a block cipher:

Input: EK(.) a block cipher, a key K and plaintexts x1 6= x2.
Output: A minimum non-linear order of EK .
Let a1, ..., ai be linearly independant.

1. Set i = 1.
2. Compute y1 = ∆a1,...,aiEK(x1) and y2 = ∆a1,...,aiEK(x2).
3. If y1 = y2, output i and stop.
4. Set i = i + 1 and go to step (2).

In general, a cipher with five rounds (or less) using round functions of nonlinear
order r can be attacked by an r’th order differentials.

Countermeasures: Basically two types of countermeasures can be considered:

1. As the process of combining higher order differentials seem to be limited to
a small number of rounds, use large number of rounds.

2. Use round functions with a high non-linear order.

5 Miss in the middle attack - impossible differentials

Introduction: It is a variant of truncated differential cryptanalysis in which a
differential predicts that some particular differences should never occur.

Principle: The fact that impossible events can be useful in cryptanalysis is an
old idea. Miss in the middle attacks, also called impossible differentials attacks,
are about systematic analysis on how to identify an impossible behavior in a
block cipher and how to exploit it in order to derive the key.
The general technique to construct impossible events is called miss in the middle,
and the way to exploit it in order to cryptanalyze block ciphers is a sieving attack
that finds the correct keys by eliminating all the keys which lead to contradictions
(or impossible events).



Miss in the middle technique: Let B be a 64-bit block cipher with 4 rounds. The
construction of impossible differentials is related to the existence of differentials
with probability 1 for some rounds.
Imagine the input difference (a, 0, a, 0) causes the difference (b, b, 0, 0) with prob-
ability 1 after round 1. Moreover the output difference (c, c, 0, 0) causes1 a differ-
ence (0, d, 0, d) at the same place. Therefore, if input and output differences are
as above, the difference at the middle is constrained by both ways (encryption
and decryption) which leads to a contradiction. Consequently, no pairs simulta-
neously satisfy the input and output difference.

Using impossible differentials: First, impossible differentials allows distinguish-
ing a block cipher from a random permutation. Identification only requires to
feed the black box with enough plaintexts with input differences involved in an
impossible differential and check whether the output difference is possible.

Impossible differentials can also be used to attack block ciphers by adding some
rounds to the impossible differential characteristic. The basic attack requires to
choose enough plaintexts with input differences corresponding to the impossible
differential and collect ciphertexts. Then, by partially decrypting the additional
rounds with all possible subkeys, we can reject all those which give rise to im-
possible differentials.

Conclusions: Impossible differentials exist for various block ciphers. More-
over, cryptanalysis with impossible differentials can be used with low-probability
(rather than zero probability) differentials or combined with linear cryptanaly-
sis.
Designers of block ciphers usually try to show that their schemes are resistant
to differential cryptanalysis by providing an upper bound of characteristics and
differentials in their schemes. A consequence of impossible differentials is that
they also have to consider lower bounds.
Another general belief is that large s-boxes offer increased security against differ-
ential attacks. However, the difference distribution table of such s-boxes contains
very few possible entries and a lot of input/output differences are impossible.
This could facilitate the construction of impossible differentials and can thus
make such schemes more vulnerable to these attacks.

Countermeasures: Avoid differentials with probabilities 0 (impossible) and 1
(that allows mounting impossible differentials using the miss in the middle tech-
nique). Practically, these impossible differentials should not exist over a large
number of rounds.

6 Boomerang - rectangle attacks

Introduction: The boomerang attack is a differential-style attack in which the
attacker does not try to cover the whole cipher with a single highly-probable
1 In the decryption way.



differential pattern. Instead, the attacker tries to find two high-probability pat-
terns that are not necessarily related to each other but together cover the whole
cipher. In its basic version, it requires the ability to make chosen-plaintext and
chosen-ciphertext queries.

