Algebra e Geometria - 2º test - 18/12/2013

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Nello spazio euclideo $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino il piano α : x+2=0, la retta r: x+z+1=0=y-1 e il punto P=(4,1,-2). Si determinino:

- una rappresentazione cartesiana della retta passante per P, parallela ad α e ortogonale a r.

Risposta
$$z + 2 = 0 = x - 4$$
 (pt.2)

ESERCIZIO 2. Nello spazio euclideo reale $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino la sfera $\Sigma : x^2 + y^2 + z^2 - 6x + 4y + 6z - 2 = 0$ ed il piano $\pi : x + z - 6 = 0$. Si determinino:

• centro e raggio della circonferenza $C = \Sigma \cap \pi$;

• una rappresentazione cartesiana della retta di π tangente a Σ nel punto P=(5,0,1).

Risposta
$$x + y + 2z - 7 = 0 = x + z - 6$$
 ______ (pt.2)

ESERCIZIO 3. In $\widetilde{E}_2(\mathbb{C})$ si consideri la conica C_k : $4x^2 + y^2 + 2kxy + 2(k+2)x - 1 = 0$, dove k è un parametro reale. Si determinino:

• i valori di $k \in \mathbb{R}$ per cui la conica \mathcal{C}_k è degenere, e per tali valori le rette componenti \mathcal{C}_k ;

Risposta
$$k = -2$$
, $2x - y - 1 = 0$, $2x - y + 1 = 0$ _____ (pt.2)

• i valori di $k \in \mathbb{R}$ per cui \mathcal{C}_k è, rispettivamente, un'ellisse, una parabola o un'iperbole.

Risposta
$$k < -2 \lor k > 2$$
 iperbole, $-2 < k < 2$ ellisse, $k = 2$ parabola _____ (pt.2)

Posto k = 1 si determinino i punti impropri (reali o immaginari) di C_1 e, se esistono e sono reali, centro, direzioni degli assi e asintoti.

Risposta
$$P_{\infty}, Q_{\infty} = [(1, -1 \pm i\sqrt{3}, 0)], \quad C = [(-1, 1, 1)], \quad [(3 \pm \sqrt{13}, 2, 0)]$$
 (pt.5)

ESERCIZIO 4. In $\widetilde{E}_3(\mathbb{C})$ si consideri la quadrica $\mathcal{Q}: x^2 + 2y^2 - z^2 + 2x + 4y + 3 = 0$.

• Si riconosca la quadrica Q;

Risposta Cono di vertice
$$V = (-1, -1, 0)$$
 ______ (pt.2)

• si riconoscano le sezioni di Q con i piani $\alpha: x-y=0$ e $\beta: 2x-z=0$ precisando, nel caso in cui la sezione sia riducibile, le rette componenti;

Risposta
$$C_{\alpha}$$
 riducibile nelle rette $\sqrt{3}x \pm z + \sqrt{3} = 0 = x - y$, C_{β} iperbole ______ (pt.2)

• si determini l'equazione di un piano diverso dai precedenti che sezioni la quadrica secondo una conica riducibile, motivando la risposta.

Risposta $\pi: z = 0$, la conica sezione è riducibile perché $V \in \pi$ ______ (pt.2)

ESERCIZIO 5. In $\widetilde{E}_3(\mathbb{R})$ si considerino il piano $\alpha_k: 4x - ky + 3z - 3 = 0$ e la retta $r_k: kx + z - 1 = 0 = 2x + (k-2)y + z - k$. Si determinino, se esistono:

• i valori di $k \in \mathbb{R}$ per cui r_k esiste ed è propria;

Risposta
$$k \neq 2$$
 _____ (pt.2)

- i valori di $k \in \mathbb{R}$ per cui sia r_k che α_k passano per il punto P = (1, 1, -1).

Algebra e Geometria - 2º test - 18/12/2013

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Nello spazio euclideo $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino il piano α : x+1=0, la retta r: x+z+1=0=y e il punto P=(5,0,-3). Si determinino:

- un'equazione cartesiana della sfera con centro sulla retta r, tangente a α , passante per P e di raggio minore;
 - **Risposta** $x^2 + y^2 + z^2 4x + 6z + 4 = 0$ ______ (pt
- \bullet una rappresentazione cartesiana della retta passante per P, parallela ad α e ortogonale a r.

