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Abstract. Previous anonymous channels, called MIX nets, do not work
if one center stops. This paper shows new anonymous channels which al-
low less than a half of faulty centers. A fault tolerant multivalued election
scheme is obtained automatically. A very efficient ZKIP for the centers
is also presented.

1 Introduction

Chaum considered an anonymous channel which hides the correspondences be-
tween the senders and the messages [Ch81]. Suppose that there are ! senders
Py, ..., P, such that each P; has a message m;. Assume a center called MIX
which publicizes his RSA public key E. Each sender P; sends ¢; = F(m;) to the
MIX. The MIX decrypts them and publicizes my,...,m; in the lexicographical
order. The MIX, however, knows who sent what message. Finally, Chaum pro-
posed a MIX netin which n MIXes are sequentially connected [Ch81]. Anonymity
is protected if at least one MIX is honest.

The MIX net, however, does not work if one MIX (center) stops. This paper
shows new anonymous channels which allow less than a half of faulty centers,
where faulty centers can stop or deviate from the protocol arbitrarily. Fault
tolerant multivalued election schemes are obtained automatically. (Cohen and
Fischer type election scheme realizes only yes/no votes [CF85, Be86].) A very
efficient zero knowledge interactive proof system (ZKIP) for MIX is also pre-
sented.

2 Fault tolerant anonymous channels

This section presents two robust anonymous channels which allow less than a
half of faulty centers. One is based on the hardness of factorization and the other
is based on the difficulty of the discrete log problem. In both schemes, even if
less than a half of centers are faulty, (1) randomly shuffled messages are output
and (2) anonymity is protected.



2.1 Proposed scheme based on factoring

The 7-th residue public key cryptosystem is defined as follows [CF85]. Let r be
a prime.

Secret key: Two large prime numbers p, ¢ such that 7|p — 1 and r fg — 1.
Public key: N(é pq) and y such that y # 2" mod N for Vz.

Plaintext: m such that 0 <m < r.

A m
=Y

Encryption: E(m,z) 2" mod n, where z is a random number.

Decryption: Let ¢ = E(m,z). Then m = j, if
clr=1)/r — (y(pfl)/p)ju mod p
This cryptosystem satisfies a homomorphic property such that
E(m1,z1)E(mq,x2) = E(m1 + ms mod 7,zq), for some zg. (1)

Then our scheme is described as follows. Suppose that there are | senders
Py, ..., P such that each P; has a message m;. Assume n centers M1 Xy,... MIX,
such that each M TX; has a public key E; of the r-th residue cryptosystem. Let
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k2 |(n-1)/2) + 1.

Definition 1. For a plaintext m, choose a random polynomial R(z) of degree
k — 1 such that R(0) = m. Let

A
B(m= R) = [El(R(1)= 'Tl)7 T En(R(n)7rn)]
where z1,- -+, 1z, are random numbers. We say that B(m, R) is an encrypted
shares of m.

Definition 2. For B(m, R), choose a random polynomial U(z) of degree k — 1
such that U(0) = 0. Let

- N
B(m) = [E1(R(1), 1) Ex(U(1),w1), - -, En(R(n), 2) En (U(n), wn)],
where wy, -+, w, are random numbers. We say that B(n}) is a reencryption of
B(m). (B(m) is again an encrypted shares of m because B(m) = B(m,R+U).)

(Sender’s protocol)

Each P; computes B(m,, R;), an encrypted shares of his message m;, and
publicizes B(m;, R;). He proves that he knows R;(z) by using a ZKIP of knowl-
edge. He is then proving two things:

1. He knows R;(0) which is his message itself. This proof prevents the Pfitz-
mann’s attack against Chaum’s MIX net [PP89].
2. Heindeed distributed the message correctly (verifiable secret sharing scheme).



(Center’s protocol) Now

[B(mth)a"':B(ml:Rl)] (2)

are publicized. M IX; randomly computes a reencryption of each B(m;, R;) such
that B(m;, R;+U;). MIX; chooses a random permutation = on {1,2,...,1} and
publicizes

[B(mr(1), Re(1) + Ur(r)), - B(mry, Rey + Uzry)) ] (3)

M1IX, further proves that eq.(3) is computed from eq.(2) correctly by using a
ZKIP. For 2 < j <mn, MIX; executes the same process sequentially.
(Decryption)

At the end, M TX,, publicizes

[B(m1)s Ro))s - -5 B(mgy, Rey)]

for some permutation ¢, where B(m;), Ry (;)) is an encrypted shares of m ;).
Let R
B(mv(i), ch(z)) = [Ci,h ce ey Ci,n]
Each MIX; decrypts c¢; ; and publicizes its plaintext v; ; for ¢ = 1,...,l. Then
everybody can recover m;) from k or more v; ;. Each M1X; proves that he
behaved correctly by using a ZKIP.
If some P; or MIX; is detected to be faulty, he is ignored from that time on.

