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Abstract

Let Xn(K) be a building of Coxeter type Xn = An or Xn = Dn defined over a given
division ring K (a field when Xn = Dn). For a non-connected set J of nodes of the diagram
Xn, let Γ(K) = GrJ(Xn(K)) be the J-Grassmannian of Xn(K). We prove that Γ(K) cannot
be generated over any proper sub-division ring K0 of K. As a consequence, the generating
rank of Γ(K) is infinite when K is not finitely generated. In particular, if K is the algebraic
closure of a finite field of prime order then the generating rank of Gr1,n(An(K)) is infinite,
although its embedding rank is either (n+ 1)2 − 1 or (n+ 1)2.

1 Introduction
We presume that the reader has some acquaintance of buildings and is familiar with basics of
point-line geometry, such as the notions of subspace and generation. In case, we refer to Tits [14]
for buildings and Shult [13] for point-line geometries.

1.1 Basic definitions and known results
Let X be a class of buildings such that, for every division ring K, at most one (up to isomorphisms)
member of X is defined over K. For instance, X can be the class of buildings belonging to a given
Coxeter diagram with no multiple strokes or a given Dynkin diagram, possibly of twisted type.
With X as above, let ∆(K) be the member of X defined over K (provided it exists) and, for a
nonempty subset J of the type-set of ∆(K), let GrJ(∆(K)) be the J-Grassmannian of ∆(K),
regarded as a point-line geometry. For a sub-division ring K0 of K, suppose that X also contains
a member ∆(K0) defined over K0 and GrJ(∆(K)) contains GrJ(∆(K0)) as a subgeometry (as it
is always the case for the geometries to be considered in this paper). We say that GrJ(∆(K)) is
generated over K0 (K0-generated for short) if GrJ(∆(K0)) generates GrJ(∆(K)).

Clearly, if GrJ(∆(K)) is K0-generated and GrJ(∆(K0)) is K1-generated for a division ring
K1 < K0, then GrJ(∆(K)) is K1-generated too. It is also clear that if GrJ(∆(K)) is K0-generated
then the generating rank of GrJ(∆(K)) cannot be larger than that of GrJ(∆(K0)). On the other
hand, suppose that every finite set of points of GrJ(∆(K)) belongs to a subgeometry of GrJ(∆(K))
isomorphic to GrJ(∆(K0)) for a finitely generated sub-division ring K0 of K (as it is often the
case). Suppose moreover that K is not finitely generated and GrJ(∆(K)) is not K0-generated, for
any K0 < K. Then GrJ(∆(K)) has infinite generating rank, as we prove in Lemma 1.4. In short,
obvious links exist between the K0-generation problem and the computation of generating ranks.
Less obviously, some relations also seem to exist between K0-generability and the existence of the
absolutely universal embedding. For instance, a number of Grassmannians GrJ(∆(K)) for which
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the existence of the absolutely universal embedding is still an open problem, cannot be generated
over any proper sub-division ring K0 of K (see Section 1.3, Remark 1.6).

We shall now briefly survey what is currently known on K0-generation. For Xn a Coxeter
diagram of rank n with no multiple strokes or a Dynkin diagram of rank n (but not of twisted
type) and a division ring K (a field if Xn 6= An), let Xn(K) be the unique building of type Xn

defined over K. In particular, Bn(K) and Cn(K) are the buildings associated to the orthogonal
group O(2n+ 1,K) and the symplectic group Sp(2n,K) respectively.

Suppose firstly that GrJ(Xn(K)) is spanned by GrJ(A) for an apartment A of Xn(K) (for
short, GrJ(Xn(K)) is spanned by an apartment). For every sub-division ring K0 of K, the
geometry GrJ(A) is contained in a subgeometry of GrJ(Xn(K)) isomorphic to GrJ(Xn(K0)).
Hence GrJ(Xn(K)) is K0-generated for any K0 ≤ K. In particular, GrJ(Xn(K)) is generated over
the prime subfield of K.

It is known (Cooperstein and Shult [8], Blok and Brouwer [1]) that the following grassmannians
are generated by apartments, where we take the integers 1, 2, ..., n as types as usual but when
Xn = Dn, according to the notation adopted in Section 1.2, we replace n − 1 and n with
+ and −: Grk(An(K)) for 1 ≤ k ≤ n; Gr1(Dn(K)) and Gr+(Dn(K)) as well as Gr−(Dn(K));
Gr1(Cn(K)) and Grn(Bn(K)) but with char(K) 6= 2 in both cases; Gr1(E6(K)), Gr6(E6(K)))
and Gr1(E7(K)) (the nodes of the E7-diagram being labelled as in [8]). Therefore, all above
mentioned Grassmannians are generated over the prime subfield of K. It is easily seen that the
same holds for Gr1(Bn(K)), even if this geometry is not spanned by any apartment. It is likely
that if char(K) 6= 2 then, for every i ≤ n, the i-Grassmannian Gri(Cn(K)) is generated over the
prime subfield of K, but we are not aware of any explicit proof of this claim.

We now turn to Gr1,n(An(K)). This geometry is interesting in its own. When K is a field
it is known as the long root geometry for SL(n + 1,K). In [2] it is proved that if n > 2 then
Gr1,n(An(K)) is not K0-generated, for any proper sub-division ring K0 of K (see also [6, Theorem
5.10] for an alternative proof in the special case where n = 3 and K is a field). However,
when K is a field and is generated by K0 ∪ {a1, ..., at} for suitable elements a1, ..., at ∈ K \ K0,
then Gr1,n(An(K)) can be generated by adding at most t elements to Gr1,n(An(K0)) (Blok and
Pasini [2]). In particular, when K is finite, (n+ 1)2 points are enough to generate Gr1,n(An(K0)).
Indeed in this case K is a simple extension of its prime subfield K0 and the generating rank of
Gr1,n(An(K0)) is equal to (n+ 1)2 − 1 (Cooperstein [7]).

Not so much is known on Grk(Bn(K)) for 1 < k < n and Grk(Dn(K)) for 1 < k ≤ n − 2.
Probably, what makes these cases so difficult is the fact that the special case Gr1,3(A3(K)) ∼=
Gr+,−(D3(K)) of Gr1,n(An(K)) somehow enters the game in any attempt to compute the gen-
erating rank of Grk(Bn(K)) or Grk(Dn(K)) and, as we have seen above, as far as generation
is concerned, Gr1,n(An(K)) can behave wildly. Nevertheless, in [6] we have shown that for
K = F4,F8 or F9 the Grassmannians Gr2(Bn(K)) (n ≥ 3) and Gr2(Dn(K)) (n > 3) are generated
over the corresponding prime subfields F2 or F3. The generating ranks of Gr2(Bn(K0)) and
Gr2(Dn(K0)), for K0 a finite field of prime order, are known to be equal to

(
2n+1

2

)
and

(
2n
2

)
respectively (Cooperstein [7]). Hence

(
2n+1

2

)
and

(
2n
2

)
are the generating ranks of Gr2(Bn(K))

and Gr2(Dn(K)) respectively, with K as above.

1.2 Setting and main results
We refer to [11, Chapter 5] for the definition of the J-Grassmannian GrJ(∆) of a geometry ∆. We
recall that when ∆ satisfies the so-called Intersection Property (which is always the case when ∆
is a building) then GrJ(∆) is the same as the J-shadow space of ∆ as defined by Tits [14, Chapter
12]. According to [11] (and [14]), the J-Grassmannian of a geometry ∆ is a geometry with a
string-shaped diagram graph and the same rank as ∆, but in this paper, following Buekenhout
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and Cohen [4, §2.5], we shall mostly regard it as a point-line geometry, with the J-flags of ∆
taken as points, while the lines are the flags of ∆ of type (J \ {j}) ∪ fr(j) for j ∈ J , where fr(j)
stands for the set of types adjacent to j in the diagram of ∆; a point and a line of GrJ(∆) are
incident precisely when they are incident as flags of ∆.

So, the lines of GrJ(∆) are particular flags of ∆. This setting will indeed be helpful in some
respects but it forces to distinguish between a line and its set of points and this distinction often
ends in a burden for the exposition; we will often neglect it. This is a harmless abuse. Indeed
only Grassmannians of buildings are considered in this paper; buildings satisfy the Intersection
Property and, if that property holds in a geometry ∆, then no two lines of GrJ(∆) have the same
points (even better: no two lines of GrJ(∆) have two points in common).

As in Section 1.1, given a division ring K, we denote by An(K) the building of type An defined
over K. Similarly, if the division ring K is a field (namely, is commutative) then Dn(K) stands
for the building of type Dn defined over K. We allow n = 3 in Dn. So, D3 = A3. Nevertheless,
when writing D3(K) we always understand that K is a field, for consistency of notation.

