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MATHEMATICS OF COMPUTATION, VOLUME 25, NUM-BER 114, APRIL, 1971 

The Fast Fourier Transform in a Finite Field 

By J. M. Pollard 

Abstract. A transform analogous to the discrete Fourier transform may be defined in a 
finite field, and may be calculated efficiently by the 'fast Fourier transform' algorithm. 
The transform may be applied to the problem of calculating convolutions of long integer 
sequences by means of integer arithmetic. 

1. Introduction and Basic Properties. Let GF(p"), or F for short, denote the 
Galois Field (Finite Field) of pf elements, where p is a prime and n a positive integer. 
Let d be a divisor of pf - I (possibly d = p- 1), and r be a member of F of order 
d in the multiplicative group, F* say, of the nonzero elements of F (which certainly 
exists, since this group is cyclic of order pn - 1, [1, p. 125]). Then one can define 
the transform of a sequence (ai) (O < i < d - 1) of members of F to be the sequence 
(A,) where 

d-i 

(1) Ai E a1ri'. 
j=O 

The transformed sequence (Ai) depends on the choice of r, which will be considered 
fixed througlhout. 

The inverse transform to (1), (that is, an equivalent set of equations giving the 
(as) in the terms of the (Ai)) is 

d-1 

(2) ai -d' Air"', 

where d' is the integer for which 

(3) d'd -pn __ 1. 

The transform (1) and its inverse (2) may be calculated by the 'fast Fourier trans- 
formn' (FFT) algorithm ([2], [3]), of which many versions have been described in 
detail (see [4] for other references). These authors were concerned with the calculation 
of the 'discrete Fourier transform' of sequences of complex numbers (see Section 7), 
but these algorithms are equally applicable to the present case; the roots of unity 

e(k/d) = e2rik/d, (k an integer), 

are replaced by rk throughout, and the operations of complex addition and multiplica- 
tion become the corresponding operations in F. The transform (1), like the 'conven- 
tional' FFT, is simplest to perform when the integer d is highly composite (the product 
of many small factors, e.g. d = 2'), but more complicated versions cope with any 
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366 J. M. POLLARD 

d ([5] and Section 8). In any case, the total number of operations (in F or in the com- 
plex field) is reduced to O(d log d) from the O(d2) operations required to calculate 
these transforms in the most obvious way. In the case of (1), this estimate assumes that 
a suitable r has already been found, and the powers rt (O ? i ? d - 1) computed 
(see Section 5). The principal reason for interest in the transform (1) lies in the fol- 
lowing 'convolution property'. Suppose that three pairs of sequences, (ai) and (Ai), 
(bi) and (Bj, (cj) and (Ci) (O < i ? d - 1) form transform pairs (i.e. are related by 
(1)) and that 

(4) Ci =Ai Bi, (0 i <5 d - 1). 

Then, 
d-1 d-1 

(S) Ci- E: E aibk, (O< d - 1). 
jcO k/0 

i+kmi (mod d) 

If we extend the definition of (bi) to all i by making the sequence periodic with 
period d, (5) may be written 

d-1 

(5A) ci- E ajbi-. 
i-o 

Thus, the calculation of the 'cyclic convolution' of the sequences (ai) and (bi), 
as defined by (5), may be obtained by transforming the sequences, multiplying the 
results term-by-term as in (4), and performing the inverse transform (2). The cor- 
responding process for sequences of complex numbers is well known (see [4]). 

Another simple property of (1) is that 
d-1 d-1 

(6) E -= d aiad-i) 
ijO i-O 

and, similarly, that 
d-1 d-1 

(7) ai = (-d'). E AiAd-.1 
Oio 

The properties expressed in the equations (1) to (7) will be proved in the next 
section. These properties are analogous to well-known properties of the discrete 
Fourier transform; in fact, these properties hold, more generally, in any field F, 
finite or not, provided that r has finite order d in the multiplicative group F* of F. 