MIX
B(m1, R1) ! B,
e reencryption
. and M[X2 ......

shuffle T
B(my, Ry) BW

Fig. 1. Reencryption and shuffle, where BS&) 2 B(mry, Reiy + Un(iy)-

2.2 Proposed scheme based on DLOG

This anonymous channel makes use of the scheme shown in Sec. 5.1 of [PIK93]
which uses ElGamal public key cryptosystem. (It is called type 2 channel in
[Pf94].)

Each MIX; distributes his secret key x; to all MIXes by using Shamir’s
(k,n)-threshold secret sharing scheme. Each sender proves that he knows his
message by using a ZKIP to avoid the attack of [PP89]. Each MIX; proves that
he behaved correctly by using a ZKIP so that the attack of Sec.5.1 in [P194] does
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not work. Further, the attack of Sec.5.2 in [P{94] does not work because z; of a
faulty MIX; is revealed by using the (k,n)-threshold secret sharing scheme.
Let p and ¢ be primes such that ¢ | p — 1. Let ¢ € Z, be a ¢ th root of
unity. Each M1X; chooses a secret key z; € Z; and publicizes y; = ¢*/ mod p
as his public key. Further, he distributes z; to all MIXes by using Shamir’s
(k,n)-threshold secret sharing scheme. He executes Feldman’s non-interactive
Verifiable Secret Sharing [Fe87].
(Sender’s protocol) Each sender P; encrypts his message m; as

(Gi, M;) = (¢" mod p, (y1y2 - - - yn)"m; mod p)

He publicies (G;, M;) and proves that he knows m; by using a ZKIP.

(Center’s protocol) For 1 < j < n, MIX, reencrypts and shuffles (Gy, M1),-- -, (G, My)
sequentially. He proves that he behaved correctly by using a ZKIP.

(Decryption) At the end, suppose that M IX,, publicized (él, Ml), e (él, Ml)

For each (G’ M)7 each M1X; computes

G; = G mod p

and publicizes G;. He proves the validity of G; by using a ZKIP. Then the
plaintext m is obtained by

m=DM/(Gy---G,)

If there are some faulty MIXes and some G is not opend, the remained honest
MIXes reveal the corresponding secret key x; by using Shamir’s (k, n)-threshold
serect sharing scheme.

3 Efficient ZKIP for shuffle

In this section, we show a very efficient ZKIP for the center’s protocol of Sec.
2.1. The communication complexity is 1/1 of the standard ZKIP. A similar ZKIP
can be obtained for that of Sec.2.2.

M1IX, wants to prove that eq.(3) is computed from eq.(2) correctly in zero
knowledge. In eq.(2) and eq.(3), let

B(mi, R;) = [ai1, -, in)
B(mﬂ'(i)7 RTA’(I) + Uw(z)) = [biﬂ PR bz7n]

Let P denote a prover and V denote a verifier. Repeat the steps 1 ~ 4 below
log, N times.

(Step 1) P randomly computes a reencryption of each B(m;, R;) such that
B(m;, R; + Ul) Then P chooses a random permutation 7 on {1,2,...,1} and
sends to V



Let .
B(mT(i)7 R'r(z) + UT(l)) = [di,l P :di,n]-

P also bit commits 7 and ¢ £ 771, He sends the commitals to V.

(Step 2) V sends to P a random bit e and random numbers ¢; (1 < i <) such
that 0 <t; <.

(Step 3) P computes

e Z%:l tiUZr(i) %f e=0,
Yoica iUz = Upyy) ife=1

Let w; (1 < j <n) be the random number which satisfies

l L.
' = i (dij)arey ;) ife=0
E;(U'(j),w;) = [ (dij/ariy s ! 5)
’ ’ Hi:l(dhj/bdz(i),j)t’ ife=1

— Ife=0, Psends U',wy, --,w, and the decommmital of 7 to V.
— Ife=1, Psends U',wy,---,w, and the decommmital of ¢ to V.

(Step 4) V accepts if

1. U’ is a polynomial of degree at most (k — 1) such that U’(0) = 0.
2. Eq.(5) is satisfied for 1 < j < n.

Theorem 3. If eq.(3) is not computed from eq.(2) correctly, then
Pr(V accepts in each round) < 1/2+1/2r

for any (possibly cheating) prover.
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