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Abstract

Let Γ be an embeddable non-degenerate polar space of finite rank n ≥ 2. Assuming that Γ admits
the universal embedding (which is true for all embeddable polar spaces except grids of order at least 5
and certain generalized quadrangles defined over quaternion division rings), let ε : Γ → PG(V ) be
the universal embedding of Γ. Let S be a subspace of Γ and suppose that S , regarded as a polar space,
has non-degenerate rank at least 2. We shall prove that S is the ε-preimage of a projective subspace of
PG(V ).

1 The main result of this paper
Let Γ = (P ,L) be a non-degenerate embeddable polar space of finite rank at least 2, where P and L are
the point-set and the line-set of Γ respectively. It is well known that Γ admits the (absolutely) universal
embedding but for two exceptional cases of rank n = 2, where at least two distinct relatively universal
embeddings exist (see Tits [11, §8.6(II) (a), (b)], also cases (A) and (B) of Theorem 2.1 of this paper).
Keeping those two exceptional cases aside, let ε : Γ → PG(V ) be the universal embedding of Γ.

We recall that a subspace of Γ is a subset S ⊆ P such that every line of Γ meeting S in two distinct
points is fully contained in S. If S ⊂ P then S is called a proper subspace.

Let S be a subspace of Γ. Then S , equipped with the lines of Γ contained in it, is a possibly degenerate
polar space. Let Rad(S) = S⊥ ∩ S be its radical and let rank(Rad(S)) be the rank of Rad(S), namely
the size of a minimal spanning set of Rad(S). We keep the symbol rank(S) for the rank of the polar
space S and put ranknd(S) := rank(S)− rank(Rad(S)) (= rank(S) if S is non-degenerate). Following
Buekenhout and Cohen [1], we call ranknd(S) the non-degenerate rank of S . Obviously, ranknd(S) = 0 if
and only if S ⊆ S⊥, namely S is a singular subspace.

We say that S arises from the embedding ε if ε−1(〈ε(S)〉V ) = S , where 〈.〉V stands for spans in PG(V )
and, for a subset X ⊆ PG(V ), we denote by ε−1(X) the ε-preimage {x ∈ P | ε(x) ∈ X} of X , as
usual. Obviously, singular subspaces and the improper subspace arise from ε (in fact they arise from any
embedding of Γ). So, we are not going to consider them in the following theorem, which is our main
result in this paper.

Theorem 1. With Γ and ε as above, let S be a proper non-singular subspace of Γ and suppose that ranknd(S) ≥
2. Then S arises from ε.

We shall prove Theorem 1 in Sections 3 and 4.

Note 1. The hypothesis ranknd(S) ≥ 2 cannot be removed from Theorem 1, as one can easily see by
noticing that, when ranknd(S) = 1, then S is just a collection of singular subspaces of rank k+1 containing
a given singular subspace R = Rad(S) of rank k and such that no two of them are contained in a common
singular subspace. In particular, if rank(S) = 1 then S is a set of mutually non collinear points, which
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in general does not arise from any embedding. Even assuming that rank(Γ) = 2 and S is an ovoid of Γ,
we cannot claim that S arises from ε. Indeed several classical generalized quadrangles exist which admit
non-classical ovoids.

Note 2. The two embeddable cases which admit more than one relatively universal embedding have been
excluded since the beginning of this section, but Theorem 1 would be vacuous for them. Indeed neither of
them admits proper non-singular subspaces of non-degenerate rank at least 2. This is obvious for one of
them, namely case (B) of Theorem 2.1, since the generalized quadrangles considered in that case are grids,
but the same is true in the other case too (case (A) of Theorem 2.1), as we shall prove in Section 5.

Recall that a hyperplane of Γ is a proper subspace S such that every line of Γ meets S non-trivially. For
instance, the perp p⊥ of a point p ∈ P is a hyperplane, called a singular hyperplane. It is well known that
all hyperplanes of Γ are maximal in the family of proper subspaces of Γ (see e.g. Shult [10, Lemma 7.5.1]).
Conversely, by exploiting Theorem 1 we can prove the following:

Corollary 2. Every maximal (proper) subspace of Γ of rank at least 2 is a hyperplane.

Proof. Let S be a maximal subspace of Γ and suppose that rank(S) ≥ 2. Suppose firstly that S is
degenerate and let p ∈ Rad(S). Then S ⊆ p⊥. By maximality, S = p⊥. On the other hand, let S be
non-degenerate. Then S = ε−1(〈ε(S)〉V ) by Theorem 1. Accordingly, 〈ε(S)〉V is a proper subspace of
PG(V ). Let H be a hyperplane of PG(V ) containing 〈ε(S)〉V . Then H := ε−1(H) is a hyperplane of Γ
and contains S . By maximality, S = H. �

Observe that a maximal singular subspace in general is neither a hyperplane nor a singular hyperplane
of Γ.

Corollary 3. Let rank(Γ) = n > 2. Then the hyperplanes of Γ are precisely the maximal subspaces of Γ of
rank at least 2 (in fact, they have rank either n− 1 or n).

Proof. This claim immediately follows from Corollary 2 and the fact that all hyperplanes of Γ have rank at
least n− 1. �

Note 3. The following is known since long ago: if rank(Γ) > 2 then all hyperplanes of Γ arise from ε. A
popular proof of this fact exploits a result of Ronan [9, Section 1, Corollary 3] and the fact that when
rank(Γ) > 2 all hyperplane complements of Γ are simply connected ([6, Section 3], also Cohen and Shult
[3]). Now we can obtain it as a special case of Theorem 1, noticing that if rank(Γ) > 2 then all hyperplanes
of Γ have non-degenerate rank at least 2.

Problem 4. Suppose that rank(Γ) > 2. Does Γ admit maximal subspaces of rank 1?

Problem 5. Let rank(Γ) = 2. Is it true that every maximal subspace of Γ of rank 1 is a hyperplane (whence
an ovoid)?

Turning to generating sets, the following holds:

Corollary 6. For X ⊆ P , suppose that ranknd(〈X〉Γ) ≥ 2. Then X contains a subset Y such that 〈Y 〉Γ =
〈X〉Γ and Y is minimal with respect to this property.

Proof. By Theorem 1, the embedding ε induces a bijection between the family of subsets Y ⊆ X such
that ranknd(〈Y 〉Γ) ≥ 2 and the family of subsets Z ⊆ ε(X) such that the polar space 〈Z〉V ∩ ε(Γ) has
non-degenerate rank at least 2. The conclusion follows from well known properties of PG(V ). �

Problem 7. Prove Corollary 6 in a synthetic way, without calling Theorem 1 for help.

Note 4. The same conclusions as in Theorem 1 and Corollary 6 are obtained in [2, Lemmas 2.3 and 2.6]
under the additional hypothesis that the underlying division ring of Γ is commutative and S andX contain
a frame of Γ.
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Organization of this paper. Some basics on point-line geometries, projective embeddings and classical
polar spaces are recalled in Section 2. Sections 3 and 4 contain the proof of Theorem 1. In the last section
of this paper we prove that Theorem 1 is indeed vacuous in the two exceptional cases mentioned in Note 2.

2 A survey of basic notions and known facts

2.1 Notation and terminology for projective spaces
Given a vector space V , we use the symbol 〈.〉V to denote spans in V as well as spans in the projective
space PG(V ) associated to V , thus avoiding the clumsy notation 〈.〉PG(V ). This notational ambiguity will
be harmless.

Given a nonzero vector v ∈ V , we put [v] := 〈v〉V and, given a subset X ⊆ V , we put [X] :=
{[x] | 0 6= x ∈ X}. Thus, 〈[X]〉V = [〈X〉V ].