2. Proof of the Basic Properties. We prove first that for any integer k, 
d-l 

E Irh=d if k O (mod d), 
(8) i-O 

= 0, otherwise. 

(8) is trivially true when k 0 (mod d) since each term on the left is unity; when 
k 4 0 (mod d) we use the relation 

E r'> - rk) 1 - 0 _ 

from which (8) follows since 1 - rk H 0. 



THE FAST FOURIER TRANSFORM IN A FINITE FIELD 367 

To show that (1) implies (2), we simplify the right side of (2) using (1), (3) and (8), 
as 

d-i d-1 d-1 1 

i=0 1=o 1=0 X=0 

= -d'a,@d = ai. 

The proof that (2) implies (1), and the proof of the other properties expressed 
in (4)-(7) are equally simple deductions from (8). 

3. Applications of the Transform. 
(i) Multiplication of Polynomials over GF(pn). Let the polynomials to be multiplied 

be 
m2 

(9) f(x) =EaixX, g(x) =E bix', ((ai), (bi) E GF(p')), 
i=0 1=0 

where ml > m2. The product is 
ml +m2 

h(x) ei= 
i =o 

where 

(10) ek aib1, (0 k <ml + m2). 

Assume first that (pf - 1) is highly composite and ml + m2 < pn - 1. Choose a 
divisor d of (p' - 1) for which d > ml + m2 and extend the definitions of (ai), (bi) 
by setting 

as-O , (ml < i <!~ (d - 1)), bi = O, (M2 < i <:~ (d - 1)). 

The 'convolution algorithm' of Section 1 with F = GF(p) applied to these extended 
sequences gives the required (e,); more precisely the (ck) so obtained satisfy the equa- 
tions, 

ck - ek, (O _ k ?m + m2), ck =0, (ml + m2 < k ? d - 1). 

If ml + m2 > pn' - 1 or pn - 1 is not highly composite it may be feasible to operate 
in an extension field, F = GF(p n), say, (I a positive integer), of GF(p&); this requires 
that pl - 1 be highly composite and ml + m2 < pl - 1. The conditions can cer- 
tainly be met for the important practical case p = 2, n 1 (e.g. [6], [15]). Otherwise, 
see Section 3(ii) and Section 8. 

(ii) Multiplication of Integer Polynomials (or Convolution of Integer Sequences). 
We require to calculate the (e,1) defined by (10) where the (ai), (b1) are now ordinary 
integers. An upper bound is needed for the members of these sequences, so suppose 
that 

(11) iaI - l1, (0 ? i ? in), IbXt _ M2, (O ? i ?< M2), 
so that, by (10) 

leki I <M2MlM2 (- L,say). 

Let p be a prime and d a highly composite integer such that d I (p - 1), d > 
(ml + M2) and p > 2L; then 

(12) lekI ? L < p72. 
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Applying the process of Section 3(i) with F GF(p), we obtain a sequence (ci) 
with 

ci ei (mod p), (O ? k < m + m2), 

so that, by (12), the least absolute residue (mod p) of ck (0 ? k ? mM + M2) is ek. 
It is possible to replace the one possibly very large prime p required by a number 

of smaller primes. Choose pairs 

(Pi,~ di), 1 < i < t, say) 
of primes pi and highly composite integers di with 

di > ml + M2, (1< < t), 

Pi=- 1 (mod di), (I ? i ? t) 

and 

P = PP2 .*. Pt > 2L. 

By applying the previous algorithm with each pair (pi, di) in turn, one obtains the 
residues of each ek to each modulus pi; from these, one can find the least absolute 
residues of the (ek) (mod P = pi * * pt) by the 'Chinese Remainder Theorem' ([8, 
p. 94], [9, p. 27]) and, since by (12) le, I < P/2, these are again the required integer 
values. 

