On Hermitian varieties in $PG(6, q^2)$

Angela Aguglia* Luca Giuzzi[†] Masaaki Homma [‡]

Abstract

In this paper we characterize the non-singular Hermitian variety $\mathcal{H}(6,q^2)$ of $\mathrm{PG}(6,q^2)$, $q\neq 2$ among the irreducible hypersurfaces of degree q+1 in $\mathrm{PG}(6,q^2)$ not containing solids by the number of its points and the existence of a solid S meeting it in q^4+q^2+1 points.

Keywords: unital, Hermitian variety, algebraic hypersurface.

1 Introduction

The set of all absolute points of a non-degenerate unitary polarity in $PG(r, q^2)$ determines the Hermitian variety $\mathcal{H}(r, q^2)$. This is a non-singular algebraic hypersurface of degree q+1 in $PG(r,q^2)$ with a number of remarkable properties, both from the geometrical and the combinatorial point of view; see [5, 16]. In particular, $\mathcal{H}(r,q^2)$ is a 2-character set with respect to the hyperplanes of $PG(r,q^2)$ and 3-character blocking set with respect to the lines of $PG(r,q^2)$ for r>2. An interesting and widely investigated problem is to provide combinatorial descriptions of $\mathcal{H}(r,q^2)$ among all hypersurfaces of the same degree.

First, we observe that a condition on the number of points and the intersection numbers with hyperplanes is not in general sufficient to characterize Hermitian varieties; see [1],[2]. On the other hand, it is enough to consider

^{*}Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy; e-mail: angela.aguglia@poliba.it

 $^{^\}dagger \text{DICATAM},$ University of Brescia, Via Branze 53, I-25123 Brescia, Italy; e-mail:luca.giuzzi@unibs.it

[‡]Department of Mathematics and Physics, Kanagawa University, Hiratsuka 259-1293, Japan; *e-mail*: homma@kanagawa-u.ac.jp

Mathematics Subject Classification (2010): Primary 51E21; Secondary 51E15 51E20

in addition the intersection numbers with codimension 2 subspaces in order to get a complete description; see [7].

In the present paper, we shall investigate a combinatorial characterization of the Hermitian hypersurface $\mathcal{H}(6,q^2)$ in $\mathrm{PG}(6,q^2)$ among all hypersurfaces of the same degree having also the same number of $\mathrm{GF}(q^2)$ -rational points.

More in detail, in [12, 13] it has been proved that if \mathcal{X} is a hypersurface of degree q+1 in $\operatorname{PG}(r,q^2)$, $r\geq 3$ odd, with $|\mathcal{X}|=|\mathcal{H}(r,q^2)|=(q^{r+1}+(-1)^r)(q^r-(-1)^r)/(q^2-1)$ GF (q^2) -rational points, not containing linear subspaces of dimension greater than $\frac{r-1}{2}$, then \mathcal{X} is a non-singular Hermitian variety of $\operatorname{PG}(r,q^2)$. This result generalizes the characterization of [8] for the Hermitian curve of $\operatorname{PG}(2,q^2)$, $q\neq 2$.

The case where r>4 is even is, in general, currently open. A starting point for a characterization in arbitrary even dimension can be found in [3] where the case of a hypersurface \mathcal{X} of degree q+1 in $\mathrm{PG}(4,q^2),\ q>3$ is considered. There, it is shown that when \mathcal{X} has the same number of points as $\mathcal{H}(4,q^2)$, does not contain any subspaces of dimension greater than 1 and meets at least one plane π in q^2+1 GF(q^2)-rational points, then \mathcal{X} is a Hermitian variety.

In this article we deal with hypersurfaces of degree q+1 in $PG(6, q^2)$ and we prove that a characterization similar to that of [3] holds also in dimension 6. We conjecture that this can be extended to arbitrary even dimension.

Theorem 1.1. Let S be a hypersurface of $PG(6, q^2)$, q > 2, defined over $GF(q^2)$, not containing solids. If the degree of S is q+1 and the number of its rational points is $q^{11} + q^9 + q^7 + q^4 + q^2 + 1$, then every solid of $PG(6, q^2)$ meets S in at least $q^4 + q^2 + 1$ rational points. If there is at least a solid Σ_3 such that $|\Sigma_3 \cap S| = q^4 + q^2 + 1$, then S is a non-singular Hermitian variety of $PG(6, q^2)$.

Furthermore, we also extend the result obtained in [3] to the case q = 3.

2 Preliminaries and notation

In this section we collect some useful information and results that will be crucial to obtain our result.