Risposta
$$z + 3 = 0 = x - 5$$
 _____ (pt.2)

ESERCIZIO 2. Nello spazio euclideo reale $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino la sfera $\Sigma: x^2+y^2+z^2-3x+2y+3z-\frac{1}{2}=0$ ed il piano $\pi: x+z-3=0$. Si determinino:

• centro e raggio della circonferenza $C = \Sigma \cap \pi$;

Risposta
$$C = (3, -1, 0), R = \sqrt{\frac{3}{2}}$$
 (pt.2)

• una rappresentazione cartesiana della retta di π tangente a Σ nel punto P=(5/2,0,1/2).

Risposta
$$x + y + 2z - 7/2 = 0 = x + z - 3$$
 ______ (pt.2)

ESERCIZIO 3. In $\widetilde{E}_2(\mathbb{C})$ si consideri la conica C_k : $x^2 + 4y^2 + 2(k+1)xy + 2(1-k)y - 1 = 0$, dove k è un parametro reale. Si determinino:

• i valori di $k \in \mathbb{R}$ per cui la conica \mathcal{C}_k è degenere, e per tali valori le rette componenti \mathcal{C}_k ;

Risposta
$$k = 1$$
, $x + 2y - 1 = 0$, $x + 2y + 1 = 0$ _____ (pt.2)

• i valori di $k \in \mathbb{R}$ per cui \mathcal{C}_k è, rispettivamente, un'ellisse, una parabola o un'iperbole.

Risposta
$$k < -3 \lor k > 1$$
 iperbole, $-3 < k < 1$ ellisse, $k = -3$ parabola _____ (pt.2)

Posto k=2 si determinino i punti impropri (reali o immaginari) di C_2 e, se esistono e sono reali, centro, direzioni degli assi e asintoti.

Risposta $P_{\infty}, Q_{\infty} = [(-3 \pm \sqrt{5}, 1, 0)], \quad C = [(3, -1, 5)], \quad [(-1 \pm \sqrt{5}, 2, 0)], \quad \sqrt{5}x + (1 \pm \sqrt{5})y - 1 = 0 \text{ (pt.5)}$

ESERCIZIO 4. In $\widetilde{E}_3(\mathbb{C})$ si consideri la quadrica $\mathcal{Q}: x^2 + 2y^2 - z^2 + 4x + 4y + 6 = 0$.

• Si riconosca la quadrica Q;

Risposta Cono di vertice
$$V = (-2, -1, 0)$$
 (pt.2)

• si riconoscano le sezioni di \mathcal{Q} con i piani $\alpha: x-y+1=0$ e $\beta: x-2z+1=0$ precisando, nel caso in cui la sezione sia riducibile, le rette componenti;

Risposta C_{α} riducibile nelle rette $\sqrt{3}x \pm z + 2\sqrt{3} = 0 = x - y + 1$, C_{β} ellisse ______ (pt.2)

• si determini l'equazione di un piano diverso dai precedenti che sezioni la quadrica secondo una conica riducibile, motivando la risposta.

ESERCIZIO 5. In $\widetilde{E}_3(\mathbb{R})$ si considerino il piano $\alpha_k: 4x-(k-3)y+3z-3=0$ e la retta $r_k: (k-3)x+z-1=0=2x+(k-5)y+z-k+3$. Si determinino, se esistono:

• i valori di $k \in \mathbb{R}$ per cui r_k esiste ed è propria;

Risposta
$$k \neq 5$$
 ______ (pt.2)

• i valori di $k \in \mathbb{R}$ per cui r_k è contenuta in α_k ;

 \bullet i valori di $k \in \mathbb{R}$ per cui sia r_k che α_k passano per il punto P = (0,0,1).

Risposta
$$k=4$$
 ______(pt.2)

Algebra e Geometria - 2º test - 18/12/2013

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Nello spazio euclideo $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino il piano α : x+3=0, la retta r: x+z+1=0=y-2 e il punto P=(3,2,-1). Si determinino:

- una rappresentazione cartesiana della retta passante per P, parallela ad α e ortogonale a r.

Risposta
$$z + 1 = 0 = x - 3$$
 (pt.2)

ESERCIZIO 2. Nello spazio euclideo reale $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino la sfera $\Sigma: x^2 + y^2 + z^2 - 12x + 8y + 12z - 2 = 0$ ed il piano $\pi: x + z - 12 = 0$. Si determinino:

• centro e raggio della circonferenza $C = \Sigma \cap \pi$;

• una rappresentazione cartesiana della retta di π tangente a Σ nel punto P=(1,0,1).