Let Xn stand for either An or Dn. It is well known that the elements of Xn(K) can be
identified with suitable vector subspaces of a vector space V over K of dimension either n + 1
or 2n according to whether Xn = An or Xn = Dn. Similarly, given a proper sub-division ring
K0 of K, the building Xn(K0) is realized in a vector space V0 over K0, of the same dimension
as V . We can always assume that V0 is the set of K0-linear combinations of the vectors of a
selected basis E of V , so that V is obtained from V0 by scalar extension from K0 to K. Thus,
with E suitably selected when Xn = Dn, the building Xn(K0) is turned into a subgeometry of
Xn(K) (see Sections 2.3 and 2.4 for more details). Accordingly, for every subset J of the set of
nodes of the diagram Xn, the J-Grassmannian GrJ(Xn(K0)) can be regarded as a subgeometry
of GrJ(Xn(K)). Our main goal in this paper is to show that, if J consists of extremal nodes of
Xn and |J | > 1 then GrJ(Xn(K0)) does not generate GrJ(Xn(K)).

We firstly consider the {1, n}-Grassmannian Gr1,n(An(K)) of An(K); see Fig. 1.

Gr1,n(An) :

1 2 3 n− 1 n

Figure 1: The {1, n}-Grassmannian of An

The points of Gr1,n(An(K)) are flags of type {1, n} in An(K); its lines are flags of type either
{2, n} or {1, n− 1}; a point p and a line ` are incident if and only if p ∪ ` is a flag of An(K).

Turning to Dn, we label the nodes of this diagram as in Fig. 2.

1 2 3 n− 3 n− 2
+

−

Figure 2: Labeling of types for buildings of type Dn

We are interested in the J-Grassmannians GrJ(Dn(K)), where J = {+,−} or J = {1,+,−} or
J = {1,−} (we can omit the case J = {1,+} since Gr1,+(Dn(K)) ∼= Gr1,−(Dn(K))); see Fig. 3.

3



Gr+,−(Dn) :

1 2 3 n− 3 n− 2
+

−

Gr1,+,−(Dn) :

1 2 3 n− 3 n− 2
+

−

Gr1,−(Dn) :

1 2 3 n− 3 n− 2
+

−

Figure 3: Geometries associated to buildings of type Dn

Explicitly, the points of Gr+,−(Dn(K)) are the flags of Dn(K) of type {+,−} while the lines are
the flags of types {n− 2,+} and {n− 2,−} with incidence between a point p and a line ` given
by the condition that p ∪ ` must be a flag of Dn(K). As for Gr1,+,−(Dn(K)), its points are the
flags of type {1,+,−}, and the lines are the flags of type {2,+,−}, {1, n− 2,+} or {1, n− 2,−};
incidence is defined as above. Finally, the points of Gr1,−(Dn(K)) are the flags of type {1,−}
and the lines are the flags of type either {2,−} or {1, n− 2}.
Note that when n = 3, since D3(K) ∼= A3(K), we have Gr1,3(A3(K)) ∼= Gr+,−(D3(K)). In any
case, Gr+,−(Dn(K)) ∼= Grn−1(B

+
n (K)), where B+

n (K) := Gr1(Dn(K)) is the 1-Grassmannian of
Dn(K) (but regarded as a geometry of rank n), namely the top-thin polar space associated to the
group O+(2n,K); see Fig. 4.

Grn−1(B
+
n ) :

1 2 3 n− 2 n− 1 n

Figure 4: Geometry Grn−1(B
+
n (K)) ∼= Gr+,−(Dn(K))

The following, to be proved in Section 3, is our first main result in this paper:

Theorem 1.1. For a division ring K, let Γ(K) be one of the following: Gr1,n(An(K)) for n ≥ 3;
Gr+,−(Dn(K)), n ≥ 3; Gr1,+,−(Dn(K)) with n ≥ 4; Gr1,−(Dn(K)) for n ≥ 4. Then Γ(K) is not
K0-generated for any proper sub-division ring K0 of K.

As said in Section 1.1, the case of Gr1,n(An(K)) has been already considered in [2], but the
proof we shall give in this paper is different and simpler than that of [2]. Theorem 1.1 also
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contains a proof of a conjecture presented in [6, Conjecture 5.11].

Corollary 1.2. The (n− 1)-Grassmannian Grn−1(B
+
n (K)) of the top-thin polar space B+

n (K) =
Gr1(Dn(K)) is not K0-generated for any proper subfield K0 of K.

Apparently, this corollary is an obvious consequence of Theorem 1.1 and the isomorphism
Grn−1(B

+
n (K)) ∼= Gr+,−(Dn(K)). However its proof is not so trivial as one might believe; we will

give it in Section 3.2.
As we shall see in Section 3.3, Theorem 1.1 admits the following far reaching generalization:

Theorem 1.3. Let Γ(K) be either GrJ(An(K)) or GrJ(Dn(K)), with J a non-connected set of
nodes of the diagram An or Dn respectively. Then Γ(K) is not K0-generated, for any proper
sub-division ring K0 of K.

1.3 A result on generation and embeddings
We recall that the generating rank of a point-line geometry Γ = (P,L) is the number

gr(Γ) := min{|X| : X ⊆ P, 〈X〉Γ = P},

where, for a subset X of the point-set P of Γ, we denote by 〈X〉Γ the subspace of Γ generated by
X. Turning to embeddings, a (full) projective embedding e : Γ → PG(V ) of Γ (henceforth often
called an embedding of Γ, for short) is an injective map e : P → PG(V ) from the point-set P of Γ
to the set of points of the projective space PG(V ) of a vector space V , such that for every line
` ∈ L of Γ the set e(`) := {e(p) : p ∈ `} is a projective line of PG(V ) and e(P) spans PG(V ). We
put dim(e) := dim(V ), calling dim(e) the dimension of e. If K is the underlying division ring
of V , we say that e is defined over K, also that e is a K-embedding. If Γ admits a projective
embedding we say that Γ is projectively embeddable (also embeddable, for short).

If e : Γ → PG(V ) and e′ : Γ → PG(V ′) are two K-embeddings of Γ we say that e dominates
e′ if there is a K-semilinear mapping ϕ : V → V ′ such that e′ = ϕ · e. If ϕ is an isomorphism
then we say that e and e′ are isomorphic. Following Tits [14], we say that an embedding e is
dominant if, modulo isomorphisms, it is not dominated by any embedding other than itself. Every
K-embedding e of Γ admits a hull ẽ, uniquely determined modulo isomorphisms and characterized
by the following property: ẽ dominates all K-embeddings of Γ which dominate e (see Ronan [12]).
Accordingly, an embedding is dominant if and only if it is the hull of at least one embedding;
equivalently, it is its own hull. Finally, an embedding ẽ of Γ is absolutely universal (henceforth
called just universal, for short) if it dominates all embeddings of Γ. In other words, Γ admits the
universal embedding if and only if all of its embeddings have the same hull, that common hull
being the universal embedding of Γ. Note that this forces all embeddings of Γ to be defined over
the same division ring. Note also that the universal embedding, if it exists, is homogeneous, an
embedding e of Γ being homogeneous if eg ∼= e for every automorphism g of Γ.

The embedding rank er(Γ) of an embeddable geometry Γ is defined as follows:

er(Γ) := sup{dim(ε) : ε projective embedding of Γ}.

Obviously, if Γ admits the universal embedding ẽ then er(Γ) = dim(ẽ), but er(Γ) is defined even
if no embedding of Γ is universal.

If e : Γ → PG(V ) is an embedding of Γ = (P,L) then stretching a line in Γ through two
collinear points p, q ∈ P corresponds to forming the span 〈v, w〉 ⊆ V of any two non-zero
vectors v ∈ e(p) and w ∈ e(q). If X ⊆ P generates Γ then P = ∪∞

n=0Xn where X0 := X and
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Xn+1 := ∪p,q∈Xn〈p, q〉Γ. Consequently, if we select a non-zero vector vp ∈ e(p) for every point
p ∈ X then {vp}p∈X spans V . This makes it clear that |X| ≥ dim(e). Accordingly,

dim(e) ≤ gr(Γ). (1)

Therefore, if gr(Γ) is finite and dim(e) = gr(Γ) then e is dominant (hence universal, if Γ admits
the universal embedding). In any case, (1) implies the following:

er(Γ) ≤ gr(Γ). (2)

In fact the equality er(Γ) = gr(Γ) holds for many embeddable geometries but not for all of them.
For instance Heiss [9] gives an example where gr(Γ) = er(Γ) + 1. The example of [9] looks fairly
artificial. A more natural example, where er(Γ) is finite but gr(Γ) is infinite is given by Theorem
1.5, to be stated below. That theorem will be obtained in Section 4 with the help of the following
lemma. In order to properly state it, we recall that a division ring K is finitely generated if it is
generated by a finite subset X ⊆ K. For instance, an algebraic extension of a finite field of prime
order Fp is finitely generated if and only if it is finite, in which case it is a simple extension of Fp.
On the other hand, no algebraically closed field is finitely generated.