Given two vector spaces V andW over the same division ring, every semi-linear mapping f : V → W
induces a mapping [f ] from PG(V ) \ [ker(f)] to PG(W ). Following Faure and Frölicher [4] we call [f ] a
morphism from PG(V ) to PG(W ) and [ker(f)] the kernel of [f ], also denoting it by the symbol ker([f ]).
Clearly, a morphism [f ] is injective if and only if ker([f ]) = ∅. It is an isomorphism if it is both injective
and surjective. The automorphisms of PG(V ) are also called collineations.

For a subspace X of V , we put PG(V )/[X] := PG(V /X), calling it the quotient of PG(V ) over [X].
If pX is the canonical projection of V onto V /X , the projectivization [pX ] of pX is called the projection of
PG(V ) onto PG(V )/[X].

2.2 Notation and terminology for point-line geometries
A point-line geometry is a pair Γ = (P ,L) where P is a non-empty set and L is a family of subsets of P ,
the elements of P being called points and those of L lines.

In Section 1 we have freely used the symbol ⊥, assuming that the reader knows its meaning. Anyway,
we explain it here. When writing p ⊥ q for two points p and q of Γ, we mean that p and q are collinear,
namely they belong to a common line. We denote by p⊥ the set of points collinear with a given point
p, with p ∈ p⊥ by convention. Given a subset X ⊆ P we put X⊥ := ∩p∈Xp

⊥, also adopting obvious
shortenings as X⊥⊥ for (X⊥)⊥ or {X,Y }⊥ for (X ∪ Y )⊥. The geometry Γ is said to be connected if the
graph (P ,⊥) is connected.

In Section 1 we have explained what a subspace is. We have stated that definition for polar spaces, but
it applies to arbitrary point-line geometries. We are not going to repeat it here. We only note that the
intersection of a family of subspaces is still a subspace. In particular, the intersection of all subspaces of Γ
containing a given set of points X ⊆ P is the smallest subspace containing X . We denote it by 〈X〉Γ and
we call it the subspace generated (also spanned) by X . We can also describe 〈X〉Γ as follows: put X0 := X
and, for every natural number n, put Xn+1 := Xn ∪

⋃
(` ∈ L | |` ∩Xn| > 1). Then 〈X〉Γ = ∪∞

n=0Xn.
Following Buekenhout and Cohen [1], we say a subspace S of Γ is singular if S ⊆ S⊥.

2.3 Embeddings
Let Γ = (P ,L) be a connected point-line geometry. We recall that a (full) projective embedding (henceforth
called just embedding) of Γ is an injective mapping ε : P → PG(V ) for some vector space V , such that
ε(P) spans PG(V ) and the set ε(`) = {ε(x)}x∈` is a line of PG(V ) for every line ` ∈ L. We denote by
ε(Γ) the ε-image of Γ, namely the subgeometry of PG(V ) with ε(P) as the point-set and the projective
lines ε(`) as lines, for ` ∈ L.

If K is the underlying division of V then we say that ε is defined over K. If all embeddings of Γ are
defined over the same division ring K then we say that Γ is defined over K, also that K is the underlying
division ring of Γ.
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We say that Γ is embeddable if it admits at least one embedding. Note that Γ is embeddable only if no
two distinct lines of Γ have two distinct points in common, as it follows from the fact that embeddings are
injective and map lines of Γ surjectively onto projective lines.

2.3.1 Morphisms of embeddings

Given two embeddings ε1 : Γ → PG(V1) and ε2 : Γ → PG(V2) defined over the same division ring, a
morphism (isomorphism) from ε1 to ε2 is a morphism (isomorphism) ϕ : PG(V1) → PG(V2) such that
ε2 = ϕ · ε1. The subspaceK := ker(ϕ) is such thatK ∩ ε1(P) = ∅ and every line of PG(V1) joining two
distinct points of ε1(P) meets K trivially. Conversely, for every subspace K of PG(V1) satisfying these
properties, if πK is the projection of PG(V1) onto PG(V1)/K then the composite ε1/K := πK · ε1 is an
embedding of Γ and πK is a morphism from ε1 to it. We call ε1/K the quotient of ε1 over K. Clearly, if
ϕ : ε1 → ε2 is a morphism of embeddings then ε2 and ε1/ ker(ϕ) are isomorphic. By a little abuse, we
say that ε2 is a quotient of ε1 over ker(ϕ).

The connectedness of Γ implies that a morphism ϕ : ε1 → ε2, if it is exists, is unique (see e.g. Pasini
and Van Maldeghem [8, Section 4.1]). Accordingly, if a morphism exists from ε1 to ε2 we write ε1 → ε2,
with no explicit mention of that morphism. We denote isomorphism of embeddings by the standard
symbol ∼=. Note that the uniqueness of the morphism between two embeddings implies that the identity
mapping of PG(V ) is the unique morphism from an embedding ε : Γ → PG(V ) to itself. Accordingly, if
ε1 → ε2 → ε1 for two embeddings ε1 and ε2 of Γ, then ε1 ∼= ε2.

2.3.2 Universality

An embedding ε of Γ is said to be relatively universal if ε′ ∼= ε for any embedding ε′ of Γ such that ε′ → ε.
If moreover ε→ ε′ for any embedding ε′ of Γ then ε is said to be absolutely universal (also just universal,
for short). Clearly, the absolutely universal embedding, if it exists, is unique up to isomorphisms.

Not every embeddable geometry admits the absolutely universal embedding. If a geometry admits it
then it also admits an underlying division ring, but the latter property is not sufficient for the absolutely
universal embedding to exist. On the other hand, every embeddable geometry admits relatively universal
embeddings. Indeed, for every embedding ε of Γ there exists an embedding ε̃→ ε, sometimes called the
hull of ε, such that ε̃→ ε′ for every embedding ε′ → ε (Ronan [9]). Clearly, ε̃ is uniquely determined by
ε modulo isomorphisms and it is relatively universal. Accordingly, the embeddings of Γ are partitioned
in mutually disjoint families where each family consists of all quotients of a given relatively universal
embedding. The geometry Γ admits the absolutely universal embedding if and only if just one such family
exists, namely Γ admits just one relatively universal embedding (modulo isomorphisms, of course).

2.3.3 Homogeneity

Given an embedding ε : Γ → PG(V ), we say that an automorphism g ∈ Aut(Γ) lifts to PG(V ) through
ε if there exists a collineation ε(g) of PG(V ) such that the composite ε · g is an embedding of Γ such
that ε · g = ε(g)|ε(P) · ε. Clearly ε(g) stabilizes ε(P) and induces on ε(P) an automorphism of ε(Γ). In
short, it stabilizes ε(Γ). The connectedness of Γ implies that ε(g), if it exists, is uniquely determined by
g. We call ε(g) the lifting of g to PG(V ). We also denote by Autε(Γ) the subgroup of Aut(Γ) formed
by the automorphisms of Γ which lift to PG(V ) via ε. Clearly, ε(Autε(Γ)) = {ε(g) | g ∈ Autε(Γ)} is
the stabilizer of ε(Γ) in the collineation group of PG(V ). The embedding ε is said to be homogeneous if
Autε(Γ) = Aut(Γ).

We have ε · g ∼= ε if and only if g ∈ Autε(Γ). It follows that all absolutely universal embeddings are
homogeneous.
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2.3.4 Embeddings and subspaces

Given a geometry Γ = (P ,L) and an embedding ε : Γ → PG(V ), the ε-preimage ε−1(X ) of a projective
subspace X of PG(V ) is a subspace of Γ. In particular, ε−1(〈ε(X)〉V ) is a subspace of Γ for every set of
points X ⊆ P . Since it contains ε−1(ε(X)) = X , we obtain that 〈X〉Γ ⊆ ε−1(〈ε(X)〉V ).

As recalled in Section 1, a subspace S of Γ is said to arise from ε if it is the ε-preimage of a subspace of
PG(V ); equivalently, ε(S) = 〈ε(S)〉V ∩ ε(P). Clearly, if S arises from ε and ε′ → ε then S also arises
from ε′. So, if Γ admits the absolutely universal embedding then all subspaces of Γ which arise from some
embedding also arise from the universal one.