Risposta
$$5x - 4y - 7z + 2 = 0 = x + z - 12$$
 (pt.2)

ESERCIZIO 3. In $\widetilde{E}_2(\mathbb{C})$ si consideri la conica C_k : $4x^2 + y^2 + 2(k-1)xy + 4kx + 2y = 0$, dove k è un parametro reale. Si determinino:

• i valori di $k \in \mathbb{R}$ per cui la conica C_k è degenere, e per tali valori le rette componenti C_k ;

Risposta
$$k = -1$$
, $2x - y - 2 = 0$, $2x - y = 0$ ______ (pt.2)

• i valori di $k \in \mathbb{R}$ per cui \mathcal{C}_k è, rispettivamente, un'ellisse, una parabola o un'iperbole.

Risposta
$$k < -1 \lor k > 3$$
 iperbole, $-1 < k < 3$ ellisse, $k = 3$ parabola ______ (pt.2)

Posto k = 0 si determinino i punti impropri (reali o immaginari) di C_0 e, se esistono e sono reali, centro, direzioni degli assi e asintoti.

Risposta
$$P_{\infty}, Q_{\infty} = [(1 \pm i\sqrt{3}, 4, 0)], \quad C = [(-1, -4, 3)], \quad [(-3 \pm \sqrt{13}, 2, 0)]$$
 (pt.5)

ESERCIZIO 4. In $\widetilde{E}_3(\mathbb{C})$ si consideri la quadrica $\mathcal{Q}: x^2 + 2y^2 - z^2 + 2x + 8y + 2z + 8 = 0$.

• Si riconosca la quadrica Q;

Risposta Cono di vertice
$$V = (-1, -2, 1)$$
 ______ (pt.2)

• si riconoscano le sezioni di \mathcal{Q} con i piani $\alpha: x-y-1=0$ e $\beta: 2x-z-1=0$ precisando, nel caso in cui la sezione sia riducibile, le rette componenti;

Risposta
$$C_{\alpha}$$
 riducibile nelle rette $\sqrt{3}x \pm (z-1) + \sqrt{3} = 0 = x-y-1$, C_{β} iperbole _____ (pt.2)

• si determini l'equazione di un piano diverso dai precedenti che sezioni la quadrica secondo una conica riducibile, motivando la risposta.

Risposta $\pi: z=1$, la conica sezione è riducibile perché $V \in \pi$ _______(pt.2

ESERCIZIO 5. In $\widetilde{E}_3(\mathbb{R})$ si considerino il piano $\alpha_k: 4x - (k-2)y + 3z - 3 = 0$ e la retta $r_k: (k-2)x + z - 1 = 0 = 2x + (k-4)y + z - k + 2$. Si determinino, se esistono:

• i valori di $k \in \mathbb{R}$ per cui r_k esiste ed è propria;

Risposta
$$k \neq 4$$
 ______ (pt.2)

Risposta
$$k=3$$
 _______(pt.2)

- $\bullet\,$ i valori di $k\in\mathbb{R}$ per cui sia r_k che α_k passano per il punto P=(1,1,-1).

Algebra e Geometria - 2º test - 18/12/2013

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Nello spazio euclideo $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino il piano α : x+2=0, la retta r: x+y+1=0=z-1 e il punto P=(4,-2,1). Si determinino:

• un'equazione cartesiana della sfera con centro sulla retta r, tangente a α , passante per P e di raggio minore;

Risposta $x^2 + y^2 + z^2 - 2x + 4y - 2z - 3 = 0$ (pt.3)

• una rappresentazione cartesiana della retta passante per P, parallela ad α e ortogonale a r.

Risposta y + 2 = 0 = x - 4 ______(pt.2)

ESERCIZIO 2. Nello spazio euclideo reale $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino la sfera $\Sigma: x^2+y^2+z^2+6x+4y-6z-2=0$ ed il piano $\pi: x+z-6=0$. Si determinino:

• centro e raggio della circonferenza $C = \Sigma \cap \pi$;

Risposta $C = (0, -2, 6), R = \sqrt{6}$ (pt.2)

• una rappresentazione cartesiana della retta di π tangente a Σ nel punto P=(1,0,5).

Risposta 2x + y + z - 7 = 0 = x + z - 6 (pt.2)

ESERCIZIO 3. In $\widetilde{E}_2(\mathbb{C})$ si consideri la conica C_k : $x^2 + 4y^2 + 2(k+2)xy + 4x + 2(k+4)y + 3 = 0$, dove k è un parametro reale. Si determinino:

• i valori di $k \in \mathbb{R}$ per cui la conica \mathcal{C}_k è degenere, e per tali valori le rette componenti \mathcal{C}_k ;

Risposta k = 0, x + 2y + 3 = 0, x + 2y + 1 = 0 _____ (pt.2)

 \bullet i valori di $k \in \mathbb{R}$ per cui \mathcal{C}_k è, rispettivamente, un'ellisse, una parabola o un'iperbole.