(iii) The Multiplication of Very Large Integers. Suppose the integers are expressed 
to the base u as 

f- E aiu, g- E biut, (0 < ai < u, 0 ? bi < u). 
i=0 i=O 

Their product is 

h= E eiu', 
i =o 

where the (es), defined by (10), do not necessarily satisfy 0 < ei < u. So, after obtaining 
the (ei) by the method of Section 3(ii), it remains to perform some carrying to obtain 
h in standard form; but with a suitable choice of parameters, this is a relatively trivial 
operation. This algorithm is applicable to Lucas' method for testing the primality 
of Mersenne numbers, M, = 2P - 1, p prime ([8, p. 16 and p. 223], [10]). 

As an example, I give some details of a method of multiplying two integers of 
10,000 bits (binary digits) in a digital computer of word length 24 bits. I take u = 221 

so that m, and m2 are less than 29 = 512. In Section 3(ii), I take t = 3, di = d2 = 

d, = 21 = 1024 and so require three primes pi, P2, p3 satisfying 

22 < p < P2 < p < 2, pi - (mod 2'0); 

for example pi = 6946817, P2 = 7340033, p3 = 7667713 which in fact satisfy pi 
1 (mod 2' ). The condition plp2P3 > 2L is seen to be easily satisfied. 

Using these values, the algorithm has been programmed in machine language 
for the ICL 4120 computer. The multiplication of two different integers takes 45 
seconds while a straightforward 'long multiplication' algorithm, using all 24 bits of 
each word, takes 95 seconds. For the problem of squaring a single integer (the main 
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part of one step of Lucas' algorithm for a prime p around 10,000), the times are 30 and 
48 seconds, respectively. In this case, we perform two transforms to each prime modu- 
lus instead of three, while 'long multiplication' requires just half as many operations 
as before. In absolute terms, these times are slow by modern standards [10]. 

It is probable that the highest speeds wouLld be obtained in a special purpose 
computer, taking advantage of the possibility of extensive parallel computation in 
the transforms. Such computers have been built for the conventional transform [4]. 
But, of course, it is possible to use parallel computation for the long multiplication 
process also. 

(iv) Division of Polynomials Over GF(p). Let (ai) (O _ i ? d - 1) be a sequence 
in the finite field F = GF(p'), where d I pn - 1, and let f(x) =E aix'. 

Then, Eq. (1) could be written 

Ai = f (r;), (O j <! d - I) 

So, what I have termed a fast Fourier tiansform in F might be regarded simply 
as 'fast evaluation of a polynomial over F'. 

If d = pn - 1, so that every nonzero element of Fis of the form r' (O j <j d- 1), 
it follows that the condition that the transformed sequence (A,) contains no zeros is 
just that f(x) has no roots in F, except perhaps for x = 0; while if d < pn - 1 then 
this condition is sufficient but not necessary. 

This remark is used in the following division algorithm. Let 

f(x) E aixt and h(X) > eixt, (mI > 1, M2 > 1), 
0 =o i-O 

be polynomials over F = GF(p), f(x) being given to be irreducible. We wish to find 
whether 

(13) f(x) I h(x), 
and if so, to find the quotient, say 

(14) g(x) =E b, xi. 
i O 

Choose integers n > 1 and d ? 1 (and highly composite) such that 

d>Zml + M2, d I n - , ml t n, 

extend the sequences (a,), (e,) to d terms (i.e., 0 ? i ? d - 1) by the addition to 
zeros (as in Section 3(i)) and apply the transform (1) in the field F' = GF(pn) to 
obtain sequences (Ai), (EJ), (O ? i ? d - 1). Since ml 4 n, the field F' does not con- 
tain GF(p"'), the splitting field of f(x) (see [1, Chapter IV]), so F' contains no roots 
of f(x) and so A, # 0,(0 ? i d- 1). 