2.4 Embeddable polar spaces
We are not going to recall all basics on polar spaces here. We refer to Buekenhout and Cohen [1, Chapters
7, 8] for this matter. In this section we shall only describe the embeddings of the classical (namely
embeddable) polar spaces. Our main sources for this topic are Tits [11, Chapter 8] and Buekenhout and
Cohen [1, Chapters 9, 10].

2.4.1 Reflexive sesquilinear forms

Given a division ring K, an admissible pair for K is a pair (σ, ε) where σ is an anti-automorphism of K,
ε ∈ K∗ := K \ {0}, εσ = ε−1 and tσ2

= εtε−1 for every t ∈ K. Note that σ2 = idK if and only if ε
belongs to the center of K.

Given a K-vector space V and an admissible pair (σ, ε) of K, a (σ, ε)-sesquilinear form is a mapping
f : V ×V → K such that f(z, xs+ yt) = f(z, x)s+ f(z, y)t and f(y, x) = f(x, y)σε for all x, y, z ∈ V
and s, t ∈ K (consequently f(xs + yt, z) = sσf(x, z) + tσf(y, z)). A reflexive sesquilinear form is a
(σ, ε)-sesquilinear form, for some admissible pair (σ, ε).

Let f be a (σ, ε)-sesquilinear form with σ 6= idK and ε ∈ {1,−1}. If ε = 1 (ε = −1) then f is called
hermitian (anti-hermitian). On the other hand, let σ = idK. Then K is commutative and necessarily
ε ∈ {1,−1}. If ε = 1 the form f is called symmetric. If f(x, x) = 0 for every x ∈ V (as it is the case when
char(K) 6= 2 and (σ, ε) = (idK,−1)) then f is called alternating.

The radical Rad(f) of a reflexive sesquilinear form f is the set of vectors v ∈ V such that f(v, x) = 0
for every x ∈ V . The form f is said to be non-degenerate if Rad(f) = {0}.

A subspace X ⊆ V is said to be totally isotropic for f (also totally f -isotropic for short) if f(x, y) = 0
for any choice of x, y ∈ X . Similarly, a vector v ∈ V is said to be isotropic for f (also f -isotropic) if
f(v, v) = 0. Accordingly, a subspace [X] (a point [v]) of PG(V ) is totally f -isotropic (f -isotropic) if X is
totally f -isotropic (v is isotropic).

The form f is trace-valued if the f -isotropic vectors span V . This is always the case when char(K) 6= 2
(Tits [11, 8.1.6]).

The f -isotropic points and the totally f -isotropic lines of PG(V ) form a polar space Γ(f), the singular
subspaces of which are the totally f -isotropic subspaces of PG(V ). In particular, the projective radical
[Rad(f)] of f is the radical of Γ(f). So, the polar space Γ(f) is non-degenerate if and only if f is non-
degenerate. Assuming that f is trace-valued, the natural inclusion mapping yields and embedding of Γ(f)
in PG(V ).

Let f be a (σ, ε)-sesquilinear form and, given κ ∈ K∗, let g := κf . Then g is a (ρ, η)-sesquilinear form
where tρ = κtσκ−1 for every t ∈ K and η = κκ−σε. We say that g and f are proportional. If σ 6= idK we
can always choose κ in such a way that g is hermitian or anti-hermitian, as we prefer [11, 8.1.2]. In other
words, a reflexive sesquilinear form which is neither symmetric nor alternating is always proportional to a
suitable hermitian form as well as an anti-hermitian form.

Clearly, if f and g are proportional then Γ(f) = Γ(g). Conversely, if Γ(f) = Γ(g) then f and g are
proportional. This is not so difficult to prove when f and g are bilinear or hermitian; of course, if one of
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them is bilinear but the other one is hermitian then Γ(f) 6= Γ(g). When either f or g is neither bilinear
nor hermitian, we can replace it with a hermitian form proportional to it.

2.4.2 Pseudoquadratic forms

With (σ, ε) as above, put Kσ,ε := {t− tσε}t∈K. This is a subgroup of the additive group of K. Regarded
K as a group, let Kσ,ε := K/Kσ,ε. Note that tσKσ,εt ⊆ Kσ,ε for every t ∈ K. So, for t, s ∈ K and
s̄ = s+Kσ,ε ∈ Kσ,ε, the symbol tσs̄t denotes a well defined element of Kσ,ε.

A (σ, ε)-quadratic form is a mapping Q : V → Kσ,ε such that

Q(xt) = tσQ(x)t, (∀x ∈ V, t ∈ K) (1)

and there exists a trace-valued (σ, ε)-sesquilinear form fQ : V × V → K such that

Q(x+ y) = Q(x) +Q(y) + (fQ(x, y) +Kσ,ε), (∀x, y ∈ V ). (2)

A pseudoqudratic form is a (σ, ε)-quadratic form, for some admissible pair (σ, ε). When Kσ,ε = {0}
(equivalently, (σ, ε) = (idK, 1)) we get back the usual quadratic forms.

The sesquilinear form fQ satisfying (2) is uniquely determined byQ except when the groupKσ,ε is trivial,
namely Kσ.ε = K (Tits [11, 8.2.3]). This happens precisely when (σ, ε) = (idK,−1) and char(K) 6= 2,
but we exclude this case. So, for the rest of this subsection we assume that either (σ, ε) 6= (idK,−1)
or char(K) = 2. Accordingly, fQ is uniquely determined by Q and Q is non-trivial. We call fQ the
sequilinearization of Q (also the bilinearization of Q when Q is quadratic).

The radical Rad(Q) ofQ is the set Rad(Q) := Q−1(0̄)∩Rad(fQ), where 0̄ := Kσ,ε is the null element
of the group Kσ,ε. This set is a subspace of V . The form Q is said to be non-degenerate (also non-singular) if
Rad(Q) = {0}.

A vector v ∈ V is said to be singular for Q (also Q-singular) if Q(x) = 0̄ and a subspace X ⊆ V is
totally singular for Q (also totally Q-singular) if all of its vectors are Q-singular. The same terminology is
used for points and subspaces of PG(V ).

The Q-singular points and the totally Q-singular lines of PG(V ) form a polar space Γ(Q), the singular
subspaces of which are the totally Q-singular subspaces of PG(V ). The projective radical [Rad(Q)] of Q is
the radical of Γ(Q). So, Γ(Q) is non-degenerate if and only if Q is non-degenerate. All Q-singular points
of PG(V ) are fQ-isotropic and all totally Q-singular subspaces of PG(V ) are totally fQ-isotropic. Thus,
Γ(Q) is a subgeometry of Γ(fQ) (but not a subspace, in general). In particular, [Rad(Q)] ⊆ [Rad(fQ)].

When char(K) 6= 2 the pseudoquadratic form Q is uniquely determined by its sesquilinearization fQ
and we have Γ(Q) = Γ(fQ) (Tits [11, 8.2.4]). In this case we can safely ignore pseudoquadratic forms, if
we like. On the other hand, when char(K) = 2, in general the polar space Γ(Q) is a proper subgeometry
of Γ(fQ). In this case it can happen that [Rad(Q)] ⊆ [Rad(fQ)], as when Q is non-degenerate but fQ is
degenerate.

Proportionality can be defined for pseudoquadratic forms too. Let κ ∈ K∗. It is not difficult to check
that κKσ,ε = Kρ,η, with tρ = κtσκ−1 and η = κκ−σε as in the previous subsection. Accordingly, left
multiplication by κ yields a group isomorphism ικ : Kσ,ε → Kρ,η. The composite ικ · Q is a (ρ, η)-
quadratic form. We denote it by κQ for short and we say that Q and κQ are proportional. It is clear that
Γ(κQ) = Γ(Q), but the converse also holds true: if Γ(Q′) = Γ(Q) for two pseudoquadratic forms Q and
Q′, then Q and Q′ are proportional.

