
A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems

R.L. Rivest, A. Shamir, and L. Adleman∗

Abstract

An encryption method is presented with the novel property that publicly re-
vealing an encryption key does not thereby reveal the corresponding decryption
key. This has two important consequences:

1. Couriers or other secure means are not needed to transmit keys, since a
message can be enciphered using an encryption key publicly revealed by
the intended recipient. Only he can decipher the message, since only he
knows the corresponding decryption key.

2. A message can be “signed” using a privately held decryption key. Anyone
can verify this signature using the corresponding publicly revealed en-
cryption key. Signatures cannot be forged, and a signer cannot later deny
the validity of his signature. This has obvious applications in “electronic
mail” and “electronic funds transfer” systems.

A message is encrypted by representing it as a number M, raising M to a
publicly specified power e, and then taking the remainder when the result is
divided by the publicly specified product, n, of two large secret prime numbers
p and q. Decryption is similar; only a different, secret, power d is used, where
e · d ≡ 1 (mod (p − 1) · (q − 1)). The security of the system rests in part on
the difficulty of factoring the published divisor, n.

Key Words and Phrases: digital signatures, public-key cryptosystems, pri-
vacy, authentication, security, factorization, prime number, electronic mail,
message-passing, electronic funds transfer, cryptography.

CR Categories: 2.12, 3.15, 3.50, 3.81, 5.25

∗General permission to make fair use in teaching or research of all or part of this material is
granted to individual readers and to nonprofit libraries acting for them provided that ACM’s copy-
right notice is given and that reference is made to the publication, to its date of issue, and to the fact
that reprinting privileges were granted by permission of the Association for Computing Machinery.
To otherwise reprint a figure, table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduction.
This research was supported by National Science Foundation grant MCS76-14294, and the Office of
Naval Research grant number N00014-67-A-0204-0063.
Author’s Address: Laboratory for Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA 02139 E-mail addresses: rivest@theory.lcs.mit.edu

I Introduction

The era of “electronic mail” [10] may soon be upon us; we must ensure that two
important properties of the current “paper mail” system are preserved: (a) messages
are private, and (b) messages can be signed . We demonstrate in this paper how to
build these capabilities into an electronic mail system.

At the heart of our proposal is a new encryption method. This method provides
an implementation of a “public-key cryptosystem,” an elegant concept invented by
Diffie and Hellman [1]. Their article motivated our research, since they presented
the concept but not any practical implementation of such a system. Readers familiar
with [1] may wish to skip directly to Section V for a description of our method.

II Public-Key Cryptosystems

In a “public key cryptosystem” each user places in a public file an encryption proce-
dure E. That is, the public file is a directory giving the encryption procedure of each
user. The user keeps secret the details of his corresponding decryption procedure D.
These procedures have the following four properties:

(a) Deciphering the enciphered form of a message M yields M . Formally,

D(E(M) = M. (1)

(b) Both E and D are easy to compute.

(c) By publicly revealing E the user does not reveal an easy way to compute D.
This means that in practice only he can decrypt messages encrypted with E, or
compute D efficiently.

(d) If a message M is first deciphered and then enciphered, M is the result. For-
mally,

E(D(M) = M. (2)

An encryption (or decryption) procedure typically consists of a general method
and an encryption key. The general method, under control of the key, enciphers a
message M to obtain the enciphered form of the message, called the ciphertext C.
Everyone can use the same general method; the security of a given procedure will rest
on the security of the key. Revealing an encryption algorithm then means revealing
the key.

When the user reveals E he reveals a very inefficient method of computing D(C):
testing all possible messages M until one such that E(M) = C is found. If property
(c) is satisfied the number of such messages to test will be so large that this approach
is impractical.