Define (B,) by 

(15) B= Eil/A,, (O < i < d- 1) 

and perform the inverse transform (2) in F' to obtain (bi), (O ? i < d - 1). If 

(16) b, = 0, (M2 < i < d- 1), 

then (13) holds, (14) gives the quotient and b, E GF(p) (O < i < M2); otherwise (13) 
is false. 
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Proof. Suppose first that (13) holds, with quotient (14); extend the sequence 
(b,) to d terms by the addition of zeros. By the multiplication algorithm of Section 
3(i), the transform (Bi) satisfies 

A iBi -= Ei, (O :_! i <_! d - I) 

Hence the division algorithm leads to a sequence (bi) with the properties stated. 
Now suppose that (16) holds; by defining g(x) by (14), it follows from (15) that 

(17) f(x).g(x) = h(x), (over F'). 

Suppose that some of (bi) (O < i ? m2) are not in F. If bK is the first such b, then by 
taking coefficients of xK+ml in (17) 

bKa,m, + bK+lam1-1 + ... + bK+maml-m eK+mi, (m = min (ml, M2- K)) 

in which every element except bK is in F and am, 5 0. This is a contradiction so 
bi C F (0 ? i ? m2) as asserted. 

4. The Transform in the Ring of Integers Modulo m. A version of the trans- 
form (1) can also be given in a particular ring which is not a field, namely the ring Rm 
of integers modulo a composite integer m. Suppose first that m is prime power, say 
m = pf, p > 2, and that d is a divisor of (p - 1). The multiplicative group, R* say, 
of the members of Rm prime to m is still cyclic and of order p`l(p - 1) divisible 
by d, and so it contains a number r of order d. The transform of a sequence of mem- 
bers of Rm can still be defined by (1) and the results of Section 1 still hold. To prove 
this it suffices to show that (8) still holds (as a congruence mod m). 

In the nontrivial case K 0 0 (mod d), we have now 
d-1 

E(riK)(l -rK) 1 - rI 0 r , (mod m = p'), 
i o 

and need to show that rK 0 1 (mod p). 
The numbers r' (O ? i ? d - 1) form a subgroup of R* of order d, and the mem- 

bers of Rm congruent to 1 (mod p) form a subgroup of order pn'; the orders of 
these subgroups being coprime, they can have only the unit element in common, 
which proves the assertion. 

More generally, we can take m = p" ... pa,, where d (Pi -1) (1?_ i < t) and 
where r has order d (mod pai) for each i(1 ( i < t) and hence also order d (mod m). 

5. Practical Methods of Performing the Transform. 
(i) The Case F = GF(p). The obvious method is to represent the elements of F 

by the integers 0, 1, * * *, (p - 1), and perform addition and multiplication followed 
by reduction (mod p). Alternatively, if p is not too large, one can replace the multi- 
plications (mod p) by additions (mod (p - 1)) and 'table look-up' operations by 
means of previously constructed tables of powers of a primitive root w (mod p), 
[ 1, p. 63]. This is well known in connection with 'residue-system' computers [9]. 

A suitable choice for r (of order d in F*) is r _ wd (mod p), where, as in Section 1, 
.d'd = p - 1. One method to find a primitive root w is to test successively the posi- 
tive integers by the following trivial theorem, which applies also to the case F = 

GF(p"). 
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THEOREM. The element w in F GF(p") generates F*, the multiplicative group of 
F. if and only if for each prime factor q of pn - 1 (with q < pn _ 1) we 
have W('Vapl)Q) 1. 

The application of the theorem can be made by a device discussed in [12, Section 3]. 
(ii) The Case F = GF(p'), where n > 1. The following table 'look-up' method 

[7, pp. 37-50] is probably best, when possible, that is, when pn is not too large. 
We take a generator w of F* and represent the nonzero elements of F by their ex- 
ponents when written as powers of w, with a special symbol for the zero element 
(say, 0 = w*). Multiplication in F is merely addition of exponents (mod (p' - 1)); 
for the addition of nonzero elements wa, wb (a < b) we write 

' ? wb wa(1 + Wb-a) 

and then consult a table giving the solution x of 

w - 1 wV, 

for given y (where possibly x = *). 
The use of a table of p' entries can be avoided by the following less efficient 

method. Let F[x] be the ring of polynomials in a single variable x over the field 
GF(p) and let h(x) E F[x] be irreducible and of degree n. The members of F = 

GF(pn) can be represented by the residue classes (mod h(x)) of F[x], and so can be 
written as 

h-1 

(18) ~~~~ f(x) =Eaixi (ai E~ GF(p)). 
i =o 

Addition in F is now straightforward; but multiplication necessitates forming the 
product in F[x] of two polynomials of form (18) and then division by h(x) to give a 
remainder of this form again. 