Likewise in the case of reflexive sesquilinear forms, if σ 6= idK we can always choose κ in such a way
that η is either 1 or −1, as we like.

2.4.3 Generalized pseudoquadratic forms

Reflexive sesquilinear forms and pseudoquadratic forms are enough to describe (relatively) universal
embeddings of polar spaces, but not all embeddings of polar spaces are universal. In order to describe
non-universal embeddings we need a generalization of pseudoquadratic forms.
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We firstly discuss some properties of the groups Kσ,ε and Kσ,ε. For every element t of the additive
group K and every element s of the division ring K, we put t ◦ s := sσts. The ‘multiplication’ ◦ defined
in this way enjoys the usual properties of multiplication of vectors and scalars except right distributivity,
which holds if and only if σ = idK and char(K) = 2.

A subgroup R of K is ◦-closed if R ◦ K ⊆ R. For instance, both Kσ,ε and the group Kσ,ε := {t ∈
K | t+ tσε = 0} ⊇ Kσ,ε are ◦-closed. If R is ◦-closed and contains Kσ,ε then ◦ defines a ‘vector-by-scalar’
multiplication in the quotient group KR := K/R, which we still denote by the symbol ◦. In particular, a
vector-by-scalar multiplication ◦ is thus defined inKσ,ε. The right distributive property holds for an element
t̄ = t+Kσ,ε ∈ Kσ,ε with respect to ◦ if and only if t ∈ Kσ,ε. Thus, the quotient group K◦

σ,ε := Kσ,ε/Kσ,ε

is the largest subgroup R of Kσ,ε such that (R, ◦) is a K-vector space (see e.g. [7, 2.1.2]).
Let R be a ◦-closed proper subgroup of K containing Kσ,ε and put KR := K/R. Let Q : V → KR

be such that
Q(xt) = tσQ(x)t, (∀x ∈ V, t ∈ K) (3)

and there exists a trace-valued (σ, ε)-sesquilinear form fQ : V × V → K such that

Q(x+ y) = Q(x) +Q(y) + (fQ(x, y) +R), (∀x, y ∈ V ). (4)

We call Q a generalized (σ, ε)-quadratic form (generalized pseudoquadratic form if we prefer not to mention
the pair (σ, ε)). Of course, for R = Kσ,ε the above definition yields back just pseudoquadratic forms as
defined in the previous subsection. If R ⊃ Kσ,ε then we say that Q is a proper generalized pseudoquadratic
form.

Nearly all we have said for pseudoquadratic forms holds for generalized pseudoquadratic forms as well.
In particular, the hypothesisR ⊂ K ensures that the sesquilinearization fQ of a generalized pseudoquadratic
form Q is uniquely determined by Q (see [7, Lemma 3.2]). Moreover, the existence of fQ implies that
R ⊆ K◦

σ,ε, namely R ⊆ Kσ,ε [7, Theorem 3.3]. However, unlike what happens for pseudoquadratic forms,
the hypothesis R 6= K is not sufficient forQ to be non-trivial. Trivial forms are discussed and characterized
in [7, Proposition 3.5], but we are not going to insist on them here.

Suppose that Q is non-trivial. The radical of Q, Q-singular vectors of V , Q-singular points of PG(V )
and totally Q-singular subspaces of V or PG(V ) are defined just as for pseudoquadratic forms. A polar
space Γ(Q) is thus defined, contained in Γ(fQ) as a subgeometry [7, section 3.3].

As we shall see in the next subsection, alternating forms and generalized pseudoquadratic forms are all
we need to describe all embeddings of polar spaces.

2.4.4 Universal embeddings of embeddable polar spaces

Throughout this subsection Γ is an embeddable non-degenerate polar space of finite rank n ≥ 2 and
ε : Γ → PG(V ) is an embedding of Γ. The underlying division ring of V is denoted by K and Z(K) is its
center.

Theorem 2.1 (Tits [11, chapter 8]). If ε is relatively universal then either ε(Γ) = Γ(Q) for a non-degenerate
pseudoquadratic form Q defined on V or char(K) 6= 2 and ε(Γ) = Γ(f) for a non-degenerate alternating
form f : V × V → K. Moreover, ε is absolutely universal except in the following two cases:

(A) n = 2, dim(V ) = 4, K is a quaternion division ring andQ is (σ, ε)-quadratic, where σ is the standard
involution of K and Kσ,ε is a 1-dimensional subspace of the Z(K)-vector space K.

(B) n = 2, dim(V ) = 4 and Γ is a grid of order at least 5 (where by order of Γ we mean the cardinality of
any of its lines). Its ε-image ε(Γ) is a hyperbolic quadric of the projective 3-space PG(V ).

No absolutely universal embedding exists for Γ in cases (A) and (B). In both cases Γ admits more than
one embedding, all of them are relatively universal but none of them is homogeneous. We can obtain
many of those embeddings from a given one, say ε, by choosing g ∈ Aut(Γ) \ Autε(Γ) and taking ε · g as

7



a new embedding (notation as in subsection 2.3.3). If Autε(Γ)g 6= Autε(Γ)g′ then ε · g 6∼= ε · g′. So, the
number of isomorphism classes of embeddings of Γ is not smaller than the index of Autε(Γ) in Aut(Γ).

In case (A) the group Autε(Γ) has index 2 in Aut(Γ). Chosen δ ∈ Aut(Γ) \ Autε(Γ), modulo
isomorphisms, ε and ε · δ are the unique embeddings of Γ (Tits [11, 8.6]).

Things go even worse in case (B), not only because the index [Aut(Γ) : Autε(Γ)] increases faster than
the order of Γ when Γ is finite and is infinite when Γ is infinite, but also because, when Γ is infinite,
different fields exist with the same cardinality as the lines of Γ. Each of these fields yields infinitely many
non-isomorphic embeddings of Γ, which have nothing to do with those associated with another field of
the same cardinality. So, in case (B) with Γ infinite, the geometry Γ admits no underlying division ring.

Henceforth we assume that Γ is not as in cases (A) or (B) of Theorem 2.1. So, the embedding ε is
absolutely universal by Theorem 2.1 and, consequently, Γ is defined over K.

Theorem 2.2 (Tits [11, chapter 8]). Under the previous hypotheses, if char(K) 6= 2 then ε is the unique
embedding of Γ.

Moreover, when char(K) 6= 2 and ε(Γ) = Γ(Q), we can replace the pseudoquadratic form Q with its
sesquilinearization fQ.

When char(K) = 2, in general Γ admits embeddings different from the absolutely universal embedding
ε. Explicitly, let Q be a non-degenerate (σ, ε)-quadratic form such that ε(Γ) = Γ(Q) (Theorem 2.1).
Suppose that Rad(fQ) 6= {0}, as it can happen when char(K) = 2. For a non-trivial subspace X of
Rad(fQ) we can consider the quotient εX of ε over [X]. Clearly, εX : Γ → PG(V /X) is an embedding
of Γ different from ε. Since ε is absolutely universal, all embeddings of Γ different from ε arise in this way.

With X as above, put RX := {Q(x) | x ∈ Rad(fQ)} and RX := {t ∈ K | t + Kσ,ε ∈ RX} (a
subgroup of K containing Kσ,ε). Suppose firstly that RX 6= K and define QX : V /X → KX := K/RX

by the clause QX(x) = Q(x) +RX . Then QX is a non-degenerate non-trivial generalized (σ, ε)-quadratic
form, its sequilinearization fQX

is the form induced by fQ on V /X×V /X and we have εX(Γ) = Γ(QX)
(see [7]).

As proved in [7], we have RX = K if and and only if X = Rad(fQ) and (σ, ε) = (idK, 1), namely K
is a field andQ is quadratic. In this case fQ induces a non-degenerate alternating form fX on V /X×V /X
and εX(Γ) = Γ(fX). Note that, in the present situation, if we imitate the previous construction of QX

then we obtain a useless trivial form.
As it follows from Theorems 2.1 and 2.2, all non-degenerate non-trivial proper generalized pseudo-

quadratic forms can be obtained as above from a suitable non-degenerate pseudoquadratic form Q in
characteristic 2 and a non-trivial subspace X of Rad(fQ) such that RX ⊂ K.