A function E satisfying (a)-(c) is a “trap-door one-way function;” if it also satisfies
(d) it is a “trap-door one-way permutation.” Diffie and Hellman [1] introduced the

2

concept of trap-door one-way functions but did not present any examples. These
functions are called “one-way” because they are easy to compute in one direction but
(apparently) very difficult to compute in the other direction. They are called “trap-
door” functions since the inverse functions are in fact easy to compute once certain
private “trap-door” information is known. A trap-door one-way function which also
satisfies (d) must be a permutation: every message is the cipertext for some other
message and every ciphertext is itself a permissible message. (The mapping is “one-
to-one” and “onto”). Property (d) is needed only to implement “signatures.”

The reader is encouraged to read Diffie and Hellman’s excellent article [1] for
further background, for elaboration of the concept of a public-key cryptosystem, and
for a discussion of other problems in the area of cryptography. The ways in which
a public-key cryptosystem can ensure privacy and enable “signatures” (described in
Sections III and IV below) are also due to Diffie and Hellman.

For our scenarios we suppose that A and B (also known as Alice and Bob) are
two users of a public-key cryptosystem. We will distinguish their encryption and
decryption procedures with subscripts: EA, DA, EB, DB.

III Privacy

Encryption is the standard means of rendering a communication private. The sender
enciphers each message before transmitting it to the receiver. The receiver (but no
unauthorized person) knows the appropriate deciphering function to apply to the
received message to obtain the original message. An eavesdropper who hears the
transmitted message hears only “garbage” (the ciphertext) which makes no sense to
him since he does not know how to decrypt it.

The large volume of personal and sensitive information currently held in comput-
erized data banks and transmitted over telephone lines makes encryption increasingly
important. In recognition of the fact that efficient, high-quality encryption techniques
are very much needed but are in short supply, the National Bureau of Standards has
recently adopted a “Data Encryption Standard” [13, 14], developed at IBM. The new
standard does not have property (c), needed to implement a public-key cryptosystem.

All classical encryption methods (including the NBS standard) suffer from the
“key distribution problem.” The problem is that before a private communication can
begin, another private transaction is necessary to distribute corresponding encryption
and decryption keys to the sender and receiver, respectively. Typically a private
courier is used to carry a key from the sender to the receiver. Such a practice is not
feasible if an electronic mail system is to be rapid and inexpensive. A public-key
cryptosystem needs no private couriers; the keys can be distributed over the insecure
communications channel.

How can Bob send a private message M to Alice in a public-key cryptosystem?
First, he retrieves EA from the public file. Then he sends her the enciphered message
EA(M). Alice deciphers the message by computing DA(EA(M)) = M . By property
(c) of the public-key cryptosystem only she can decipher EA(M). She can encipher a

3

private response with EB, also available in the public file.

Observe that no private transactions between Alice and Bob are needed to estab-
lish private communication. The only “setup” required is that each user who wishes
to receive private communications must place his enciphering algorithm in the public
file.

Two users can also establish private communication over an insecure communi-
cations channel without consulting a public file. Each user sends his encryption key
to the other. Afterwards all messages are enciphered with the encryption key of the
recipient, as in the public-key system. An intruder listening in on the channel cannot
decipher any messages, since it is not possible to derive the decryption keys from the
encryption keys. (We assume that the intruder cannot modify or insert messages into
the channel.) Ralph Merkle has developed another solution [5] to this problem.

A public-key cryptosystem can be used to “bootstrap” into a standard encryption
scheme such as the NBS method. Once secure communications have been established,
the first message transmitted can be a key to use in the NBS scheme to encode all
following messages. This may be desirable if encryption with our method is slower
than with the standard scheme. (The NBS scheme is probably somewhat faster if
special-purpose hardware encryption devices are used; our scheme may be faster on
a general-purpose computer since multiprecision arithmetic operations are simpler to
implement than complicated bit manipulations.)

IV Signatures

If electronic mail systems are to replace the existing paper mail system for business
transactions, “signing” an electronic message must be possible. The recipient of a
signed message has proof that the message originated from the sender. This quality
is stronger than mere authentication (where the recipient can verify that the message
came from the sender); the recipient can convince a “judge” that the signer sent the
message. To do so, he must convince the judge that he did not forge the signed
message himself! In an authentication problem the recipient does not worry about
this possibility, since he only wants to satisfy himself that the message came from the
sender.