It is possible to choose h(x) in such a way that the element w(x) x is itself a 
generator of F*, and so take 

r(x) = {w(x)}d x 

as the required element of order d. The suitable choices for h(x), the 'primitive poly- 
nomials over F', are the irreducible factors in F[x] of 4'^_.(x), where 45m(x) denotes 
the cyclotomic polynomial 

'?m(X) = TI (xl - 1)(m/k) 

[1, p. 132]. These polynomials are of interest in connection with 'shift register se- 
quences', [6], [13]. An efficient test for a given h(x) E P[x], of degree n but not known 
to be irreducible is provided by the following theorem, which generalises that of [13]. 

THEOREM. Let h(x) be a polynomial of degree n (2 1) in F[x]. Then 

h(x) I 1pv_j(x), (in F[x]) 

if and only if 
(a) x"P ' 1 (mod h(x)), in F[x], and 
(b) for each prime factor q of pn - 1 with q < pn - 1 (if any exist), the polynomials 

h(x), XI - 1, where m = (p- l)/q, are relatively prime in F[x]. 
Proof. The necessity of the conditions (a) and (b) is trivial. Suppose these con- 

ditions hold and that h1(x) is an irreducible factor of h(x) in F[x]. Then h1(x) 1cJ?,,(x) 
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which implies that hA(x) has degree n, and so h(x) = k* h,(x) (k G F, k % 0) and 
h(x) I IP"l(x). 

To apply (a), calculate the residue (mod h(x)) of x" - 1 by the device men- 
tioned in Section 5(i). For (b), first find the residue of xm- 1 by the same means, 
then the greatest common divisor of this polynomial and h(x) by Euclid's algorithm 
(for polynomials over a field, analogous to [12, Section 2]); the result should be a 
nonzero constant, i.e. member of F. 

(iii) Division in GF(p), n > 1. The division algorithm of Section 3(iv) requires 
the operation of dividing elements of F = GF(p'), (Eq. (15)). By writing 

a/b = a b', (a, b E F, b #0 ), 

the problem becomes that of computing inverses in F, discussed in [12], (this is for 
GF(p), but extends to any GF(p')); one method is to use 

b 1 = bv'2 (b E: F, b# 0). 

(iv) Programn Layout. As with the conventional fast Fourier transform, it is 
simplest to divide the calculation of the transform (1) (or (2)) into two separate stages, 
a permutation and a calculation stage, which may be performed in either order [17]. 
But for most applications, including those of Section 3, it is sufficient to obtain the 
transformed sequence in 'digit-reversed' order and the permutation stage can there- 
fore be omitted from the transforms, as has been done in convolution algorithms for 
real numbers. 

6. Generalisation to k Dimensions. The transform (1) which has been con- 
sidered up to this point, whether in GF(p) or GF(p") with n > 1, is to be regarded as 
1-dimensional in that it acts on a 1-dimensional sequence (ai) of elements of F. A 
generalisation to higher dimensions is possible. 

Let F = GF(pV) (n ? 1) be a finite field and d1, d2, * * ,dk any series of divisors 
of p- - 1. Let w be a generator of F* and put 

d'di 
p n (I < i < k), 

so that the elements wd$ have order di in F*. Then the transform of the k-dimensional 
matrix (ail,...,ji) (0 i< il < d- 1 for I-1, ,k) may be defined to be 

d1-1 dk-1 

(19) A j, '..,i k a aj,,, '-,ikW 

jI1=0 ikbO 

The inverse transform is 
k d,-1 dk-1 

a i,. . i k= I(-d X) * E - - . E A;, . .,iW . 
d 

ijt wViik 
(20) ik ., "0 ikO- 

(O ? jI < dz - 1 for I= 1, *.* ,k). 