Note 5. When rank(Γ) > 2 the existence of the absolutely universal embedding also follows from a
criterion of Kasikova and Shult [5].

3 Subspaces spanned by frames

3.1 Definitions and preliminary results
Let Γ be a non-degenerate polar space of finite rank n ≥ 2. For 2 ≤ k ≤ n, a partial frame of Γ of rank k
is a pair {A,B} of mutually disjoint sets of points, each of size k and such that

(F1) A ⊆ A⊥ and B ⊆ B⊥, namely A and B span singular subspaces of Γ;

(F2) every point of A is collinear will all but one points of B and, conversely, every point of B is collinear
will all but one points of A.

A complete frame (also frame for short) is a partial frame of rank n.

Lemma 3.1. Let F = {A,B} be a partial frame. Then:
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(F3) A and B are bases of the projective spaces 〈A〉Γ and 〈B〉Γ respectively;

(F4) A⊥ ∩ 〈B〉Γ = B⊥ ∩ 〈A〉Γ = ∅.

Proof. When F has rank 2 there is nothing to prove. Suppose that F has rank at least 3 and, by way of
contradiction, suppose that b1, b2, b3 ∈ B are collinear. Every point of A is non-collinear with at most one
of these points. However they are collinear, hence every point of A is collinear with all of them. Hence
b⊥i ⊃ A for i = 1, 2, 3, contradicting (F2). Consequently, B is a basis of 〈B〉Γ. Similarly, A is a basis of
〈A〉Γ. Claim (F3) is proved.

Turning to (F4), suppose that A⊥ ∩ 〈B〉Γ 6= ∅, by way of contradiction. Let b0 ∈ A⊥ ∩ 〈B〉Γ
and choose a subset {b1, b2, . . . , br} ⊆ B such that b0 ∈ 〈b1, b2, . . . , br〉Γ, minimal among the subsets
of B with this property. So b0 6∈ 〈b2, . . . , br〉Γ. Let a be the unique point of A non-collinear with
b1. Then b2, . . . , br ∈ a⊥ by (F2). However b1 ∈ 〈b0, b2, . . . , br〉Γ, since b0 ∈ 〈b1, b2, . . . , br〉Γ but
b0 6∈ 〈b2, . . . , br〉Γ. Therefore a ⊥ b1, since all points b0, b2, . . . , br are collinear with a. We have reached
a contradiction, which forces us to conclude that A⊥ ∩ 〈B〉Γ = ∅. Similarly, B⊥ ∩ 〈A〉Γ = ∅. Claim (F4)
is also proved. �

Every partial frame is contained in complete frame. More precisely:

Lemma 3.2. For every partial frame F = {A,B} there exists a complete frame F ′ = {A′, B′} such that
A′ ⊇ A and B′ ⊇ B.

Proof. LetM be a maximal singular subspace containing A. ThenM ∩ 〈B〉Γ = ∅ by (F4). So, we can
choose a maximal singular subspace N ⊇ B disjoint fromM . As A and B are independent sets in the
projective spacesM and N (by (F3)), we can extend them to bases A′ and B′ ofM and N respectively,
chosen in such a way that (F2) holds for them. �

Let F = {A,B} be a partial frame of rank k. By (F2), the non-collinearity relation induces a bijection
between A and B. Henceforth, when writing A = {a1, a2, . . . , ak} and B = {b1, b2, . . . , bk} we will
always understand that the points a1, . . . , ak of A and b1, . . . , bk of B are matched in such a way that
ai ⊥ bj if and only if i 6= j.

By (F3), the singular subspaces X := 〈A〉Γ and Y := 〈B〉Γ have rank k and (F4) implies that
X⊥ ∩ Y = Y ⊥ ∩X = ∅. In particular, X ∩ Y = ∅.

Given a partial frame F = {A,B}, we put 〈F 〉Γ := 〈A ∪B〉Γ = 〈X ∪ Y 〉Γ.

Lemma 3.3. Let F = {A,B} be a partial frame of rank k. Then 〈F 〉Γ is a non-degenerate polar space of
rank k.

Proof. Put S := 〈F 〉Γ for short and X = 〈A〉Γ and Y = 〈B〉Γ, as above. Suppose firstly that k = n.
Then X and Y are mutually disjoint maximal singular subspaces. If c ∈ Rad(S) then Xc := 〈X, c〉Γ and
Yc := 〈Y, c〉Γ are singular subspaces. However X and Y are maximal. Therefore Xc = X and Yc = Y . It
follows that c ∈ X ∩ Y = ∅; contradiction. Therefore S is non-degenerate. Since it contains X and Y ,
which are maximal as singular subspaces of Γ, necessarily rank(S) = n.

Let now k < n. By way of contradiction, suppose that Rad(S) 6= ∅ and pick c ∈ Rad(S). LetM
and M ′ be mutually disjoint maximal singular subspaces of Γ containing X and Y respectively (they
exist since X⊥ ∩ Y = Y ⊥ ∩X = ∅). The subspace Z := M ∩ Y ⊥ is a complement of X inM , since
Y ⊥ ∩X = ∅ and rank(X) = rank(Y ). Accordingly, Z⊥ ⊇ 〈X ∪ Y 〉Γ = S . Hence c ∈ Z⊥, since c ∈ S .
Consequently, c⊥ ⊇ Z⊥⊥ = Z. Similarly, c⊥ ⊇ Z ′ := M ′ ∩X⊥. Thus, c⊥ contains both X and Y as
well as both Z and Z ′. Hence c⊥ ⊃M ∪M ′. Therefore c⊥ ⊇ R := 〈M ∪M ′〉Γ. However c ∈ S ⊆ R.
It follows that c ∈ Rad(R). This contradicts what we have already proved in the first part of our proof. So,
S is non-degenerate.

We shall now prove that rank(S) = k. Certainly rank(S) ≥ k, since S contains X and Y , which are
singular subspaces of rank k. By way of contradiction, suppose that rank(S) > k. Then S admits a singular
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subspace X ′ ⊃ X of rank k + 1. As Y ⊥ ∩X = ∅, X ′ ∩ Y ⊥ 6= ∅ is a point, say c. Clearly, c⊥ ⊇ X ∪ Y .
Moreover c ∈ S. Therefore c ∈ Rad(S). However we have already proved that rank(S) = ∅. We have
reached a final contradiction. �

Lemma 3.4. Assume that Γ is embeddable and let ε : Γ → PG(V ) be an embedding. Suppose that Γ is
spanned by a frame. Then dim(V ) = 2n and the embedding ε is relatively universal and admits no proper
quotient.

Proof. The geometry Γ is spanned by the 2n points of a frame. Hence dim(V ) ≤ 2n. However
dim(V ) ≥ 2n since Γ has rank n and is non-degenerate. Therefore dim(V ) = 2n.

Let ε′ : Γ → PG(V ′) be such that ε′ → ε. Then dim(V ′) = 2n by the above. As dim(V ) =
dim(V ′) = 2n, necessarily ε′ ∼= ε. This shows that ε is relatively universal. In the same way, starting from
ε→ ε′ instead of ε′ → ε, we see that ε admits no proper quotients. �

Corollary 3.5. Suppose that Γ is embeddable but it is not as in cases (A) and (B) of Theorem 2.1. If Γ is
spanned by a frame, then it admits just one embedding.