Lemma 1.4. Let Γ(K) be either GrJ(An(K)) or GrJ(Dn(K)) for a set of types J non-connected
as a set of nodes of An or Dn. Suppose that K is not finitely generated. Then the generating
rank of Γ(K) is infinite.

Lemma 1.4 will be obtained in Section 4 as a consequence of Theorem 1.3. By exploiting it
we will obtain the following:

Theorem 1.5. Let Fp be a finite field of prime order and Fp its algebraic closure. Then, for
n ≥ 3, the geometry Gr1,n(An(Fp)) has infinite generating rank but its embedding rank is equal to
either (n+ 1)2 − 1 or (n+ 1)2.

Remark 1.6. It is well known that if K is a field then Gr1,n(An(K)) admits an (n + 1)2 − 1
dimensional embedding, say eLie, in (the projective space of) the space of square matrices of order
n + 1 with entries in K and null trace (see e.g. Blok and Pasini [3]; the choice of the symbol
eLie for this embedding is motivated by the fact that it affords the representation of the group
SL(n+ 1,K) in its action on its own Lie algebra). However Gr1,n(An(K)) does not satisfy the
sufficient conditions of Kasikova and Shult [10] for the existence of the universal embedding. So,
we do not know if it always admits the universal embedding, let alone if eLie is universal. A
complete answer is known only when K is a prime field. In this case eLie is indeed universal (Blok
and Pasini [3, Section 3]). A bit less is known when K is a number field or a perfect field of
positive characteristic; in this case eLie dominates all homogeneous embeddings of Gr1,n(An(K))
(Völklein [15]).

As for the remaining geometries of Theorem 1.1, namely Gr+,−(Dn(K)), Gr1,+,−(Dn(K)) and
Gr1,−(Dn(K)), they too are embeddable (see [3]) and, when K is a prime field, they admit the
universal embedding (Blok and Pasini [3, Section 4]), even if none of them satisfies the conditions
of Kasikova and Shult [10].

Remark 1.7. The geometry ∆+
2 of [5] with n = 3 is the same as Gr1,3(A3(F)). According to

the above, Lemma 4.8 of [5], which deals with that geometry and its Weyl embedding ε+2 (which
is the same as eLie), might possibly be wrong as stated. It should be corrected as follows: when
n = 3 and F is a perfect field of positive characteristic or a number field, then ε̃+2 dominates all
homogeneous embeddings of ∆+

2 .
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Remark 1.8. In our survey of embeddings we have stuck to full projective embeddings, but in
the proof of Theorem 1.5 we shall deal with lax embeddings too. Lax projective embeddings are
defined in the same way as full projective embeddings but for replacing the condition that e(`) is
a line of PG(V ) with the weaker condition that e(`) spans a line of PG(V ), for every line ` of Γ.
Many authors also require that no two lines of Γ span the same line of PG(V ), but in view of our
needs in this paper we can safely renounce that requirement. The only fact relevant for us is that
inequality (1) holds true even if e is lax, as it is clear from the way we have obtained it.

2 Preliminaries
We have already defined the Grassmannians Gr1,n(An(K)), Gr+,−(Dn(K)), Gr1,+,−(Dn(K)) and
Gr1,−(Dn(K)) in Section 1.2. In this section we shall turn back to them, adding more details. We
will also better fix our notation and terminology for An(K) and Dn(K). Finally, we shall better
explain in which sense GrJ(An(K)) and GrJ(Dn(K)) contain GrJ(An(K0)) and GrJ(Dn(K0)) for
a sub-division ring K0 of K.

2.1 The geometry An(K) and its Grassmannian Gr1.n(A(K))

Let An(K) be a geometry of type An defined over a division ring K, with n ≥ 3. Explicitly,
An(K) ∼= PG(Vn+1(K)) for a (n+1)-dimensional right K-vector space Vn+1(K). For i = 1, 2, . . . , n
the elements of An(K) of type i are the i-dimensional subspaces of Vn+1(K), with symmetrized
inclusion as the incidence relation. As customary we call the elements of An(K) of type 1, 2
and n points, lines and hyperplanes respectively. The elements of type n − 1 will be called
sub-hyperplanes. Note that, when n = 3, lines and sub-hyperplanes are the same objects.

Turning to Gr1,n(An(K)), its points are the point-hyperplane flags (p,H) of An(K). Its lines,
regarded as sets of points, are of either of the following two types:

(a) `p,S := {(p,X) : X hyperplane, X ⊃ S} for a (point, sub-hyperplane) flag (p, S).
(b) `L,H := {(x,H) : x a point, x ⊂ L}, for a line-hyperplane flag (L,H);

(3)

2.2 Dn(K) and GrJ(Dn(K)) for J = {+,−}, {1,−} or {1,+,−}
Let K be a field and V2n(K) a vector space of dimension 2n over K, with n ≥ 3. Consider a
non-degenerate quadratic form q on V2n(K) of Witt index n. As in Section 1.2, let B+

n (K) be the
polar space associated to q, namely the (weak) building of rank n whose elements are the vector
subspaces of V2n(K) that are totally singular with respect to q, with their dimensions taken as
types. The elements of B+

n (K) of dimension 1 are called points and those of dimension 2 lines.
It is well kown that we can ‘unfold’ B+

n (K) so that to obtain a building Dn(K) of type Dn

(see e.g. Tits [14, Chapter 7]). Explicitly, let ∼ be the equivalence relation on the set of all
n-dimensional subspaces of B+

n (K) defined as follows: X ∼ Y if and only if X ∩ Y has even
codimension in X (equivalently, in Y ). Let S+ and S− be the two equivalence classes of ∼. Take
{1, 2, . . . , n − 2,+,−} as the set of types. For 1 ≤ i ≤ n − 2 the i-elements of B+

n (K) are the
elements of Dn(K) of type i and the elements of S+ and S− are given types + and − respectively.
The (n− 1)-elements of B+

n (K) are dropped (but we can recover them as flags of type {+,−}).
Incidence between elements of different types {i, j} with {i, j} 6= {+,−} is symmetrized inclusion;
if X ∈ S+ and Y ∈ S− then X is incident with Y if and only if dim(X ∩ Y ) = n− 1.

It is clear from the way Dn(K) is defined that the 1-Grassmannian Gr1(Dn(K)) of Dn(K),
regarded as a geometry of rank n, is just the same as B+

n (K). So, we can go back and forth from
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Dn(K) to B+
n (K) as if they were the same object. In the sequel we will sometimes avail of this

opportunity, if profitable.
Turning to Grassmannians, Gr+,−(Dn(K)) is the point-line geometry where the points are

the flags (M1,M2) of Dn(K) of type (+,−) and the lines are of the following two forms:

(a) `U,M1
:= {(M1, X) : X ∈ S−, M1 ∩X ⊃ U}
with (U,M1) a flag of type (n− 2,+);

(b) `U,M2 := {(X,M2) : X ∈ S+, X ∩M2 ⊃ U}
with (U,M2) a flag of type (n− 2,−).

(4)

Recall that the points of the Grassmannian Grn−1(B
+
n (K)) of B+

n (K) are the (n− 1)-dimensional
subspaces of V2n(K) totally singular for the quadratic form q and the lines are the sets `X,M :=
{Y : X ⊂ Y ⊂ M} where dim(X) = n − 2, dim(M) = n, X ⊂ M and M is totally singular.
Every point X of Grn−1(B

+
n (K)) is the intersection X = M1 ∩M2 of a unique pair {M1,M2}

of n-dimensional totally singular subspaces, which necessarily form a (+,−)-flag of Dn(K).
Conversely, for every (+,−)-flag (M1,M2) of Dn(K), the intersection X = M1 ∩M2 is a point
of Grn−1(B

+
n (K)). A bijecive mapping ι is thus naturally defined from the set of points of

Grn−1(B
+
n (K)) onto the set of points of Gr+,−(Dn(K)). The mapping ι induces a bijection from

the set of lines of Grn−1(B
+
n (K)) onto the set of lines of Gr+,−(Dn(K)). In fact, if `X,M is a line

of Grn−1(B
+
n (K)) then ι(`X,M ) is the line of Gr+,−(Dn(K)) denoted by the very same symbol

`X,M and it has form (a) or (b) according to whether M belongs to S+ or S−. To sum up,
Grn−1(B

+
n (K)) ∼= Gr+,−(Dn(K)).

The Grassmannian Gr1,−(Dn(K)) is the point-line geometry where the points are the flags
(p,M) of Dn(K) of type (1,−) and the lines are as follows:

(a) `p,U := {(p,X) : X ∈ S−, X ⊃ U} with (p, U) a flag of type (1, n− 2);
(b) `L,M := {(x,M) : dim(x) = 1, x ⊂ L} with (L,M) a flag of type (2,−).