Interest: Algorithm designers usually compute an upper bound p on the proba-
bility of any differential characteristic for the cipher. Then the designer invokes
an often repeated “folk theorem” to justify that any successful differential attack
will require at least 1

p texts to break the cipher. Boomerang attacks show that
this folk theorem is wrong.

Principle: Let us denote the encryption operation by E and its decomposition
into two parts as E = E1 ◦E0. Suppose that we start with two plaintexts P1, P2,
such that P1 ⊕ P2 = ∆. Suppose that we have a differential pattern ∆ → ∆∗

propagating through the E0 part of the cipher with probability p. Now consider
the corresponding ciphertexts C1, C2 and their shift by a difference ∇ as follows:
C3 = C1⊕∇, C4 = C2⊕∇. As∇ we use a pattern that goes up through E−1

1 with
high probability q, i.e.∇ → ∇∗. We decrypt the new ciphertexts C3, C4 to obtain
their corresponding plaintext P3 and P4. If the previous two difference patterns
happened as predicted, between E0 and E1, we obtain a difference P3⊕P4 = ∆
with probability p2q2.
As a consequence, algorithm having good approximations through half the cipher
can be efficiently attacked by this kind of attacks. The real weakness of such an
attack is that, in its basic version, the boomerang requires adaptative-chosen-
ciphertext queries.

Amplified boomerang attacks and rectangle attacks: Improvements of the boomerang
attacks propose moving to a more familiar chosen-plaintext context attack.
Basically, the question that rises then is: “If we generate differential quartets
(a, b, c, d) such that a⊕ b = c⊕d = ∆, with ∆ the first required difference, what
will be the amount of right quartets with all the difference patterns needed?”.
In the amplified boomerang attack, the probability of a quartet to be right is
claimed to be 2−(n−1)/2pq. In the paper about the rectangle attack, it is shown
that several degrees of freedom exist in the difference patterns between E0 and
E1, which significantly increases the proportion of right quartets.

Countermeasures and conclusions: Boomerang and rectangle techniques illus-
trate interesting ways to combine differentials. The resulting attack can be very
efficient, specially against ciphers having no good differentials through the whole
algorithm but well through some parts of it. Precise countermeasures are hard
to determine but we observe that:

1. Ciphers that does not have a well distributed security are dangerous. Itera-
tive block ciphers repeating always the same round are preferred.

2. Ciphers of which the security is weak if we divide them are susceptible to be
broken by these attacks. Complete diffusion and low probable differentials
are needed in a short number of rounds.



7 Interpolation attacks

Introduction: This attack is applicable to ciphers for which the round func-
tion can be written as a reasonably simple algebraic expression. It relies on the
application of the Lagrange interpolation formula:

Definition 1. Let K be a field. Given 2n elements x1, ..., xn, y1, ..., yn ∈ R,
where the xi’s are distinct, define:

f(x) =
n∑

i=1

yi

∏

1≤j≤n,j 6=i

x− xj

xi − xj

Then f(x) is the only polynomial over K of degree at most n − 1 such that
f(xi) = yi for i = 1 . . . n. This equation is called Lagrange interpolation
formula.

The principle: Consider a cipher for which the round function can be written
as a polynomial (possibly with several variables) with a reasonable number of
terms. Then the whole cipher can be written as a polynomial too, in which
the coefficients are key-dependent. By considering sufficiently many plaintext-
ciphertext pairs, and using the Lagrange interpolation formula, all coefficients
may be computed. It is a global deduction attack, in the sense that an equivalent
expression for the cipher is constructed, but the key is not recovered. However,
the last round key guess technique allows it ro be converted into a key recovery
attack. Note that combining this attack with a meet-in-the-middle approach
allows reducing the number of terms of the polynomial, and thus the number
of plaintexts needed. Also, the attack is easily adaptable to ciphers that can be
expressed as a rational expression (quotient of two polynomials).