An electronic signature must be message-dependent, as well as signer-dependent.
Otherwise the recipient could modify the message before showing the message-signature
pair to a judge. Or he could attach the signature to any message whatsoever, since
it is impossible to detect electronic “cutting and pasting.”

To implement signatures the public-key cryptosystem must be implemented with
trap-door one-way permutations (i.e. have property (d)), since the decryption algo-
rithm will be applied to unenciphered messages.

How can user Bob send Alice a “signed” message M in a public-key cryptosystem?
He first computes his “signature” S for the message M using DB:

S = DB(M) .

4

(Deciphering an unenciphered message “makes sense” by property (d) of a public-
key cryptosystem: each message is the ciphertext for some other message.) He then
encrypts S using EA (for privacy), and sends the result EA(S) to Alice. He need not
send M as well; it can be computed from S.

Alice first decrypts the ciphertext with DA to obtain S. She knows who is the
presumed sender of the signature (in this case, Bob); this can be given if necessary in
plain text attached to S. She then extracts the message with the encryption procedure
of the sender, in this case EB (available on the public file):

M = EB(S) .

She now possesses a message-signature pair (M,S) with properties similar to those
of a signed paper document.

Bob cannot later deny having sent Alice this message, since no one else could have
created S = DB(M). Alice can convince a “judge” that EB(S) = M , so she has proof
that Bob signed the document.

Clearly Alice cannot modify M to a different version M ′, since then she would
have to create the corresponding signature S ′ = DB(M ′) as well.

Therefore Alice has received a message “signed” by Bob, which she can “prove”
that he sent, but which she cannot modify. (Nor can she forge his signature for any
other message.)

An electronic checking system could be based on a signature system such as the
above. It is easy to imagine an encryption device in your home terminal allowing
you to sign checks that get sent by electronic mail to the payee. It would only be
necessary to include a unique check number in each check so that even if the payee
copies the check the bank will only honor the first version it sees.

Another possibility arises if encryption devices can be made fast enough: it will
be possible to have a telephone conversation in which every word spoken is signed by
the encryption device before transmission.

When encryption is used for signatures as above, it is important that the en-
cryption device not be “wired in” between the terminal (or computer) and the com-
munications channel, since a message may have to be successively enciphered with
several keys. It is perhaps more natural to view the encryption device as a “hardware
subroutine” that can be executed as needed.

We have assumed above that each user can always access the public file reliably.
In a “computer network” this might be difficult; an “intruder” might forge messages
purporting to be from the public file. The user would like to be sure that he actually
obtains the encryption procedure of his desired correspondent and not, say, the en-
cryption procedure of the intruder. This danger disappears if the public file “signs”
each message it sends to a user. The user can check the signature with the public file’s
encryption algorithm EPF . The problem of “looking up” EPF itself in the public file
is avoided by giving each user a description of EPF when he first shows up (in person)
to join the public-key cryptosystem and to deposit his public encryption procedure.
He then stores this description rather than ever looking it up again. The need for a

5

courier between every pair of users has thus been replaced by the requirement for a
single secure meeting between each user and the public file manager when the user
joins the system. Another solution is to give each user, when he signs up, a book
(like a telephone directory) containing all the encryption keys of users in the system.

V Our Encryption and Decryption Methods

To encrypt a message M with our method, using a public encryption key (e, n),
proceed as follows. (Here e and n are a pair of positive integers.)

First, represent the message as an integer between 0 and n − 1. (Break a long
message into a series of blocks, and represent each block as such an integer.) Use any
standard representation. The purpose here is not to encrypt the message but only to
get it into the numeric form necessary for encryption.

Then, encrypt the message by raising it to the eth power modulo n. That is, the
result (the ciphertext C) is the remainder when M e is divided by n.