Risposta $k < -4 \lor k > 0$ iperbole, -4 < k < 0 ellisse, k = -4 parabola ______(pt.2)

Posto k = 1 si determinino i punti impropri (reali o immaginari) di C_1 e, se esistono e sono reali, centro, direzioni degli assi e asintoti.

Risposta $P_{\infty}, Q_{\infty} = [(-3 \pm \sqrt{5}, 1, 0)], C = [(7, 1, -5)], [(-1 \pm \sqrt{5}, 2, 0)], \pm \sqrt{5}x + (\pm 3\sqrt{5} - 5)y + (\pm 2\sqrt{5} - 1) = 0$ (pt.5)

ESERCIZIO 4. In $\widetilde{E}_3(\mathbb{C})$ si consideri la quadrica $\mathcal{Q}: x^2 + 2y^2 - z^2 + 2x + 4y - 2z + 2 = 0$.

• Si riconosca la quadrica Q;

Risposta Cono di vertice V = (-1, -1, -1) ______ (pt.2)

• si riconoscano le sezioni di Q con i piani $\alpha: x-y=0$ e $\beta: x-2z-2=0$ precisando, nel caso in cui la sezione sia riducibile, le rette componenti;

Risposta C_{α} riducibile nelle rette $\sqrt{3}x \pm (z+1) + \sqrt{3} = 0 = x - y$, C_{β} ellisse ______ (pt.2)

• si determini l'equazione di un piano diverso dai precedenti che sezioni la quadrica secondo una conica riducibile, motivando la risposta.

ESERCIZIO 5. In $\widetilde{E}_3(\mathbb{R})$ si considerino il piano $\alpha_k: 4x - (k-1)y + 3z - 3 = 0$ e la retta $r_k: (k-1)x + z - 1 = 0 = 2x + (k-3)y + z - k + 1$. Si determinino, se esistono:

• i valori di $k \in \mathbb{R}$ per cui r_k esiste ed è propria;

Risposta $k \neq 3$ ______(pt.2)

• i valori di $k \in \mathbb{R}$ per cui r_k è contenuta in α_k ;

Risposta k=2 _______(pt.2)

• i valori di $k \in \mathbb{R}$ per cui sia r_k che α_k passano per il punto P = (0, 0, 1).

Risposta k=2 _____ (pt.2)

Algebra e Geometria - 2^o test - 18/12/2013

COGNOME	DME
CORSO DI LAUREA MAT	ATRICOLA

ESERCIZIO 1. Nello spazio euclideo $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino il piano α : x+1=0, la retta r: x+y+1=0=z e il punto P=(5,-3,0). Si determinino:

- una rappresentazione cartesiana della retta passante per P, parallela ad α e ortogonale a r.

Risposta
$$y + 3 = 0 = x - 5$$
 ______(pt.2)

ESERCIZIO 2. Nello spazio euclideo reale $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino la sfera $\Sigma: x^2 + y^2 + z^2 + 3x + 2y - 3z - \frac{1}{2} = 0$ ed il piano $\pi: x + z - 3 = 0$. Si determinio:

• centro e raggio della circonferenza $C = \Sigma \cap \pi$;

Risposta
$$C = (0, -1, 3), R = \sqrt{\frac{3}{2}}$$
 (pt.2)

• una rappresentazione cartesiana della retta di π tangente a Σ nel punto P=(1/2,0,5/2).

Risposta
$$2x + y + z - 7/2 = 0 = x + z - 3$$
 ______ (pt.2)

ESERCIZIO 3. In $\widetilde{E}_2(\mathbb{C})$ si consideri la conica C_k : $4x^2 + y^2 + 2(k+1)xy + 4x - 2y = 0$, dove k è un parametro reale. Si determinino:

• i valori di $k \in \mathbb{R}$ per cui la conica C_k è degenere, e per tali valori le rette componenti C_k ;

Risposta
$$k = -3$$
, $2x - y = 0$, $2x - y + 2 = 0$ ______ (pt.2)

• i valori di $k \in \mathbb{R}$ per cui \mathcal{C}_k è, rispettivamente, un'ellisse, una parabola o un'iperbole.

