
Why Textbook ElGamal and RSA Enryptionare Inseure(Extended Abstrat)Dan Boneh1, Antoine Joux2, and Phong Q. Nguyen31 Stanford University, Computer Siene DepartmentStanford, CA 94305, USAdabo�s.stanford.edu and http://rypto.stanford.edu/~dabo/2 DCSSI, 18 rue du Doteur Zamenhof,92131 Issy-les-Moulineaux Cedex, Franejoux�ens.fr3 �Eole Normale Sup�erieure, D�epartement d'Informatique,45 rue d'Ulm, 75005 Paris, Franepnguyen�ens.fr and http://www.di.ens.fr/~pnguyen/Abstrat. We present an attak on plain ElGamal and plain RSA en-ryption. The attak shows that without proper preproessing of theplaintexts, both ElGamal and RSA enryption are fundamentally inse-ure. Namely, when one uses these systems to enrypt a (short) seretkey of a symmetri ipher it is often possible to reover the seret keyfrom the iphertext. Our results demonstrate that preproessing mes-sages prior to enryption is an essential part of both systems.1 IntrodutionIn the literature we often see a desription of RSA enryption as C = hMei modN (the publi key is hN; ei) and a desription of ElGamal enryption as C =hMyr; gri mod p (the publi key is hp; g; yi). Similar desriptions are also givenin the original papers [17, 9℄. It has been known for many years that this simpli-�ed desription of RSA does not satisfy basi seurity notions, suh as semantiseurity (see [6℄ for a survey of attaks). Similarly, a version of ElGamal om-monly used in pratie does not satisfy basi seurity notions (even under theDeision DiÆe-Hellman assumption [5℄) 1. To obtain seure systems using RSAand ElGamal one must apply a preproessing funtion to the plaintext priorto enryption, or a onversion to the enryption funtion (see [10, 16, 13℄ forinstane). Reent standards for RSA [15℄ use Optimal Asymmetri Enryption1 Implementations of ElGamal often use an element g 2 Z�p of prime order q where q ismuh smaller than p. When the set of plaintexts is equal to the subgroup generatedby g, the Deision DiÆe Hellman assumption implies that ElGamal is semantiallyseure. Unfortunately, implementations of ElGamal often enrypt an m-bit messageby viewing it as an m-bit integer and diretly enrypting it. The resulting system isnot semantially seure { the iphertext leaks the Legendre symbol of the plaintext.

Padding (OAEP) whih is known to be seure against a hosen iphertext attakin the random orale model [4℄. Currently, there is no equivalent preproessingstandard for ElGamal enryption, although several proposals exist [1, 10, 16, 13℄.Unfortunately, many textbook desriptions of RSA and ElGamal do not viewthese preproessing funtions as an integral part of the enryption sheme. In-stead, ommon desriptions are ontent with an explanation of the plain systems.In this paper we give a simple, yet powerful, attak against both plain RSAand plain ElGamal enryption. The attak illustrates that plain RSA and plainElGamal are fundamentally inseure systems. Hene, any desription of theseryptosystems annot ignore the preproessing steps used in full RSA and fullElGamal. Our attak learly demonstrates the importane of preproessing. Itan be used to motivate the need for preproessing in introdutory texts.Our attak is based on the fat that publi key enryption is typially usedto enrypt session-keys. These session-keys are typially short, i.e. less than 128bits. The attak shows that when using plain RSA or plain ElGamal to enryptan m-bit key, it is often possible to reover the key in time approximately 2m=2.In environments where session-keys are limited to 64-bit keys (e.g. due to gov-ernment regulations), our attak shows that both plain RSA and plain ElGamalresult in a ompletely inseure system. We experimented with the attak andshowed that it works well in pratie.1.1 Summary of resultsSuppose the plaintext M is m bits long. For illustration purposes, when m = 64we obtain the following results:{ For any RSA publi key hN; ei, given C =Me mod N it is possible to reoverM in the time it takes to ompute 2 � 2m=2 modular exponentiations. Theattak sueeds with probability 18% (the probability is over the hoie ofM 2 f0; 1; : : : ; 2m � 1g). The algorithm requires 2m=2m bits of memory.{ Let hp; g; yi be an ElGamal publi key. When the order of g is at most p=2m,it is possible to reover M from any ElGamal iphertext of M in the timeit takes to ompute 2 � 2m=2 modular exponentiations. The attak sueedswith probability 18% (over the hoie of M), and requires 2m=2m bits ofmemory.{ Let hp; g; yi be an ElGamal publi key. Suppose p � 1 = qs where s > 2mand the disrete log problem for subgroups of Z�p of order s is tratable, i.e.takes time T for some small T . When the order of g is p � 1, it is possibleto reover M from any iphertext of M in time T and 2 � 2m=2 modularexponentiations. The attak sueeds with probability 18% (over the hoieof M), and requires 2m=2m bits of memory.{ Let hp; g; yi be an ElGamal publi key. Suppose again p � 1 = qs wheres > 2m and the disrete log problem for subgroups of Z�p of order s takestime T for some small T . When the order of g is either p�1 or at most p=2m,it is possible to reover M from any iphertext of M in time T plus onemodular exponentiation and 2 � 2m=2 additions, provided a preomputation

