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Abstract

No oval contained in a regular hyperoval of the Desarguesian plane
PG(2, q2), q even, is inherited by a Moulton plane of order q2.

1 Introduction
The existence problem of ovals in finite non–Desarguesian planes is still open in
general and appears to be difficult. There are some planes of order 16 without
ovals, found by a computer aided search; see [10]. On the other hand, ovals have
been constructed in many finite planes, mostly using the idea of an inherited
oval due to Korchmáros [4, 5]. Korchmáros’ idea relies on the fact that any two
planes π1 and π2 of the same order have the same number of points and lines;
hence the points, as well as the lines, of the two planes may be identified. If
Ω is an oval of π1, it may be that Ω is also an oval of π2, although π1 and π2

differ for some (in general many) point–line incidences; in this case Ω is called
an inherited oval of π2 from π1; see also [2, Page 728]. In practice, π1 is usually
taken to be the Desarguesian plane of order q. The case where π2 is the Hall
plane H(q) of order q was investigated in [4], and inherited ovals in H(q) were
found. For q odd, this also shows the existence of inherited ovals in the dual
plane of H(q), called also the Moulton plane M(q) of order q. In this paper the
even order case is addressed. Our main result is the following theorem.

Theorem 1. No (hyper)oval A contained in a regular hyperoval Ω of the De-
sarguesian plane is inherited byM(q2).

Here the hypothesis on A being contained in a regular hyperoval cannot be
dropped; see [10] for examples of hyperovals in the Moulton plane of order 16.
We also obtain that the largest arc ofM(q2) contained in Ω has size q2 and it
is complete.
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2 Preliminaries
Let q be a power of 2 and denote by || · || the norm function

|| · || :

{
GF(q2)→ GF(q)
x 7→ xq+1

Following [4], take a proper subset U of GF(q)? and consider the following
operation defined over the set GF(q2)

a� b =

{
ab if ||b|| 6∈ U
aqb if ||b|| ∈ U.

The set (GF(q2),+,�) is a quasifield with nucleus containing GF(q); see [3].
Let A = (P,L) be the affine plane defined as follows: the point–set P is the
same as that of AG(2, q2), the lines of L are either of the form

[c] = {P (x, y) : x = c, y ∈ GF(q2)}

or
[m,n] = {P (x, y) : y = m� x+ n}.

The Moulton planeMU (q2) associated with U is the projective plane obtained
by completing A with its points at infinity; see [9].

Write Φ = {P (x, y) : ||x|| 6∈ U} and Ψ = {P (x, y) : ||x|| ∈ U}. Clearly, P =
Φ∪Ψ; furthermore, incidence in Φ is the same as incidence in the Desarguesian
affine geometry AG(2, q2).

Any hyperoval obtained from a conic by adding its nucleus is called regular.
Let now Ω be a regular hyperoval of PG(2, q2). If Ω ⊆ Φ, that is for each point
P (x, y) ∈ Ω the norm of x is an element of GF(q) \ U , then Ω is an inherited
hyperoval ofMU (q2). In order to show that this case cannot occur we shall use
the notion of conic blocking set ; see [6].

A conic blocking set B is a set of lines in a Desarguesian projective plane
met by all conics; a conic blocking set B is irreducible if for any line of B there
is a conic intersecting B in just that line.

Lemma 2 (Theorem 4.4,[6]). The line–set

B = {y = mx : m ∈ GF(q)} ∪ {x = 0}

is an irreducible conic blocking set in PG(2, q2), q even.

3 Proof of Theorem 1
Lemma 3. Let Ω be a regular hyperoval of PG(2, q2), with q an even prime
power. Then, there are at least two points P (x, y) in Ω such that ||x|| ∈ U .
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Proof. To prove the lemma we show that the set Ψ, introduced above, is a
conic blocking set. We observe that the conic blocking set of Lemma 2 is the
degenerate Hermitian curve of PG(2, q2) with equation xqy − xyq = 0. Since
all degenerate Hermitian curves are projectively equivalent, this implies that
any such a curve is a conic blocking set. On the other hand, Ψ is the union of
degenerate Hermitian curves of equation xq+1 = c, as c varies in U . Thus, Ψ is
also a conic blocking set. Suppose that Ω = C ∪N , where C is a conic and N its
nucleus. Now, either Ψ contains at least two points of C, or Ψ ∩ C = {P (x, y)},
with x ∈ U . In this case, the line [x] is tangent to C; hence, the nucleus N of C
is on the line [x] ⊆ Ψ. The result follows.

In [1, Theorem 1.1], it is proven that for q > 5 an odd prime power, any
arc of the Moulton planeM obtained as C? = C ∩ Φ, where C is a conic of the
related Desarguesian plane, is complete. In fact, this result also holds when q
is even and C is a hyperoval; thus, in this case, the theorem might be restated
as follows.

Lemma 4 ([1, Theorem 1.1]). Let Ω be a hyperoval of PG(2, q2), with q > 2
an even prime power. Then, no point in Ψ may be aggregated to Ω? = Ω∩Φ in
order to get an arc ofMU (q2).

Proof. Consider first the usual construction of a Hall plane H(q2) as a derived
affine plane from AG(2, q2); see [7, Chapter X]. A line of H(q2) is either a
line of AG(2, q2) or an affine Baer subplane. The planeMU (q2) is the dual of
the projective closure of H(q2); thus, a pencil of lines of MU (q2) with centre
P (x0, y0) either consists of lines of a Baer subplane of AG(2, q2), or is the pencil
with centre P in AG(2, q2), according as ||x0|| ∈ U or not.

Let now Ω be a hyperoval and B a Baer subplane of AG(2, q2). Assume
Y ∈ B and denote by L(Y ) the pencil of lines in B with centre Y . Take ∆ as
the set of all points of Ω not covered by a line in L(Y ) and let n = |∆|. Write
m = q2 + 2 − n. Observe that the lines of L(Y ) cover at most 2(q + 1) points
of Ω; thus, q2 − 2q ≤ n ≤ q2 + 2. We shall show that there is at least a line
in B meeting ∆ in two points. This implies that for any point P (x0, y0) with
||x0|| ∈ U there is at least a 2–secant to Ω? in MU (q2); thus, no point with
||x0|| ∈ U may be aggregated to Ω? in order to obtain an arc.

Let T ∈ ∆; since T 6∈ B, there is a unique line `T of B through T . Every
point Q ∈ Ω\∆ lies on at most q+1− (m−1) = q−m+2 lines `T with T ∈ ∆.
Suppose by contradiction that for every T ∈ ∆,

`T ∩ Ω = {T,Q},with Q ∈ Ω \∆.

The total number of lines obtained as Q varies in Ω \∆ does not exceed m(q−
m+ 2). So,

n = q2 −m+ 2 ≤ m(q −m+ 2).

As m is a non–negative integer, this is possible only for q = 2.

From Lemma 3, we know that Ω? contains at most q2 points; furthermore,
Ω? is a complete arc of the linear space with support Φ contained inMU (q2);
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hence, by Lemma 4, Ω? is a complete arc ofMU (q2). As every oval of PG(2, q2)
is contained in a hyperoval, we obtain Theorem 1.

We have seen that the largest arc ofMU (q2) contained in a regular hyperoval
of PG(2, q2) has at most q2 points; for an actual example of a q2–arc ofMU (q2)
coming from a regular hyperoval of the Desarguesian plane see [8]. This also
shows that the result of [4] cannot be extended to even q.
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