A Hermitian variety in $PG(r,q^2)$ is the algebraic variety of $PG(r,q^2)$ whose points $\langle v \rangle$ satisfy the equation $\eta(v,v)=0$ where η is a unitary form $GF(q^2)^{r+1} \times GF(q^2)^{r+1} \to GF(q^2)$. The radical of the form η is the vector

subspace of $GF(q^2)^{r+1}$ given by

$$Rad(\eta) := \{ w \in GF(q^2)^{r+1} : \forall v \in GF(q^2)^{r+1}, \eta(v, w) = 0 \}.$$

The form η is non-degenerate if Rad $(\eta) = \{0\}$. If the form η is non-degenerate, then the corresponding Hermitian variety is denoted by $\mathcal{H}(r, q^2)$ and it is a non-singular, of degree q+1 and contains

$$(q^{r+1} + (-1)^r)(q^r - (-1)^r)/(q^2 - 1)$$

 $GF(q^2)$ -rational points. When η is degenerate we shall call vertex R_t of the degenerate Hermitian variety associated to η the projective subspace $R_t := PG(Rad(\eta))$ of $PG(r, q^2)$. A degenerate Hermitian variety can always be described as a cone of vertex R_t and basis a non-degenerate Hermitian variety $\mathcal{H}(r-t,q^2)$ disjoint from R_t where $t = \dim(Rad(\eta))$ is the vector dimension of the radical of η . In this case we shall write the corresponding variety as $R_t\mathcal{H}(r-t,q^2)$. Indeed,

$$R_t \mathcal{H}(r-t, q^2) := \{ P \in \langle P, Q \rangle \colon P \in R_t, Q \in \mathcal{H}(r-t, q^2) \}.$$

Any line of $\operatorname{PG}(r,q^2)$ meets a Hermitian variety (either degenerate or not) in either 1, q+1 or q^2+1 points (the latter value only for r>2). The maximal dimension of projective subspaces contained in the non-degenerate Hermitian variety $\mathcal{H}(r,q^2)$ is (r-2)/2, if r is even, or (r-1)/2, if r is odd. These subspaces of maximal dimension are called *generators* of $\mathcal{H}(r,q^2)$ and the generators of $\mathcal{H}(r,q^2)$ through a point P of $\mathcal{H}(r,q^2)$ span a hyperplane P^{\perp} of $\operatorname{PG}(r,q^2)$, the tangent hyperplane at P.

It is well known that this hyperplane meets $\mathcal{H}(r,q^2)$ in a degenerate Hermitian variety $P\mathcal{H}(r-2,q^2)$, that is in a Hermitian cone having as vertex the point P and as base a non-singular Hermitian variety of $\Theta \cong PG(r-2,q^2)$ contained in P^{\perp} with $P \notin \Theta$.

Every hyperplane of $PG(r, q^2)$, which is not tangent, meets $\mathcal{H}(r, q^2)$ in a non-singular Hermitian variety $\mathcal{H}(r-1, q^2)$, and is called a *secant hyperplane* of $\mathcal{H}(r, q^2)$. In particular, a tangent hyperplane contains

$$1 + q^2(q^{r-1} + (-1)^r)(q^{r-2} - (-1)^r)/(q^2 - 1)$$

 $\mathrm{GF}(q^2)$ -rational points of $\mathcal{H}(r,q^2)$, whereas a secant hyperplane contains

$$(q^r + (-1)^{r-1})(q^{r-1} - (-1)^{r-1})/(q^2 - 1)$$

 $\mathrm{GF}(q^2)$ -rational points of $\mathcal{H}(r,q^2)$.

Throughout this paper, the number of $GF(q^i)$ -points of an algebraic set \mathcal{X} will be denoted by $N_{q^i}(\mathcal{X})$. For simplicity, we shall also use the convention $|\mathcal{X}| := N_{q^2}(\mathcal{X})$.

We now recall several results which we will make use of in the course of this paper.

Lemma 2.1 ([15]). Let d be an integer with $1 \le d \le q+1$ and \mathcal{C} be a curve of degree d in PG(2,q) defined over GF(q), which may have GF(q)-linear components. Then the number of its rational points is at most dq+1 and $N_q(\mathcal{C}) = dq+1$ if and only if \mathcal{C} is a pencil of d lines of PG(2,q).

Lemma 2.2 ([10]). Let d be an integer with $2 \le d \le q + 2$, and C a curve of degree d in PG(2,q) defined over GF(q) without any GF(q)-linear components. Then $N_q(C) \le (d-1)q + 1$, except for a class of plane curves of degree 4 over GF(4) having 14 rational points.

