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2.1 Proposed scheme based on factoringThe r-th residue public key cryptosystem is de�ned as follows [CF85]. Let r bea prime.Secret key: Two large prime numbers p; q such that rjp� 1 and r 6 jq � 1.Public key: N(4= pq) and y such that y 6= xr mod N for 8x.Plaintext: m such that 0 � m < r.Encryption: E(m;x) 4= ymxr mod n, where x is a random number.Decryption: Let c = E(m;x). Then m = j0 ifc(p�1)=r = (y(p�1)=p)j0 mod pThis cryptosystem satis�es a homomorphic property such thatE(m1; x1)E(m1; x2) = E(m1 +m2 mod r; x0); for some x0: (1)Then our scheme is described as follows. Suppose that there are l sendersP1; : : : ; Pl such that each Pi has a messagemi. Assume n centersMIX1; : : : ;MIXnsuch that each MIXj has a public key Ej of the r-th residue cryptosystem. Letk 4= b(n� 1)=2c+ 1:De�nition 1. For a plaintext m, choose a random polynomial R(x) of degreek � 1 such that R(0) = m. LetB(m;R) 4= [E1(R(1); x1); � � � ; En(R(n); xn)];where x1; � � � ; xn are random numbers. We say that B(m;R) is an encryptedshares of m.De�nition 2. For B(m;R), choose a random polynomial U(x) of degree k � 1such that U(0) = 0. LetB̂(m) 4= [E1(R(1); x1)E1(U(1); w1); � � � ; En(R(n); xn)En(U(n); wn)];where w1; � � � ; wn are random numbers. We say that B̂(m) is a reencryption ofB(m). (B̂(m) is again an encrypted shares of m because B̂(m) = B(m;R+U).)(Sender's protocol)Each Pi computes B(mi; Ri), an encrypted shares of his message mi, andpublicizes B(mi; Ri). He proves that he knows Ri(x) by using a ZKIP of knowl-edge. He is then proving two things:1. He knows Ri(0) which is his message itself. This proof prevents the P�tz-mann's attack against Chaum's MIX net [PP89].2. He indeed distributed the message correctly (veri�able secret sharing scheme).



(Center's protocol) Now[B(m1; R1); � � � ; B(ml; Rl)] (2)are publicized.MIX1 randomly computes a reencryption of each B(mi; Ri) suchthat B(mi; Ri+Ui).MIX1 chooses a random permutation � on f1; 2; : : : ; lg andpublicizes [B(m�(1); R�(1) + U�(1)); � � � ; B(m�(l); R�(l) + U�(l))):] (3)MIX1 further proves that eq.(3) is computed from eq.(2) correctly by using aZKIP. For 2 � j � n, MIXj executes the same process sequentially.(Decryption)At the end, MIXn publicizes[B(m'(1); ~R'(1)); � � � ; B(m'(l); ~R'(l))]for some permutation ', where B(m'(i); ~R'(i)) is an encrypted shares of m'(i).Let B(m'(i); ~R'(i)) = [ci;1; : : : ; ci;n]Each MIXj decrypts ci;j and publicizes its plaintext vi;j for i = 1; : : : ; l. Theneverybody can recover m'(i) from k or more vi;j . Each MIXj proves that hebehaved correctly by using a ZKIP.If some Pi orMIXj is detected to be faulty, he is ignored from that time on.
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Fig. 1. Reencryption and shu�e, where B(1)�(i) 4= B(m�(i); R�(i) + U�(i)).2.2 Proposed scheme based on DLOGThis anonymous channel makes use of the scheme shown in Sec. 5.1 of [PIK93],which uses ElGamal public key cryptosystem. (It is called type 2 channel in[Pf94].)Each MIXj distributes his secret key xj to all MIXes by using Shamir's(k; n)-threshold secret sharing scheme. Each sender proves that he knows hismessage by using a ZKIP to avoid the attack of [PP89]. EachMIXj proves thathe behaved correctly by using a ZKIP so that the attack of Sec.5.1 in [Pf94] does



not work. Further, the attack of Sec.5.2 in [Pf94] does not work because xj of afaulty MIXj is revealed by using the (k; n)-threshold secret sharing scheme.Let p and q be primes such that q j p � 1. Let g 2 Zp be a q th root ofunity. Each MIXj chooses a secret key xj 2 Z�q and publicizes yj = gxj mod pas his public key. Further, he distributes xj to all MIXes by using Shamir's(k; n)-threshold secret sharing scheme. He executes Feldman's non-interactiveVeri�able Secret Sharing [Fe87].(Sender's protocol) Each sender Pi encrypts his message mi as(Gi;Mi) = (gr mod p; (y1y2 � � � yn)rmi mod p)He publicies (Gi;Mi) and proves that he knows mi by using a ZKIP.(Center's protocol) For 1 � j � n,MIXj reencrypts and shu�es (G1;M1); � � � ; (Gl;Ml)sequentially. He proves that he behaved correctly by using a ZKIP.(Decryption) At the end, suppose thatMIXn publicized (Ĝ1; M̂1); � � � ; (Ĝl; M̂l).For each (Ĝ; M̂), each MIXj computesGj = Ĝxj mod pand publicizes Gj . He proves the validity of Gj by using a ZKIP. Then theplaintext m is obtained by m = M̂=(G1 � � �Gn)If there are some faulty MIXes and someGj is not opend, the remained honestMIXes reveal the corresponding secret key xj by using Shamir's (k; n)-thresholdserect sharing scheme.3 E�cient ZKIP for shu�eIn this section, we show a very e�cient ZKIP for the center's protocol of Sec.2.1. The communication complexity is 1=l of the standard ZKIP. A similar ZKIPcan be obtained for that of Sec.2.2.MIX1 wants to prove that eq.(3) is computed from eq.(2) correctly in zeroknowledge. In eq.(2) and eq.(3), letB(mi; Ri) = [ai;1; � � � ; ai;n]B(m�(i); R�(i) + U�(i)) = [bi;1; � � � ; bi;n]Let P denote a prover and V denote a veri�er. Repeat the steps 1 � 4 belowlog2N times.(Step 1) P randomly computes a reencryption of each B(mi; Ri) such thatB(mi; Ri + Ûi). Then P chooses a random permutation � on f1; 2; : : : ; lg andsends to V [B(m�(1); R�(1) + Û�(1)); � � � ; B(m�(l); R�(l) + Û�(l))):] (4)
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