(5)

The Grassmannian Gr1,+,−(Dn(K)) is the point-line geometry where the points are the flags
(p,M1,M2) of Dn(K) of type (1,+,−); the lines are as follows:

(a) `L,M1,M2
:= {(p,M1,M2) : dim(p) = 1, p ⊂ L}
with (L,M1,M2) a flag of type (2,+,−);

(b) `p,U,M1 := {(p,M1, X) : X ∈ S−, X ⊃ U}
with (p, U,M1) a flag of type (1, n− 2,+);

(c) `p,U,M2
:= {(p,X,M2) : X ∈ S+, X ⊃ U}
with (p, U,M2) a flag of type (1, n− 2,−).

(6)

2.3 The subgeometry GrJ(An(K0)) of GrJ(An(K)) for K0 ≤ K
With Vn+1(K) as in Section 2.1, let K0 be a sub-division ring of K. Given a basis E of Vn+1(K),
we say that a vector of Vn+1(K) is K0-rational (with respect to E) if it is a linear combination of
vectors of E with coefficients in K0. A subspace of Vn+1(K) is K0-rational (with respect to E) if
it admits a basis formed by K0-rational vectors. In other words, if Vn+1,E(K0) is the K0-vector
space formed by the K0-rational vectors, the K0-rational subspaces of Vn+1(K) are the spans in
Vn+1(K) of the subspaces of Vn+1,E(K0) ⊆ Vn+1(K).

Clearly, the sum of two K0-rational subspaces of Vn+1(K) is still K0-rational. Moreover:
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Lemma 2.1. If X and Y are two K0-rational subspaces, then X + Y has the same dimension in
Vn+1(K) as in Vn+1,E(K0).

Proof. This statement is just a rephrasing of the following well known fact from linear algebra:
the rank of a finite set of vectors of a K0-vector space does not change if we replace K0 with a
larger division ring K.

Corollary 2.2. The intersection of two K0-rational subspaces is still K0-rational.

Proof. Let X0, Y0 be two subspaces of Vn+1,E(K0) and X,Y theirs spans in Vn+1(K). Then
X ∩ Y contains the span Z of X0 ∩ Y0 in Vn+1(K). We must prove that X ∩ Y = Z. Clearly,
dim(X) = dim(X0) and dim(Y ) = dim(Y0). Moreover dim(X + Y ) = dim(X0 + Y0) by Lemma
2.1. Hence dim(X∩Y ) = dim(X)+dim(Y )−dim(X+Y ) = dim(X0)+dim(Y0)−dim(X0+Y0) =
dim(X0 ∩ Y0) = dim(Z). Therefore X ∩ Y = Z.

The following is now obvious:

Proposition 2.3. The K0-rational elements of An(K) form a geometry An,E(K0) ∼= An(K0).

In view of Proposition 2.3, we can freely identify An(K0) with An,E(K0), thus regarding
An(K0) as a subgeometry of An(K). The flags of An(K0) are thus identified with the K0-rational
flags of An(K), namely the flags of An(K) all elements of which are K0-rational (with respect
to the selected basis E of Vn+1(K)). Accordingly, for ∅ 6= J ⊆ {1, 2, ..., n} the J-Grassmannian
GrJ(An(K0)) of An(K0) is identified with the subgeometry GrJ,E(An(K0)) of GrJ(An(K)) formed
by the K0-rational points and lines of GrJ(An(K)), namely the points and lines of GrJ(An(K))
which are K0-rational as flags of An(K).

Henceforth, by a harmless little abuse, we will always regard GrJ(An(K0)) as the same as
GrJ,E(An(K0)), thus referring to the span of GrJ(An(K0)) in GrJ(An(K)), as we have done in
the Introduction, while in fact we mean the span of GrJ,E(An(K0)).

The next proposition states that, regarded GrJ(An(K0)) as a subgeometry of GrJ(An(K)),
the collinearity graph of GrJ(An(K0)) is just the graph induced on its point-set by the collinearity
graph of GrJ(An(K)).

Proposition 2.4. A line of GrJ(An(K)) is K0-rational if and only if at least two of its points
are K0-rational.

Proof. The ‘only if’ part of this claim easily follows from the isomorphism GrJ,E(An(K0)) ∼=
GrJ(An(K0)). Turning to the ‘if’ part, given j0 ∈ J , let L be a flag of An(K) of type (J \ {j0})∪
fr(j0) and let P and P ′ be two distinct J-flags of An(K) incident with L. We must prove that if
both P and P ′ are K0-rational then L too is K0-rational. There are three cases to examine: J
contains elements j < j0 as well elements j′ > j0; j0 ≤ j for every j ∈ J ; j0 ≥ j for every j ∈ J .
We shall examine only the first case, leaving the remaining two (easier) cases to the reader.

With j0 as in the first case, the flag L has type (J \ {j0}) ∪ {j0 − 1, j0 + 1} and contains
Q := P ∩ P ′, which is a flag of type J \ {j0}. Moreover, there are distinct j0-subspaces S, S′ of
Vn+1(K) incident with L such that P = Q ∪ {S} and P ′ = Q ∪ {S′}. As S and S′ are incident
with L, the elements of L of type j0 − 1 and j0 + 1 coincide with S ∩ S′ and S + S′ respectively,
namely L = Q ∪ {S ∩ S′, S + S′}. By assumption, P and P ′ are K0-rational. Hence Q = P ∩ P ′

as well as S and S′ are K0-rational. If j0 − 1 ∈ J then S ∩ S′ ∈ Q, hence S ∩ S′ is K0-rational.
Otherwise S ∩ S′ is K0-rational by Corollary 2.2. Similarly, S + S′ is K0-rational. Thus, all
elements of L are K0-rational, namely L is K0-rational.
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2.4 The subgeometry GrJ(Dn(K0)) of GrJ(Dn(K)) for K0 ≤ K
Let K0 be a subfield of K. Let q : V2n(K) → K be the quadratic form considered in Section 2.2.
Without loss of generality we can assume to have chosen the basis E = (e1, . . . , e2n) of V2n(K) in
such a way that q admits the following canonical expression with respect to E:

q(x1, . . . , x2n) = x1x2 + · · ·+ x2n−1x2n. (7)

As in Section 2.3, we can consider the K0-vector space V2n,E(K0) formed by the K0-rational
vectors (with respect to E). The form q induces a quadratic form q0 on V2n,E(K0). Clearly,
a K0-rational subspace X of V2n(K) is totally singular for q if and only if X ∩ V2n,E(K0) is
totally singular for q0. Hence the polar space B+

n (K0) associated to q0 can be identified with
the subgeometry B+

n,E(K0) of B+
n (K) formed by the K0-rational subspaces of V2n(K) which are

totally singular for q. Similarly, Dn(K0) can be identified with the subgeometry Dn,E(K0) of
Dn(K) formed by the K0-rational elements of Dn(K).

A flag of Dn(K) is K0-rational if all of its elements are K0-rational. Given a nonempty subset
J of the type-set {1, 2, ..., n − 2,+,−} of Dn(K), a point or a line of GrJ(Dn(K)) are said to
be K0-rational if they are K0-rational as flags of Dn(K). The K0-rational points and lines of
GrJ(Dn(K)) form a subgeometry GrJ,E(Dn(K0)) of GrJ(Dn(K)) isomorphic to GrJ(Dn(K0)).
An analogue of Proposition 2.4 also holds:

Proposition 2.5. A line of GrJ(Dn(K)) is K0-rational if and only if at least two of its points
are K0-rational.