8 Square - saturation - integral - multiset attacks

Introduction: The multiset cryptanalysis has first been presented as a dedicated
attack when J. Daemen, V. Rijmen, and L. Knudsen published the algorithm
Square (hence the alternative name “Square attack”). Since then, it has been
applied to many others algorithms: Twofish, IDEA, Camellia, Skipjack, Misty,...
It is a chosen plaintext attack studying the propagation of well chosen sets of
plaintexts through the cipher. It has the particularity that we can get informa-
tion only by considering the whole group of plaintexts (contrary to linear or
differential cryptanalysis, for example, for which each plaintext (resp. each pair
of plaintexts) potentially brings some pieces of information). Also, the particular
characteristics of some components of the cipher such as S-boxes, do not affect
the efficiency of this attack (only the fact that these S-boxes are bijective may
be important).



Principle: Consider the data at the input of a bijective S-box, corresponding
to some sets of plaintexts. Let us assume that all possible values appear the
same number of times (i.e., if k · 2n plaintexts are considered, where n is the
size of the S-box (in bits), then each value appears k times). Then trivially, all
values will still appear the same number of times at the output of the S-box.
Even more trivial, if the input to an S-box is constant, then so is the output.
Multiset attacks trace this type of features through as many rounds as possible.
The following terminology is currently used in multiset attacks:

– A multiset is, roughly speaking, a set of which the elements may appear
several times. A n-bit multiset is a multiset of which the elements belong
to the set {0, 1}n.

– A n-bit multiset with k · 2n entries is said active or saturated if any value
in {0, 1}n is found exactly k times.

– A multiset is said passive if it contains only one fixed value.
– A multiset is said garbled if it is neither active nor passive.

Consider for example a byte-oriented cipher with a block size of 8 ·nb. Typically,
a multiset distinguisher for this cipher will require a group of 28a plaintexts, of
which the nb− a bytes are constant, the others forming a 8a-bit active multiset.
Key-recovery is possible using this distinguisher by doing a classical last round
key guess.

The Integral attack: We can define one useful property more for a multiset:
namely, a multiset G is said balanced with respect to some group operation
if:

∑
x∈G x = 0. For the group operations usually used in a block cipher(⊕ or

addition mod 2n), it holds that an active multiset is also balanced. Using the
property that the sum of two balanced multisets is still balanced, a multiset
distinguisher can sometimes be pushed a few rounds further. It is then called
integral distinguisher (the term“integral” referring to the sum).

Countermeasures: As multiset and integral attacks are targeting the diffusion
layer, strong such layers must be devised to counter them.

Extensions The following two papers do not present “pure” multiset/integral at-
tacks, but exploit some of their principles: the Gilbert-Minier attack on Rijndael
exploits collisions between some partial functions introduced by the cipher. The
SASAS cryptanalysis from Biryukov and Shamir exploits the multiset princi-
ple combined with some linear algebra to attack whatever cipher with structure
S ·A · S ·A · S, with S and A respectively denoting a layer of parallel invertible
S-boxes and an invertible affine mapping over GF (2).

9 Related key attacks

Introduction: A related key attack is an attack under the particular hypothesis
that the attacker is able to learn the encryption of some plaintexts not only under
the original (unknown) key K, but also under some derived keys K∗ = f(K).



Biham’s related keys: Block ciphers usually make use of a master key from which
round keys (or subkeys) are derived and used in different rounds. Let Ki be the
subkey in round i. Two keys K, K∗ are said to be related if there is a defined
relation K∗ = f(K) that holds. In the specific related key attack we present
here, 2 keys K, K∗ are said to be related if Ki+1 = K∗

i during several rounds
(typically n− 1, with n the number of rounds of the cipher).