Lemma 2.3 ([11]). Let S be a surface of degree d in PG(3,q) over GF(q). Then

$$N_q(\mathcal{S}) \le dq^2 + q + 1$$

Lemma 2.4 ([8]). Suppose $q \neq 2$. Let C be a plane curve over $GF(q^2)$ of degree q + 1 without $GF(q^2)$ -linear components. If C has $q^3 + 1$ rational points, then C is a Hermitian curve.

Lemma 2.5 ([7]). A subset of points of $PG(r, q^2)$ having the same intersection numbers with respect to hyperplanes and spaces of codimension 2 as non-singular Hermitian varieties, is a non-singular Hermitian variety of $PG(r, q^2)$.

From [9, Th 23.5.1,Th 23.5.3] we have the following.

Lemma 2.6. If W is a set of $q^7 + q^4 + q^2 + 1$ points of $PG(4, q^2)$, q > 2, such that every line of $PG(4, q^2)$ meets W in 1, q + 1 or $q^2 + 1$ points, then W is a Hermitian cone with vertex a line and base a unital.

Finally, we recall that a blocking set with respect to lines of PG(r,q) is a point set which blocks the lines, i.e., intersects each line of PG(r,q) in at least one point.

3 Proof of Theorem 1.1

We first provide an estimate on the number of points of a curve of degree q + 1 in $PG(2, q^2)$, where q is any prime power.

Lemma 3.1. Let C be a plane curve over $GF(q^2)$, without $GF(q^2)$ -lines as components and of degree q + 1. If the number of $GF(q^2)$ -rational points of C is $N < q^3 + 1$, then

$$N \le \begin{cases} q^3 - (q^2 - 2) & \text{if } q > 3\\ 24 & \text{if } q = 3\\ 8 & \text{if } q = 2. \end{cases}$$
 (3.1)

Proof. We distinguish the following three cases:

- (a) \mathcal{C} has two or more $GF(q^2)$ -components;
- (b) C is irreducible over $GF(q^2)$, but not absolutely irreducible;
- (c) \mathcal{C} is absolutely irreducible.

Suppose first $q \neq 2$.

Case (a) Suppose $C = C_1 \cup C_2$. Let d_i be the degree of C_i , for each i = 1, 2. Hence $d_1 + d_2 = q + 1$. By Lemma 2.2,

$$N \le N_{q^2}(\mathcal{C}_1) + N_{q^2}(\mathcal{C}_2) \le [(q+1)-2]q^2 + 2 = q^3 - (q^2 - 2)$$

Case (b) Let \mathcal{C}' be an irreducible component of \mathcal{C} over the algebraic closure of $GF(q^2)$. Let $GF(q^{2t})$ be the minimum defining field of \mathcal{C}' and σ be the Frobenius morphism of $GF(q^{2t})$ over $GF(q^2)$. Then

$$\mathcal{C} = \mathcal{C}' \cup \mathcal{C}'^{\sigma} \cup \mathcal{C}'^{\sigma^2} \cup \ldots \cup \mathcal{C}'^{\sigma^{t-1}},$$

and the degree of \mathcal{C}' , say e, satisfies q+1=te with e>1. Hence any $\mathrm{GF}(q^2)$ -rational point of \mathcal{C} is contained in $\cap_{i=0}^{t-1}\mathcal{C}'^{\sigma^i}$. In particular, $N\leq e^2\leq (\frac{q+1}{2})^2$ by Bezout's Theorem and $(\frac{q+1}{2})^2< q^3-(q^2-2)$.

Case (c) Let \mathcal{C} be an absolutely irreducible curve over $GF(q^2)$ of degree q+1. Either \mathcal{C} has a singular point or not. Since $N < q^3 + 1$, the curve \mathcal{C} is Frobenius classical from [6, Corollary 1.4]. Therefore, we can apply the Stöhr and Voloch's estimate for the number of rational points of a Frobenius classical curve [17, Theorem 1.1] obtaining

$$N \le \frac{1}{2}q(q+1)^2.$$

This bound is lower than the estimation for N in case (a) for q > 4 and it is the same for q = 4. When q = 3 the bound in case (a) is lower than the Stöhr and Voloch's bound.

Finally, we consider the case q=2. Under this assumption, \mathcal{C} is a cubic

curve and neither case (a) nor case (b) might occur. For a degree 3 curve over $GF(q^2)$ the Stöhr and Voloch's bound is loose, thus we need to change our argument. If \mathcal{C} has a singular point, then \mathcal{C} is a rational curve with a unique singular point. Since the degree of \mathcal{C} is 3, singular points are either cusps or ordinary double points. Hence $N \in \{4, 5, 6\}$. If \mathcal{C} is nonsingular, then it is an elliptic curve and, by the Hasse-Weil bound, see [18], $N \in I$ where $I = \{1, 2, \ldots, 9\}$ and for each number N belonging to I there is an elliptic curve over GF(4) with N points, from [14, Theorem 4.2]. This completes the proof.