Proof. This statement can be proved in the same way as Proposition 2.4 but for a couple of cases
in the proof of the ‘only if’ part, which we shall now discuss.
1. Suppose that J contains at least one of the types + and −, say + ∈ J . Suppose moreover
that n− 2 6∈ J . Let L be a flag of Dn(K) of type (J \ {+}) ∪ fr(+) = (J \ {+}) ∪ {n− 2} and
let P, P ′ be distinct K0-rational flags of type J , both incident with L. Then Q = P ∩ P ′ is a
K0-rational flag, P = Q∪ {M} and P ′ = Q∪ {M ′} for distinct K0-rational element M,M ′ ∈ S+.
Also, L = Q ∪ S for an (n− 2)-element S incident with Q. We have S ⊆ M ∩M ′ since P and
P ′ are incident with L. However, dim(M ∩M ′) has even codimension in M and M ′, since M
and M ′ belong to the same family of n-elements of B+

n (K), namely S+. Therefore S = M ∩M ′.
Hence S is K0-rational by Corollary 2.2. Thus, L is K0-rational.
2. The set J contains none of the types + or − but it contains n− 2. To fix ideas, suppose that
n > 3. Let L be a flag of Dn(K) of type (J \ {n− 2}) ∪ fr(n− 2) = (J \ {n− 2}) ∪ {n− 3,+,−}
and let P, P ′ be distinct K0-rational flags of type J , both incident with L. Then Q = P ∩ P ′ is a
K0-rational flag, P = Q∪{S} and P ′ = Q∪{S′} for distinct K0-rational (n−2)-elements S, S′ of
Dn(K) and L = Q∪{R,M1,M2} for an (n−3,+,−)-flag (R,M1,M2) incident with Q. As both P
and P ′ are incident with L, the sum S+S′ is contained in M ∩M ′. However dim(M ∩M) = n−1
while dim(S + S′) ≥ n− 1 since S 6= S′. Consequently, M ∩M ′ = S + S′. On the other hand,
S+S′ is a K0-rational subspace of V2n(K), since both S and S′ are K0-rational. Hence M ∩M ′ is
K0-rational. Therefore M ∩M ′ is an (n−1)-element of B+

n,E(K0) = Gr1(Dn,E(K0)). Accordingly,
M ∩M ′ = M0 ∩M ′

0 for a (+,−)-flag (M0,M
′
0) of Dn,E(K0). On the other hand, all (+,−)-flags

of Dn,E(K0) are (+,−)-flags of Dn(K) too and two (+,−)-flags (M,M ′) and (M0,M
′
0) of Dn(K)

coincide if M ∩M ′ = M0 ∩M ′
0. It follows that M = M0 and M ′ = M0, namely both M and M ′

are K0-rational. It remains to prove that R too is K0-rational. If n− 3 ∈ J then R ∈ Q and there
is nothing to prove. Otherwise R = S ∩ S′. Hence R is K0-rational by Corollary 2.2. Therefore L
is K0-rational.

We have assumed that n > 3. When n = 3 we have J = {n− 2} and L = (M1,M2), of type
(+,−); we get the conclusion as above, but now with no R to care of.
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It goes without saying that all we have said for Dn(K0) and GrJ(Dn(K0)) in this section
holds for B+

n (K0) and GrJ(B+
n (K0)) as well.

3 Proof of Theorems 1.1 and 1.3
For Xn equal to An or Dn and a nonempty set of types J , let Γ(K) := GrJ(Xn(K)) and
Γ(K0) := GrJ(Xn(K0)) be its K0-rational subgeometry for a proper sub-division ring K0 of K
(Sections 2.3 and 2.4).

Definition 1. We say that a node t of Xn splits J if t 6∈ J and J is not contained in one single
connected component of Xn \ {t}. In other words, t separates at least two of the types of J .

Definition 2. We say that a J-flag F (point of Γ(K)) is nearly K0-rational if either at least one
of its elements is K0-rational or there exists a K0-rational element of Xn(K) incident with F and
such that its type splits J . We denote by ΩK0(Γ(K)) the set of all nearly K0-rational points of
Γ(K).

Obviously, Γ(K0) ⊆ ΩK0(Γ(K)). We shall prove the following:

Theorem 3.1. If Γ(K) is Gr1,n(An(K)), Gr1,−(Dn(K)), Gr1,+,−(Dn(K)) or Gr+,−(Dn(K)) then
ΩK0

(Γ(K)) is a proper subspace of Γ(K).

Theorem 1.1 immediately follows from Theorem 3.1 and the inclusion Γ(K0) ⊆ ΩK0
(Γ(K)).

3.1 Proof of Theorem 3.1
We need a preliminary result from linear algebra, to be exploited later, when discussing the case
Γ(K) = Gr+,−(Dn(K)).

Lemma 3.2. Suppose that K is a field and let V := V4(K). Given a basis E = (e1, e2, e3, e4) of
V , let E ∧ E = (ei ∧ ej)i<j be the corresponding basis of the second exterior power V ∧ V of V .
Then all the following hold:

(1) The span 〈v, w〉 of two independent vectors v, w ∈ V is K0-rational with respect to E if and
only if, modulo proportionality, v ∧ w is K0-rational with respect to E ∧ E.

(2) A non-zero vector v ∈ V is proportional to a K0-rational vector if and only if the subspace
Sv := 〈v ∧ x〉x∈V of V ∧ V is K0-rational (with respect to E ∧ E).

(3) The span 〈u, v, w〉 of three independent vectors u, v, w ∈ V is K0-rational if and only if
〈u ∧ v, u ∧ w, v ∧ w〉 is K0-rational.

Proof. (1) Without loss, we can assume that v = e1 + e3a3 + e4a4 and w = e2 + e3b3 + e4b4
for a3, a4, b3, b4 ∈ K. Hence v ∧ w = e1,2 + e1,3b3 + e1,4b4 − e2,3a3 − e2,4a4 + e3,4(a3b4 − a4b3),
where we write ei,j for ei ∧ ej . Both parts of (1) are equivalent to the following single claim:
a3, a4, b3, b4 ∈ K0. Hence they are mutually equivalent.

(2) Without loss of generality, we can assume that v = e1 + e2a2 + e3a3 + e4a4. Hence Sv :=
〈v ∧ e2, v ∧ e3, v ∧ e4〉. We have

v ∧ e2 = e1,2 − e2,3a3 − e2,4a4, v ∧ e3 = e1,3 + e2,3a2 − e3,4a4, v ∧ e4 = e1,4 + e2,4a2 + e3,4a3,

with ei,j := ei ∧ ej , as above. Both parts of claim (2) are thus equivalent to this: a2, a3, a4 ∈ K0.
Claim (2) is proved.
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(3) Without loss of generality of generality, we can assume that u = e1 + e4a, v = e2 + e4b
and w = e3 + e4c. Hence u ∧ v = e1,2 + e1,4b − e2,4a, u ∧ w = e1,3 − e1,4c − e3,4a and v ∧ w =
e2,3 + e2,4c− e3,4b. Both parts of (3) are equivalent to this: a, b, c ∈ K0. Claim (3) follows.

Lemma 3.3. If Γ(K) is as in the hypotheses of Theorem 3.1 then the set ΩK0
(Γ(K)) is a subspace

of Γ(K).

Proof. We must show that, for any two nearly K0-rational collinear points F, F ′ of Γ(K), the line
〈F, F ′〉Γ(K) is fully contained in ΩK0

(Γ(K)).

Case 1. Γ(K) = Gr1,n(An(K)). Let F = (p,H) and F ′ = (p′,H ′) be two distinct collinear points
of Γ(K), namely two point-hyperplane flags with either p 6= p′ and H = H ′ or p = p′ but H 6= H ′.
Suppose moreover that F and F ′ are nearly K0-rational.

(a) Let p = p′ and H 6= H ′. Now 〈F, F ′〉Γ(K) = `p,S = {(p,X) : X ⊃ S,dim(X) = n} where
S = H ∩ H ′ ⊃ p is a sub-hyperplane containing p. By assumption, there exist K0-rational
subspaces U0, U ′

0 of Vn+1(K) such that p ⊆ U0 ⊆ H and p ⊆ U ′
0 ⊆ H ′. The subspace U0 ∩ U ′

0 is
K0-rational (Corollary 2.2), it contains p and is contained in S. Hence it is contained in every
hyperplane X ⊃ S. As U0 ∩ U ′

0 is K0-rational, the flag (p,X) is nearly K0-rational for every
hyperplane X ⊂ S, namely `p,S ⊆ ΩK0

(Γ(K)).

(b) Let H = H ′ but p 6= p′. Then 〈F, F ′〉Γ(K) = `L,H = {(x,H) : x ⊂ L,dim(x) = 1} where
L = p+p′ ⊂ H is the span of p∪p′ in Vn+1(K). The argument used in case (a) can be dualized as
follows. By assumption, there exist K0-rational subsaces U0, U

′
0 of Vn+1(K) such that p ⊆ U0 ⊆ H

and p′ ⊆ U ′
0 ⊆ H ′. Clearly, L ⊆ U0 + U ′

0 ⊆ H. Hence x ⊆ U0 + U ′
0 ⊆ H for every 1-subspace x

of L. However U0 + U ′
0 is K0-rational. Therefore (x,H) is nearly K0-rational. It follows that

`L,H ⊆ ΩK0(Γ(K)).

Case 2. Γ(K) = Gr1,−(Dn(K)). Let F = (p,M) and F ′ = (p′,M ′) be two collinear points of
Gr1,−(Dn(K)). Since F and F ′ are collinear, either p = p′ or M = M ′. The line 〈F, F ′〉Γ(K)

is as in (a) or (b) of (5) according to whether p = p′ or M = M ′. When p = p′ then the
same argument as in (a) of Case 1 does the job, with the only change that M ∩ M ′, which
now plays the role of H ∩H ′, has dimension n− 2 instead of n− 1. If M = M ′ then an argu-
ment similar to that used for (b) of Case 1 yields the conclusion. We leave the details to the reader.