The properties expressed by Eqs. (4), (5), (6), (7) have simple generalisations and 
permit the extension of the algorithms of Section 3 to 'k-dimensional convolutions', 
or multiplication of polynomials in k variables. Thus, the equations analogous to 
(4) and (SA) are 

(21) Ci 1, _II = Ai j, ikBi . jt (0 < jh ?!di - I for 1-= 1, ,k) 
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and 
di-1 dk-1 

(22) cil .. k-E .. E ail, . ikbi1- il. .fik- 
il O ik=? 

7. Comparison with the Conventional Discrete Fourier Transform. The k-di- 
mensional form of this transform may be written 

(23) A = * E .. (dd + + dk d 
il=O ik-/ 

where e(x) = e2Tix, and the (di) (1 ?< / k) are now any series of positive integers. 
The inverse transform is 

(24) as, = d, Ai i e 
i1= i=0 ik=O / k 

The convolution property is again expressed by Eqs. (21), (22), where these equations 
are now, of course, ordinary equalities between complex numbers. Suppose this 
transform is applied to the problem of calculating convolutions of integer sequences 
exactly. In general, this is most simply done by conventional 'real arithmetic', in which 
the real and imaginary parts of the complex quantities are stored and handled to 
only a finite accuracy. This accuracy must be such that when the results of the con- 
volution process are rounded to the nearest integer the true sums are obtained. How- 
ever, in special cases this difficulty does not exist. Consider first the case 

(25) dl = *= dk = 2. 

The exponential factors in (23) and (24) now both become 

(-1ii + ***+ikik 

The corresponding factors in (19) and (20) also reduce to this expression since the 
unique member of F = GF(p') of order 2 in F* is (-1) (the choice (25) implies that 
p is odd to satisfy di = 2 1 (p' - 1)). 

The transforms now require only additions and subtractions for their calculation, 
and so may be calculated faster and more simply than the general case. This is true 
for (23) even when the data is not integral (see [14]). But when it is integral then (23) 
and (24) are obtained by integer arithmetic and provide a simple means of calculating 
the convolution (22) exactly; so that the advantages of the finite field transform (19) 
vanish in this case (see [15, p. 29-32]). It is perhaps worth pointing out that the con- 
ventional transform (23) with integral data could in principle always be calculated 
by integer operations; suppose for simplicity that dc1 = * dk = d, and put 0 - 

e(l/d) = e2 t/d. 0 is an algebraic number of degree 4 = (d) ([16, Chapter IV]), 
whose minimal polynomial is 'd(X) (see Section 5(ii)). The quantities to be manip- 
ulated during the evaluation of (23) and (24) are integer polynomials in 0, which may 
be written in the form 

Z= Zbi o. 
. =o 

Multiplication of numbers in this form, however, consists of polynomial multi- 
plication, followed by division by the monic polynomial bI(O). This is a relatively 
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complicated process and renders the algorithm impracticable for all bat small values 
of d. (Compare with Section 5(ii), where the polynomials have degree only n; here 
their order may be near pn.) 

8. Calculation of (1) When d is not Highly Composite. The device given in [5J 
for the discrete Fourier transform can be applied also to the case F = GF(p) of the 
transform (1). Considering for simplicity the 1-dimensional case (with the notation 
of Section 1), we must make the condition 2d I p - 1, instead of d I p - 1 as previously. 
Then we can find s E F such that s2 r and write (1) as 

d-1 d-1 

Ai - E aj2ii = Si Eas*';i) Ai~ ais2~ s2> ais" .s+1 
i=O P.O 

This sum has the form of a noncyclic convolution on the sequences 

ak~,(O k :! d - 1), sh* (O < k < 2d - 1). 

By representing the elements of F by the integers 0, 1, * * , (p - 1), this convolu- 
tion can be performed by the method of Section 3(ii). 
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