
Almost Entirely Correct Mixing
With Applications to Voting

Dan Boneh ∗

Stanford University

dabo@stanford.edu

Philippe Golle †

Stanford University

pgolle@stanford.edu

ABSTRACT
In order to design an exceptionally efficient mix network,
both asymptotically and in real terms, we develop the no-
tion of almost entirely correct mixing, and propose a new
mix network that is almost entirely correct. In our new mix,
the real cost of proving correctness is orders of magnitude
faster than all other mix nets. The trade-off is that our mix
only guarantees “almost entirely correct” mixing, i.e it guar-
antees that the mix network processed correctly all inputs
with high (but not overwhelming) probability. We use a
new technique for verifying correctness. This new technique
consists of computing the product of a random subset of the
inputs to a mix server, then require the mix server to pro-
duce a subset of the outputs of equal product. Our new mix
net is of particular value for electronic voting, where a guar-
antee of almost entirely correct mixing may well be sufficient
to announce instantly the result of a large election. The cor-
rectness of the result can later be verified beyond a doubt
using any one of a number of much slower proofs of perfect-
correctness, without having to mix the ballots again.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption

General Terms
Security

Keywords
Mix Networks, Electronic Voting

1. INTRODUCTION
A mix server is the cryptographic equivalent of a hat. It

takes a set of input ciphertexts and outputs related cipher-
texts in a random order, in such a way that the permutation

∗Supported by NSF-CAREER Award
†Supported by Stanford Graduate Fellowship

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’02,November 18–22, 2002, Washington, DC, USA.
Copyright 2002 ACM 1-58113-612-9/02/0011 ...$5.00.

that matches input to output ciphertexts is known only to
the mix server and no one else. Mix servers were originally
proposed by Chaum [5] to implement an untraceable email
system, and have since found a wide range of applications.
They are notably being used to ensure privacy in electronic
voting [22, 26, 12] and anonymous payment systems [14].

To be useful, a mix server must prove that it has correctly
mixed the set of input ciphertexts. That is, a mix server
must prove that the set of ciphertexts it outputs matches
exactly the set of input ciphertexts it received. Ideally, this
proof should not reveal any additional information about
the relationship between inputs and outputs. If we consider
the example of a mix server mixing votes after an election,
the proof of correct mixing guarantees that the mix server
neither lost, nor added, nor modified any vote.

Proving that the output of a mix is a permutation of the
inputs without compromising the secrecy of the permuta-
tion is not easy. The first solutions to this problem were
based on computationally expensive zero-knowledge proofs.
Much work has since been devoted to making the proofs
more efficient both asymptotically and in real terms (we re-
view related work in the following section). However, even
the fastest mix [20] is still too slow to prove correctness in
real time when the number of inputs is large. For instance,
we estimate that to prove that one million votes have been
mixed correctly would require some 20 hours on a 1GHz PC.
In effect, existing mix servers are too slow to mix non-trivial
numbers of inputs in real time.

In this paper, we propose an exceptionally efficient new
method for proving that the output produced by a mix net-
work is almost entirely correct. The real cost of generating
a proof of almost entirely correct mixing, measured by the
number of exponentiations required, is a small constant in-
dependent of the number of inputs mixed. In practice, our
new mix produces an instant proof of almost entirely cor-
rect mixing. In comparison, the fastest proofs of perfectly
correct mixing require work linear in the number of inputs.

Almost entirely correct mixing means that the mix net-
work provably processed correctly all inputs with high (but
not overwhelming) probability. For example, a typical ap-
plication of our mix would be to give an instant proof that
the outcome of an election involving one million ballots is
correct with probability 99%. This guarantee may well be
enough to announce the result of the election early, while
a much slower perfectly correct proof runs to validate the
result beyond a doubt.

We use a new technique to verify that the output of a mix
server is almost entirely correct. This new technique consists

of first computing the product πS of a random subset S of
the inputs of the mix server, then revealing the subset S to
the mix server and requesting it to produce a subset S′ of
the outputs such that πS′ = πS . Observe that an honest mix
server can find S′ simply by applying to S the permutation
that matches mix inputs to mix outputs. On the other hand,
we will show in sections 6 and 7 that the problem of finding
S′ such that πS′ = πS becomes often impossible if the set
of outputs produced by the mix server is not a permutation
of the inputs.

The most important application of our new proof is in
large electronic elections (with one million votes or more),
where it may be used to guarantee almost instantly that the
output produced by the mix is almost entirely correct. This
guarantee will often be enough to announce the result of the
election instantly. We can use in parallel to our proof any
one of a number of slower proofs of perfect-correctness with-
out having to mix the ballots again (the voters themselves,
of course, need not be involved again). What makes this
possible is that our proof works with the fastest and also
most common implementation of mix networks: ElGamal
re-encryption mix nets (see section 2.1).

The rest of this paper is organized as follows. In section
2, we define mix networks and their properties, as well as
re-encryption mix nets. In section 3, we survey existing
techniques for proving the correct execution of mix nets. We
introduce our mechanism for proving almost entirely correct
mixing in section 4. In section 5, we propose a new mix
network protocol based on a proof of almost entirely correct
mixing and examine the properties of this mix net in section
6. In section 7, we prove that our mix net is almost entirely
correct. We conclude in section 8.

2. MIX DEFINITIONS AND PROPERTIES
A mix server takes as input a set of ciphertexts and out-

puts in a random order re-encryptions of these ciphertexts.
A re-encryption of a ciphertext is a different ciphertext that
decrypts to the same plaintext. We describe later in this
section the encryption scheme used by mix servers and the
re-encryption process. The main property desired of a mix
server is that the permutation that matches input cipher-
texts to output re-encryptions should be known to no one
but the mix server itself.

Mixing typically involves not one but several mix servers
that operate sequentially on the same data. This is called a
mix network or mix net. Consider a mix net that consists
of n servers. Users submit encrypted inputs to the mix net-
work. These inputs are mixed in a random order by the first
mix server. The output of this first mix server is passed to
the second mix server, which mixes it again and passes it to
the third mix server which mixes it yet again, and so on un-
til the output of the n-th server becomes the final output of
the mix net. The relationship between inputs and outputs
of a mix net is not known to any single server, but could
only be learnt by a coalition of all the servers.

As is customary, we model all communication between
users and mix servers, as well as among mix servers with
a bulletin board. The bulletin board is a publicly shared
piece of memory to which all participants have read access
and appendive, sequential write access with authentication.
We further assume that all participants (users and servers)
have polynomially bounded computational resources. We
consider an adversary that may statically control any num-

ber of users and up to all the mix servers minus one. (We
refine and justify this adversarial model in section 3). Given
these assumptions, we require the following security proper-
ties of a mix network:

• Correctness: the set of ciphertexts output by the mix
network must “match” the set of input ciphertexts.
This means that every output is a re-encryption of an
input, and no two outputs are re-encryption of the
same input.