From now henceforth, we shall always suppose q > 2 and we denote by S a hypersurface of $PG(6, q^2)$ satisfying the following hypotheses of Theorem 1.1:

(S1) S is an algebraic hypersurface of degree q+1 defined over $GF(q^2)$;

(S2)
$$|S| = q^{11} + q^9 + q^7 + q^4 + q^2 + 1;$$

- (S3) S does not contain projective 3-spaces (solids);
- (S4) there exists a solid Σ_3 such that $|S \cap \Sigma_3| = q^4 + q^2 + 1$.

We are first going to prove that S is a blocking set of lines.

Lemma 3.2. An algebraic hypersurface \mathcal{T} of degree q+1 in $PG(r, q^2)$, $q \neq 2$, with $|\mathcal{T}| = |\mathcal{H}(r, q^2)|$ is a blocking set with respect to lines of $PG(r, q^2)$

Proof. Suppose on the contrary that there is a line ℓ of $\operatorname{PG}(r,q^2)$ which is disjoint from \mathcal{T} . Let α be a plane containing ℓ . The algebraic plane curve $\mathcal{C}=\alpha\cap\mathcal{T}$ of degree q+1 cannot have $\operatorname{GF}(q^2)$ -linear components and hence it has at most q^3+1 points because of Lemma 2.2. If \mathcal{C} had q^3+1 rational points, then from Lemma 2.4, \mathcal{C} would be a Hermitian curve with an external line, a contradiction since Hermitian curves are blocking sets. Thus $N_{q^2}(\mathcal{C}) \leq q^3$. Since q>2, by Lemma 3.1, $N_{q^2}(\mathcal{C}) < q^3-1$ and hence every plane through r meets \mathcal{T} in at most q^3-1 rational points. Consequently, by considering all planes through r, we can bound the number of rational points of \mathcal{T} by $N_{q^2}(\mathcal{T}) \leq (q^3-1) \frac{q^{2r-4}-1}{q^2-1} = q^{2r-3} + \cdots < |\mathcal{H}(r,q^2)|$, which is a contradiction. Therefore there are no external lines to \mathcal{T} and so \mathcal{T} is a blocking set w.r.t. lines of $\operatorname{PG}(r,q^2)$.

Remark 3.3. The proof of [3, Lemma 3.1] would work perfectly well here under the hypothesis q > 3. The alternative argument of Lemma 3.2 is simpler and also holds for q = 3.

By the previous Lemma and assumptions (S1) and (S2), \mathcal{S} is a blocking set for the lines of PG(6, q^2) In particular, the intersection of \mathcal{S} with any 3-dimensional subspace Σ of PG(6, q^2) is also a blocking set with respect to lines of Σ and hence it contains at least $q^4 + q^2 + 1$ GF(q^2)-rational points; see [4].

Lemma 3.4. Let Σ_3 be the solid of $PG(6, q^2)$ satisfying condition (S4), that is Σ_3 meets S in exactly $q^4 + q^2 + 1$ points. Then, $\Pi := S \cap \Sigma_3$ is a plane.

Proof. $S \cap \Sigma_3$ must be a blocking set for the lines of $PG(3, q^2)$; also it has size $q^4 + q^2 + 1$. It follows from [4] that $\Pi := S \cap \Sigma_3$ is a plane.

Lemma 3.5. Let Σ_3 be the solid of condition (S4). Then, any 4-dimensional projective space Σ_4 through Σ_3 meets S in a Hermitian cone with vertex a line ℓ_1 and basis a Hermitian curve.

Proof. Consider all of the $q^6+q^4+q^2+1$ subspaces Σ_3' of dimension 3 in PG(6, q^2) containing Π .