Case 3. Γ(K) = Gr1,+,−(Dn(K)). Let F = (p,M1,M2) and F ′ = (p′,M ′
1,M

′
2) be two collinear

points of Γ(K) and suppose they both are nearly K0-rational. Two subcases can occur.

(a) Mi = M ′
i for i = 1, 2. If at least one of the n-spaces M1 and M2 is K0-rational, there is

nothing to prove. Suppose that neither of them is K0-rational. Then, since F and F ′ are nearly
K0-rational by assumption, there are K0-rational subspaces U0 and U ′

0 with p ⊆ U0 ⊂ M1 ∩M2

and p′ ⊆ U ′
0 ⊂ M1∩M2. We have 〈F, F ′〉Γ(K) = `L,M1,M2 as in (a) of (6) with L = p+p′. The sum

U0+U ′
0 is a K0-rational subspace of V2n(K) and contains L. If dim(U0+U ′

0) < n−1 then U0+U ′
0

is a K0-rational element of Dn(K) incident with the flag (L,M1,M2), which corresponds to the
line `L,M1,M2

. As in (b) of Case 1, it follows that all points of `L,M1,M2
are nearly K0-rational.

On the other hand, let dim(U0 + U ′
0) > n − 2. Then necessarily U0 + U ′

0 = M1 ∩ M2. In
this case U0 + U ′

0 is not an element of Dn(K), but it is a K0-rational (n− 1)-element of B+
n (K),

hence an (n− 1)-element of the subgeometry B+
n (K0) of B+

n (K). As such, U0 + U ′
0 is contained

in just two n-elements N1 and N2 of B+
n (K0). However N1 and N2 also belong to B+

n (K). In
fact, they are the unique two n-elements of B+

n (K) which contain U0 + U ′
0. On the other hand,

U0 + U ′
0 is contained in M1 and M2. Therefore {M1,M2} = {N1, N2}. However N1 and N2 are
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K0-rational. Hence M1 and M2 are K0-rational, contrary to our assumptions. We have reached a
contradiction. The proof is complete, as far as the present subcase is concerned.

(b) Let p = p′, Mi = M ′
i but Mj 6= M ′

j , for {i, j} = {1, 2}. To fix ideas, assume that M1 = M ′
1

and M2 6= M ′
2. If M1 or p are K0-rational there is nothing to prove. Suppose that neither M1 nor

p are K0-rational. Recalling that F and F ′ are nearly K0-rational, one of the following occurs:

(b1) There are K0-rational subspaces U0, U ′
0 of dimension at most n−2 such that p ⊆ U0 ⊂ M1∩M2

and p ⊆ U ′
0 ⊂ M1 ∩M ′

2.
(b2) Just one of M2 and M ′

2 is K0-rational. To fix ideas, let M ′
2 be the K0-rational one. Then

there exists a K0-rational subspace U0 of dimension dim(U0) ≤ n−2 such that p ⊆ U0 ⊂ M1∩M2.
(b3) Both M2 and M ′

2 are K0-rational.

In subcases (b1) and (b2) we can consider the element U0 ∩ U ′
0 or U0 ∩M ′

2 respectively. This
element contains p and is K0-rational by Corollary 2.2. So, we get the conclusion as in (a) of
Case 1. In subcase (b3), the intersection U0 = M2 ∩M ′

2 is K0-rational by Corollary 2.2 and has
dimension dim(U0) = n− 2k for a positive integer k < n/2, since M2 and M ′

2 belong to the same
class S−. Hence dim(U0) ≤ n− 2. Moreover, U0 ⊂ M1, since both M2 and M ′

2 are incident with
M1 in Dn(K). Clearly, p ⊆ U0. Again, the conclusion follows as in (a) of Case 1.

Case 4. Γ(K) = Gr+,−(Dn(K)). Assume firstly that n = 3. We have discussed this case in [6,
Theorem 5.10] but we turn back to it here, using an argument different from that of [6].

By Klein correspondence, V2n(K) = V6(K) can be regarded as the exterior square of V4(K),
with the basis E = (e1, ..., e6) of V6(K), to be chosen as in Section 2.4, realized as the exterior
square E = E′ ∧ E′ of a suitable basis E′ of V4(K). The elements of D3(K) of type + or −
correspond to 1- and 3-dimensional subspaces of V4(K) and the 1-elements of D3(K) correspond
to 2-subspaces of V4(K). By Lemma 3.2, an element of D3(K) is K0-rational with respect to E
if and only if the subspace which corresponds to it in V4(K) is K0-rational with respect to E′.
Accordingly, a (+,−)-flag of D3(K) is nearly K0-rational if and only if the corresponding (1, 3)-flag
of A3(K) is nearly K0-rational. Thus, we are driven back to the special case Gr1,3(A3(K)) of
Gr1,n(An(K)), already discussed in Case 1 of this proof. It follows that ΩK0

(Γ(K)) is a subspace
of Γ(K), as claimed.

Let now n > 3. Let F = (M1,M2) and F ′ = (M ′
1,M

′
2) be two distinct nearly K0-rational

collinear points of Γ(K). As F and F ′ are collinear, either M1 = M ′
1 or M2 = M ′

2. To fix ideas,
let M2 = M ′

2. Hence
`U,M2 = {(M,M2) : M ∈ S+,M ∩M2 ⊃ U}

is the line of Γ(K) through F and F ′, where U = M1 ∩M ′
1 ⊂ M2, dim(U) = n− 2 (see (4), (b)).

If M2 is K0-rational, there is nothing to prove. Assuming that M2 is not K0-rational, there are
still a number of subcases to examine.

(a) Both M1 and M ′
1 are K0-rational. Hence U = M1 ∩M ′

1 is K0-rational. Accordingly, every
(+,−)-flag (M,M2) ∈ `U,M2 is nearly K0-rational.

(b) Neither M1 nor M ′
1 are K0-rational. Hence there exist K0-rational (n− 2)-elements U0 and

U ′
0 such that U0 ⊂ M1 ∩ M2 and U ′

0 ⊂ M ′
1 ∩ M2. If U0 = U ′

0 then U0 = M1 ∩ M ′
1. However

M1 ∩M ′
1 = U . Hence U = U0 is K0-rational. In this case we are done: all (+,−)-flags incident

to U are nearly K0-rational.
On the other hand, let U0 6= U ′

0. Then U0 + U ′
0 is a K0-rational (n− 1)-dimensional subspace

of M2. Being K0-rational, U0 + U ′
0 is an (n− 1)-element of B+

n (K0). As such, it is contained in
just two n-elements of B+

n (K0). In other words, both n-elements of B+
n (K) containing U0+U ′

0 are
K0-rational. However M2 is indeed one of those two elements. Therefore M2 is K0-rational. This
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contradicts the assumptions made on M2. Consequently, the case we have now been considering
cannot occur.

(c) Just one of M1 and M ′
1 is K0-rational. To fix ideas, let M1 be the K0-rational one. As

(M ′
1,M2) is nearly K0-rational by assumption, but neither M ′

1 nor M2 are K0-rational, there
exists a K0-rational (n− 2)-element U ′ ⊂ M ′

1 ∩M2. If U ′ = U then U is K0-rational and we are
done.

Suppose that U ′ 6= U . Therefore U ′ 6⊆ M1, otherwise U ′ = M1 ∩M ′
1 = U . As both M1 and

U ′ are K0-rational, their intersection W := M1 ∩ U ′ is K0-rational. Note that dim(W ) = n− 3,
as one can see by noticing that M1 ∩ U ′ = (M1 ∩ U ′) ∩ U ′ = (M1 ∩M2) ∩ U ′ and recaling that
M1 ∩M2 is a hyperlane of M2.

Consider the orthogonal W⊥ of W with respect to the form q of Section 2.2. Taking equation
(7) into account and recalling that W is K0-rational, we see that W⊥ is a K0-rational vector
subspace of V2n(K). In fact W⊥ is the span in V2n(K) of the orthogonal W⊥

0 ⊂ V2n,E(K0) of
W0 := W ∩ V2n,E(K0) with respect to the form q0 induced by q on V2n,E(K0). All of the spaces
M1,M

′
1, U, U

′ and M2 contain W and are totally singular, hence they are contained in W⊥.
Moreover, M1 and U ′ are K0-rational.

As W⊥ is K0-rational, we can choose a basis B = (w1, . . . , wn+3) of W⊥ formed by K0-rational
vectors. We can also assume that w1, ..., wn−3 span W . As B consists of K0-rational vectors,
a vector subspace of W⊥ is K0-rational with respect to B is and only if it is K0-rational with
respect to E. Accordingly, M1 and U ′ are K0-rational with respect to B while M ′

1, U and M2 are
not.