• Privacy: no adversary can match any output of the
mix network to the corresponding input with proba-
bility better than 1/n where n is the number of inputs.
Our mixnet guarantees a slightly weaker notion of pri-
vacy as explained in section 6.

• Robustness: the mix network must produce a correct
output irrespective of possible server faults or failures.

• Universal verifiability: a mix net is universally ver-
ifiable if a coalition of all users and all mix servers only
ever succeeds in convincing an outside verifier of the
correct execution of a mix network when the mix net-
work was indeed executed correctly. Note that univer-
sal verifiability uses a stronger adversarial model than
that used to define privacy and correctness, since all
mix servers may participate in the coalition to cheat
an outside verifier.

• Efficiency: while not a security property, low compu-
tational overhead is the holy grail of secure mix net-
works.

2.1 Re-encryption Mix Nets
In this section, we define re-encryption mix networks. Re-

encryption mix nets were originally proposed in [22]. The
particular re-encryption mix of [22] was broken in [24, 25],
and later fixed by [21]. A very large number of constructions
based on re-encryption mix nets have since been proposed
(we will survey them briefly in the following section).

Re-encryption mix networks operate in two distinct phases.
In the first phase (the mixing phase), the input ciphertexts
are shuffled and re-encrypted. In the second phase (the de-
cryption phase), the mixed ciphertexts that are the output
of the first phase are decrypted. The servers that perform
the mixing in the first phase, and the servers that perform
the decryption in the second phase need not be the same,
although they can be the same. We treat them separately
in order to define our adversarial model more clearly. We
call the first group mixing servers and the second group de-
cryption servers.

Definition 2.1. (Adversarial model) We consider an ad-
versary that may statically control any number of users, up
to all the mixing servers minus one, and up to a minority
of decryption servers.

This static adversarial model is commonly considered, but
it will be particularly appropriate for the mix net we pro-
pose. Since our mixing is so fast, it is not practically impor-
tant to consider dynamic adversaries. The same may not be
true for slower mixes, making such schemes possibly weaker
or more complicated. As we shall see, the involvement of
decryption servers is very much more limited than that of

Scheme Computational Cost Trade-off
Re-encryption Proof Decryption

Cut and Choose ZK [26, 21] 2n 642nk = O(nk) (2 + 4k)n
Pairwise Permutations [2, 16] 2n 7n log n(2k − 1) = O(nk) (2 + 4k)n
Matrix Representation [9] 2n 18n(2k − 1) = O(nk) (2 + 4k)n
Polynomial Scheme [20] 2n 8n(2k − 1) = O(nk) (2 + 4k)n
Randomized Partial Checking [18] 2n n/2(2k − 1) = O(nk) (2 + 4k)n Privacy
Optimistic Mixing [11] 6n 6 + 12k = O(k) (5 + 10k)n
Proof-of-Subproduct [this paper] 2n 2α(2k − 1) = O(k) (2 + 4k)n Correctness

Figure 1: Real cost per server (for a total of k servers) of mixing n items using different mixes. The cost is
measured in terms of the number of exponentiations. Note that α is the security parameter of our scheme
(e.g. 1 ≤ α ≤ 5)

mixing servers. Since this makes decryption servers easier
to recruit than mixing servers, it is appropriate that our
adversarial model requires a majority of honest decryption
servers but only a single honest mixing server.

For concreteness, we base our presentation of re-encryption
mix nets on an ElGamal implementation. ElGamal is a
probabilistic public-key cryptosystem. The public param-
eters are a multiplicative group G of prime order q (either
a subgroup of Z∗p or an elliptic curve over Fp), a genera-
tor g of the group G, and an element y = gx. The private
key consists of the value x. ElGamal is semantically secure
[27] under the assumption that the Decisional Diffie Hell-
man (DDH) problem is hard in G. To encrypt a plaintext
m ∈ G, a user chooses a random r ∈ Zq and produces the
following ciphertext: (gr, myr). Note that a ciphertext is a
pair of two elements of G. To decrypt a ciphertext (a, b),
a user computes ax/b which yields the plaintext m since
(gr)x = yr.

The ElGamal cryptosystem makes re-encryption of ci-
phertexts possible with knowledge of only the public pa-
rameters. To re-encrypt a ciphertext c = (gr, myr), one
only needs to choose a new random value r′ ∈ Zq and com-

pute c′ = (gr · gr′ , myr · yr′). It is easy to convince oneself
that the ciphertexts c and c′ decrypt to the same plaintext
m. Furthermore, one cannot test if c′ is a re-encryption of
c if the DDH problem is hard in G.

Definition 2.2. Re-encryption mix networks (ElGamal
implementation)

• Key generation: all decryption servers jointly gener-
ate the parameters (q, g, x, y) of an ElGamal cryptosys-
tem in a group G of order q generated by g, using for
example the threshold key generation protocol of Ped-
ersen [23, 10]. The public parameters q, g, y are made
public, while the private key x is shared among the de-
cryption servers in a (t, k) secret sharing scheme.

• Submission of inputs: users submit to the mix net
ElGamal encrypted inputs (gr, myr) using the parame-
ters generated above. Users are also required to submit
a proof of knowledge for the corresponding plaintext m.
This can be done for example by proving knowledge of
r with respect to gr, using myr as input to a random
oracle (see [13, 27]).

• Mixing phase: mixing server Mi receives as input
the set of ElGamal ciphertexts output by mixing server

Mi−1. Server Mi permutes and re-randomizes (i.e. re-
encrypts) all these ciphertexts, and outputs a new set
of ciphertexts, which is then passed to Mi+1. Server
Mi must also provide a proof of correct execution (this
will be discussed in much detail below).

• Decryption phase: a quorum of decryption servers
jointly perform a threshold decryption of the final out-
put, and provide a zero-knowledge proof of correctness
for decryption.

3. RELATED WORK
The main difficulty of re-encryption mixnets lies in design-

ing computationally efficient ways for mix servers to prove
that they mixed and re-encrypted their inputs correctly in
the mixing phase. We survey here some techniques that are
representative of the progress made and compare the effi-
ciency of these techniques in Figure 1. The table in Figure 1
compares the real cost per server (for a total of k servers)
of mixing n items. The cost is expressed as the number
of exponentiations required to re-encrypt the inputs, ver-
ify correctness and decrypt the outputs. We do not take
into account the cost of operations such as additions and
multiplications that are much faster to perform than expo-
nentiations. Where applicable, the table also mentions what
trade-off is made for efficiency.

The first methods to prove the correctness of the mixing
were based on cut-and-choose zero-knowledge proofs [26, 21,
1]. Though much work went into designing efficient cus-
tomized zero-knowledge proofs, these schemes remain com-
putationally expensive. To make the proofs more efficient,
an approach proposed independently by Millimix [16] and
MIP-2 [2, 3] is to decompose a permutation on n elements
into n log n pairwise permutations called comparitors. The
mix server then proves correct execution of all the compari-
tors one by one, which can be done efficiently with a variant
of the Chaum-Pedersen [6] protocol that proves equality of
discrete logarithms. The schemes recently proposed by Fu-
rukawa and Sako [9], and Neff [20] offer yet more efficient
proofs of correct mixing.