Biham’s related key attack: This related key attack is based on the following
property: for two related keys, if the data before the second round in an encryp-
tion under the key K equals the data before the first round under the key K∗,
then the data and the inputs to the rounds are the same in both executions with
a difference of one round. If furthermore K1 = K∗

n, finding such a pair P, P ∗ is
sufficient to retrieve K1. It is a known-plaintext attack.
In case of a n-bit Feistel cipher, we can turn it into a chosen-plaintext attack by
taking PR = P ∗L. 2n/4 chosen plaintexts are required. By the birthday paradox,
there is a high probability that we find the expected pair. It is easy to identify
this pair by checking whether CL = C∗R.
Then we use relations holding between P, P ∗, C, C∗ and the secret key to recover
secret key bits in less tests than an exhaustive key search.
A similar known-plaintext attack uses 2n/2 known-plaintexts.

Another weak key schedule: Knudsen found a weakness in the key schedule of
SAFER. It has the effect that for virtually every key K, there exists at least
one different key K∗, such that for a non-negligible fraction of all plaintexts, the
outputs after 6 rounds of an encryption are equal.
The weakness is caused by:

1. A key byte j affects only S-box j directly in every round.
2. A key is applied to the text before and just after the S-box, thus enabling

collisions considering one byte isolated in every round.

From this, we can find a large number of keys that equally encrypt a plaintext
with a fixed probability. We call them related keys. This allows mounting a
related key chosen plaintext attack against the cipher. It also greatly reduces
the security of the algorithm when used in hashing modes.

Interest: One interest is purely theoretical: a cipher that succumbs a related-key
attack can be distinguished from a random family of permutations, which is an
undesirable property.
But although the condition to mount related key attacks (having plaintexts
encrypted under related keys) needs to use related key queries and therefore
does not lead to the most realistic attacks, related key cryptanalysis is not a
strictly theoretical attack. Examples of communication protocols exist where
(too) simple key management makes the attack practical.
The security of the cipher used in hashing mode can also be affected.



Extensions: The related-keys attack principle can be combined with other crypt-
analytic techniques such as to obtain new attacks.

1. Differential related key attack: it consists in a differential attack in which
the keys as well as the plaintexts are chosen with specific differences.

2. Related key differential timing attack: it breaks cryptosystems by timing
their operations. For example, it was measured that increasing the number
of zero multiplicative subkeys by one decreases the time required to carry
out 1 000 000 block encryptions (IDEA) by an average of 3 seconds.

Countermeasures: To provide resistance against related key cryptanalysis and
its expansions:

1. DES is not vulnerable to Biham’s attack because the number of shifts in the
key schedule is not the same in all the rounds. Generally, sliding techniques
like Biham’s one can be avoided by making the key schedule different in
every round. The use of round constants efficiently solves this problem.

2. Avoid linear key schedules.
3. Maximize avalanche in the subkeys to avoid key-bytes affecting only one

text-byte. Provide a good diffusion of the key.

Optimal key schedules should resist differential attacks and possess some form
of collision-freedom which is a standard property of hashing functions as well.

10 Slide attacks

10.1 Basic slide attack and extensions

Introduction: Slide attacks exploit the degree of self-similarity of a block cipher
and thus are applicable to iterative block ciphers with a periodic key schedule.

Slid pair: Let F be the round function of an iterated block cipher. If a pair
of known plaintexts (P, C), (P ′, C ′) satisfies F (P ) = P ′, then due to the self-
similarity of both the rounds and the key schedule, the corresponding ciphertexts
also satisfy F (C) = C ′. Such a pair is called a slid pair.

Principle: In a basic slide attack, the only requirement on F is that it is weak
against known plaintext attacks with two plaintext-ciphertext pairs: given two
equations F (x1, k) = y1 and F (x2, k) = y2, it is easy to extract the key k.
If we suppose that all rounds of a block cipher are identical, by the birthday
paradox it is possible to find a slid pair in O(2

n
2 ) known texts with a high

probability. Furthermore, slid pairs can often be recognized relatively easily, by
checking whether it is possible that F (P ) = P ′ and F (C) = C ′ both hold for
some key. Because F is weak, we can recover the secret key with one slid pair.
In the case of Feistel ciphers, the round function modifies only half of its input.
Therefore, the condition F (x) = x′ can be recognized by simply comparing the
left half of x against the right half of x′.