Proof. Easy, by combining Lemma 3.4 with Theorem 2.1. �

3.2 A special case of Theorem 1
Throughout this section Γ is an embeddable non-degenerate polar space of finite rank n ≥ 2, ε :
Γ → PG(V ) is a relatively universal embedding, K is the underlying division ring of V and F =
{{e1, e2, . . . , ek}, {f1, f2, . . . , fk}} is a partial frame of Γ of rank k. We shall prove the following:

Theorem 3.6. Put 〈ε(F )〉V := 〈ε(e1), . . . , ε(ek), ε(f1), . . . , ε(fk)〉V . Then

〈F 〉Γ = ε−1(〈ε(F )〉V ). (5)

In short, the subspace 〈F 〉Γ arises from the embedding ε. The following lemma is the first step in the
proof of Theorem 3.6

Lemma 3.7. Suppose that (5) holds whenever k = 2. Then (5) holds for any k = 2, 3, . . . , n.

Proof. To fix ideas, suppose that ε(Γ) = Γ(Q) for a pseudoquadratic form Q. With this assumption, we
miss only the case where ε(Γ) is associated to an alternating form and char(K) 6= 2 (see Theorem 2.1), but
all we are going to say holds for that missing case as well.

Let ei and fi be representative vectors of the points ε(ei) and ε(fi). By Lemmas 3.2 and 3.4, the set
{e1, . . . , ek, f1, . . . , fk} is independent in V . Put

X+ := 〈e1, . . . , ek〉Γ, X− := 〈f1, . . . , fk〉Γ, S+ := 〈e1, . . . , ek〉V , S− := 〈f1, . . . , fk〉V ,

G := ε(F ) = {{[e1], . . . , [ek]}, {[f1], . . . , [fk]}}.

Then S± is totally Q-singular, [S±] = ε(X±), G is a partial frame of rank k in Γ(Q) and 〈ε(F )〉V =
[S+ + S−]. Property (5) amounts to the following:

if 0 6= v ∈ S+ + S− and Q(v) = 0̄ then [v] ∈ ε(〈F 〉Γ). (6)

Let v = v+ + v− be Q-singular with v± ∈ S± and v 6= 0. The vector v± is Q-singular, since S± is totally
Q-singular. Moreover, if v± 6= 0 then [v±] = ε(x±) for a suitable point x± ∈ X±. Clearly, v+ and v−

cannot be both null, since v 6= 0 by assumption. Suppose that one of v+ or v− is null, say v− = 0. Then
v = v+, hence [v] = ε(x+) and we are done.

Assume that none of v+ and v− is null. Suppose firstly that [v+] ⊥ [v−] as points of Γ(Q). Then [v+]
and [v−] are collinear points of Γ(Q) = ε(Γ). Accordingly, x+ and x− are collinear in Γ and ε maps the
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line ` := 〈x+, x−〉Γ of Γ onto the projective line L := 〈[v+], [v−]〉V of PG(V ). As [v] ∈ L, necessarily
[v] = ε(x) for some point x ∈ `. The conclusion of (6) holds in this case.

Finally, suppose that v+ 6⊥ v−. We can choose non-zero vectors w± ∈ S± in such a way that G′ :=
{{[v+], [w+]}, {[v−], [w−]}} is a frame of rank 2 in Γ(Q). As w± ∈ S±, there exist points y± ∈ X± such
that [w±] = ε(y±). We have x+ ⊥ y− and x− ⊥ y+ because ε induces and isomorphism from Γ to Γ(Q).
Hence F ′ = {{x+, y+}, {x−, y−}} is a a frame of Γ of rank 2 and G′ = ε(F ′). By assumption, (5) holds
for frames of rank 2. Hence ε maps 〈F ′〉Γ = 〈x+, y+, x−, y−〉Γ onto 〈[v+], [w+], [v−], [w−]〉V ∩ Γ(Q).
However [v] ∈ 〈[v+], [v−]〉V ∩ Γ(Q), since v = v+ + v− and Q(v) = 0̄. On the other hand, 〈F ′〉Γ ⊆
〈X+ ∪X−〉Γ = 〈F 〉Γ. Therefore [v] = ε(x) for some x ∈ 〈F 〉Γ, as claimed in (6). �

In view of Lemma 3.7, in order to prove Theorem 3.6 we only need to prove that (5) holds when k = 2.
Thus, letF = {{e1, e2}, {f1, f2}} and let e1, e2, f1, f2 be representative vectors of ε(e1), ε(e2), ε(f1), ε(f2)
respectively. Recall that [e1] ⊥ [e2], [f1] ⊥ [f2] and [ei] ⊥ [fj] (as points of ε(Γ)) if and only if i 6= j. We
putW := 〈e1, e2, f1, f2〉V , Γ0 := 〈F 〉Γ and Γ1 := ε−1([W ]). Obviously Γ0 ⊆ Γ1. We must prove that
Γ0 = Γ1.

Let ε0 : Γ0 → PG(W ) and ε1 : Γ1 → PG(W ) be the restrictions of ε to Γ0 and Γ1 respectively, with
codomain PG(V ) replaced by PG(W ) = [W ]. Recall that ε(Γ) is associated with a reflexive sesquilinear
form or a pseudoquadratic form, by Theorem 2.1 and the hypothesis that ε is relatively universal. Hence
the same holds for ε1(Γ1) = [W ] ∩ ε(Γ). Moreover, the form associated to ε1(Γ1) is non-degenerate,
since ε1(Γ1) = ε(Γ1) is the span in ε(Γ) of the frame ε(F ) of ε(Γ).

The embedding ε0 is relatively universal by Lemma 3.4. Accordingly, by Theorem 2.1 a non-degenerate
reflexive sesquilinear or pseudoquadratic form of W also exists which describes ε0(Γ0). Moreover, by
Theorem 2.2, when char(K) 6= 2 we can assume that both ε1(Γ1) and ε0(Γ0) are associated to reflexive
sesquilinear forms. When char(K) = 2, pseudoquadratic forms can be chosen for both ε1(Γ1) and ε0(Γ0)
(see Theorem 2.1).

Lemma 3.8. Let char(K) 6= 2. Then Γ0 = Γ1.

Proof. Let φ, ψ : W ×W → K be reflexive sesquilinear forms such that ε1(Γ1) = Γ(φ) and ε0(Γ0) =
Γ(ψ). Let (σ, ε) and (ρ, η) be the admissible pairs associated with φ and ψ respectively. We know that if φ
is not an alternating form then we can assume that ε = 1. Similarly, we can assume that either η = 1 or
(ρ, η) = (idK,−1). In any case, ε, η ∈ {1,−1}.

LetQ := 〈e1, e2〉V ∪〈f1, f2〉V ∪〈e1, f2〉V ∪〈f1, e2〉V . Two nonzero vectors of the setQ are orthogonal
if and only if the corresponding points of Γ are collinear. Hence φ and ψ define the same orthogonality
relation on the set Q. Accordingly, both the following hold for any t, s ∈ K:

φ(e1 + f2t, e2 + f1s) = 0 if and only if ψ(e1 + e2t, f1 + f2s) = 0,
φ(e1 + e2t, f1 + f2s) = 0 if and only if ψ(e1 + e2t, f1 + f2s) = 0.

(7)

Assume to have chosen e1, e2, f1, f2 in such a way that φ(e1, f1) = φ(e2, f2) = 1, as we can. For i = 1, 2
put ci := ψ(ei, fi). By the first of the two equivalences (7) we see that the condition s + tσε = 0 is
equivalent to c1s+ tρcρ2η = 0, namely s = −tσε if and only if c1s = −tρcρ2η, which implies

c1t
σε = tρcρ2η (8)

for any t ∈ K. With t = 1 in (8) we get

c1 = cρ2ηε
−1. (9)

We can now substitute c1 with its expression (9) in (8). Recalling that ε, η ∈ {1,−1}we obtain cρ2tσ = tρcρ2
for any t ∈ K, namely

tρ = κtσκ−1 (10)

11



where κ := cρ2. However cρ2 = κcσ2κ
−1 by (10). Hence cρ2 = cσ2 . We now consider the second equivalence

of (7). From it we obtain that 1 + tσs = 0 if and only if c1 + tρc2s = 0, namely s = −t−σ (for t 6= 0) if
and only if c1 = tρc2t

−σ, which yields

c1t
σ = tρc2 ∀t ∈ K. (11)

For t = 1, we have c2 = c1 =: c. Note that cσ = cρ, since cσ2 = cρ2. So, (9) and (11) can be rewritten
as follows

cσ = cρ = cεη−1. (12)

tρ = ctσc−1. (13)

By (12) we obtain that cc−σε = c(cη−1ε)−1ε = η (recall that ε, η ∈ {1,−1}). So, cc−σε = η. This
identity combined with (13) shows that ψ and φ are proportional: ψ = c · φ (compare Subsection 2.4.1,
final paragraphs). Therefore Γ(φ) = Γ(ψ), namely Γ0 = Γ1. �

Lemma 3.9. Let char(K) = 2. Then Γ0 = Γ1.