We now compare in more detail our new mix net to the two
schemes to which it is closest: Randomized Partial Check-
ing [18] and Optimistic Mixing [11]. Randomized Partial
Checking (RPC) trades-off some privacy for more efficiency:
correctness is verified by asking each mix server to reveal
a randomly selected fraction of its input/output relations.
This guarantees with high probability that all but an expo-
nentially small number of inputs were processed correctly by

the mix server. On the downside, RPC offers a weaker guar-
antee of privacy. Since each mix server reveals a fraction of
its input/output relations, privacy becomes a global prop-
erty of the mix network: a majority of honest mix servers is
required to ensure privacy, rather than a single mix server.
To achieve the same confidence in privacy, RPC requires the
involvement of many more servers than the schemes we have
previously surveyed.

While our mix net bears some resemblance to RPC, it
exploits mostly a different trade-off. RPC trades off mostly
privacy (and some correctness) for efficiency, while our scheme
trades off mostly correctness (and a little privacy) for effi-
ciency. Contrary to RPC, a mix server in our scheme does
not reveal individual relationships between inputs and out-
puts, but only the global relationship between a large subset
of the inputs and a large subset of the outputs. Like RPC,
our mix offers perfect privacy if there is an honest majority
of mix servers. But unlike RPC, our mix preserves some
privacy even when there is only a single honest mix server.
In the case of a single honest mix server, as we show in
section 6, every input is hidden among n/2α outputs on
average, where n is the total number of inputs and α is
the security parameter (e.g. α = 4). On the downside, our
mixnet does not guarantee perfect correctness but must rely
on the parallel execution of a slower verification protocol to
guarantee perfect correctness.

Finally, a proof technique similar to ours is used in [11]
to build a mix network with different properties. The proof
of correctness in [11] consists of a proof that the product of
all the inputs equals the product of all the outputs of the
mix server. This, combined with redundancy checks in the
inputs, guarantees perfect correctness. As in our scheme,
the cost of the proof is independent of the number of inputs
mixed. But on the downside, the redundancy checks in the
inputs (which guarantee perfect correctness) result in a cost
of mixing and decrypting that is more than twice as high as
in all other re-encryption mix networks.

To summarize, our mix has the lowest total computational
overhead for mixing n inputs. In particular the number of
exponentiations required to prove correct mixing is a con-
stant independent of the number of inputs. Our scheme
guarantees only almost entirely correct mixing: any error in
the output is detected with probability 99% whereas per-
fectly correct mixes provide standard guarantees of correct-
ness of 1 − 280. Our scheme also trades off a little privacy
(see section 6).

4. PROOF OF ALMOST ENTIRELY COR-
RECT MIXING

To illustrate the key idea of our proof of almost entirely
correct mixing, we introduce first the following simple prob-
lem. Consider a prover who is committed to two sets of
n elements: m1, . . . , mn ∈ G and m′

1, . . . , m
′
n ∈ G. This

prover wants to convince a verifier that there exists a per-
mutation ϕ on n elements such that for all i, m′

i = mϕ(i).
In other words, the prover must convince the verifier that
the set {m′

i}n
i=1 is a permutation of the set {mi}n

i=1. In
addition, the prover must reveal no information about the
sets {mi}n

i=1 and {m′
i}n

i=1 and as little information as pos-
sible about the permutation ϕ. We assume that the prover
is computationally bounded.

We propose the following approach:

1. The verifier chooses a random subset of indices S ⊂
{1, . . . , n} (note that |S| ≈ n/2 with high probability).

2. The prover reveals to the verifier the set S′ = ϕ(S)
defined as ϕ(S) = {ϕ(s)|s ∈ S}. The verifier checks
that |S| = |S′|.

3. The prover shows that
Q

S mi =
Q

S′ m
′
i. We assume

that this can be done without revealing anything about
the mi or m′

i. The verifier is satisfied if this product
equality holds.

There are a few important observations to make about
this approach:

• A prover who knows a permutation ϕ such that for all
i, m′

i = mϕ(i) will always trivially succeed in steps 2
and 3.

• Consider a malicious prover who does not have a per-
mutation ϕ such that for all i, m′

i = mϕ(i). This
prover must find a set S′ such that |S| = |S′| andQ

S mi =
Q

S′ m
′
i. We prove in section 7 that if the set

{m′
i} is not a permutation of the set {mi}, then the

probability that the prover can find a set S′ with the
desired properties in polynomial time is at most 5/8,
or else the discrete logarithm problem can be solved in
polynomial time in G.

• The proof leaks a little bit of information about the
permutation ϕ. Given S and S′ = ϕ(S), the verifier
knows that ϕ(i) ∈ S′ if and only if i ∈ S. This is ac-
ceptable for mix network applications, considering the
number of inputs mi is typically large, so that being
hidden among about half the outputs is sufficient.

Applications to ElGamal re-encryption mixes.
ElGamal re-encryption mix networks were defined in sec-
tion 2.1. Recall that the inputs to a mix server are ElGamal
ciphertexts. The mix server mixes these inputs, re-encrypts
them, and outputs a new set of ElGamal ciphertexts. Fol-
lowing the example above, we propose to verify that the
inputs were mixed correctly by first computing the product
of a randomly selected subset S of the inputs, then giving S
to the mix server and asking it to produce a subset S′ of the
outputs whose product is the same. To make this proof tech-
nique work with ElGamal ciphertexts, we need the following
two propositions:

Proposition 4.1. (Multiplicative homomorphism of El-
Gamal) Let (g1, m1) and (g2, m2) be ElGamal encryptions
of plaintexts P1 and P2. Then (g1g2, m1m2) is an ElGamal
encryption of the product P1P2.

Proposition 4.2. (Chaum-Pedersen protocol [6]) Con-
sider a prover who knows values (g, x, h, y) in Zp and also
knows logg x and logh y. The Chaum-Pedersen protocol al-
lows this prover to convince a verifier that logg x = logh y
without revealing anything about these discrete logarithms.
A trivial application of the Chaum-Pedersen protocol is to
prove that two ElGamal ciphertexts are re-encryption of the
same plaintext.

Consider a mix server who receives as inputs n ElGamal
ciphertexts (gri , mi · yri), and outputs n ElGamal cipher-

texts (gr′i , m′
i · yr′i). Proposition 4.1 shows that any verifier

can compute an ElGamal encryption (g, m) of
Q

mi, and
an ElGamal encryption (g′, m′) of

Q
m′

i. With Proposition
4.2, the mix server can then prove that

Q
mi =

Q
m′

i by
giving a zero-knowledge proof that log(g′/g) = logy(m′/m).