step depending only on the publi key. The suess probability is 18% (overthe hoie of M). The preomputations take time 2m=2T and 2m=2 modu-lar exponentiations. The spae requirement an optionally be dereased to2m=4 log2 s bits without inreasing the omputation time, however with aloss in the probability of suess.All attaks an be parallelized, and o�er a variety of trade-o�s, with respet tothe omputation time, the spae requirement, and the probability of suess. Forinstane, the suess probability of 18% an be raised to 35% if the omputationtime is quadrupled. Note that the �rst result applies to RSA with an arbitrarypubli exponent (small or large). The attak beomes slightly more eÆient whenthe publi exponent e is small. The seond result applies to the usual methodin whih ElGamal is used in pratie. The third result applies when ElGamalenryption is done in the entire group, however p�1 has a small smooth fator (a64-bit smooth fator). The fourth result dereases the on-line work of both theseond and the third results, provided an additional preomputation stage. Itan optionally improve the time/memory trade-o�. The third and fourth resultsassume that p� 1 ontains a smooth fator: suh a property was used in otherattaks against disrete-log shemes (see [2, 14℄ for instane).1.2 Splitting probabilities for integersOur attaks an be viewed as a meet-in-the-middle method based on the fatthat a relatively small integer (e.g., a session-key) an often be expressed asa produt of muh smaller integers. Note that reent attaks on padding RSAsignature shemes [7℄ use related ideas. Roughly speaking, these attaks expetertain relatively small numbers (suh as hashed messages) to be smooth. Here,we will be onerned with the size of divisors. Existing analyti results for thebounds we need are relatively weak. Hene, we mainly give experimental resultsobtained using the Pari/GP omputer pakage [3℄.Let M be a uniformly distributed m-bit integer. We are interested in theprobability that M an be written as:{ M =M1M2 with M1 � 2m1 and M2 � 2m2 . See table 1 for some values.{ M =M1M2M3 with Mi � 2mi . See table 2 for some values.{ M =M1M2M3M4 with Mi � 2mi . See table 3 for some values.The experimental results given in the tables have been obtained by fatoringa large number of randomly hosen m-bit integers with uniform distribution.Some theoretial results an be obtained from the book [11℄. More preisely, for1=2 � � < 1, let P�(m) be the probability that a uniformly distributed integerM in [1 : : : 2m � 1℄ an be written as M =M1M2 with both M1 and M2 less orequal to 2�m. It an be shown that P1=2(m) tends (slowly) to zero as m grows toin�nity. This follows (after a little work) from results in [11℄[Chapter 2℄ on thenumber H(x; y; z) of integers n � x for whih there exists a divisor d suh thaty � d < z. More preisely, the following holds (where log denotes the neperian

logarithm): P1=2(m) = O� log logm � plogmmÆ � ; (1)where Æ = 1 � 1+log log 2log 2 � 0:086. On the other hand, when � > 1=2, P�(m)no longer tends to zero, as one an easily obtain the following asymptoti lowerbound, whih orrets [8, Theorem 4, p 377℄:lim inf P�(m) � log(2�); (2)This is beause the probability must inlude all numbers that are divisible bya prime in the interval [2m=2; 2�m℄, and the bound follows from well-knownsmoothness probabilities.Our attaks o�er a variety of trade-o�s, due to the freedom in the fator-ization form, and in the hoies of the mi's: the splitting probability gives thesuess probability of the attak, the other parameters determine the ost interms of storage and omputation time.Table 1. Experimental probabilities of splitting into two fators.Bit-length m m1 m2 Probability40 20 20 18%21 21 32%22 22 39%20 25 50%64 32 32 18%33 33 29%34 34 35%30 36 40%
Table 2. Experimental probabilities of splitting into three fators.Bit-length m m1 = m2 = m3 Probability64 22 4%23 6.5%24 9%25 12%