Proof. Now we can assume that ε0(Γ0) = Γ(Q) and ε1(Γ1) = Γ(P ) for suitable non-degenerate
pseudoquadratic forms Q : W → Kσ,ε and P : W → Kρ,η. Let fQ and fP be their sesquilinearizations.
As we know from Subsection 2.4.2, we can assume that ε = η = 1.

Since dim(W ) = 4 and Q and P are non-degenerate with Γ(Q) and Γ(P ) of rank 2, the forms
fQ and fP are non-degenerate. The proof of Lemma 3.8 can be repeated for them word by word. We
obtain that fQ and fP are proportional, say fP = c · fQ and tρ = ctσc−1 for a suitable c ∈ K∗ such that
cc−σ = 1, namely c = cσ (compare the final part of the proof of Lemma 3.8 and recall that now ε = η = 1
by assumption). Accordingly, c−1 · P is a (σ, 1)-quadratic form, proportional to P and with the same
sesquilinearization as Q. So, modulo replacing P with c−1 · P , we can assume to have chosen P in such a
way that ρ = σ and fP = fQ =: f , say.

It remains to prove that, under this assumption, we have P = Q. As in the proof of Lemma 3.8, we
assume to have chosen the vectors e1, e2, f1 and f2 in such a way that f(ei, fi) = 1 for i = 1, 2. Hence
f(eis, fit) = sσt for every choice of s, t ∈ K. Consequently, recalling that all vectors e1, e2, f1 and f2 are
singular for both Q and P , we have

Q(eis+ fit) = P (eis+ fit) = sσt+Kσ,1

for every choice of s, t ∈ K and i = 1, 2. In other words, Q and P coincide on the (non-singular)
2-subspaces L1 = 〈e1, f1〉V and L2 = 〈e2, f2〉V . HoweverW = L1 + L2. Therefore, every vector v ∈ W
is the sum v = v1 + v2 of a vector v1 ∈ L1 and v2 ∈ L2. As Q and P coincide on L1 and L2, we obtain

Q(v) = Q(v1) +Q(v2) + (f(v1, v2) +Kσ,1) =
= P (v1) + P (v2) + (f(v1, v2) +Kσ,1) = P (v).

Therefore Q = P . Hence Γ0 = Γ1. �

The proof of Theorem 3.6 is complete.

4 Proof of Theorem 1
Henceforth Γ is an embeddable non-degenerate polar space of rank n ≥ 2 and ε : Γ → PG(V ) is a
relatively universal embedding of Γ. Note that our hypotheses in this section are slightly more general than
those of Theorem 1: we do not ask ε to be absolutely universal.
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4.1 The non-degenerate case
Let S be a proper subspace of Γ. We assume that, regarded as a polar space, S is non-degenerate of rank
m ≥ 2. Of course,m ≤ n. We shall prove the following:

Theorem 4.1. The subspace S arises from ε.

Clearly, S contains a partial frame F = {A,B} of rankm, but in general 〈F 〉Γ ⊂ S. We say that a
subset C of S is a generating supplement of F with respect to S (a S-generating supplement of F , for short)
if 〈A ∪B ∪ C〉Γ = S. Note that we do not assume that C is minimal with respect to this property, not
even that C ∩ (A ∪B) = ∅. Having defined S-generating supplements in this way, they obviously exists:
for want of nicer choices, even the full set of points of S can be taken as a generating supplement of F .

Given a S-generating supplement C of F , let ω be an ordinal number of cardinality |ω| = |C| and
choose a well ordering (cδ)δ<ω of C. For every ordinal number γ ≤ ω define Sγ := 〈A ∪B ∪ {cδ}δ<γ〉Γ.
In particular, S0 = 〈F 〉Γ and Sω = S.

We shall prove by (transfinite) induction that for every γ ≤ ω the subspace Sγ arises from ε. In
particular, S = Sω arises from ε, as claimed in Theorem 4.1.

Theorem 3.6 provides the initial step of the induction. Indeed S0 = 〈F 〉Γ. The next lemma provides
the inductive step from γ to γ + 1.

Lemma 4.2. Let X be a subspace of Γ such that X , regarded as a polar space, is non-degenerate of rank m ≥ 2
and X arises from ε. Let a be a point of Γ not in X such that Y := 〈X , a〉Γ still has rank m. Then Y is
non-degenerate and arises from ε.

Proof. Given a point c ∈ Rad(Y) and a maximal subspaceM of X ⊂ Y , the point c cannot belong to
M , since X is non-degenerate. Hence 〈M, c〉Γ is a singular subspace of Y of rankm+ 1; a contradiction
with the hypothesis rank(Y) = m. So, Y is indeed non-degenerate.

Put Z := ε−1(〈ε(Y)〉V ). We firstly prove that rank(Z) = m and, consequently, Z is non-degenerate
by the same argument as in the previous paragraph.

By way of contradiction, suppose that rank(Z) > m. LetM be a maximal singular subspace of X and
letM ′ ⊃M be a singular subspace of Z properly containingM . If a⊥ ⊇M then 〈M,a〉Γ is a singular
subspace of Y of rank m + 1. This contradicts the hypothesis that rank(Y) = m. Therefore a⊥ 6⊇ M .
Accordingly, a⊥ ∩M ′ is a hyperplane in the projective spaceM ′ ⊃M andM 6⊆ a⊥ ∩M ′. In particular,
a 6∈M ′.

Choose a point b ∈ a⊥ ∩M ′ \M . So, ` := 〈a, b〉Γ is a line of Γ. As X arises from ε and a 6∈ X , the
subspaceW := 〈ε(X )〉V is a hyperplane ofW ′ := 〈ε(X ), ε(a)〉V = 〈ε(Y)〉V . Accordingly, the projective
line ε(`), which is contained in W ′, meets W in a point ε(c), for c ∈ `. However X = ε−1(W), since X
arises from ε. Therefore c ∈ X . Hence c 6= a. Consequently ` = 〈a, c〉Γ. It follows that b ∈ 〈X , a〉Γ = Y .
However b ∈M ′ \M andM ′ ⊃M . So, Y contains a singular subspace of rankm+ 1, namely 〈M, b〉Γ.
We have reached again a contradiction with the hypothesis rank(Y) = m, which forces us to conclude
that rank(Z) = m.

The equality Z = Y remains to be proved. By way of contradiction, let Y ⊂ Z and choose a point
b ∈ Z \ Y . By the same argument as in the previous paragraph we see that b 6⊥ a. We shall prove that
b⊥ ∩M = a⊥ ∩M for every maximal singular subspaceM of X .

By way of contradiction, suppose that there exists a maximal singular subspace M of X such that
a⊥ ∩M 6= b⊥ ∩M and putM ′ := 〈b, b⊥ ∩M〉V . BothM andM ′ are maximal singular subspaces of Z ,
since rank(Z) = m. We have a 6∈M ′, since a 6⊥ b. Therefore a⊥ ∩M ′ is a hyperplane of Z . As we have
assumed that a⊥ ∩M 6= b⊥ ∩M , the subspace a⊥ ∩ b⊥ ∩M has codimension 2 inM ′. Accordingly,
a⊥ ∩ b⊥ ∩M ⊂ a⊥ ∩M ′.