5. OUR NEW MIX NET
In this section, we integrate our proof of almost entirely

correct mixing in the design of the ElGamal re-encryption
mix network and give a detailed description of the resulting
mix network protocol.

Setup. The decryption servers jointly generate the param-
eters (q, g, x, y) of an ElGamal cryptosystem in a group G of
prime order q generated by g. The private key x such that
y = gx is shared among all decryption servers in a (t, k)
secret sharing scheme. This may be done using for exam-
ple the (t, k)-threshold key generation protocol of Pedersen.
This setup step is executed only once. After that, the same
parameters can be used to mix any number of input batches.
The parameters of the ElGamal cryptosystem need only be
generated anew if new servers join the mix or existing servers
leave the mix.

Submission of inputs.

• The servers publish the public ElGamal parameters
that were generated in the setup phase.

• Users submit their inputs to the mix net encrypted
with ElGamal. Let mi be the input of user Ui. For
simplicity, we assume that mi ∈ G. User Ui encrypts
mi and posts the resulting ciphertext (gr, mi · yr) to
the mix net’s bulletin board. Users must also prove
knowledge of mi (see section 2.1)

• The mix servers agree on a security parameter α > 0,
where α is a small integer (say, α ≤ 5). Higher values
of α provide a stronger guarantee of correct mixing
but offer less privacy to the users. We examine this
trade-off in detail in the next section.

Re-randomization and Mixing.
The first mix server reads users’ input ciphertexts from the
bulletin board, re-randomizes the ciphertexts, and writes
them back to the bulletin board in random order. One by
one all other mix servers perform the same operation. The
output written to the bulletin board by one mix server be-
comes the input to the next mix server, until each server has
performed the following mix step exactly once:

1. Mix server Mj reads as inputs n ElGamal ciphertexts
Ci = (gri , mi · yri) from the bulletin board.

2. Mj re-randomizes these ciphertexts to produce C′i =

(gr′i , m′
i · yr′i)

3. Mj outputs these new ciphertexts to the bulletin board
in random order: C′ϕj(i), where ϕj is a random permu-

tation on n elements chosen by mix server Mj . Mix
server Mj is required to remember the permutation ϕj

and the re-randomization factors r′i until the verifica-
tion step which we describe next is complete. The per-
mutation ϕj and the re-randomization factors should
of course be kept secret.

Verification.
Mix servers are not allowed to abort at any time during
the verification. A mix server that does abort is accused of
cheating.

Before verification starts, all servers jointly generate a ran-
dom string r which will be used to generate random chal-
lenges. The string r is generated as follows. Each mix server
Mj selects a random string rj and commits to rj using a
non-malleable commitment scheme [8]. After all commit-
ments are received, they are opened. The random string r
is computed as r = ⊕jrj .

Next, each server in turn must prove that it re-randomized
and mixed the ciphertexts correctly. The following 6 steps
are repeated individually for each server. The verification
step for server Mj proceeds as follows. As above, let Ci =
(gri , mi · yri) for 1 ≤ i ≤ n denote the input ciphertexts
received by server Mj . (We omit the subscript j in the
notation of Ci for clarity). Let C′ϕj(i) be the set of outputs,

where C′i = (gr′i , m′
i · yr′i).

1. We first verify that all C′i are properly formatted, i.e.
every C′i consists of a pair (s, t) ∈ G2. Observe that
this can be done efficiently. If G is a subgroup of Z∗p,
the computational cost to verify that an element be-
longs to G is one exponentiation, but the verification
for all C′i can be batched (see [4]), resulting in a cost
of a single exponentiation to verify all C′i. If G is the
group of points of an elliptic curve over Fp of prime
order q, the computational cost to verify that a point
is on the curve is one squaring and one cubing.

2. Using the Chaum-Pedersen protocol (proposition 4.2),
mix server Mj proves that

Qn
i=1 mi =

Qn
i=1 m′

i.

3. All mix servers collaborate to generate α sets S1, . . . , Sα,
where each set Si is a subset of {1, . . . , n}. The sets
Si are generated independently of one another in the
following manner. Every index 1 ≤ k ≤ n is included
in Si independently at random with probability 1/2.
The randomness is derived from the random string r
generated jointly by all servers at the beginning of the
verification step. We examine in more detail how to
generate the subsets Si at the end of this section.

4. The sets S1, . . . , Sα are given to mix server Mj .

5. Mix server Mj must produce α subsets S′1, . . . , S
′
α of

{1, . . . , n} such that for all 1 ≤ i ≤ α |Si| = |S′i|
and

Q
k∈Si

mk =
Q

k∈S′i
m′

k. This product equality

is proved using the Chaum-Pedersen protocol.

6. If the mix server fails in step 5, it is accused of cheating.
The decryption servers are then called upon to inspect
the transcript of the verification (steps 3, 4 and 5) on
the bulletin board. If cheating is confirmed by the
decryption servers, the cheating mix server is banned
from any future mixing. In this case, the remaining
honest servers restart the whole mixing from the be-
ginning using the original ciphertext inputs posted by
users to the bulletin board.

Decryption.
The mix network proceeds to the decryption step only if
the verification step did not expose any cheating servers. A
quorum of decryption servers jointly performs a threshold

decryption of the final output ciphertexts, and provides a
zero-knowledge proof of correctness for decryption.

Perfectly-correct proof. If a proof that the mix net op-
erated perfectly correctly is required, we may run a slower
perfectly-correct verification step, such as for example that
proposed by Neff [20]. The cost of this additional verifica-
tion is not included in the analysis of our new mix net.

This completes the description of our new mix net. We
end this section with a description of how to generate the
sets S1, . . . , Sα in step 3 of the verification phase.

Optimization for the generation of challenges.
Recall that we denote by r the randomness jointly gener-
ated by all the servers before the verification started. Let
h : {0, 1}∗ → {0, 1}160 be a hash function. In our security
analysis, we model h as a random oracle. Let B be the
content of the bulletin board just before the sets Si are gen-
erated (i.e. everything that has been posted to the bulletin
board up to that point). We use the master randomness
r and the string B together with the hash function h to
generate the sets S1, . . . , Sα using the following rule: index
k ∈ {1, . . . , n} is included in Si for mix server Mj if and
only if the least significant bit of h(r||B||j||i||k) is 1, where
|| denotes string concatenation.

6. PROPERTIES
In this section, we examine the properties of our new mix

net in terms of soundness, efficiency, robustness, privacy,
correctness and finally universal verifiability.

6.1 Soundness

Proposition 6.1. (Soundness) Our mix net is sound,
in the sense that a server who does not deviate from the
protocol cannot fail the verification step.