Risposta
$$k < -3 \lor k > 1$$
 iperbole, $-3 < k < 1$ ellisse, $k = 1$ parabola _____ (pt.2)

Posto k = -2 si determinino i punti impropri (reali o immaginari) di C_{-2} e, se esistono e sono reali, centro, direzioni degli assi e asintoti.

Risposta
$$P_{\infty}, Q_{\infty} = [(1 \pm i\sqrt{3}, 4, 0)], \quad C = [(-1, 2, 3)], \quad [(-3 \pm \sqrt{13}, 2, 0)]$$
 (pt.5)

ESERCIZIO 4. In $\widetilde{E}_3(\mathbb{C})$ si consideri la quadrica $\mathcal{Q}: x^2 + 2y^2 - z^2 + 4y + 2 = 0$.

• Si riconosca la quadrica Q;

Risposta Cono di vertice
$$V = (0, -1, 0)$$
 ______(pt.2

• si riconoscano le sezioni di \mathcal{Q} con i piani $\alpha: x-y-1=0$ e $\beta: 2x-z-2=0$ precisando, nel caso in cui la sezione sia riducibile, le rette componenti;

Risposta
$$C_{\alpha}$$
 riducibile nelle rette $\sqrt{3}x \pm z = 0 = x - y - 1$, C_{β} iperbole ______(pt.2)

• si determini l'equazione di un piano diverso dai precedenti che sezioni la quadrica secondo una conica riducibile, motivando la risposta.

Risposta
$$\pi: z = 0$$
, la conica sezione è riducibile perché $V \in \pi$ ______ (pt.2)

ESERCIZIO 5. In $\widetilde{E}_3(\mathbb{R})$ si considerino il piano $\alpha_k: 4x-2ky+3z-3=0$ e la retta $r_k: 2kx+z-1=0=2x+2(k-1)y+z-2k$. Si determinino, se esistono:

• i valori di $k \in \mathbb{R}$ per cui r_k esiste ed è propria;

Risposta
$$k \neq 1$$
 ______ (pt.2)

Risposta
$$k = 1/2$$
 _____ (pt.2)

- \bullet i valori di $k \in \mathbb{R}$ per cui sia r_k che α_k passano per il punto P = (1,1,-1).

Algebra e Geometria - 2º test - 18/12/2013

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Nello spazio euclideo $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino il piano α : x+3=0, la retta r: x+y+1=0=z-2 e il punto P=(3,-1,2). Si determinino:

- una rappresentazione cartesiana della retta passante per P, parallela ad α e ortogonale a r.

Risposta
$$y + 1 = 0 = x - 3$$
 _____ (pt.2)

ESERCIZIO 2. Nello spazio euclideo reale $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino la sfera $\Sigma: x^2 + y^2 + z^2 + 12x + 8y - 12z - 2 = 0$ ed il piano $\pi: x + z - 12 = 0$. Si determinino:

• centro e raggio della circonferenza $C = \Sigma \cap \pi$;

• una rappresentazione cartesiana della retta di π tangente a Σ nel punto P=(1,0,1).

Risposta
$$7x - 4y - 5z - 2 = 0 = x + z - 12$$
 (pt.2)

ESERCIZIO 3. In $\widetilde{E}_2(\mathbb{C})$ si consideri la conica C_k : $x^2 + 4y^2 + 2(k+3)xy - 2x - 2(2k+4)y = 0$, dove k è un parametro reale. Si determinino:

• i valori di $k \in \mathbb{R}$ per cui la conica C_k è degenere, e per tali valori le rette componenti C_k ;

• i valori di $k \in \mathbb{R}$ per cui \mathcal{C}_k è, rispettivamente, un'ellisse, una parabola o un'iperbole.

Risposta
$$k < -5 \lor k > -1$$
 iperbole, $-5 < k < -1$ ellisse, $k = -5$ parabola _____ (pt.2)

Posto k = -4 si determinino i punti impropri (reali o immaginari) di C_{-4} e, se esistono e sono reali, centro, direzioni degli assi e asintoti.

Risposta
$$P_{\infty}, Q_{\infty} = [(1 \pm i\sqrt{3}, 1, 0)], \quad C = [(0, -1, 1)], \quad [(3 \pm \sqrt{13}, 2, 0)]$$
 (pt.5)

ESERCIZIO 4. In $\widetilde{E}_3(\mathbb{C})$ si consideri la quadrica $\mathcal{Q}: x^2 + 2y^2 - z^2 + 2x + 1 = 0$.