Interest: The slide attack is a generic attack that is applicable independently of
the number of rounds. It is important to remark that it is the counterpart of
Biham’s related-key attack in a classical context.

Examples: The slide attack is applicable to TREYFER, because of its trivial
key scheduling algorithm: it simply uses its 64-bit key K byte by byte.
The slide attack is also applicable to 2K-DES, a ”strengthened” DES with an
increased number of rounds (64) and key bits (2 × 48). One use K1 in the odd
rounds and K2 in the even rounds instead of DES subkeys. This cipher can be
viewed as a cascade of r

2 identical fixed permutations, making it susceptible to
slide attacks.
Finally, slide attacks are applicable to ciphers with key dependant S-boxes, show-
ing that the attack is not restricted to ciphers with weak key scheduling algo-
rithms.

Advanced slide attacks against Feistel ciphers: Advanced techniques can be used
to apply slide attacks to a larger class of Feistel ciphers. Notably p-rounds self-
similar block ciphers, where a generalized round consisting of p rounds of the
original cipher is iterated, are vulnerable to advanced slide attacks, provided
that p = 2 or 4.

1. The complementation slide: In the conventional attack, to deal with 2-round
self-similarity, one must slide by two rounds. The problem is that such an
F made up of 2 rounds is probably not weak. The complementation slide
technique consists in sliding by only one round and introducing differences
∆ = 〈K1⊕K2,K1⊕K2〉 between rounds of encryptions of slid pairs. In other
words, one chooses a slid pair so that the plaintext difference will cancel the
difference between the subkeys.

2. Sliding with a twist: If we ignore the final swap, then the decryption with a
Feistel cipher under key K1,K2 is the same as encryption with key K2,K1.
Therefore, we can slide by one round a decryption process against an en-
cryption process.

Complementation slide and sliding with a twist can be combined. It allows at-
tacking Feistel ciphers with 4-round periodicity.
Finally, if the cipher is a product of stronger functions, so that multiple in-
put/output pairs (instead of 2) are required to recover any key material, it is
possible to generate different slid pairs ”for free”. One technique is by performing
multiple encryptions E(E(..(P )..)) of P .

Countermeasures: Slide attacks exploit the degree of self-similarity of a block
cipher. Therefore, to provide resistance:

1. Avoid periodic key scheduling algorithms.
2. Use round constants.



10.2 Secret S-boxes cryptanalysis

Introduction: Certain block ciphers like GOST or Blowfish make use of secret
S-boxes. However, such secret boxes can be quite easy to cryptanalyse and do
not improve the security in some contexts.

A chosen-key attack against the secret S-boxes of GOST: In a Feistel cipher
using secret S-boxes, the attack proceeds in two steps. The first step search for
a n

2 -bit long ”zero vector” z = f(0), where f is the round function. This step
requires no more than 2

n
2 encryptions and is similar to the search of a slid pair

in a slide attack. The second step examines one S-box at a time and extracts the
content of that S-box. If S-boxes are k-bit × l-bit and z = f(0), we take a = 0
excepted k bits corresponding to one S-box, b = z excepted l bits corresponding
to the same S-box and compute b = f(a) with every possible S-box until we find
the correct one.
Note that the chosen-key context comes from the key addition present in the
round function. A comparable attack can be applied to the key-dependant S-
boxes of Blowfish.

Conclusion:

1. The sliding techniques are not only applicable to ciphers with weak key
scheduling algorithms.

2. Secret S-boxes do not always increase the security of an algorithm.

11 Complementation property attacks and weak keys

11.1 Complementation property attacks

Introduction: A complementation property is a relation that holds between dif-
ferent plaintext-ciphertext pairs of an algorithm with complementary texts or
keys. It can be used to speed up exhaustive key search.