Proof. A mix net who submits S′ = ϕj(S) can not fail
the verification test. Recall from proposition 2.1 that our
adversarial model allows the adversary to control at most
all but one of the mix servers, and up to a minority of de-
cryption servers. The involvement of the decryption servers
when cheating is alleged (step 6 of the verification) guaran-
tees soundness since a majority of them is honest. (Were it
not for decryption servers, a majority of cheating mix servers
could evict a minority of honest mix servers.) �

6.2 Efficiency

Proposition 6.2. (Efficiency) The cost of mixing n
items is 2n exponentiations per mix server. The cost of
proving that the mixing is almost entirely correct is 2α(2k−
1) exponentiations per mix server and the cost of decrypting
n outputs is (2 + 4k)n, where k is the total number of mix
servers.

As discussed in section 3, our mix has the lowest total
computational overhead to mix n inputs. In particular the
number of exponentiations required to prove that mixing has
been done correctly is a constant independent of the number
of inputs.

6.3 Robustness

Proposition 6.3. (Robustness) Like any re-encryption
mix network, our construction produces an output as long as
a quorum of decryption servers is available to proceed with
the decryption phase.

6.4 Privacy

Proposition 6.4. (Privacy) Every input is hidden among
n/2α outputs on average.

Proof. In the verification step, each mix server must re-
veal the image by his secret permutation of α sets S1, . . . , Sα,
each of size on average n/2. Every input belongs either to
Si or to the complement of Si, and thus the corresponding
output belongs either to the image of Si or to the image
of the complement of Si. The intersection of the images of
α sets Si (or their complements) is on average of size n/2α. �

This is the minimum privacy guaranteed by our mix net-
work, given that we consider an adversarial model in which
all but one of the mix servers may be controlled by the ad-
versary. If we adopt a weaker adversarial model and assume
that a majority of mix servers are honest, we can adapt the
techniques of [18] to our mix network to guarantee perfect
privacy for all the inputs with overwhelming probability.

6.5 Correctness

Proposition 6.5. (Almost Entirely Correct Mixing)
If the set of outputs produced by a mix server is not a per-
mutation of the inputs, then cheating will be detected with
probability 1 − (5/8)α, or the discrete logarithm problem in
G can be solved in polynomial time.

The proof of almost entirely correct mixing is fairly in-
volved and is given in the next section. Let us consider a
concrete example. Consider an election with 160, 000 bal-
lots. A security parameter α = 6 guarantees that every
individual ballot is hidden among 2, 500 others. By propo-
sition 6.5, the probability that the output set computed by
the mix network is a permutation of the inputs is more than
94%.

6.6 Universal Verifiability
Our mix offers no guarantee of universal verifiability. We

have already noted that a slower proof of perfect correctness
should be executed in parallel with our proof and we assume
that universal verifiability, if required, will come from that
slower proof. We note that while it is important that the
results of the election be available instantly (with our proof),
it is acceptable to wait longer (a day) for a proof of universal
verifiability (with another, slower proof).

7. PROOF OF CORRECTNESS (PROPOSI-
TION 6.5)

In this section we prove Proposition 6.5 (almost entirely
correct mixing). Throughout this section, we let G be a
group of prime order q and Zq = {0, . . . , q − 1}.

Theorem 7.1. Let 0 < ε < 1
2

be some constant. If the set
of outputs produced by a mix server is not a permutation of

the inputs, then a single challenge in step 5 of the verification
protocol exposes cheating with probability at least 3

8
−ε, or the

discrete logarithm problem in G can be solved in polynomial
time.

Before proving the theorem, we need the following simple
fact:

Lemma 7.2. Let u1, . . . , un+1 and v1, . . . , vn+1 be vectors
in Zn

q . Suppose there is no n-by-n matrix M ∈ GLn(Zq)
such that ui = M · vi for all i = 1, . . . , n + 1. Then there
is a polynomial time algorithm that finds n + 1 elements
c1, . . . , cn+1 ∈ Zq such that

Pn+1
i=1 civi = 0 but

Pn+1
i=1 ciui 6=

0.

Proof. By relabelling the vectors v1, . . . , vn+1 as required,
we may assume that V ′ = {v1, . . . , vk} is a maximal linearly
independent subset of V = {v1, . . . , vn+1}. Let M be an
n-by-n matrix such that ui = M · vi for all vi ∈ V ′. Such
a matrix always exists since the vectors in V ′ are linearly
independent. Now, for any i > k the set V ′ ∪ {vi} is lin-

early dependent and therefore we can find c
(i)
0 , . . . , c

(i)
k in

Zq such that c
(i)
0 vi +

Pk
j=1 c

(i)
j vj = 0. Note that c

(i)
0 6= 0.

If the equality c
(i)
0 ui +

Pk
j=1 c

(i)
j uj = 0 also holds, then

ui = M · vi. Therefore, by the assumption of the lemma,

there exists ` > k such that c
(`)
0 v` +

Pk
j=1 c

(`)
j vj = 0 but

c
(`)
0 u` +

Pk
j=1 c

(`)
j uj 6= 0. The algorithm works by build-

ing the vectors (c
(i)
0 , . . . , c

(i)
k) for i = k + 1, . . . , n + 1 and

outputting the first one satisfying the requirement of the
lemma. �

We now prove Theorem 7.1. Assume that the set of out-
puts produced by the mix server is not a permutation of the
set of inputs but cheating is detected with probability less
than 3

8
− ε. We view the mix server as a polynomial-time

randomized algorithm, and construct an algorithm A that
uses the mix server to compute discrete logarithms in G.
Algorithm A takes as input two values g and h in G and
computes logg h as follows:

1. Algorithm A creates ElGamal public and private keys
(the public key will be used to encrypt the inputs to
the mix server). Algorithm A keeps the private key to
itself and gives the public key to the mix server. Note
that A is emulating the decryption servers.

2. A creates n inputs ai = gri ·hsi ∈ G for ri, si ∈ Zq cho-
sen independently at random. Let A = {a1, . . . , an}.
Algorithm A submits ElGamal encryptions of the in-
puts a1, . . . , an to the mix server.

3. The mix server produces an output set of n ElGamal
ciphertexts. Algorithm A decrypts these ciphertexts
to obtain the set B = {b1, . . . , bn} ⊆ G of outputs.

4. Algorithm A generates a random subsets S ⊆ A by in-
cluding every element of A independently at random
with probability half. It challenges the mix server to
reveal the subset F (S) ⊆ B of the outputs correspond-
ing to S. Recall that the mix server must produce a
subset F (S) ⊆ B such that |F (S)| = |S| and the prod-
uct of the elements of F (S) equals the product of the
elements of S. If the mix server does not reply to the
challenge, algorithm A rewinds it and queries it on a

different random subset until the mix server produces
a reply. Since the mix server answers challenges with
probability at least 5

8
+ ε, the algorithm A needs to

rewind the mix server less than twice on average.

5. Algorithm A repeats step 4 above n+1 times, rewind-
ing the mix server between queries. It obtains inde-
pendent random subsets S1, . . . , Sn+1 of the inputs and
the corresponding replies F (S1), . . . , F (Sn+1) from the
mix server.