From Lemma 2.3 and condition (S3) we have $|\Sigma_3' \cap S| \le q^5 + q^4 + q^2 + 1$. Hence,

$$|\mathcal{S}| = (q^7 + 1)(q^4 + q^2 + 1) < (q^6 + q^4 + q^2)q^5 + q^4 + q^2 + 1 = |\mathcal{S}|$$

Consequently, $|\Sigma_3' \cap \mathcal{S}| = q^5 + q^4 + q^2 + 1$ for all $\Sigma_3' \neq \Sigma_3$ such that $\Pi \subset \Sigma_3'$. Let $C_1 := \Sigma_4 \cap \mathcal{S}$. Counting the number of rational points of C_1 by considering the intersections with the $q^2 + 1$ subspaces of dimension 3 in Σ_4 containing the plane Π we get

$$|C_1| = q^2 \cdot q^5 + q^4 + q^2 + 1 = q^7 + q^4 + q^2 + 1.$$

In particular, $C_1 \cap \Sigma_3'$ is a maximal surface of degree q+1; so it must split in q+1 distinct planes through a line. So C_1 consists of q^3+1 distinct planes; denote by \mathcal{L} the family of these planes. Also for each $\Sigma_3' \neq \Sigma_3$, there is a line ℓ' such that all the planes of \mathcal{L} in Σ_3' pass through ℓ' . It is now straightforward to see that any line contained in C_1 must necessarily belong to one of the planes of \mathcal{L} and no plane not in \mathcal{L} is contained in C_1 .

In order to get the result it is now enough to show that a line of Σ_4 meets C_1 in either 1, q+1 or q^2+1 points. To this purpose, let ℓ be a line of Σ_4 and suppose $\ell \not\subseteq C_1$. Then, by Bezout's theorem,

$$1 \le |\ell \cap C_1| \le q + 1.$$

Assume $|\ell \cap C_1| > 1$. Then we can distinguish two cases:

- 1. $\ell \cap \Pi \neq \emptyset$. If ℓ and Π are incident, then we can consider the 3-dimensional subspace $\Sigma_3' := \langle \ell, \Pi \rangle$. Then ℓ must meet each plane of \mathcal{L} in Σ_3' in different points (otherwise ℓ passes through the intersection of these planes and then $|\ell \cap C_1| = 1$). As there are q + 1 planes of \mathcal{L} in Σ_3' , we have $|\ell \cap C_1| = q + 1$.
- 2. $\ell \cap \Pi = \emptyset$. Consider the plane Λ generated by a point $P \in \Pi$ and ℓ . Clearly $\Lambda \notin \mathcal{L}$. The curve $\Lambda \cap S$ has degree q+1 by construction, does not contain lines (for otherwise $\Lambda \in \mathcal{L}$) and has $q^3 + 1$ GF(q^2)-rational points (by a counting argument). So it is a Hermitian curve. It follows that ℓ is a q+1 secant.

We can now apply Lemma 2.6 to see that C_1 is a Hermitian cone.

Lemma 3.6. Let Σ_3 be the space of condition (S4) and take Σ_5 to be a 5-dimensional projective space with $\Sigma_3 \subseteq \Sigma_5$. Then $S \cap \Sigma_5$ is a Hermitian cone with vertex a point and basis a Hermitian hypersurface $\mathcal{H}(4, q^2)$.

Proof. Let

$$\Sigma_4 := \Sigma_4^1, \Sigma_4^2, \dots, \Sigma_4^{q^2+1}$$

be the 4-spaces through Σ_3 contained in Σ_5 . Put $C_1 := \Sigma_4^1 \cap \mathcal{S}$ and $\Pi = \Sigma_3 \cap \mathcal{C}$; clearly $\Pi \subseteq \Sigma_3 \subseteq \Sigma_4^1$ and Π is a plane. Choose a plane $\Pi' \subseteq \Sigma_4^1$ such that $m := \Pi' \cap C_1$ is a line m incident with Π but not contained in it. Let $P_1 := m \cap \Pi$. It is straightforward to see that in Σ_4^1 there is exactly 1 plane through m which is $(q^4 + q^2 + 1)$ -secant, q^4 planes which are $(q^3 + q^2 + 1)$ -secant and q^2 planes which are $(q^2 + 1)$ -secant. Also P_1 belongs to the line ℓ_1 , the vertex of C_1 . There are now two cases to consider:

(a) There is a plane $\Pi'' \neq \Pi'$ not contained in Σ_4^i for all $i = 1, \ldots, q^2 + 1$ with $m \subseteq \Pi'' \subseteq S \cap \Sigma_5$.

We first show that the vertices of the cones $C_i := \Sigma_4^i \cap \mathcal{S}$ are all collinear. Consider $m_i := \Pi'' \cap \Sigma_4^i$. Then $\{m_i : i = 1, \dots, q^2 + 1\}$ consists of $q^2 + 1$ lines (including m) all through P_1 . Observe that for all i, the line m_i meets the vertex ℓ_i of the cone C_i in $P_i \in \Pi$. This forces $P_1 = P_2 = \dots = P_{q^2+1}$. So $P_1 \in \ell_1, \dots, \ell_{q^2+1}$.