The complementation property of DES: In DES, whenever a plaintext P is en-
crypted under a key K into a ciphertext C = DES(P, K), then the comple-
ment of P is encrypted by the complement of K into the complement of C:
C = DES(P , K).

An attack: First, we choose a pair of complementary plaintexts: P2 = P1.
Given their ciphertexts under the same key K: C1 = DES(P1,K) and C2 =
DES(P2, K), the attacker searches for the key K by trying all the keys K ′ of
which the most significant bit is zero (i.e. half of the key space). For each such
key, he encrypts P1 into C ′. If C ′ = C1, it is very likely that K = K ′. Moreover
if C ′ = C2, it is very likely that K = K ′, since due to the complementation
property C2 = DES(P1, K). Since comparisons are much faster than a trial en-
cryption, this attack is twice as fast as exhaustive key search.
This attack can be carried out even under a known-plaintext attack, given about
233 known plaintexts, since it is very likely that two complementary plaintexts
exist within 233 random plaintexts due to the birthday paradox.



Conclusion: DES present a complementation property that can be used for
cryptanalytic purposes. Other block ciphers (LOKI), also present this kind of
relations. In general, a cipher function should appear to be a random function
of both the key and the plaintext. Any regular behavior is of interest to the
cryptanalyst and should be avoided.

11.2 Weak keys

Introduction: The weak keys we are interested in here are those for which en-
cryption is the same as decryption. We also define pairs of semi-weak keys K
and K ′ as keys for which encryption with K is the same as decryption with K ′.

Interest: Both DES and LOKI have weak keys. If the number of weak keys
is relatively small, they may not compromise the cipher when used to assure
confidentiality.
However, several hash modes use block ciphers where an attacker can choose the
key input in an attempt to find a collision. In these modes, the cipher should
not have any weak nor semi-weak keys.

Weak keys, fixed points and collisions in DES: DES weak keys are such that all
48-bit subkeys are the same for each round i, j: Ki = Kj , a consequence is that
EK(EK(X)) = X.
For such a weak key, EK has 232 fixed points. Indeed, for some message M broken
into halves M0,M1, with (M17,M16) representing the ciphertext, suppose that
M8 = M9 (there are 232 such messages). Then:

M7 = M9 ⊕ f(K8,M8) = M8 ⊕ f(K9,M9) = M10 (12)

Repeating this, we finally find (M0,M1) = (M17,M16) and therefore, we found
a fixed point: EK(X) = X.
As a result, cycles of encryptions (E1E0)l, where E0 and E1 both represent an
encryption using a weak key, present a short average length of about 232. Indeed,
suppose that for some l we have (E1E0)lX = Y and Y is a fixed point of E0.
Then E0(E1E0)lX = Y . On the next application of E1, we find:

(E1E0)l+1X = E1E0(E1E0)lX = E1Y = D1Y

= D1E1E0(E1E0)l−1X = E0(E1E0)l−1X (13)

Continuing for j ≤ l, (E1E0)l+jX = E0(E1E0)l−jX and we are just retracing
our steps until we return to the starting value X. Therefore, we found a collision
in a number of steps close to 232.

Conclusion: As in the case of complementation properties, weak keys denote a
regular behavior of a block cipher that can be used by the cryptanalyst. Practi-
cally, cycles of encryptions under weak keys present a short average length and
this simplifies the collision search in hashing modes of a cipher.



12 Conclusion

We presented some cryptanalytic techniques developed against block ciphers in
the 1990s. Historically, these techniques are closely related to the cryptanalysis
of the Data Encryption Standard as well as to the design of the Advanced En-
cryption Standard. It seems that AES was an elegant solution to overcome the
threats of attacks presented in this report. However, new directions are already
considered. We mainly noticed the critical question of algebraic descriptions of
block ciphers as a future trend in cryptanalysis research.
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