• Si riconosca la quadrica Q;

Risposta Cono di vertice
$$V = (-1,0,0)$$
 (pt.2)

• si riconoscano le sezioni di Q con i piani $\alpha: x-y+1=0$ e $\beta: x-2z=0$ precisando, nel caso in cui la sezione sia riducibile, le rette componenti;

Risposta
$$C_{\alpha}$$
 riducibile nelle rette $\sqrt{3}x \pm z + \sqrt{3} = 0 = x - y + 1$, C_{β} ellisse ______ (pt.2)

• si determini l'equazione di un piano diverso dai precedenti che sezioni la quadrica secondo una conica riducibile, motivando la risposta.

Risposta
$$\pi: z = 0$$
, la conica sezione è riducibile perché $V \in \pi$ ______ (pt.2

ESERCIZIO 5. In $\widetilde{E}_3(\mathbb{R})$ si considerino il piano $\alpha_k: 4x - (k+3)y + 3z - 3 = 0$ e la retta $r_k: (k+3)x + z - 1 = 0 = 2x + (k+1)y + z - k - 3$. Si determinino, se esistono:

• i valori di $k \in \mathbb{R}$ per cui r_k esiste ed è propria;

Risposta
$$k \neq -1$$
 _____ (pt.2)

• i valori di $k \in \mathbb{R}$ per cui r_k è contenuta in α_k ;

Risposta
$$k = -2$$
 _______(pt.2)

• i valori di $k \in \mathbb{R}$ per cui sia r_k che α_k passano per il punto P = (0,0,1).

Risposta
$$k = -2$$
 _____ (pt.2)

Algebra e Geometria - 2º test - 18/12/2013

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Nello spazio euclideo $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino il piano α : z+2=0, la retta r: x+z+1=0=y-1 e il punto P=(-2,1,4). Si determinino:

- una rappresentazione cartesiana della retta passante per P, parallela ad α e ortogonale a r.

Risposta
$$x + 2 = 0 = z - 4$$
 ______ (pt.2)

ESERCIZIO 2. Nello spazio euclideo reale $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino la sfera $\Sigma : x^2 + y^2 + z^2 - 6x + 6y + 4z - 2 = 0$ ed il piano $\pi : x + y - 6 = 0$. Si determinino:

• centro e raggio della circonferenza $C = \Sigma \cap \pi$;

• una rappresentazione cartesiana della retta di π tangente a Σ nel punto P=(5,1,0).

Risposta
$$x + 2y + z - 7 = 0 = x + y - 6$$
 (pt.2)

ESERCIZIO 3. In $\widetilde{E}_2(\mathbb{C})$ si consideri la conica C_k : $4x^2 + y^2 + 2(k+2)xy + 2(3k+8)x + 4y + 3 = 0$, dove k è un parametro reale. Si determinino:

• i valori di $k \in \mathbb{R}$ per cui la conica C_k è degenere, e per tali valori le rette componenti C_k ;

Risposta
$$k = -4$$
, $2x - y - 3 = 0$, $2x - y - 1 = 0$ _____ (pt.2)

• i valori di $k \in \mathbb{R}$ per cui \mathcal{C}_k è, rispettivamente, un'ellisse, una parabola o un'iperbole.

Risposta
$$k < -4 \lor k > 0$$
 iperbole, $-4 < k < 0$ ellisse, $k = 0$ parabola ______ (pt.2)

Posto k = -2 si determinino i punti impropri (reali o immaginari) di C_{-2} e, se esistono e sono reali, centro, direzioni degli assi e asintoti.

Risposta
$$P_{\infty}, Q_{\infty} = [(\pm i, 2, 0)], C = [(1, 4, -2)], [(1, 0, 0)], [(0, 1, 0)]$$
 ______ (pt.5)

ESERCIZIO 4. In $\widetilde{E}_3(\mathbb{C})$ si consideri la quadrica $\mathcal{Q}: 2x^2+y^2-z^2+4x+2y+3=0$.

• Si riconosca la quadrica Q;

Risposta Cono di vertice
$$V = (-1, -1, 0)$$
 (pt.2)

• si riconoscano le sezioni di Q con i piani $\alpha: x-y=0$ e $\beta: 2y-z=0$ precisando, nel caso in cui la sezione sia riducibile, le rette componenti;

Risposta
$$C_{\alpha}$$
 riducibile nelle rette $\sqrt{3}y \pm z + \sqrt{3} = 0 = x - y$, C_{β} iperbole ______ (pt.2)

• si determini l'equazione di un piano diverso dai precedenti che sezioni la quadrica secondo una conica riducibile, motivando la risposta.