To decrypt the ciphertext, raise it to another power d, again modulo n. The
encryption and decryption algorithms E and D are thus:

C ≡ E(M) ≡M e (mod n), for a message M .

D(C) ≡ Cd (mod n), for a ciphertext C .

Note that encryption does not increase the size of a message; both the message
and the ciphertext are integers in the range 0 to n− 1.

The encryption key is thus the pair of positive integers (e, n). Similarly, the
decryption key is the pair of positive integers (d, n). Each user makes his encryption
key public, and keeps the corresponding decryption key private. (These integers
should properly be subscripted as in nA, eA, and dA, since each user has his own set.
However, we will only consider a typical set, and will omit the subscripts.)

How should you choose your encryption and decryption keys, if you want to use
our method?

You first compute n as the product of two primes p and q:

n = p · q .

These primes are very large, “random” primes. Although you will make n public,
the factors p and q will be effectively hidden from everyone else due to the enormous
difficulty of factoring n. This also hides the way d can be derived from e.

You then pick the integer d to be a large, random integer which is relatively prime
to (p− 1) · (q − 1). That is, check that d satisfies:

gcd(d, (p− 1) · (q − 1)) = 1

(“gcd” means “greatest common divisor”).

6

The integer e is finally computed from p, q, and d to be the “multiplicative inverse”
of d, modulo (p− 1) · (q − 1). Thus we have

e · d ≡ 1 (mod (p− 1) · (q − 1)).

We prove in the next section that this guarantees that (1) and (2) hold, i.e. that E
and D are inverse permutations. Section VII shows how each of the above operations
can be done efficiently.

The aforementioned method should not be confused with the “exponentiation”
technique presented by Diffie and Hellman [1] to solve the key distribution problem.
Their technique permits two users to determine a key in common to be used in a
normal cryptographic system. It is not based on a trap-door one-way permutation.
Pohlig and Hellman [8] study a scheme related to ours, where exponentiation is done
modulo a prime number.

VI The Underlying Mathematics

We demonstrate the correctness of the deciphering algorithm using an identity due
to Euler and Fermat [7]: for any integer (message) M which is relatively prime to n,

Mφ(n) ≡ 1 (mod n) . (3)

Here φ(n) is the Euler totient function giving number of positive integers less than n
which are relatively prime to n. For prime numbers p,

φ(p) = p− 1 .

In our case, we have by elementary properties of the totient function [7]:

φ(n) = φ(p) · φ(q)

= (p− 1) · (q − 1) (4)

= n− (p+ q) + 1 .

Since d is relatively prime to φ(n), it has a multiplicative inverse e in the ring of
integers modulo φ(n):

e · d ≡ 1 (mod φ(n)). (5)

We now prove that equations (1) and (2) hold (that is, that deciphering works
correctly if e and d are chosen as above). Now

D(E(M)) ≡ (E(M))d ≡ (M e)d (mod n) = M e·d (mod n)

E(D(M)) ≡ (D(M))e ≡ (Md)e (mod n) = M e·d (mod n)

and
M e·d ≡Mk·φ(n)+1 (mod n) (for some integer k).

7

From (3) we see that for all M such that p does not divide M

Mp−1 ≡ 1 (mod p)

and since (p− 1) divides φ(n)

Mk·φ(n)+1 ≡M (mod p).

This is trivially true when M ≡ 0 (mod p), so that this equality actually holds for
all M . Arguing similarly for q yields

Mk·φ(n)+1 ≡M (mod q) .

Together these last two equations imply that for all M ,

M e·d ≡Mk·φ(n)+1 ≡M (mod n).

This implies (1) and (2) for all M, 0 ≤ M < n. Therefore E and D are inverse
permutations. (We thank Rich Schroeppel for suggesting the above improved version
of the authors’ previous proof.)

VII Algorithms

To show that our method is practical, we describe an efficient algorithm for each
required operation.