1.3 Organization of the paperIn Setion 2 we introdue the subgroup rounding problems whih inspire all ourattaks. In Setion 3 we present rounding algorithms that break plain ElGamal

Table 3. Experimental probabilities of splitting into four fators.Bit-length m m1 = m2 = m3 = m4 Probability64 16 0.5%20 3%enryption when g generates a \small" subgroup of Z�p. Using similar ideas, wepresent in Setion 4 an attak on plain ElGamal enryption when g generatesall Z�p, and an attak on plain RSA in Setion 5.2 The subgroup rounding problemsReall that the ElGamal publi key system [9℄ enrypts messages in Z�p for someprime p. Let g be an element of Z�p of order q. The private key is a number inthe range 1 � x < q. The publi key is a tuple hp; g; yi where y = gx mod p.To enrypt a message M 2 Zp the original sheme works as follows: (1) pik arandom r in the range 1 � x < q, and (2) ompute u = M � yr mod p and v =gr mod p. The resulting iphertext is the pair hu; vi. To speed up the enryptionproess one often uses an element g of order muh smaller than p. For example,p may be 1024 bits long while q is only 512 bits long.For the rest of this setion we assume g 2 Z�p is an element of order q whereq � p. For onreteness one may think of p as 1024 bits long and q as 512 bitslong. Let Gq be the subgroup of Z�p generated by g. Observe that Gq is extremelysparse in Z�p. Only one in 2512 elements belongs to Gq . We also assume M is ashort message of length muh smaller than log2(p=q). For example, M is a 64bits long session-key.To understand the intuition behind the attak it is bene�ial to onsider aslight modi�ation of the ElGamal sheme. After the random r is hosen oneenrypts a message M by omputing u = M + yr mod p. That is, we \blind"the message by adding yr rather than multiplying by it. The iphertext is thenhu; vi where v is de�ned as before. Clearly yr is a random element of Gq . Weobtain the following piture:
g2y r

u

M

p0 g gg 34The � marks represent elements in Gq . SineM is a relatively small number,enryption of M amounts to piking a random element in Gq and then slightlymoving away from it. Assuming the elements of Gq are uniformly distributed inZ�p the average gap between elements of Gq is muh larger than M . Hene, withhigh probability, there is a unique element z 2 Gq that is suÆiently lose tou. More preisely, with high probability there will be a unique element z 2 Gq

satisfying ju� zj < 264. If we ould �nd z given u we ould reover M . Hene,we obtain the additive version of the subgroup rounding problem:Additive subgroup rounding: let z be an element of Gq and� an integer satisfying� < 2m. Given u = z+� mod p �nd z. Whenm is suÆiently small, z is uniquelydetermined (with high probability assuming Gq is uniformly distributed in Zp).Going bak to the original multipliative ElGamal sheme we obtain themultipliative subgroup rounding problem.Multipliative subgroup rounding: let z be an element of Gq and � an integersatisfying� < 2m. Given u = z�� mod p �nd z. Whenm is suÆiently small z, isuniquely determined (with high probability assumingGq is uniformly distributedin Zp).An eÆient solution to either problem would imply that the orrespondingplain ElGamal enryption sheme is inseure. We are interested in solutionsthat run in time O(p�) or, even better, O(log�). In the next setion we showa solution to the multipliative subgroup rounding problem.The reason we refer to these shemes as \plain ElGamal" is that messagesare enrypted as is. Our attaks show the danger of using the system in thisway. For proper seurity one must pre-proess the message prior to enryptionor modify the enryption mehanism. For example, one ould use DHAES [1℄ ora result due to Fujisaki and Okamoto [10℄, or even more reently [16, 13℄.3 Algorithms for multipliative subgroup roundingWe are given an element u 2 Zp of the form u = z �� mod p where z is a randomelement of Gq and j�j < 2m. Our goal is to �nd �, whih we an assume to bepositive. As usual, we assume that m, the length of the message being enrypted,is muh smaller than log2(p=q). Then with high probability � is unique. Forexample, take p to be 1024 bits long, q to be 512 bits long and m to be 64.We �rst give a simple meet-in-the-middle strategy for multipliative subgrouprounding. By redution to a knapsak-like problem, we will then improve boththe on-line omputation time and the time/memory trade-o� of the method,provided that p satis�es an additional, yet realisti, assumption.3.1 A meet-in-the-middle methodSuppose � an be written as � = �1 ��2 where �1 � 2m1 and �2 � 2m2 . Forinstane, one an take m1 = m2 = m=2. We show how to �nd � from u in spaeO(2m1) and 2m1 + 2m2 modular exponentiations. Observe thatu = z �� = z ��1 ��2 mod p:Dividing by �2 and raising both sides to the power of q yields:(u=�2)q = zq ��q1 = �q1 mod p:

We an now build a table of size 2m1 ontaining the values �q1 mod p for all�1 = 0; : : : ; 2m1 . Then for eah �2 = 0; : : : ; 2m2 we hek whether uq=�q2 mod pis present in the table. If so, then � = �1 � �2 is a andidate value for �.Assuming � is unique, there will be only be one suh andidate, although therewill probably be several suitable pairs (�1; �2).The algorithm above requires a priori 2m2+2m1 modular exponentiations and2m1 log2 p bits of memory. However, we do not need to store the omplete valueof �q1 mod p in the table: A suÆiently large hash value is enough, as we are onlylooking for \ollisions". For instane, one an take the 2max(m1;m2) least signif-iant bits of �q1 mod p, so that the spae requirement is only 2m1+1max(m1;m2)bits instead of 2m1 log2 p. Less bits are even possible, for we an hek the valid-ity of the (few) andidates obtained. Note also that the table only depends on pand q: the same table an be used for all iphertexts. For eah iphertext, oneneeds to ompute at most 2m2 modular exponentiations. For eah exponentia-tion, one has to hek whether or not it belongs to the table, whih an be donewith O(m1) omparisons one the table is sorted.It is worth noting that �1 and �2 need not be prime. The probability that arandom m-bit integer (suh as �) an be expressed as a produt of two integers,one being less thanm1 bits and the other one being less thanm2 bits, is disussedin Setion 1.2.By hoosing di�erent values of m1 and m2 (not neessarilym=2), one obtainsvarious trade-o�s with respet to the omputation time, the storage requirement,and the suess probability. For instane, when the system is used to enrypta 64-bit session key, if we pik m1 = m2 = 32, the algorithm sueeds withprobability approximately 18% (with respet to the session key), and it requireson the order of eight billion exponentiations, far less than the time to omputedisrete log in Z�p.We implemented the attak using Vitor Shoup's NTL library [19℄. The tim-ings should not be onsidered as optimal, they are meant to give a rough idea ofthe attak eÆieny, ompared to exhaustive searh attaks on the symmetri al-gorithm. Running times are given for a single 500 MHz 64-bit DEC Alpha/Linux.If m = 40 and m1 = m2 = 20, and we use a 160-bit q and a 512-bit p, the pre-omputation step takes 40 minutes, and eah message is reovered in less than 1hour and 30 minutes. From Setion 1.2, it also means that, given only the publikey and the iphertext, a 40-bit message an be reovered in less than 6 hourson a single workstation, with probability 39%.3.2 Redution to knapsak-like problemsWe now show how to improve the on-line omputation time (2m=2 modular ex-ponentiations) and the time/memory trade-o� of the method. We transform themultipliative rounding problem into a linear problem, provided that p satis�esthe additional assumption p�1 = qrs where s � 2m is suh that disrete logs insubgroups of Z�p of order s an be eÆiently omputed. For instane, if pe11 � � � pekkis the prime fatorization of s, disrete logs in a yli group of order s an beomputed with O(Pki=1 ei(log s +ppi)) group operations and negligible spae,