We now switch to the quotient W⊥/W , taking the cosets w̄i := wn−3+i +W for i = 1, 2, ..., 6
to form a basis B of W⊥/W . Since W is totally singular, the form q induces a quadratic form
q̄ on W⊥/W . Let ∆ be the D3-building associated to q̄ and let Γ be its (+,−)-Grassmannian.
So, (M1/W,M2/W ) and (M ′

1/W,M2/W ) are points of the line `U/W,M2/W of Γ, with U/W 6=
U ′/W and U ′/W ⊂ M ′

1/W ∩ M2/W . By the above, M1/W and U ′/W are K0-rational while
M ′

1/W,M2/W and U/W are not. We now switch from the D3-building ∆ to the corresponding
A3-geometry, with elements of type + and − realized as points and planes of PG(V4(K)). In
this new perspective, the above situation looks as follows: we have two distinct points p and p′

(corresponding to M1/W and M ′
1/W ), two distinct lines L and L′ (corresponding to U/W and

U ′/W ) and a plane S (corresponding to M2/W ). Both p and p′ belong to L, p′ ∈ L′ but p 6∈ L′.
Moreover, S contains both L and L′. Hence S is spanned by p and L′. However, M1/W and
U ′/W are K0-rational. Therefore, in view of Lemma 3.2, both p and L′ are K0-rational with
respect to a suitable basis B′ of V4(K). Hence S is K0-rational with respect to B′, since it is
spanned by p and L′. By exploing Lemma 3.2 once again, we obtain that M2/W is K0-rational
with respect to B. We have reached a final contradiction, which shows that the case we have
been considering cannot occur. The proof is complete.

Lemma 3.4. Let V be a vector space over a division ring K and E = (e1, . . . , en) a basis of V .
Let K0 be a proper sub-division ring of K and take η ∈ K \ K0. Suppose S is a subspace of V
containing e1 + e2η. If S is K0-rational (with respect to E) then e1, e2 ∈ S.

Proof. Following our conventions, we assume that V is a right vector space. Let V0 be the
K0-vector space of the K0-rational vectors of V (with respect to E). In order to avoid any
confusion, we denote spans in V by the symbol 〈...〉V and spans in V0 by the symbol 〈...〉V0 .

Assuming that S is K0-rational, let (v1, . . . vk) be a basis of S consisting of K0-rational vectors
and suppose that e1 + e2η ∈ S. Then dim(S ∩ 〈e1, e2〉V ) ≥ 1. Note that S0 := 〈v1, . . . , vk〉V0

=
S ∩ V0 has the same dimension as S. Thus, since dim(S ∩ 〈e1, e2〉V ) ≥ 1, we also have dim(S0 ∩
〈e1, e2〉V0

) ≥ 1 by the well known Grassmann dimension formula. It follows that there exists

14



a non-zero vector w ∈ S0 which is a linear combination w = e1c1 + e2c2 with c1, c2 ∈ K0 and
(c1, c2) 6= (0, 0). If either c1 = 0 or c2 = 0, then we are done. So, we can assume that c1 6= 0 6= c2.
Without loss of generality, we can put c1 = 1, so that w1 = e1 + e2c2 with c2 ∈ K0. Now we claim
that there exists j0 ∈ {1, . . . k} such that vj0 = e1a1,j0 +e2a2,j0 + · · ·+enan,j0 with c2a1,j0 6= a2,j0 .
By way of contradiction, suppose that for all vj ∈ {v1, . . . , vk} we have

vj = e1a1,j + e2a2,j + e3a3,j + · · ·+ enan,j

with c2a1,j = a2,j , i.e. (a1,j , a2,j) = (1, c2)dj for some dj ∈ K. This implies that for all vectors
v ∈ S we have

v = v1λ1 + v2λ2 + · · ·+ vkλk = e1(

k∑
i=1

λi +

k∑
i=1

di) + e1c2(

k∑
i=1

λi +

k∑
i=1

di) + u

with u ∈ 〈e3, . . . , en〉, λi, di ∈ K and c2 ∈ K0. In particular, taking v = e1 + e2η ∈ S we
have

∑k
i=1 λi +

∑k
i=1 di = 1 and c2(

∑k
i=1 λi +

∑k
i=1 di) = η, forcing η = c2 ∈ K0 which is a

contradiction. The claim is proved.
Consider the ordered pair (w, vj0). As w, vj0 ∈ S0, we can complete this pair to an ordered

basis B of S0 by choosing k − 2 suitable vectors from the k − 1 vectors in {v1, . . . , vk} \ {vj0}.
Without getting out of V0, we can now apply a full Gaussian reduction to the sequence of vectors
of B to obtain another basis (v′1, . . . , v

′
k) of S0 such that the (n× k)-matrix M of the coefficients

of the vectors v′1, ..., v
′
k with respect to e1, . . . , en is in Column Reduced Echelon Form. (Note

that, according to our convention to deal with right vector spaces, vectors should be represented
as columns.) By construction, the matrix M contains the identity matrix Ik as a minor. Up to
a permutation of the vectors e3, . . . , en we can suppose that this minor encompasses the first k
rows of the matrix M . The remaining n− k rows form an ((n− k)× k)-matrix

N = (bk+i,j)
n−k,k
i,j =1

with entries bk+i,j ∈ K0. However e1 + e2η ∈ S = 〈S0〉V = 〈v′1, v′2, . . . , v′k〉V . Hence there exist
α1, . . . , αk ∈ K such that e1 + e2η = v′1α1 + v′2α2 + · · · + v′kαk. For every i = 1, . . . , k we have
v′i = ei +

∑n
j=k+1 ejbj,i. Therefore

e1 + e2η =

k∑
i=1

eiαi + ek+1(

k∑
j=1

bk+1,jαj) + ek+2(

k∑
j=1

bk+2.jαj) + . . . en(

k∑
j=1

bn,jαj),

which implies α1 = 1, α2 = η, α3 = α4 = · · · = αk = 0 and

k∑
j=1

bk+1,jαj =

k∑
j=1

bk+2,jαj = . . . =

k∑
j=1

bn,jαj = 0.

It follows that e1 + e2η = v′1 + v′2η, whence (e1 − v′1) = (v′2 − e2)η. However,

(e1 − v′1) =

n∑
i=k+1

ei(−bi,1), (v′2 − e2) =

n∑
i=k+1

ei(bi,2η),

whence −bi,1 = bi,2η for all i ≥ k + 1. Since bi,j ∈ K0 for all i, j and the elements 1, η ∈ K are
linearly independent over K0, it follows that bi,1 = bi,2 = 0 for all i ≥ k + 1. So, v′1 = e1 and
v′2 = e2. Since v′1, v

′
2 ∈ S, we obtain e1, e2 ∈ S, which proves the lemma.
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Lemma 3.5. If Γ(K) is as in the hypotheses of Theorem 3.1 then not all points of Γ(K) belong
to ΩK0(Γ(K)).

Proof. We first consider the case Γ(K) = Gr1,n(An(K)). Pick η ∈ K\K0. With E = (e1, ..., en+1)
as in Section 2.3, put p = 〈e1 + e2η〉 and H = 〈e1 + e2η, e3, . . . , en, en+1〉. (Needless to say,
the symbol 〈...〉 refers to spans in Vn+1(K).) The flag (p,H) is a point of Gr1,n(An(K)). Let
S be a subspace of Vn+1(K) such that p ⊆ S ⊆ H. Any such subspace contains the vector
e1 + e2η but neither e1 nor e2. Hence S cannot be K0-rational, by Lemma 3.4. Consequently,
(p,H) 6∈ ΩK0(Γ(K)).

The case Γ(K) = Gr1,+,−(Dn(K)) is entirely analogous. With E = (e1, e2, ..., e2n) as in
Section 2.4 and η as above, put p = 〈e1 + e3η〉, M1 = 〈e1 + e3η, e2η − e4, e5, e7, . . . , e2n−1〉 and
M2 = 〈e1 + e3η, e2η− e4, e5, e7, . . . , e2n−1〉. Taking equation (7) into account, it is straighforward
to see that p,M1 and M2 belong to Dn(K). It is also easy to see that they form a (1,+,−)-flag
of Dn(K), namely a point of Γ(K). Clearly, none of p, M1 or M2 is K0-rational and Lemma 3.4
implies that none of the subspaces contained in M1 ∩M2 and containing p can be K0-rational.
Hence (p,M1,M2) 6∈ ΩK0(Γ(K)).

When Γ(K) = Gr1,−(Dn(K)) we can consider the flag (p,M) where p = 〈e1 + e3η〉 and
M = 〈e1 + e3η, e2η− e4, e5, e7, . . . , e2n−1〉. The subspace M is n-dimensional and totally singular
for q. We can also assume to have chosen the signs + and − in such a way that S− is indeed the
class which M belongs to. Soo, (p,M) is a point of Γ(K). Once again, by Lemma 3.4 we see that
(p,M) 6∈ ΩK0(Γ(K)).