6. Let χ(S) ∈ {0, 1}n be the characteristic vector of S
for any subset S of A or B. We view χ(S) ∈ {0, 1}n

as a vector in Zn
q . If there exists an n-by-n matrix

M ∈ GLn(Zq) such that for all i = 1, . . . , n + 1 the
equality χ(Si) = M ·χ(F (Si)) holds, then algorithm A
reports failure.

7. Otherwise, there is no matrix M ∈ GLn(Zq) such that
χ(Si) = M · χ(F (Si)) holds for all i = 1, . . . , n + 1.
By Lemma 7.2, we can then find in polynomial time
c1, . . . , cn+1 ∈ Zq such that:

n+1X
i=1

ciχ(F (Si)) = (0, . . . , 0) mod q

But

n+1X
i=1

ciχ(Si) 6= (0, . . . , 0) mod q

Let (e1, . . . , en) =
Pn+1

i=1 ciχ(Si) ∈ Zn
q . By defini-

tion of the mix server, we know that
Q

aj∈Si
aj =Q

bj∈F (Si)
bj for all i = 1, . . . , n + 1. By multiplying

these n + 1 relations, we get

nY
j=1

(aj)
ej =

n+1Y
i=1

Y
bj∈F (Si)

(bj)
ci = 1.

Recall that ai = gri · hsi . Therefore

nX
j=1

ej(rj + sj(logg h)) = 0 mod q.

If
Pn

j=1 ejsj = 0 then algorithm A reports failure.

This happens with probability at most 1/q. Otherwise
A outputs

logg h = −
� nX

j=1

ejrj

�
/

� nX
j=1

ejsj

�
.

Proposition 7.3. Suppose the mix server produces out-
puts which are not a permutation of the inputs, yet manages
to reply to challenges with probability greater than 5

8
+ ε.

Then algorithm A succeeds in computing discrete logarithm
with probability at least ε2/128− 1/q.

Proof. By assumption, the mix server correctly answers
a query with probability at least 5

8
+ε, where the probability

is taken over all 2n possible queries and the random bits
used by the mix server. By a standard counting argument,
if we randomly fix the mix server’s random bits, then with
probability at least ε/2 the mix server answers correctly at
least 5

8
+ 13

16
ε of all 2n queries.

Once we fix the mix server’s random bits, the set of queries
that the mix server answers correctly is a well defined subset
S ⊆ {0, 1}n. Furthermore, we can view the mix server as a
deterministic function F : S → {0, 1}n mapping subsets of
inputs to subsets of outputs. We know that |S| > 2n(5

8
+ 13

16
ε)

with probability at least ε/2. Assume for the rest of the
proof that |S| > 2n(5

8
+ 13

16
ε).

For i = 1, . . . , n, let ei ∈ {0, 1}n be the i-th unit vector
(i.e. zeroes everywhere and a one in the i-th coordinate).
The following lemma will be used several times:

Lemma 7.4. Suppose that |S| > 2n/2. Let i ∈ {1, . . . , n}.
There exist v0, v1 ∈ S such that v1 = v0 + ei.

Proof. Let U be the subset of {0, 1}n containing all vec-
tors with a one in position i. Let S0 = S ∩ Ū and let
S1 = S ∩ U . We define f : S0 → U to be the map that
sends v0 to v0 + ei. Since |f(S0)| + |S1| = |S| > |U |, there
exist v1 ∈ f(S0)∩S1. Then (v1−ei, v1) is the pair of desired
vectors. �

Next, we bound the probability that algorithm A aborts
in step 6. We separate our analysis of the bound in two
cases, depending on whether F (S) spans all of Zn

q or not.
We prove first that S must span all of Zn

q when |S| > 2n/2.

Lemma 7.5. If |S| > (2n)/2 then the vectors in S span all
of Zn

q .

Proof. Let i ∈ {1, . . . , n}. By the previous lemma, there
exist v0, v1 ∈ S such that ei = v1 − v0. Therefore e1, . . . , en

are spanned by S and so S spans Zn
q . �

Lemma 7.6. Let ε ∈ [0, 1
2
] and S ⊆ {0, 1}n. If |S| >

2n(1
2

+ ε), then n random and independent vectors from S
will span Zn

q with probability at least ε/4.

Proof. Let v1, . . . , vc ∈ Zn
q be linearly independent vec-

tors where v1, . . . , vc ∈ {0, 1}n. We know that the linear
space spanned by v1, . . . , vc contains at most 2c vectors in
{0, 1}n. Therefore, if we are given c linearly independent
vectors v1, . . . , vc as above, the probability that a random
vector from S is linearly dependent on v1, . . . , vc is at most
2c/|S|. If follows that n random vectors from S span all of
Zn

q with probability at least

p =

�
1− 2

|S|
��

1− 22

|S|
�
· · ·
�

1− 2n−1

|S|
�

In what follows, all the logarithms are taken base 2. Since
log2(1− x) ≥ −2x for x ∈ [0, 1

2
] and |S| > 2n−1, we have

log p = log

�
1− 2n−1

|S|
�

+

n−2X
i=1

log

�
1− 2i

|S|
�

≥ log

�
1− 2n−1

|S|
�
− 2

n−2X
i=1

2i

|S|

≥ log

�
1− 2n−1

|S|
�
− 2n

|S|
Since we assume |S| > (2n)(1

2
+ ε), we get p ≥ ε

2+4ε
. With

ε < 1
2
, we get the desired result. �

Lemma 7.7. If |S| > 2n(1
2

+ ε) but F (S) does not span
all of Zn

q , then algorithm A does not abort in step 6 with
probability at least ε/4.

Proof. By Lemma 7.6, we know that with probability at
least ε/4, the first n vectors χ(S1), . . . , χ(Sn) ∈ {0, 1}n will
span all of Zn

q . But since F (S) does not span all of Zn
q , the n

vectors χ(F (S1)), . . . , χ(F (Sn)) ∈ {0, 1}n do not span all of
Zn

q . Therefore there is no matrix M ∈ GLn(Zq) that maps
χ(F (Si)) to χ(Si) for all i = 1, . . . , n and so the algorithm
does not abort in step 6. �

Next, we want to bound the probability of aborting in
step 6 when F (S) spans all of Zn

q . For that, we first need
the following two lemmas which show that F cannot be a
linear map on S. Recall that a permutation matrix is a
permutation of the rows of the identity matrix. Let us define
the L norm of a vector b = (b1, . . . , bn) ∈ {0, 1}n to be
L(b) =

Pn
i=1 bi.

Lemma 7.8. Let |S| > (5/8)2n and F : S → {0, 1}n be a
linear function such that F (S) spans all of Zn

q and F pre-
serves the L norm (i.e. L(F (v)) = L(v) for all v ∈ S).
Then there exists a permutation matrix P ∈ GLn(Zq) such
that F (v) = P · v for all v ∈ S.