A How to Encrypt and Decrypt Efficiently

Computing M e (mod n) requires at most 2 · log2(e) multiplications and 2 · log2(e)
divisions using the following procedure (decryption can be performed similarly using
d instead of e):

Step 1. Let ekek−1...e1e0 be the binary representation of e.
Step 2. Set the variable C to 1.
Step 3. Repeat steps 3a and 3b for i = k, k − 1, . . . , 0:

Step 3a. Set C to the remainder of C2 when divided by n.
Step 3b. If ei = 1, then set C to the remainder of C ·M when divided by n.

Step 4. Halt. Now C is the encrypted form of M .

This procedure is called “exponentiation by repeated squaring and multiplication.”
This procedure is half as good as the best; more efficient procedures are known.
Knuth [3] studies this problem in detail.

The fact that the enciphering and deciphering are identical leads to a simple
implementation. (The whole operation can be implemented on a few special-purpose
integrated circuit chips.)

A high-speed computer can encrypt a 200-digit message M in a few seconds;
special-purpose hardware would be much faster. The encryption time per block in-
creases no faster than the cube of the number of digits in n.

8

B How to Find Large Prime Numbers

Each user must (privately) choose two large random numbers p and q to create his
own encryption and decryption keys. These numbers must be large so that it is not
computationally feasible for anyone to factor n = p · q. (Remember that n, but not
p or q, will be in the public file.) We recommend using 100-digit (decimal) prime
numbers p and q, so that n has 200 digits.

To find a 100-digit “random” prime number, generate (odd) 100-digit random
numbers until a prime number is found. By the prime number theorem [7], about
(ln 10100)/2 = 115 numbers will be tested before a prime is found.

To test a large number b for primality we recommend the elegant “probabilistic”
algorithm due to Solovay and Strassen [12]. It picks a random number a from a
uniform distribution on {1, . . . , b− 1}, and tests whether

gcd(a, b) = 1 and J(a, b) = a(b−1)/2 (mod b), (6)

where J(a, b) is the Jacobi symbol [7]. If b is prime (6) is always true. If b is com-
posite (6) will be false with probability at least 1/2. If (6) holds for 100 randomly
chosen values of a then b is almost certainly prime; there is a (negligible) chance of
one in 2100 that b is composite. Even if a composite were accidentally used in our
system, the receiver would probably detect this by noticing that decryption didn’t
work correctly. When b is odd, a ≤ b, and gcd(a, b) = 1, the Jacobi symbol J(a, b)
has a value in {−1, 1} and can be efficiently computed by the program:

J(a, b) = if a = 1 then 1 else

if a is even then J(a/2, b) · (−1)(b2−1)/8

else J(b (mod a), a) · (−1)(a−1)·(b−1)/4

(The computations of J(a, b) and gcd(a, b) can be nicely combined, too.) Note that
this algorithm does not test a number for primality by trying to factor it. Other
efficient procedures for testing a large number for primality are given in [6,9,11].

To gain additional protection against sophisticated factoring algorithms, p and q
should differ in length by a few digits, both (p− 1) and (q − 1) should contain large
prime factors, and gcd(p − 1, q − 1) should be small. The latter condition is easily
checked.

To find a prime number p such that (p − 1) has a large prime factor, generate a
large random prime number u, then let p be the first prime in the sequence i · u+ 1,
for i = 2, 4, 6, (This shouldn’t take too long.) Additional security is provided by
ensuring that (u− 1) also has a large prime factor.

A high-speed computer can determine in several seconds whether a 100-digit num-
ber is prime, and can find the first prime after a given point in a minute or two.

Another approach to finding large prime numbers is to take a number of known
factorization, add one to it, and test the result for primality. If a prime p is found

9

it is possible to prove that it really is prime by using the factorization of p − 1. We
omit a discussion of this since the probabilistic method is adequate.

C How to Choose d

It is very easy to choose a number d which is relatively prime to φ(n). For example,
any prime number greater than max(p, q) will do. It is important that d should be
chosen from a large enough set so that a cryptanalyst cannot find it by direct search.