Risposta
$$\pi: z = 0$$
, la conica sezione è riducibile perché $V \in \pi$ ______ (pt.2)

ESERCIZIO 5. In $\widetilde{E}_3(\mathbb{R})$ si considerino il piano $\alpha_k: 4x+ky+3z-3=0$ e la retta $r_k: kx-z+1=0=2x-(k+2)y+z+k$. Si determinino, se esistono:

• i valori di $k \in \mathbb{R}$ per cui r_k esiste ed è propria;

Risposta
$$k \neq -2$$
 _____ (pt.2)

Risposta
$$k = -1$$
 _______(pt.2)

- i valori di $k \in \mathbb{R}$ per cui sia r_k che α_k passano per il punto P = (1, 1, -1).

Algebra e Geometria - 2^o test - 18/12/2013

COGNOME	DME
CORSO DI LAUREA MAT	ATRICOLA

ESERCIZIO 1. Nello spazio euclideo $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino il piano α : z+1=0, la retta r: x+z+1=0=y e il punto P=(-3,0,5). Si determinino:

- una rappresentazione cartesiana della retta passante per P, parallela ad α e ortogonale a r.

Risposta
$$x + 3 = 0 = z - 5$$
 (pt.2)

ESERCIZIO 2. Nello spazio euclideo reale $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino la sfera $\Sigma: x^2 + y^2 + z^2 - 3x + 3y + 2z - 1/2 = 0$ ed il piano $\pi: x + y - 3 = 0$. Si determinino:

• centro e raggio della circonferenza $C = \Sigma \cap \pi$;

Risposta
$$C = (3, 0, -1), R = \sqrt{\frac{3}{2}}$$
 (pt.2)

• una rappresentazione cartesiana della retta di π tangente a Σ nel punto P=(5/2,1/2,0).

Risposta
$$x + 2y + z - 7/2 = 0 = x + y - 3$$
 _____ (pt.2)

ESERCIZIO 3. In $\widetilde{E}_2(\mathbb{C})$ si consideri la conica C_k : $x^2 + 4y^2 + 2(k-2)xy + 2x + 4y = 0$, dove k è un parametro reale. Si determinino:

• i valori di $k \in \mathbb{R}$ per cui la conica C_k è degenere, e per tali valori le rette componenti C_k ;

Risposta
$$k = 4$$
, $x + 2y = 0$, $x + 2y + 2 = 0$ ______ (pt.2)

• i valori di $k \in \mathbb{R}$ per cui \mathcal{C}_k è, rispettivamente, un'ellisse, una parabola o un'iperbole.

Risposta
$$k < 0 \lor k > 4$$
 iperbole, $0 < k < 4$ ellisse, $k = 0$ parabola ______(pt.2)

Posto k=-1 si determinino i punti impropri (reali o immaginari) di \mathcal{C}_{-1} e, se esistono e sono reali, centro, direzioni degli assi e asintoti.

Risposta $P_{\infty}, Q_{\infty} = [(3 \pm \sqrt{5}, 1, 0)], \quad C = [(2, 1, 1)], \quad [(1 \pm \sqrt{5}, 2, 0)], \quad \pm x - (\sqrt{5} \pm 3)y + (\sqrt{5} \pm 1) = 0$ (pt.5)

ESERCIZIO 4. In $\widetilde{E}_3(\mathbb{C})$ si consideri la quadrica $\mathcal{Q}: x^2 + 2y^2 - z^2 + 2x + 4y + 2z + 2 = 0$.

• Si riconosca la quadrica Q;

Risposta Cono di vertice
$$V = (-1, -1, 1)$$
 (pt.2)

• si riconoscano le sezioni di Q con i piani $\alpha: x-y=0$ e $\beta: x-2z+1=0$ precisando, nel caso in cui la sezione sia riducibile, le rette componenti;

Risposta
$$C_{\alpha}$$
 riducibile nelle rette $\sqrt{3}x \pm (z-1) + \sqrt{3} = 0 = x - y$, C_{β} ellisse ______ (pt.2)

• si determini l'equazione di un piano diverso dai precedenti che sezioni la quadrica secondo una conica riducibile, motivando la risposta.