Proof. If F : S→ {0, 1}n is a linear function, we can find
an n-by-n matrix P such that for all S ∈ S, F (S) = P · S.
Note that the matrix P must be of full rank since F (S) spans
all of Zn

q . For i, j ∈ 1, . . . , n, we write pi,j the entry of P at
row i and column j.

We start by showing that pi,j ∈ {−1, 0, 1} for all i, j ∈
1, . . . , n. Recall that for i = 1, . . . , n we denote the i-th
unit vector by ei ∈ {0, 1}n. By Lemma 7.4, we can find
v0, v1 ∈ S such that v1 = v0 + ei. Since v0, v1 ∈ S, we know
that F (v0) = Pv0 and F (v1) = Pv1 are in {0, 1}n. But since
v1 = v0 + ei we have Pei = Pv1 − Pv0. This shows that
the vector Pei can be expressed as the difference between
two vectors in {0, 1}n and therefore all the coordinates of
Pei are in {−1, 0, 1}. But the vector Pei is exactly the i-th
column of the matrix P . Since this argument works for all
i = 1, . . . , n, we have shown that pi,j ∈ {−1, 0, 1} for all
i, j ∈ 1, . . . , n.

Recall the definition of the norm L given above. We have:

L(Pei) = L(Pv1 − Pv0) = L(Pv1)− L(Pv0)

= L(F (v1))− L(F (v0)) = L(v1)− L(v0) = 1

This implies the following equality, which we will use later:

nX
j=1

nX
i=1

pi,j = n.

Let us now consider row Ri = (pi,1, . . . , pi,n) of the matrix
P for i ∈ 1, . . . , n. For any v ∈ S, we know that the scalar
product Ri ·v ∈ {0, 1} since F (v) = Pv ∈ {0, 1}n. But |S| >
(5/8)2n by assumption. This implies that the vector Ri has
at most 11 non-zero elements (either 1 or −1). Indeed, if
Ri had z > 12 non-zero elements, it would map at most a
fraction 2

�
z/2
z/4

�
/2z/2 < 5/8 of vectors in {0, 1}n to {0, 1}.

Up to a re-ordering of the columns of the matrix P , we can
assume that the z ≤ 11 non-zero coordinates of Ri are the
first z coordinates. An exhaustive search among all 21 +
22 + . . . + 211 = 212 − 2 possibilities of all vectors that map
a fraction strictly greater than 5/8 of all vectors in {0, 1}n

to {0, 1} reveals that every row Ri of P must be of one of
the following 4 types:

• Type 1: there is only 1 non-zero coordinate and its
value is 1.

• Type 2: there are only 2 non-zero coordinates and their
values are 1, 1.

• Type 3: there are only 2 non-zero coordinates and their
values are 1,−1.

• Type 4: there are only 3 non-zero coordinates and their
values are 1, 1,−1.

Note that no row can have all zero coordinates since the
matrix P is of full rank. Let t1, t2, t3, t4 be the number of
rows of P of type 1, 2, 3 and 4 respectively. Observe that
t1 + t2 + t3 + t4 = n. We also know that

t1 + 2t2 + t4 =

nX
j=1

nX
i=1

pi,j = n

and therefore t2 = t3. Now suppose t2 ≥ 1. The matrix
P then contains at least one row v2 of type 2 and one row
v3 of type 3. Up to symmetries and permutations on the
columns of P , there are 4 distinct ways in which the non-
zero coordinates of v2 and v3 can be arranged relative to one
another:�

1 1
1 −1

��
1 1 0 0
0 0 1 −1

��
1 1 0
1 0 −1

��
1 1 0

−1 0 1

�
All of these arrangements map at most a fraction 5/8 of all
vectors in {0, 1}n to vectors in {0, 1}n. This means that
t2 = t3 = 0.

It remains to show that t4 = 0. We proceed by con-
tradiction. Assume there is at least one row v4 of type 4.
Up to a re-ordering of the columns of P , we may assume
v4 = (−1, 1, 1, 0, 0, . . . , 0). Since L(Pe1) = 1, there are at
least two other rows of P that have a 1 in the first column.
These cannot both be of type 1 for otherwise they would
be linearly dependent and that cannot happen since P is of
full rank. Therefore there is at least one other row v′4 of
type 4 which has a 1 in the first column. Up to symmetries
and permutations on the columns of P , there are 4 distinct
ways in which the non-zero coordinates of v4 and v′4 can be
arranged relative to one another:� −1 1 1

1 −1 1

�� −1 1 1 0
1 1 0 −1

�
� −1 1 1 0

1 −1 0 1

�� −1 1 1 0 0
1 0 0 1 −1

�
All of these arrangements map at most a fraction 5/8 of all
vectors in {0, 1}n to vectors in {0, 1}n. This means that
t4 = 0. Therefore all the rows of P are of type 1 so that P
is a permutation matrix. �

Lemma 7.9. Let |S| > 2n/2 and F : S → {0, 1}n be a
linear function such that F (S) spans all of Zn

q . If there exists
a permutation matrix P ∈ GLn(Zq) such that F (v) = Pv
for all v ∈ S, then the outputs B of the mix server are a
permutation of the inputs A.

Proof. Consider the unit vector ej for j ∈ 1, . . . , n. Since
P is a permutation matrix there exists a unit vector ei such
that Pei = ej . By Lemma 7.4, we can find v, w ∈ S such
that w = v + ei. Let us write the coordinates of v and w
as v = (v1, . . . , vn) and w = (w1, . . . , wn). We also write
F (v) = (v′1, . . . , v

′
n) and F (w) = (w′1, . . . , w

′
n). We have

F (w) = Pw = Pv + Pei = F (v) + ej .

This implies that

nY
k=1

(ak)wk = ai

nY
k=1

(ak)vk

nY
k=1

(bk)w′k = bj

nY
k=1

(bk)v′k

Since v, w ∈ S,Qn
k=0(ak)vk =

Qn
k=1(bi)

v′k and
Qn

k=1(ak)wk =Qn
k=1(bk)w′k . Thus we must have bj = ai. The same reason-

ing holds for all 1 ≤ j ≤ n, which shows that the mix server
didn’t cheat. �

Lemmas 7.8 and 7.9 show that when |S| > (5/8)2n and
F (S) spans all of Zn

q , then F cannot be a linear map on S
unless the mix server did not cheat. The next lemma shows
that when F (S) spans all of Zn

q , step 6 succeeds with non-
negligible probability.

Lemma 7.10. If |S| > 2n(5
8

+ 13
16

ε) and F (S) spans all of
Zn

q , then algorithm A does not abort in step 6 with probability
at least ε/64.

Proof. By Lemma 7.6, we know that with probability
at least 1/32, the first n vectors in step 6 of algorithm A,
χ(S1), . . . , χ(Sn) ∈ {0, 1}n will span all of Zn

q . Let M ∈
GLn(Zq) be the unique matrix that maps χ(F (Si)) to χ(Si)
for all i = 1, . . . , n.