D How to Compute e from d and φ(n)

To compute e, use the following variation of Euclid’s algorithm for computing the
greatest common divisor of φ(n) and d. (See exercise 4.5.2.15 in [3].) Calculate
gcd(φ(n), d) by computing a series x0, x1, x2, . . ., where x0 ≡ φ(n), x1 = d, and xi+1 ≡
xi−1 (mod xi), until an xk equal to 0 is found. Then gcd(x0, x1) = xk−1. Compute
for each xi numbers ai and bi such that xi = ai · x0 + bi · x1. If xk−1 = 1 then bk−1

is the multiplicative inverse of x1 (mod x0). Since k will be less than 2 log2(n), this
computation is very rapid.

If e turns out to be less than log2(n), start over by choosing another value of d.
This guarantees that every encrypted message (except M = 0 or M = 1) undergoes
some “wrap-around” (reduction modulo n) .

VIII A Small Example

Consider the case p = 47, q = 59, n = p · q = 47 · 59 = 2773, and d = 157. Then
φ(2773) = 46 · 58 = 2668, and e can be computed as follows:

x0 = 2668, a0 = 1, b0 = 0,
x1 = 157, a1 = 0, b1 = 1,
x2 = 156, a2 = 1, b2 = −16 (since 2668 = 157 · 16 + 156) ,
x3 = 1, a3 = −1, b3 = 17 (since 157 = 1 · 156 + 1) .

Therefore e = 17, the multiplicative inverse (mod 2668) of d = 157.

With n = 2773 we can encode two letters per block, substituting a two-digit num-
ber for each letter: blank = 00, A = 01, B = 02, . . . , Z = 26. Thus the message

ITS ALL GREEK TO ME

(Julius Caesar, I, ii, 288, paraphrased) is encoded:

0920 1900 0112 1200 0718 0505 1100 2015 0013 0500

Since e = 10001 in binary, the first block (M = 920) is enciphered:

M17 = (((((1)2 ·M)2)2)2)2 ·M = 948 (mod 2773) .

10

The whole message is enciphered as:

0948 2342 1084 1444 2663 2390 0778 0774 0219 1655 .

The reader can check that deciphering works: 948157 ≡ 920 (mod 2773), etc.

IX Security of the Method: Cryptanalytic Ap-

proaches

Since no techniques exist to prove that an encryption scheme is secure, the only test
available is to see whether anyone can think of a way to break it. The NBS standard
was “certified” this way; seventeen man-years at IBM were spent fruitlessly trying to
break that scheme. Once a method has successfully resisted such a concerted attack it
may for practical purposes be considered secure. (Actually there is some controversy
concerning the security of the NBS method [2].)

We show in the next sections that all the obvious approaches for breaking our
system are at least as difficult as factoring n. While factoring large numbers is not
provably difficult, it is a well-known problem that has been worked on for the last three
hundred years by many famous mathematicians. Fermat (1601?-1665) and Legendre
(1752-1833) developed factoring algorithms; some of today’s more efficient algorithms
are based on the work of Legendre. As we shall see in the next section, however, no
one has yet found an algorithm which can factor a 200-digit number in a reasonable
amount of time. We conclude that our system has already been partially “certified”
by these previous efforts to find efficient factoring algorithms.

In the following sections we consider ways a cryptanalyst might try to determine
the secret decryption key from the publicly revealed encryption key. We do not
consider ways of protecting the decryption key from theft; the usual physical security
methods should suffice. (For example, the encryption device could be a separate
device which could also be used to generate the encryption and decryption keys, such
that the decryption key is never printed out (even for its owner) but only used to
decrypt messages. The device could erase the decryption key if it was tampered with.)

A Factoring n

Factoring n would enable an enemy cryptanalyst to “break” our method. The factors
of n enable him to compute φ(n) and thus d. Fortunately, factoring a number seems
to be much more difficult than determining whether it is prime or composite.