Finally, let Γ(K) = Gr+,−(Dn(K)). In view of Lemma 3.2, if n = 3 we are back to A3. So,
assume n > 3. With η ∈ K \K0 and E = (e1, ..., e2n) as in Section 2.4, put

M1 := 〈e1 + e3, e2 − e4, e5 + e7η, e6η − e8, e10, e12, ..., e2n〉,
M2 := 〈e1 + e4, e2 − e3, e5 + e7η, e6η − e8, e10, e12, ..., e2n〉.

Then M1 and M2 are n-dimensional totally singular subspaces of Dn(K) but neither of them is
K0-rational. Moreover M1 ∩M2 = 〈e1 − e2 + e3 + e4, e5 + e7η, e6η − e8, e10, e12, ..., e2n〉. Hence
{M1,M2} is a {+,−}-flag of Dn(K), necessarily not K0-rational, since neither M1 nor M2 is
K0-rational. Accordingly, M1∩M2 is not K0-rational. In fact all K0-rational subspaces of M1∩M2

are contained in 〈e1−e2+e3+e4, e10, e12, ..., e2n〉, which is (n−3)-dimensional. Their dimensions
are too small for they can split (+,−). Therefore (M1,M2) 6∈ ΩK0

(Γ(K)).

Lemmas 3.3 and 3.5 yield Theorem 3.1.

3.2 Proof of Corollary 1.2
As already remarked in Section 2.2, the function ι which maps every (n− 1)-element of B+

n (K)
onto the pair of n-elements containing it is an isomorphism from Grn−1(B

+
n (K)) to Gr+,−(Dn(K)).

We know from Theorem 1.1 that if K0 < K then Gr+,−(Dn(K0)) spans a proper subspace of
Gr+,−(Dn(K)). In order to show that the same holds for Grn−1(B

+
n (K0)) and Grn−1(B

+
n (K)),

as claimed in Corollary 1.2, we only need to prove the following:

Proposition 3.6. The isomorphism ι maps the subgeometry Grn−1(B
+
n (K0)) of Grn−1(B

+
n (K))

onto the subgeometry Gr+.−(Dn(K0)) of Gr+,−(Dn(K)).

Proof. It goes without saying that Grn−1(B
+
n (K0)) = Grn−1,E(B

+
n (K0)) and Gr+,−(Dn(K0)) =

Gr+,−,E(Dn(K0)) for the same basis E of V2n(K), chosen as in Section 2.4.
Let U = M1 ∩M2 for a (+,−)-flag (M1,M2) of Dn(K). If both M1 and M2 are K0-rational

then U is K0-rational, by Corollary 2.2. Conversely, let U be K0-rational. Let M ′
1 and M ′

2 be
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the two n-elements of B+
n,E(K0) containing U . Then M ′

1 and M ′
2 are K0-rational, as they belong

to B+
n,E(K0). However, they are the only two n-elements on U . Hence {M ′

1,M
′
2} = {M1,M2}.

Accordingly, M1 and M2 are K0-rational.

3.3 Proof of Theorem 1.3
We are not going to give a detailed proof of this theorem. We will only offer a sketch of it, leaving
the details to reader.

As stated since the beginning of this section, K0 is a proper sub-division ring of K and
Γ(K) = GrJ(Xn(K)), where Xn stands for An or Dn. According to the hypotheses of Theorem
1.3, we assume that J is not connected.

Suppose firstly that J contains two types j1 and j2, with j1, j2 ≤ n− 2 when Xn = Dn, such
that j1 +1 < j2 and i 6∈ J for every type i ∈ {j1 +1, j1 +2, ..., j2 − 1}. We say that a J-flag F of
Xn(K) (point of Γ(K)) is nearly K0-rational at (j1, j2) if there exists a K0-rational element X of
Xn(K) incident to F and such that j1 ≤ dim(X) ≤ j2. Let ΩK0,j1,j2(Γ(K)) be the set of J-flags
which are nearly K0-connected at (j1, j2). Using the same argument as in Case 1 of the proof of
Lemma 3.3, with the roles of 1 and n respectively taken by j1 and j2 we see that ΩK0,j1,j2(Γ(K))
is a subspace of Γ(K). Next, by an argument similar to that used for Gr1,n(An(K)) in the proof of
Lemma 3.5, we obtain that ΩK0,j1,j2(Γ(K)) 6= Γ(K), namely ΩK0,j1,j2(Γ(K)) is a proper subspace
of Γ(K). However Γ(K0) := GrJ(Xn(K0)) is contained in ΩK0,j1,j2(Γ(K)). Hence Γ(K0) spans a
proper subspace of Γ(K), as stated in Theorem 1.3.

Two more possibilities remain to examine, which are not considered in Theorem 1.1, namely
Xn(K) = Dn(K) and J as follows:

J = {j, j + 1, ..., j + k} ∪ {+,−} for j ≥ 1, j + k < n− 2 and either j > 1 or k > 0. In this case
we can use the same arguments as for J = {1,+,−} in the proof of Theorem 1.1, with j + k
playing the role of 1.

J = {j, j+1, ..., j+ k}∪ {−} or J = {j, j+1, ..., j+ k}∪ {+}, for j ≥ 1, j+ k < n− 2 and either
j > 1 or k > 0. The arguments used for J = {1,−} work for this case as well, with 1 replaced by
j + k.

4 Proof of Lemma 1.4 and Theorem 1.5
4.1 Proof of Lemma 1.4
Assume that J is non-connected and K is not finitely generated. Let Sbe a finite set of points
of Γ(K) = GrJ(Xn(K)), where Xn stands for An or Dn. Each element F of S is a J-flag
F = {U1, U2, . . . , Ut} of vector subspaces Ui of VN (K), where t := |J | and N is n + 1 or 2n
according to whether Xn is An or Dn. Fix a basis Bi,F for each of the vector subspaces Ui ∈ F
and each F ∈ S and let C(S) be the set of all the coordinates of the vectors of ∪F∈S ∪t

i=1 Bi,F

with respect to a given basis of VN (K) (chosen as in Section 2.4 when Xn = Dn).
As S is finite, C(S) is finite as well; in fact |C(S)| ≤ t · N · |S|. Therefore, and since K

is not finitely generated, C(S) generates a proper sub-division ring K0 of K. Then Γ(K0) :=
GrJ(Xn(K0)) spans a proper subspace of Γ(K), by Theorem 1.3. Obviously, S is contained in
Γ(K0). Hence S spans a proper subspace of Γ(K). Thus we have proved that no finite subset of
Γ(K) generates Γ(K), as claimed in Lemma 1.4.
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4.2 Proof of Theorem 1.5
Put Γ := Gr1,n(An(Fp)). We have gr(Γ) = ∞ by Lemma 1.4, since Fp is not finitely generated.
The geometry Γ admits a (full) projective embedding of dimension (n + 1)2 − 1, namely the
embedding eLie mentioned in Remark 1.6. Therefore er(Γ) ≥ (n+ 1)2 − 1.

By way of contradiction, suppose that er(Γ) > (n + 1)2. Then Γ admits a (full) projective
emedding e : Γ → PG(V ) of dimension dim(e) ≥ (n+ 1)2 + 1. Consequently, there exists a set
S of (n + 1)2 + 1 points of Γ such that ∪x∈Se(x) ⊂ V spans a subpace VS of V of dimension
dim(VS) = (n+ 1)2 + 1.

Every point x ∈ S is a point-hyperplane flag (px,Hx) of An(Fp). For every x ∈ S we choose a
non-zero vector vx ∈ px and a basis Bx of Hx. Chosen a basis E of Vn+1(Fp), let C(S) be the set
of all elements of F p which occur as coordinates (with respect to E) of either vx or a vector of
Bx, for x ∈ S. The set C(S) is finite. Hence it generates a finite subfield L of Fp. Every point
x ∈ S is obviously L-rational. Therefore S ⊂ ΓL := Gr1,n(An(L)) ⊂ Γ.

Let VL be the subspace of V corresponding to the span of e(ΓL). Clearly VL ⊇ VS . Hence
dim(VL) ≥ dim(VS) = (n + 1)2 + 1. The restriction eL of e to ΓL is a lax embedding of ΓL in
PG(VL). As noticed in Remark 1.8, inequality (1) holds for lax embeddings too. Therefore ΓL
has generating rank gr(ΓL) ≥ dim(eL) = dim(VL) > (n+ 1)2.

On the other hand, the field L is a simple extension of the prime field Fp and Gr1,n(An(Fp))
has generating rank equal to (n+1)2−1, by Cooperstein [7]. Therefore gr(ΓL) ≤ (n+1)2 by Blok
and Pasini [2, Corollary 4.8]. We have reached a contradiction. Consequently, er(Γ) ≤ (n+ 1)2.
The proof of Theorem 1.5 is complete.
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