Choose a point c ∈ (a⊥ ∩M ′) \M . Then ` := 〈a, c〉Γ is a line of Z . With W as in the previous
paragraph, the projective line ε(`) meetsW in a point ε(d) for some point d ∈ `. However X = ε−1(W).
Hence d ∈ X ⊂ Y . Moreover, d 6= a since a 6∈ X . Therefore ` = 〈a, d〉Γ ⊂ Y . Accordingly, c ∈ Y .
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However c ∈ M ′ \M andM ′ ∩M is a hyperplane ofM ′. ThereforeM ′ = 〈M ∩M ′, c〉Γ. It follows
thatM ′ ⊂ Y . In particular, b ∈ Y , whereas b ∈ Z \ Y by assumption. This contradiction forces us to
conclude that b⊥ ∩M = a⊥ ∩M for every maximal singular subspaceM of X , as claimed. As b is an
arbitrary point of Z \ Y , this property holds for any point x ∈ Z \ Y .

With b,M andM ′ as above, let x be an arbitrary point ofM ′ \ (b⊥∩M), different from b. As b⊥∩M
is a hyperplane ofM ′, the line 〈b, x〉Γ meets b⊥∩M in a point. Therefore x 6∈ Y , sinceM ⊂ Y but b 6∈ Y .
Accordingly,M ′∩Y =M ′∩M = b⊥∩M = a⊥∩M and x⊥∩N = a⊥∩N = b⊥∩N for every point
x ∈M ′ \M and every maximal singular subspace N of X , according to the conclusions of the previous
paragraph. We can chooseN such thatN∩M = ∅. ThenN∩M ′ = ∅ sinceN∩M ′ ⊆M ′∩Y =M ′∩M .

With N chosen in this way and X := a⊥ ∩ N (= x⊥ ∩ N for any x ∈ M ′ \M ) we obtain that
X⊥ ∩M ′ is equal toM ′ \M , which of course is not a singleton. However X is a hyperplane of N and
N ∩M ′ = ∅. HenceX⊥ ∩M ′ is a singleton. We have reached a final contradiction, which compels us to
admit that Z = Y . �

End of the proof of Theorem 4.1. Let Sγ be defined as at the beginning of this section. Then Sγ is a
subspace ofS , which is non-degenerate of rankm, and it contains a given frame ofS . Hence rank(Sγ) = m.
The following remains to be proved, for every γ ≤ ω.

(∗) the subspace Sγ is a non-degenerate polar space and it arises from ε.

We know from Lemma 3.3 and Theorem 3.6 that (∗) holds true for S0. Lemma 4.2 shows that, if property
(∗) holds for Sγ , and γ < ω, then it also holds for Sγ+1. It might happen that cγ ∈ Sγ ; if this is the case
then Sγ+1 = Sγ and there is nothing to prove.

The case where γ is a limit ordinal remains to consider. In this case Sγ = ∪δ<γSδ and Sδ satisfies (∗)
for every δ < γ, by the inductive hypothesis. Let c ∈ Rad(Sγ). Then c ∈ Sδ for some δ < γ. Hence
c ∈ Rad(Sδ). However Sδ is non-degenerate by the inductive hypothesis. We conclude that Rad(Sγ) = ∅.
Turning to the second part of (∗), we have 〈ε(Sγ)〉V = ∪δ<γ〈ε(Sδ)〉V . If ε(a) ∈ 〈ε(Sγ)〉V then
ε(a) ∈ 〈ε(Sδ)〉V for some δ < γ. As Sδ is supposed to arise from ε, necessarily a ∈ Sδ. Hence a ∈ Sγ .
We have proved that Sγ also arises from ε. �

Note 6. By the same argument as in the proof of Corollary 6, one can see that every S-generating
supplement of F contains a minimal one, necessarily disjoint from A∪B. We could not take this fact into
account in our definition of S-generating supplements because we don’t know how to prove it without
using Theorem 4.1, which at that stage had still to be proved.

4.2 The degenerate case
In this subsection S is a degenerate subspace of Γ such that ranknd(S) ≥ 2. The next theorem finishes the
proof of Theorem 1.

Theorem 4.3. The subspace S arises from ε.

Proof. By Theorem 2.1, either ε(Γ) = Γ(Q) for a non-degenerate pseudoquadratic form Q of V or
ε(Γ) = Γ(f) for a non-degenerate alternating form f : V × V → K with char(K) 6= 2. The second case
can be dealt with just in the same way as the first one. To fix ideas, we assume that the first case occurs. So,
ε(Γ) = Γ(Q).

Let fQ be the sesquilinearization of Q. In order to avoid any confusion with collinearity in Γ, we
denote the orthogonality relation defined by fQ on V by the symbol ⊥Q. We use the same symbol
for the corresponding orthogonality relation in PG(V ). For instance, for a subset X of V , we put
[X]⊥Q := [X⊥Q ].

Let R := Rad(S) and put W := 〈ε(R)⊥Q〉V (a projective subspace of PG(V )). Then Γ(Q) ∩ W
spansW and ε induces on R⊥ a projective embedding ε(R) : R

⊥ → W .
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Let ΓR be the star of R in Γ, namely the polar space the points and lines of which are the singular
subspaces of Γ containing R and with rank equal to r + 1 and r + 2 respectively, where r := rank(R). As
ranknd(S) ≥ 2, we have n−r ≥ 2. So, ΓR is indeed a (non-degenerate) polar space of rank n−r ≥ 2. The
embedding ε(R) induces and embedding εR of ΓR in the quotientWR := W/ε(R) ofW over its projective
subspace ε(R). The εR-image εR(ΓR) of ΓR is the star Γ(Q)ε(R) of ε(R) in Γ(Q). A non-degenerate
pseudoquadratic form QR can be defined on WR in such a way that Γ(QR) = Γ(Q)ε(R). Accordingly, εR
is relatively universal. Indeed QR is pseudoquadratic, whereas every non relatively universal embedding
of a polar space arises from either a proper generalized pseudoquadratic form or an alternating form in
characteristic 2 (see Subsection 2.4.3 and the final part of Subsection 2.4.4).

LetSR be the star ofR inS . ThenSR is a non-degenerate subspace ofΓR and rank(SR) = ranknd(S) ≥
2. By Theorem 4.1, the subspace SR arises from εR. Consequently, S arises from ε(R), hence from ε too.
�

5 Subspaces and 3-dimensional embeddings
The (projective) dimension of an embedding ε : Γ → PG(V ) of a connected point-line geometry Γ is the
dimension of PG(V ). Note that, since embeddings are injective and map lines onto projective lines, if a
geometry admits a 2-dimensional embedding then any two of its lines have a point in common. Such a
geometry is either a projective plane or a pencil of lines (possibly a single line). Accordingly, a generalized
quadrangle admits no 2-dimensional embedding.

Proposition 5.1. For a generalized quadrangle Γ, suppose that Γ admits a 3-dimensional relatively universal
embedding. Then all proper subspaces of Γ have non-degenerate rank at most 1.

Proof. Let ε : Γ → PG(V ) be a relatively universal embedding of Γ such that dim(PG(V )) = 3. As
rank(Γ) = 2, all subspaces of Γ have rank at most 2 and, if they have non-degenerate rank 2, then they are
non-degenerate, namely subquadrangles of Γ. Let S be a subquadrangle of Γ. The span 〈ε(S)〉V of ε(S)
in PG(V ) cannot be a plane or a line, since S admits pairs of non-concurrent lines. Therefore ε(S) spans
PG(V ). However S arises from ε, by Theorem 4.1. It follows that S = Γ. �

The quadrangles considered in cases (A) and (B) of Theorem 2.1 satisfy the hypotheses of Proposition
5.1. Hence all of their proper subspaces are either pencils of lines or sets of mutually non-collinear points.
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