A large number of factoring algorithms exist. Knuth [3, Section 4.5.4] gives an
excellent presentation of many of them. Pollard [9] presents an algorithm which
factors a number n in time O(n1/4).

The fastest factoring algorithm known to the authors is due to Richard Schroeppel
(unpublished); it can factor n in approximately

exp
√
ln(n) · ln(ln(n)) = n

√
ln ln(n)/ ln(n)

11

= (ln(n))
√

ln(n)/ ln(ln(n))

steps (here ln denotes the natural logarithm function). Table 1 gives the number of
operations needed to factor n with Schroeppel’s method, and the time required if
each operation uses one microsecond, for various lengths of the number n (in decimal
digits).

Table 1

Digits Number of operations Time
50 1.4× 1010 3.9 hours
75 9.0× 1012 104 days
100 2.3× 1015 74 years
200 1.2× 1023 3.8× 109 years
300 1.5× 1029 4.9× 1015 years
500 1.3× 1039 4.2× 1025 years

We recommend that n be about 200 digits long. Longer or shorter lengths can
be used depending on the relative importance of encryption speed and security in
the application at hand. An 80-digit n provides moderate security against an attack
using current technology; using 200 digits provides a margin of safety against future
developments. This flexibility to choose a key-length (and thus a level of security) to
suit a particular application is a feature not found in many of the previous encryption
schemes (such as the NBS scheme).

B Computing φ(n) Without Factoring n

If a cryptanalyst could compute φ(n) then he could break the system by computing d
as the multiplicative inverse of e modulo φ(n) (using the procedure of Section VII D).

We argue that this approach is no easier than factoring n since it enables the
cryptanalyst to easily factor n using φ(n). This approach to factoring n has not
turned out to be practical.

How can n be factored using φ(n)? First, (p + q) is obtained from n and φ(n) =
n− (p+ q) + 1. Then (p− q) is the square root of (p+ q)2− 4n. Finally, q is half the
difference of (p+ q) and (p− q).

Therefore breaking our system by computing φ(n) is no easier than breaking our
system by factoring n. (This is why n must be composite; φ(n) is trivial to compute
if n is prime.)

C Determining d Without Factoring n or Computing φ(n).

Of course, d should be chosen from a large enough set so that a direct search for it is
unfeasible.

12

We argue that computing d is no easier for a cryptanalyst than factoring n, since
once d is known n could be factored easily. This approach to factoring has also not
turned out to be fruitful.

A knowledge of d enables n to be factored as follows. Once a cryptanalyst knows d
he can calculate e · d− 1, which is a multiple of φ(n). Miller [6] has shown that n can
be factored using any multiple of φ(n). Therefore if n is large a cryptanalyst should
not be able to determine d any easier than he can factor n.

A cryptanalyst may hope to find a d′ which is equivalent to the d secretly held by
a user of the public-key cryptosystem. If such values d′ were common then a brute-
force search could break the system. However, all such d′ differ by the least common
multiple of (p− 1) and (q− 1), and finding one enables n to be factored. (In (3) and
(5), φ(n) can be replaced by lcm(p − 1, q − 1).) Finding any such d′ is therefore as
difficult as factoring n.

D Computing D in Some Other Way

Although this problem of “computing e-th roots modulo n without factoring n” is
not a well-known difficult problem like factoring, we feel reasonably confident that it
is computationally intractable. It may be possible to prove that any general method
of breaking our scheme yields an efficient factoring algorithm. This would establish
that any way of breaking our scheme must be as difficult as factoring. We have not
been able to prove this conjecture, however.

Our method should be certified by having the above conjecture of intractability
withstand a concerted attempt to disprove it. The reader is challenged to find a way
to “break” our method.

X Avoiding “Reblocking” When Encrypting A Signed

Message

A signed message may have to be “reblocked” for encryption since the signature n may
be larger than the encryption n (every user has his own n). This can be avoided as
follows. A threshold value h is chosen (say h = 10199) for the public-key cryptosystem.
Every user maintains two public (e, n) pairs, one for enciphering and one for signature-
verification, where every signature n is less than h, and every enciphering n is greater
than h. Reblocking to encipher a signed message is then unnecessary; the message is
blocked according to the transmitter’s signature n.