Let now $\overline{\Sigma}_4$ be a 4-dimensional space in Σ_5 with $P_1 \notin \overline{\Sigma}_4$; in particular $\Pi \not\subseteq \overline{\Sigma}_4$. Put also $\overline{\Sigma}_3 := \Sigma_4^1 \cap \overline{\Sigma}_4$. Clearly, $r := \overline{\Sigma}_3 \cap \Pi$ is a line and $P_1 \notin r$. So $\overline{\Sigma}_3 \cap \mathcal{S}$ cannot be the union of q+1 planes, since if this were to be the case, these planes would have to pass through the vertex ℓ_1 . It follows that $\overline{\Sigma}_3 \cap \mathcal{S}$ must be a Hermitian cone with vertex a point

and basis a Hermitian curve. Counting the points of $W := \overline{\Sigma}_4 \cap S$ by considering $W \cap \Sigma_4^i$ as i varies, we get

$$|\mathcal{W}| = (q^2 + 1)q^5 + q^2 + 1 = (q^2 + 1)(q^5 + 1);$$

in particular, W is a hypersurface of $\overline{\Sigma}_4$ of degree q+1, not containing any plane and such that there exists a plane of $\overline{\Sigma}_4$ meeting W in just one line (such planes exist in $\overline{\Sigma}_3$). So by the characterization of $\mathcal{H}(4, q^2)$ of [3] we have that W is a Hermitian variety $\mathcal{H}(4, q^2)$.

We also have that $|S \cap \Sigma_5| = |P_1\mathcal{H}(4, q^2)|$. Let now r be any line of $\mathcal{H}(4, q^2) = S \cap \overline{\Sigma}_4$ and let Θ be the plane $\langle r, P_1 \rangle$. The plane Θ meets Σ_4^i in a line $q_i \subseteq S$ for each $i = 1, \ldots, q^2 + 1$ and these lines are concurrent in P_1 . It follows that all the points of Θ are in S. This completes the proof for the current case and shows that $S \cap \Sigma_5$ is a Hermitian cone $P_1\mathcal{H}(4, q^2)$.

(b) All planes Π'' with $m \subseteq \Pi'' \subseteq S \cap \Sigma_5$ are contained in Σ_4^i for some $i=1,\ldots,q^2+1$. We claim that this case cannot happen. We can suppose without loss of generality $m_1 \cap \ell_1 = P_1$ and $P_1 \notin \ell_i$ for all $i=2,\ldots,q^2+1$. So there is exactly one plane through m_1 which is (q^4+q^2+1) -secant, namely the plane $\langle \ell_i, m_1 \rangle$. Furthermore, in Σ_4^1 there are q^4 planes through m_1 which are (q^3+q^2+1) -secant and q^2 planes which are (q^2+1) -secant. We can provide an upper bound to the points of $S \cap \Sigma_5$ by counting the number of points of $S \cap \Sigma_5$ on planes in Σ_5 through m_1 and observing that a plane through m_1 not in Σ_5 and not contained in S has at most q^3+q^2+1 points in common with $S \cap \Sigma_5$. So

$$|S \cap \Sigma_5| \le q^6 \cdot q^3 + q^7 + q^4 + q^2 + 1.$$

As $|S \cap \Sigma_5| = q^9 + q^7 + q^4 + q^2 + 1$, all planes through m_1 which are neither $(q^4 + q^2 + 1)$ -secant nor $(q^2 + 1)$ -secant are $(q^3 + q^2 + 1)$ -secant. That is to say that all of these planes meet S in a curve of degree q + 1 which must split into q + 1 lines through a point because of Lemma 2.1.

Take now $P_2 \in \Sigma_4^2 \cap \mathcal{S}$ and consider the plane $\Xi := \langle m_1, P_2 \rangle$. The line $\langle P_1, P_2 \rangle$ is contained in Σ_4^2 ; so it must be a (q+1)-secant, as it does not meet the vertex line ℓ_2 of C_2 in Σ_4^2 . Now, Ξ meets every of Σ_4^i for $i=2,\ldots,q^2+1$ in a line through P_1 which is either a 1-secant or a q+1-secant; so

$$|S \cap \Xi| \le q^2(q) + q^2 + 1 = q^3 + q^2 + 1.$$

It follows $|S \cap \Xi| = q^3 + q^2 + 1$ and $S \cap \Xi$ is a set of q + 1 lines all through the point P_1 . This contradicts our previous construction.

Lemma 3.7. Let Σ_3 be the space of condition (S4). Then, every hyperplane of $PG(6, q^2)$ meets S either in a non-singular Hermitian variety $\mathcal{H}(5, q^2)$ or in a cone over a Hermitian hypersurface $\mathcal{H}(4, q^2)$.