Risposta $\pi: z = 1$, la conica sezione è riducibile perché $V \in \pi$ ______ (pt.2)

ESERCIZIO 5. In $\widetilde{E}_3(\mathbb{R})$ si considerino il piano $\alpha_k: 4x - (k+1)y + 3z - 3 = 0$ e la retta $r_k: (k+1)x + z - 1 = 0 = 2x + (k-1)y + z - k - 1$. Si determinino, se esistono:

• i valori di $k \in \mathbb{R}$ per cui r_k esiste ed è propria;

Risposta
$$k \neq 1$$
 ______ (pt.2)

• i valori di $k \in \mathbb{R}$ per cui r_k è contenuta in α_k ;

Risposta
$$k = 0$$
 ______(pt.2)

• i valori di $k \in \mathbb{R}$ per cui sia r_k che α_k passano per il punto P = (0, 0, 1).

Risposta
$$k = 0$$
 ______ (pt.2)

Algebra e Geometria - 2º test - 18/12/2013

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Nello spazio euclideo $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino il piano α : z+3=0, la retta r: x+z+1=0=y-2 e il punto P=(-1,2,3). Si determinino:

- una rappresentazione cartesiana della retta passante per P, parallela ad α e ortogonale a r.

Risposta
$$z-3=0=x+1$$
 _____(pt.2)

ESERCIZIO 2. Nello spazio euclideo reale $E_3(\mathbb{R})$ in cui è fissato un riferimento cartesiano si considerino la sfera $\Sigma: x^2 + y^2 + z^2 - 12x + 12y + 8z - 2 = 0$ ed il piano $\pi: x + y - 12 = 0$. Si determinino:

• centro e raggio della circonferenza $C = \Sigma \cap \pi$;

• una rappresentazione cartesiana della retta di π tangente a Σ nel punto P=(1,1,0).

Risposta
$$5x - 7y - 4z + 2 = 0 = x + y - 12$$
 (pt.2)

ESERCIZIO 3. In $\widetilde{E}_2(\mathbb{C})$ si consideri la conica C_k : $x^2 + 4y^2 + 2kxy - 4x + 2(2-3k)y + 3 = 0$, dove k è un parametro reale. Si determinino:

• i valori di $k \in \mathbb{R}$ per cui la conica \mathcal{C}_k è degenere, e per tali valori le rette componenti \mathcal{C}_k ;

Risposta
$$k = 2$$
, $x + 2y - 3 = 0$, $x + 2y - 1 = 0$ _____ (pt.2)

• i valori di $k \in \mathbb{R}$ per cui \mathcal{C}_k è, rispettivamente, un'ellisse, una parabola o un'iperbole.

Risposta
$$k < -2 \lor k > 2$$
 iperbole, $-2 < k < 2$ ellisse, $k = -2$ parabola _____ (pt.2)

Posto k = 1 si determinino i punti impropri (reali o immaginari) di C_1 e, se esistono e sono reali, centro, direzioni degli assi e asintoti.

Risposta
$$P_{\infty}, Q_{\infty} = [(-1 \pm i\sqrt{3}, 1, 0)], \quad C = [(7, -1, 3)], \quad [(-3 \pm \sqrt{13}, 2, 0)]$$
 (pt.5)

ESERCIZIO 4. In $\widetilde{E}_3(\mathbb{C})$ si consideri la quadrica $\mathcal{Q}: x^2 - 2y^2 - z^2 - 4y - 2z - 3 = 0$.

• Si riconosca la quadrica Q;

Risposta Cono di vertice
$$V = (0, -1, -1)$$
 ______(pt.2

• si riconoscano le sezioni di Q con i piani $\alpha: y-z=0$ e $\beta: x-2z=0$ precisando, nel caso in cui la sezione sia riducibile, le rette componenti;

Risposta
$$C_{\alpha}$$
 riducibile nelle rette $\pm x + \sqrt{3}z + \sqrt{3} = 0 = y - z$, C_{β} iperbole ______ (pt.2)

• si determini l'equazione di un piano diverso dai precedenti che sezioni la quadrica secondo una conica riducibile, motivando la risposta.

Risposta
$$\pi: z = -1$$
, la conica sezione è riducibile perché $V \in \pi$ ______ (pt.2)

ESERCIZIO 5. In $\widetilde{E}_3(\mathbb{R})$ si considerino il piano $\alpha_k: 4x - (k+2)y + 3z - 3 = 0$ e la retta $r_k: (k+2)x + z - 1 = 0 = 2x + ky + z - k - 2$. Si determinino, se esistono:

• i valori di $k \in \mathbb{R}$ per cui r_k esiste ed è propria;

Risposta
$$k \neq 0$$
 _____ (pt.2)

Risposta
$$k = -1$$
 ______(pt.2)

- i valori di $k \in \mathbb{R}$ per cui sia r_k che α_k passano per il punto P = (1, 1, -1).