using Pohlig-Hellman and Pollard's � methods (see [12℄). Let ! be a generatorof Z�p. For all x 2 Z�p, xqr belongs to the subgroup Gs of order s generated by!qr.The linear problem that we will onsider is known as the k-table problem:given k tables T1; : : : ; Tk of integers and a target integer n, the k-table problemis to return all expressions (possibly zero) of n of the form n = t1 + t2+ � � �+ tkwhere ti 2 Ti. The general k-table problem has been studied by Shroeppel andShamir [18℄, beause several NP-omplete problems (e.g., the knapsak problem)an be redued to it. We will apply (slightly modi�ed) known solutions to thek-table problems, for k = 2; 3 and 4.The modular 2-table problem Suppose that� an be written as� = �1��2,with 0 � �1 � 2m1 and 0 � �2 � 2m2 , as in Setion 3.1. We have uq =�q1�q2 mod p and therefore: uqr = �qr1 �qr2 mod p;whih an be rewritten aslog(uqr) = log(�qr1) + log(�qr2) mod s;where the logarithms are with respet to !qr.We build a table T1 onsisting of log(�qr1) for all �1 = 0; : : : ; 2m1 , and a tableT2 onsisting of log(�qr2) for all �2 = 0; : : : ; 2m2 . These tables are independentof �. The problem is now to express log(uqr) as a modular sum t1 + t2, wheret1 2 T1 and t2 2 T2. The number of targets t1 + t2 is 2m1+m2 . Hene, weexpet this problem to have very few solutions when s � 2m1+m2 . The probleminvolves modular sums, but it an of ourse be viewed as a 2-table problem withtwo targets log(uqr) and log(uqr) + s. The lassial method to solve the 2-tableproblem with a target n is the following:1. Sort T1 in inreasing order;2. Sort T2 in dereasing order;3. Repeat until either T1 or T2 beomes empty (in whih ase all solutions havealready been found):(a) Compute t = �rst(T1) + �rst(T2).(b) If t = n, output the solution whih has been found, and delete �rst(T1)from T1, and �rst(T2) from T2;() If t < n delete �rst(T1) from T1;(d) If t > n delete �rst(T2) from T2;It is easy to see that the method outputs all solutions of the 2-table problem, intime 2min(m1;m2)+1. The spae requirement is O(2m1 + 2m2).Sine the original problem involves modular sums, it seems at �rst glanethat we have to apply the previous algorithm twie (with two di�erent targets).However, we note that a simple modi�ation of the previous algorithm an in fatsolve the modular 2-table problem (that is, the 2-table problem with modular

additions instead of integer additions). The basi idea is the following. SineT2 is sorted in desending order, n � T2 is sorted in asending order. The set(n � T2) mod s though not neessarily sorted, is almost sorted. More preisely,two adjaent numbers are always in the right order, to the exeption of a singlepair. This is beause n � T2 is ontained in an interval of length s. The singlepair of adjaent numbers in reverse order orresponds to the two elements a andb of T2 surrounding s � n. These two elements an easily be found by a simpledihotomy searh for s � n in T2. And one the elements are known, we anaess (n � T2) (mod s) in asending order by viewing T2 as a irular list,starting our enumeration of T2 by b, and stopping at a.The total ost of the method is the following. The preomputation of ta-bles T1 and T2 requires 2m1 + 2m2 modular exponentiations and disrete logomputations in a subgroup of Z�pof order s, and the sort of T1 and T2. Thespae requirement is (2m1 +2m2) log2 s bits. For eah iphertext, we require onemodular exponentiation, one eÆient disrete log (to ompute the target), and2min(m1;m2)+1 additions. Hene, we improved the on-line work of the method ofSetion 3.1: loosely speaking, we replaed modular exponentiations by simpleadditions. We now show how to derease the spae requirement of the method.The modular 3-table problem The previous approah an easily be extendedto an arbitrary number of fators of �. Suppose for instane � an be writtenas � = �1 ��2 ��3 where eah �i is less than 2mi . We obtainlog(uqr) = 3Xi=1 log(�qri) mod s;where the logarithms are with respet to !qr. In a preomputation step, weompute in a table Ti all the logarithms of �qri mod p for 0 � �i < 2mi . We areleft with a modular 3-table problem with target log(uqr). The modular 3-tableproblem with target n modulo s an easily be solved in time O(2m1+min(m2;m3))and spae O(2m1+2m2+2m3). It suÆes to apply the modular 2-table algorithmon tables T2 and T3, for all targets (n� t1) mod s, with t1 2 T1.Hene, we dereased the spae requirement of the method of Setion 3.2, by(slightly) inreasing the on-line omputation work and dereasing the suessprobability (see Setion 1.2 for the probability of splitting into three fators).More preisely, if m1 = m2 = m3 = m=3, the on-line work is one modularexponentiation, one disrete log in a group of order s, and 22n=3 additions. Sinean addition is very heap, this might be useful for pratial purposes.The modular 4-table problem Using 3 fators did not improve the time/memorytrade-o� of the on-line omputation work. Indeed, for both modular 2-table andmodular 3-table problems, our algorithms satisfy TS = O(2m), where T is thenumber of additions, and S is the spae requirement. Surprisingly, one an obtaina better time/memory tradeo� with 4 fators.