Proof. Let us denote by Λ a hyperplane of PG(6, q^2). If Λ contains Σ_3 then, from Lemma 3.6 it follows that $\Lambda \cap \mathcal{S}$ is a Hermitian cone $P\mathcal{H}(4, q^2)$.

Now assume that Λ does not contain Σ_3 . Denote by S_5^j , with $j=1,\ldots,q^2+1$ the q^2+1 hyperplanes through Σ_4^1 , where as before, Σ_4^1 is a 4-space containing Σ_3 . By Lemma 3.6 again we get that $S_5^j \cap \mathcal{S} = P^j \mathcal{H}(4,q^2)$. We count the number of rational points of $\Lambda \cap \mathcal{S}$ by studying the intersections of $S_5^j \cap \mathcal{S}$ with Λ for all $j \in \{1,\ldots,q^2+1\}$. Setting $\mathcal{W}_j := S_5^j \cap \mathcal{S} \cap \Lambda$, $\Omega := \Sigma_4^1 \cap \mathcal{S} \cap \Lambda$ then

$$|\mathcal{S} \cap \Lambda| = \sum_j |\mathcal{W}_j \setminus \Omega| + |\Omega|.$$

If Π is a plane of Λ then Ω consists of q+1 collinear planes. Otherwise let m be the line in which Λ meets the plane Π . Then Ω is either a Hermitian cone $P_0\mathcal{H}(2,q^2)$, or q+1 collinear planes according as the vertex $P^j \in \Pi$ is an external point with respect to m or not.

In the former case W_j is a non singular Hermitian variety $\mathcal{H}(4, q^2)$ and thus $|\mathcal{S} \cap \Lambda| = (q^2 + 1)(q^7) + q^5 + q^2 + 1 = q^9 + q^7 + q^5 + q^2 + 1$.

In the case in which Ω consists of q+1 collinear planes then W_j is either a $P_0\mathcal{H}(3,q^2)$ or a Hermitian cone with vertex a line and basis a Hermitian curve $\mathcal{H}(2,q^2)$.

If there is at least one index j such that $W_j = \ell_1 \mathcal{H}(2, q^2)$ then, there must be a 3-dimensional space Σ_3' of $S_5^j \cap \Lambda$ meeting S in a generator. Hence, from Lemma 3.6 we get that $S \cap \Lambda$ is a Hermitian cone $P'\mathcal{H}(4, q^2)$.

Assume that for all $j \in \{1, ..., q^2 + 1\}$, W_j is a $P_0\mathcal{H}(3, q^2)$. In this case

$$|\mathcal{S} \cap \Lambda| = (q^2 + 1)q^7 + (q + 1)q^4 + q^2 + 1 = q^9 + q^7 + q^5 + q^4 + q^2 + 1 = |\mathcal{H}(5, q^2)|.$$

We are going to prove that the intersection numbers of S with hyperplanes are only two that is $q^9 + q^7 + q^5 + q^4 + q^2 + 1$ or $q^9 + q^7 + q^4 + q^2 + 1$.

Denote by x_i the number of hyperplanes meeting S in i rational points with $i \in \{q^9 + q^7 + q^4 + q^2 + 1, q^9 + q^7 + q^5 + q^2 + 1, q^9 + q^7 + q^5 + q^4 + q^2 + 1\}.$

Double counting arguments give the following equations for the integers x_i :

$$\begin{cases}
\sum_{i} x_{i} = q^{12} + q^{10} + q^{8} + q^{6} + q^{4} + q^{2} + 1 \\
\sum_{i} i x_{i} = |\mathcal{S}|(q^{10} + q^{8} + q^{6} + q^{4} + q^{2} + 1) \\
\sum_{i=1} i(i-1)x_{i} = |\mathcal{S}|(|\mathcal{S}| - 1)(q^{8} + q^{6} + q^{4} + q^{2} + 1).
\end{cases} (3.2)$$

Solving (3.2) we obtain $x_{q^9+q^7+q^5+q^2+1}=0$. In the case in which $|S \cap I|=|\mathcal{H}(5,q^2)|$, since $S \cap \Lambda$ is an algebraic hypersurface of degree q+1 not containing 3-spaces, from [18, Theorem 4.1] we get that $S \cap \Lambda$ is a Hermitian variety $\mathcal{H}(5,q^2)$ and this completes the proof.

Proof of Theorem 1.1. The first part of Theorem 1.1 follows from Lemma 3.4. From Lemma 3.7, S has the same intersection numbers with respect to hyperplanes and 4-spaces as a non-singular Hermitian variety of $PG(6, q^2)$, hence Lemma 2.5 applies and S turns out to be a $\mathcal{H}(6, q^2)$.