Let T ⊆ S be the subset of all the vectors v ∈ S such
that v = M · F (v). By Lemmas 7.8 and 7.9, we know that
|T | ≤ (5/8)2n. Therefore the probability that the n + 1’st
vector χ(Sn+1) in step 6 of algorithm A is not in T is at
least 13

16
ε. When that happens, step 6 will not abort. The

probability of not aborting in step 6 is therefore at least
(1/32)(13

16
ε) ≥ ε/64 as required. �

Proof of Proposition 7.3
To summarize, we prove here the lower bound given in Propo-
sition 7.3 on the probability that algorithm A succeeds in
outputting logg h. Algorithm A only ever aborts in steps 6
and 7. We know that the probability that A aborts in step
7 is at most 1/q. Furthermore, we have shown that with
probability at least ε/2, we have |S| > 2n(5

8
+ 13

16
ε). When

that happens:

• When F (S) does not span all of Zn
q , the probability

that A does not abort in step 6 is at least 1/32 by
Lemma 7.7.

• When F (S) spans all of Zn
q , the probability thatA does

not abort in step 6 is at least ε/64 by Lemma 7.10.

It follows that the probability of success of A is at least
ε2/128− 1/q. �

8. CONCLUSION
The strongest point of our new mix network is its ex-

ceptional speed. The real cost of proving almost entirely
correct mixing is orders of magnitude faster than all other
mix networks. An almost entirely correct output is available
instantly and can be announced long before it is confirmed
by a slower perfectly correct mix network.

In practice, our new mix is of particular interest to large
electronic elections (say, a million ballots or more), where
a guarantee of almost entirely correct mixing may well be
sufficient to announce the outcome of an election pending
confirmation by a slower perfectly correct mixnet. This ad-
ditional proof of perfect correctness does not require the
ballots to be mixed again, and of course doesn’t require any
involvement from the voters.

We propose the first construction that exploits a trade-off
between efficiency and correctness. An interesting direction
for future work would be to study this trade-off further. In
particular, it would be interesting to determine whether it
is possible to build mix nets that span the entire continuum
of the trade-off between efficiency and correctness.

9. ACKNOWLEDGMENTS
The second author wishes to thank Markus Jakobsson and

Ari Juels for helpful conversations and comments on early
versions of this paper.

10. REFERENCES
[1] M. Abe. Universally verifiable mix-net with verification

work independent of the number of mix-servers. In
Proc. of Eurocrypt ’98, pp. 437-447. Springer-Verlag,
1998. LNCS 1403.

[2] M. Abe. Mix-networks on permutation networks. In
Proc. of Asiacrypt ’99, pp. 258-273, 1999. LNCS 1716.

[3] M. Abe. Remarks on mix-networks based on
permutation networks.

[4] M. Bellare, J. Garay and T. Rabin. Batch Verification
with Applications to Cryptography and Checking. In
Proc. of Eurocrypt ’98, pp. 170-182. Springer Verlag,
1998. LNCS 1380.

[5] D. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. In Communications
of the ACM, 24(2):84-88, 1981.

[6] D. Chaum and T. Pedersen. Wallet databases with
observers. In Proc. of Crypto’92, pp. 89-105.
Springer-Verlag, 1993. LNCS 740.

[7] Y. Desmedt and K. Kurosawa. How to break a
practical MIX and design a new one. In Proc. of
Eurocrypt’2000, pp. 557-572. LNCS 1807.

[8] D. Dolev, C. Dwork, M. Naor. Nonmalleable
Cryptography. In SIAM J. Comput. 30(2): 391-437
(2000)

[9] J. Furukawa and K. Sako. An efficient scheme for
proving a shuffle. In Proc. of Crypto ’01, pp. 368-387.
Springer-Verlag, 2001. LNCS 2139.

[10] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin.
Secure Distributed Key Generation for Discrete-Log
Based Cryptosystems. In Proc. of Eurocrypt ’99,
pp. 295-310. Springer-Verlag, 1999. LNCS 1592.

[11] P. Golle, S. Zhong, D. Boneh, M. Jakobsson and
A. Juels. Optimistic Mixing for Exit-Polls. To appear
in Asiacrypt 2002.

[12] M. Hirt and K. Sako. Efficient receipt-free voting
based on homomorphic encryption. In Proc. of
Eurocrypt’00, pp. 539-556. Springer-Verlag, 2000.
LNCS 1807.

[13] M. Jakobsson. A practical mix. In Proc. of Eurocrypt
’98, pp. 448-461. Springer-Verlag, 1998. LNCS 1403.

[14] M. Jakobsson and D. M’Räıhi. Mix-based electronic
payments. In Proc. of SAC’98, pp. 157-173.
Springer-Verlag, 1998. LNCS 1556.

[15] M. Jakobsson. Flash mixing. In Proc. of PODC ’99,
pp. 83-89. ACM, 1999.

[16] M. Jakobsson and A. Juels. Millimix: mixing in small
batches. DIMACS Technical Report 99-33.

[17] M. Jakobsson and A. Juels. An optimally robust
hybrid mix network. In Proc. of PODC’01,
pp. 284-292. ACM Press. 2001.

[18] M. Jakobsson, A. Juels and R. Rivest. Making mix
nets robust for electronic voting by randomized partial
checking. In Proc. of USENIX’02.

[19] M. Mitomo and K. Kurosawa. Attack for flash mix. In
Proc. of Asiacrypt’00, pp. 192-204. LNCS 1976.

[20] A. Neff. A verifiable secret shuffle and its application
to E-Voting. In Proc. of ACM CCS’01, pp. 116-125.
ACM Press, 2001.

[21] W. Ogata, K. Kurosawa, K. Sako and K. Takatani.
Fault tolerant anonymous channel. In Proc. of ICICS
’97, pp. 440-444, 1997. LNCS 1334.

[22] C. Park, K. Itoh and K. Kurosawa. Efficient
anonymous channel and all/nothing election Scheme.
In Proc. of Eurocrypt ’93, pp. 248-259.
Springer-Verlag, 1993. LNCS 765.

[23] T. Pedersen. A Threshold cryptosystem without a
trusted party. In Proc. of Eurocrypt’91, pp. 522-526,
1991.

[24] B. Pfitzmann and A. Pfitzmann. How to break the
direct RSA-implementation of mixes. In Proc. of
Eurocrypt ’89, pp. 373-381. Springer-Verlag, 1989.
LNCS 434.

[25] B. Pfizmann. Breaking an efficient anonymous
channel. In Proc. of Eurocrypt’94, pp. 339-348.

[26] K. Sako and J. Kilian. Receipt-free mix-type voting
scheme. In Proc. of Eurocrypt ’95. Springer-Verlag,
1995. LNCS 921.

[27] Y. Tsiounis and M. Yung. On the security of ElGamal
based encryption. In Proc. of PKC’98.