Suppose � an be written as � = �1 ��2 ��3 ��4 where eah �i is less than2mi . For instane, one an take m1 = m2 = m3 = m4 = m=4. We show how to�nd � from log(uqr) in time O(2m1+m2 +2m3+m4) and spae O(P4i=1 2mi), pro-vided a preomputation stage ofP4i=1 2mi modular exponentiations and disretelog omputations in a group of order s.We have log(uqr) =P4i=1 log(�qri) mod s: Again, in a preomputation step,we ompute in a table Ti all the logarithms of �qri mod p for 0 � �i < 2mi .We are left with a modular 4-table problem, whose solutions will reveal possiblehoies of �1, �2, �3 and �4. Shroeppel and Shamir [18℄ proposed a leversolution to the basi 4-table problem, using the following idea. An obvious solu-tion to the 4-table problem is to solve a 2-table problem by merging two tables,that is, onsidering sums t1 + t2 and t3 + t4 separately. However, the algorithmfor the 2-table algorithm desribed in Setion 3.2 aesses the elements of thesorted supertables sequentially, and thus there is no need to store all the possibleombinations simultaneously in memory. All we need is the ability to generatethem quikly (on-line, upon request) in sorted order. To implement this idea,two priority queues are used :{ Q0 stores pairs (t1; t2) from T1�T2, enables arbitrary insertions and deletionsto be done in logarithmi time, and makes the pairs with the smallest t1+ t2sum aessible in onstant time.{ Q00 stores pairs (t3; t4) from T3�T4, enables arbitrary insertions and deletionsto be done in logarithmi time, and makes the pairs with the largest t3 + t4sum aessible in onstant time.This leads to the following algorithm for a target n:1. Preomputation:{ Sort T2 into inreasing order, and T4 into dereasing order;{ Insert into Q0 all the pairs (t1; �rst(T2)) for t1 2 T1;{ Insert into Q00 all the pairs (t3; �rst(T4)) for t3 2 T3.2. Repeat until either Q0 or Q00 beomes empty (in whih ase all solutionshave been found):{ Let (t1; t2) be the pair with smallest t1 + t2 in Q0;{ Let (t3; t4) be the pair with largest t3 + t4 in Q00;{ Compute t = t1 + t2 + t3 + t4.{ If t = n, we output the solution, and apply what is planned when t < nor t > n.{ If t < n do� delete (t1; t2) from Q0;� if the suessor t02 of t2 in T2 is de�ned, insert (t1; t02) into Q0;{ If t > n do� delete (t3; t4) from Q00;� if the suessor t04 of t4 in T4 is de�ned, insert (t3; t04) into Q00;At eah stage, a t1 2 T1 an partiipate in at most one pair in Q0, and a t3 2 T3an partiipate in at most one pair in Q00. It follows that the spae omplexity of

the priority queues is bounded by O(jT1j+ jT3j) = O(2m1 +2m3). Eah possiblepair an be deleted from Q0 at most one, and the same holds for Q00. Sineat eah iteration, one pair is deleted from Q0 or Q00, the number of iterationsannot exeed the number of possible pairs, whih is O(2m1+m2 + 2m3+m4).Finally, as in the 2-table ase, we note that this algorithm an be adapted tomodular sums, by hanging the starting points in T2 and T4 to make sure thatthe modular sets are enumerated in the orret order. Hene, it is not neessaryto apply the 4-table algorithm on 4 targets. If m1 = m2 = m3 = m4 = m=4, weobtain a time omplexity of O(2m=2) and a spae omplexity of only O(2m=4),whih improves the time/memory tradeo� of the methods of Setions 3.2 and 3.2.The probability that a random m-bit integer (suh as �) an be expressed as aprodut of four integers�i, where�i has less thanmi bits, is given in Setion 1.2.Di�erent values ofm1;m2;m3 andm4 (not neessarilym=4), give rise to di�erenttrade-o�s with respet to the omputation time, the storage requirement, andthe suess probability.Our experiments show that, as expeted, the method requires muh lessomputing power than a brute-fore attak on the 64-bit key using the symetrienryption algorithm. We implemented the attak on a PII/Linux-400 MHz.Here is a numerial example, using DSS-like parameters:q = 762503714763387752235260732711386742425586145191p = 12445297195020897327961146684569284985257444765520858655057634418042792682183038633894759924784265833354926964504544903320941144896341512703447024972887681The 160-bit number q divides the 512-bit number p � 1. The smooth part ofp� 1 is 4783 � 1759 � 1627 � 139 � 113 � 41 � 11 � 7 � 5 � 27, whih is a 69-bit number.Our attak reovered the 64-bit seret message 14327865741237781950 in only 2hours and a half (we were luky, as the maximal running time for 64 bits shouldbe around 14 hours).4 An attak on ElGamal using a generator of Z�pSo far, our attaks on ElGamal enryption apply when the publi key hp; g; yiuses an element g 2 Z�p whose order is muh less than p. Although many imple-mentations of ElGamal use suh g, it is worth studying whether a \meet-in-the-middle attak" is possible when g generates all of Z�p. We show that the answer ispositive, although we annot diretly use the algorithm for subgroup rounding.Let hp; g; yi be an ElGamal publi key where g generates all of Z�p. Supposean m-bit message M is enrypted using plain ElGamal, i.e. the iphertext ishu; vi where u = M � yr and v = gr. Suppose s is a fator of p � 1 so that inthe subgroup of Z�p or order s the disrete log problem is not too diÆult (asin Setion 3.2), i.e. takes time T for some small T . For example, s may be aninteger with only small prime divisors (a smooth integer).We show that when s > 2m it is often possible to reover the plaintext fromthe iphertext in time 2m=2m plus the time it takes to ompute one disrete login the subgroup of Z�p of order s. We refer to this subgroup as Gs. Note that