Remark 3.8. The characterization of the non-singular Hermitian variety $\mathcal{H}(4, q^2)$ provides in [3] is based on the property that a given hypersurface is a blocking set with respect to lines of $PG(4, q^2)$, see [3, Lemma 3.1]. This lemma holds when q > 3. Since Lemma 3.2 extends the same property to the case q = 3 it follows that the result stated in [3] is also valid in $PG(4, 3^2)$.

4 Conjecture

We propose a conjecture for the general 2n-dimensional case.

Let S be a hypersurface of $\operatorname{PG}(2d,q^2)$, q>2, defined over $\operatorname{GF}(q^2)$, not containing d-dimensional projective subspaces. If the degree of S is q+1 and the number of its rational points is $|\mathcal{H}(2d,q^2)|$, then every d-dimensional subspace of $\operatorname{PG}(2d,q^2)$ meets S in at least $\theta_{q^2}(d-1):=(q^{2d-2}-1)/(q^2-1)$ rational points. If there is at least a d-dimensional subspace Σ_d such that $|\Sigma_d \cap S| = |\operatorname{PG}(d-1,q^2)|$, then S is a non-singular Hermitian variety of $\operatorname{PG}(2d,q^2)$.

Lemma 3.1 and Lemma 3.2 can be a starting point for the proof of this conjecture since from them we get that S is a blocking set with respect to lines of $PG(2d, q^2)$.

References

- [1] A. Aguglia, A. Cossidente, G. Korchmáros, On quasi-Hermitian varieties, *J. Combin. Des.*, **20** (2012), 433–447.
- [2] A. Aguglia, Quasi-Hermitian varieties in $PG(r, q^2)$, q even, Contrib. Discrete Math., 8 (2013), 31–37.
- [3] A. Aguglia, F. Pavese, On non-singular Hermitian varieties of $PG(4, q^2)$, Discrete Mathematics, **343** (2020), 1–5.
- [4] R. C. Bose, R. C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes, *J. Combin. Theory* 1 (1966), 96–104.
- [5] R. C. Bose, I. M. Chakravarti, Hermitian varieties in a finite projective space $PG(n, q^2)$, Canad. J. Math. **18** (1966), 1161–1182.
- [6] H. Borges, M. Homma, Points on singular Frobenius nonclassical curves, *Bull. Braz. Math. Soc. New Series* **48** (2017), 93-101.
- [7] S. De Winter, J. Schillewaert, Characterizations of finite classical polar spaces by intersection numbers with hyperplanes and spaces of codimension 2, *Combinatorica* **30** (2010), n. 1, 25–45.
- [8] J. W. P. Hirschfeld, L. Storme, J. A. Thas, J. F. Voloch, A characterization of Hermitian curves, J. Geom. 41 (1991), n. 1-2, 72–78.
- [9] J. W. P. Hirschfeld, J. A. Thas, *General Galois geometries*, Springer Monographs in Mathematics, Springer, London, 2016.
- [10] M. Homma, S. J. Kim, Around Sziklai's conjecture on the number of points of a plane curve over a finite field, *Finite Fields Appl.* **15** (2009), no. 4, 468–474.
- [11] M. Homma, S. J. Kim, An elementary bound for the number of points of a Hypersurface over a finite field, *Finite Fields Appl.* **20** (2013), 76–83.
- [12] M. Homma, S. J. Kim, The characterization of Hermitian surfaces by the number of points, *J. Geom.* **107** (2016), 509–521.
- [13] M. Homma, S. J. Kim, Number of points of a nonsingular hypersurface in an odd-dimensional projective space, *Finite Fields Appl.* 48 (2017), 395–419.

- [14] R. Schoof, Nonsingular plane cubic curves over finite fields, *J. Combin. Theory Ser. A*, **46** (1987), 183–211.
- [15] B. Segre, Le geometrie di Galois, Ann. Mat. Pura Appl. 48 (1959), n. 4, 1–96.
- [16] B. Segre, Forme e geometrie hermitiane, con particolare riguardo al caso finito, Ann. Mat. Pura Appl. **70** (1965), 1–201.
- [17] K. O. Stöhr, J. F. Voloch, Weierstrass points and curves over finite fields, *Proc. London Math. Soc.* **52** (1986), n. 3, 1–19.
- [18] A. Weil, Sur les courbes algebriques et les varietes qui s'en deduisent *Actual. Sci. Ind.*, vol. 1041, Hermann, Paris (1948)