Another solution uses a technique given in [4]. Each user has a single (e, n) pair
where n is between h and 2h, where h is a threshold as above. A message is encoded
as a number less than h and enciphered as before, except that if the ciphertext is
greater than h, it is repeatedly re-enciphered until it is less than h. Similarly for
decryption the ciphertext is repeatedly deciphered to obtain a value less than h. If n
is near h re-enciphering will be infrequent. (Infinite looping is not possible, since at
worst a message is enciphered as itself.)

13

XI Conclusions

We have proposed a method for implementing a public-key cryptosystem whose se-
curity rests in part on the difficulty of factoring large numbers. If the security of our
method proves to be adequate, it permits secure communications to be established
without the use of couriers to carry keys, and it also permits one to “sign” digitized
documents.

The security of this system needs to be examined in more detail. In particular,
the difficulty of factoring large numbers should be examined very closely. The reader
is urged to find a way to “break” the system. Once the method has withstood all
attacks for a sufficient length of time it may be used with a reasonable amount of
confidence.

Our encryption function is the only candidate for a “trap-door one-way permuta-
tion” known to the authors. It might be desirable to find other examples, to provide
alternative implementations should the security of our system turn out someday to be
inadequate. There are surely also many new applications to be discovered for these
functions.

Acknowledgments. We thank Martin Hellman, Richard Schroeppel, Abraham
Lempel, and Roger Needham for helpful discussions, and Wendy Glasser for her
assistance in preparing the initial manuscript. Xerox PARC provided support and
some marvelous text-editing facilities for preparing the final manuscript.

Received April 4, 1977; revised September 1, 1977.

References
1. Diffie, W., and Hellman, M. New directions in cryptography. IEEE Trans. Inform.
Theory IT-22, (Nov. 1976), 644-654.

2. Diffie, W., and Hellman, M. Exhaustive cryptanalysis of the NBS data encryption
standard. Computer 10 (June 1977), 74-84.

3. Knuth, D. E. The Art of Computer Programming, Vol 2: Seminumerical Algo-
rithms. Addison-Wesley, Reading, Mass., 1969.

4. Levine, J., and Brawley, J.V. Some cryptographic applications of permutation
polynomials. Cryptologia 1 (Jan. 1977), 76-92.

5. Merkle, R. Secure communications over an insecure channel. Submitted to Comm.
ACM.

6. Miller, G.L. Riemann’s hypothesis and tests for primality. Proc. Seventh Annual
ACM Symp. on the Theory of Comptng. Albuquerque, New Mex., May 1975, pp.
234-239; extended vers. available as Res. Rep. CS-75-27, Dept. of Comptr. Sci., U. of
Waterloo, Waterloo, Ont., Canada, Oct. 1975.

7. Niven, I., and Zuckerman, H.S. An Introduction to the Theory of Numbers. Wiley,
New York, 1972.

8. Pohlig, S.C., and Hellman, M.E. An improved algorithm for computing logarithms
over GF (p) and its cryptographic significance. To appear in IEEE Trans. Inform.
Theory, 1978.

14

9. Pollard, J.M. Theorems on factorization and primality testing. Proc. Camb. Phil.
Soc. 76 (1974), 521-528.

10. Potter, R.J., Electronic mail. Science 195, 4283 (March 1977), 1160-1164.

11. Rabin, M.O., Probabilistic algorithms. In Algorithms and Complexity, J. F.
Traub, Ed., Academic Press, New York, 1976, pp. 21-40.

12. Solovay, R., and Strassen, V. A Fast Monte-Carlo test for primality. SIAM J.
Comptng. (March 1977), 84-85.

13. Federal Register, Vol. 40, No. 52, March 17, 1975.

14. Federal Register, Vol. 40, No. 149, August 1, 1975.

15