when M is a 64-bit session key the only onstraint on p is that p� 1 have a 64bit smooth fator.Let u = M � yr and v = gr be an ElGamal iphertext. As before, supposeM =M1 �M2 where both M1 and M2 are less than 2m=2. Let q = (p�1)=s then:M1yr = u=M2 mod p. Hene,Mq1 (yr)q = uq=Mq2 mod pWe annot use the tehnique of Setion 3.1 diretly sine we do not know thevalue of yrq. Fortunately, yrq is ontained in Gs. Hene, we an ompute yrqdiretly using the publi key y and v = gr. Indeed, suppose we had an integera suh that yq = (gq)a. Then yrq = grqa = vqa. Computing a amounts toomputing a single disrete log in Gs. One a is found the problem is reduedto �nding hM1;M2i satisfying:Mq1 vqa = uq=Mq2 mod p (3)The tehniques of Setion 3.1 an now be used to �nd all suh hM1;M2i in thetime it takes to ompute 2m=2 exponentiations. Sine the subgroup Gs ontainsat least 2m elements the number of solutions is bounded by m. The orretsolution an then be easily found by other means, e.g. by trying all m andidateplaintexts until one of them sueeds as a \session-key".Note that all the tehniques of Setion 3.2 an also be applied. The on-line work of 2m=2 modular exponentiations is then dereased to 2m=2 additions,provided the preomputation of many disrete log in Gs. Indeed, by taking loga-rithms in (3), one is left with a modular 2-table problem. Splitting the unknownmessageM in a di�erent number of fators leads to other modular k-table prob-lems. One an thus obtain various trade-o�s with respet to the omputationtime, the memory spae, and the probability of suess, as desribed in Se-tion 3.2.To summarize, when g generates all of Z�p the meet-in-the-middle attak anoften be used to derypt ElGamal iphertexts in time 2m=2 as long as p � 1ontains an m-bit smooth fator.5 A meet-in-the-middle attak on plain RSATo onlude we remark that the same tehnique used for the subgroup roundingproblem an be used to attak plain RSA. This was also notied in [8℄. In itssimplest form, the RSA system [17℄ enrypts messages in ZN where N = pq forsome large primes p and q. The publi key is hN; ei and the private key is d,where e � d = 1 mod �(N) with �(N) = (p � 1)(q � 1). A message M 2 ZN isthen enrypted into = Me mod N . To speed up the enryption proess oneoften uses a publi exponent e muh smaller than N , suh as e = 216 + 1.Suppose the m-bit messageM an be written asM =M1M2 withM1 � 2m1and M2 � 2m2 . Then: Me2 =Me1 mod N:

We an now build a table of size 2m1 ontaining the values Me1 mod N for allM1 = 0; : : : ; 2m1 . Then for eah M2 = 0; : : : ; 2m2 , we hek whether =Me2 modN is present in the table. Any ollision will reveal the message M . As in Se-tion 3.1, we note that storing the omplete value of Me1 mod N is not neessary:for instane, storing the 2max(m1;m2) least signi�ant bits should be enough.The attak thus requires 2m1+1max(m1;m2) bits of memory and takes 2m2 mod-ular exponentiations (we an assume that the table sort is negligible, omparedto exponentiations).Using a non-optimized implementation (based on the NTL [19℄ library), weobtained the following results. The timings give a rough idea of the attak eÆ-ieny, ompared to exhaustive searh attaks on the symmetri algorithm. Run-ning times are given for a single 500 MHz 64-bit DEC Alpha/Linux. If m = 40andm1 = m2 = 20, and we use a publi exponent 216+1 with a 512-bit modulus,the preomputation step takes 3 minutes, and eah message is reovered in lessthan 10 minutes. From Setion 1.2, it also means that, given only the publi keyand the iphertext, a 40-bit message an be reovered in less than 40 minuteson a single workstation, with probability at least 39%.6 Summary and open problemsWe showed that plain RSA and plain ElGamal enryption are fundamentallyinseure. In partiular, when they are used to enrypt an m-bit session-key, thekey an often be reovered in time approximately 2m=2. Hene, although anm-bit key is used, the e�etive seurity provided by the system is only m=2bits. Theses results demonstrate the importane of adding a preproessing stepsuh as OAEP to RSA and a proess suh as DHAES to ElGamal. The attakpresented in the paper an be used to motivate the need for preproessing inintrodutory desriptions of these systems.There are a number of open problems regarding this attak:Problem 1: Is there a O(2m=2) time algorithm for the multipliative subgrouprounding problem that works for all �?Problem 2: Is there a O(2m=2) time algorithm for the additive subgroup round-ing problem?Problem 3: Can either the multipliative or additive problems be solved intime less than
(2m=2)? Is there a sub-exponential algorithm (in 2m)?AknowledgmentsWe thank Paul van Oorshot and David Naahe for several onversations onthis problem. We thank Adi Shamir for informing us of referene [18℄. We thankIgor Shparlinski for providing us (1) and informing us of referene [11℄. Wethank Carl Pomerane for providing us (2) and helpful information on splittingprobabilities.

Referenes1. M. Abdalla, M. Bellare, P. Rogoway, \DHAES: An enryption sheme basedon the DiÆe-Hellman problem", manusript, 1998.2. R. J. Anderson, S. Vaudenay, \Minding your p's and q's", Pro of Asiarypt'96, LNCS 1163, Springer-Verlag, pp. 26{35, 1996.3. C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier,\Pari/GP omputer pakage version 2", available athttp://hasse.mathematik.tu-muenhen.de/ntsw/pari/Welome.4. M. Bellare, P. Rogaway, \Optimal asymmetri enryption | how to enryptusing RSA", Pro. Eurorypt '94, LNCS 950, Springer-Verlag, 1995.5. D. Boneh, \The Deision DiÆe-Hellman Problem", Pro. ANTS-III, LNCS1423, Springer-Verlag, 1998.6. D. Boneh, \Twenty Years of Attaks on the RSA ryptosystem", Noties ofthe AMS, 46(2):203{213, 1999.7. J.-S. Coron, D. Naahe, J. P. Stern, \On the Seurity of RSA Padding",Pro. of Crypto '99, LNCS 1666, Springer-Verlag, pp. 1{18, 1999.8. J.-S. Coron, M. Joye, D. Naahe, P. Paillier, \New Attaks on PKCS#1v1.5 Enryption", Pro. of Eurorypt '2000, LNCS 1807, Springer-Verlag, pp.369{381, 2000.9. T. ElGamal, \A publi key ryptosystem and a signature sheme based on thedisrete logarithm", IEEE Trans. on Information Theory, 31(4):469{472, 1985.10. E. Fujisaki, T. Okamoto, \Seure Integration of Asymmetri and SymmetriEnryption Shemes", Pro. of Crypto '99, LNCS 1666, Springer-Verlag, pp.537{554, 1999.11. R. R. Hall, G. Tenenbaum, \Divisors", Cambridge University Press, 1988.12. A. Menezes, P. v. Oorshot, S. Vanstone, \Handbook of Applied Cryptogra-phy", CRC Press, 1997.13. T. Okamoto and D. Pointheval, \PSEC-3: Provably Seure Ellipti CurveEnryption Sheme", Submission to IEEE P1363a, 2000.14. P. v Oorshot, M. J. Wiener, \On DiÆe-Hellman Key Agreement With ShortExponents", Pro. Eurorypt '96, LNCS 1070, Springer-Verlag, 1996.15. PKCS1, \Publi Key Cryptography Standard No. 1 Version 2.0", RSA Labs.16. D. Pointheval, \Chosen-Ciphertext Seurity for any One-Way Cryptosystem",Pro. PKC '2000, LNCS 1751, Springer-Verlag, 2000.17. R. L. Rivest., A. Shamir, L. M. Adleman \ A method for obtaining digi-tal signatures and publi-key ryptosystems", Communiations of the ACM,21(2):120{126, 1978.18. R. Shroeppel, A. Shamir, \A T = O(2n=2), S = O(2n=4) algorithm for ertainNP-omplete problems", SIAM J. Comput., 10(3):456{464, 1981.19. V. Shoup, \Number Theory C++ Library (NTL) version 3.7", available athttp://www.shoup.net/.

