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Abstract
In this paper we determine the minimum distance of orthogonal line-Grassmann codes for

q even. The case q odd was solved in [3]. We also show that for q even all minimum weight
codewords are equivalent and that symplectic line-Grassmann codes are proper subcodes of
codimension 2n of the orthogonal ones.
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1 Introduction
A projective code C(Ω) is an error correcting code determined by a projective system, that is a
set Ω of N distinct points of a finite projective space. More in detail, C(Ω) is a linear code of
length N generated by the rows of a matrix G whose columns are the coordinates of the points
of Ω with respect to some fixed reference system. In general, C(Ω) is not uniquely determined
by Ω, but it turns out to be unique up to monomial equivalence; as such its metric properties
with respect to Hamming’s distance depend only on the set of points under consideration. With
a slight abuse of notation, which is however customary when dealing with projective codes, we
shall speak of C(Ω) as the code defined by Ω = {ω1, ω2, . . . , ωN} where the ωis are fixed vector
representations of the points of the projective system.

As mentioned above, the parameters [N,K, dmin] of C(Ω) depend only on the pointset Ω; in
particular, the length N is the size of Ω and the dimension K is the (vector) dimension of the
subspace of W spanned by Ω. It is straightforward to show that the minimum distance dmin is

dmin = N − max
Π

|Ω ∩Π|, (1)

as Π ranges among all hyperplanes of the space PG(〈Ω〉); we refer to [12] for further details.
The codes associated with polar k-Grassmannians of either orthogonal or symplectic type

have been introduced respectively in [1] and [4]. In the case of line-Grassmannians, that is for
k = 2, the following results are known: in the symplectic case it has been shown in [4] that the
minimum distance is q4n−5 − q2n−3 for any q; in the orthogonal case it has been shown in [1,
Main Result 2] that the minimum distance is dmin = q3 − q2 for n = 2 for any q and in [3] that
the minimum distance is dmin = q4n−5 − q3n−4 for q odd.

The aim of the present paper is to determine the minimum distance of orthogonal line-
Grassmann codes for q even. Our main result is the following.

Main Theorem. For q even, the minimum distance of a line orthogonal Grassmann code is

dmin = q4n−5 − q3n−4.

Furthermore, all words of minimum weight are projectively equivalent.
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Using the aforementioned results of [1, 3] this leads to the following general result.

Corollary 1.1. The parameters [N,K, dmin] of a line orthogonal Grassmann code are

N =
(q2n − 1)(q2n−2 − 1)

(q − 1)(q2 − 1)
, K =

{
(2n+ 1)n q odd
(2n+ 1)n− 1 q even,

dmin = q4n−5 − q3n−4.

Note that for q odd and n = 2, by [3, Corollary 3.8], the minimum weight codewords lie on
two orbits under the action of the linear automorphism group of the code.

The structure of the paper is as follows. In Section 2 we set the notation and introduce
some preliminary results. In particular, in Section 2.1 we recall some basic results on polar
Grassmannians and their associated codes and in Section 2.2 we describe in detail a fundamental
formula for the computation of weights of codewords in a projective code. In Section 3 we shall
prove our Main Theorem.

For further details on the actual construction of orthogonal and symplectic line-Grassmann
codes, we refer to [2] where some efficient algorithms for encoding, decoding and error-correction
have been presented.

2 Preliminaries
2.1 Grassmann and Polar Grassmann codes
Let V := V (2n+ 1, q) be a vector space of odd dimension defined over a finite field Fq of order q
and denote by Gk the Grassmannian of the k–subspaces of V.

For any k < dim(V ), let εk : Gk → PG(
∧k

V ) be the usual Plücker embedding, mapping a
point 〈v1, . . . , vk〉 of Gk to the projective point 〈v1 ∧ · · · ∧ vk〉 of PG(

∧k
V ):

εk : 〈v1, . . . , vk〉 7→ 〈v1 ∧ · · · ∧ vk〉.

Let η : V → Fq be a fixed non-degenerate quadratic form over V and denote by ∆k the
orthogonal Grassmannian associated to η, that is ∆k is the geometry whose points are the
k–subspaces of V which are totally singular for η and whose lines are defined as follows

• if k < n, then `X,Y := {Z : X < Z < Y : dimZ = k}, with dimX = k − 1, dimY = k + 1
and Y totally singular;

• if k = n, then `X := {Z : X < Z < X⊥η : dimZ = n}, with dimX = n − 1, Z totally
singular and X⊥η := {y ∈ V : β(x, y) = 0 for all x ∈ X}, where β is the sesquilinearization
of η.

For k < n, ∆k is a proper subgeometry of Gk. In any case, for k ≤ n the point-set of ∆k is
always a subset of that of Gk.

Put εk(Gk) := {εk(X) : X is a point of Gk} and εk(∆k) = {εk(Y ) : Y is a point of ∆k}. Then,
the above statement reads as εk(∆k) ⊆ εk(Gk) ⊆ PG(

∧k
V ).

We warn the reader that throughout the paper we will consider vectors and vector dimensions
but we will adopt projective terminology.

Theorem 2.1 ([5]). Let εk : ∆k → PG(
∧k

V ) be the restriction of the Plücker embedding to the
orthogonal Grassmannian ∆k and let Wk := 〈εk(∆k)〉. Then,

dimWk =

{(
2n+1
k

)
if q is odd(

2n+1
k

)
−
(
2n+1
k−2

)
if q is even.
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For more information on embeddings of orthogonal line-Grassmannians we refer to [6].
The image εk(Gk) is a projective system in PG(

∧k
V ) and the projective code C(Gk) is called

k-Grassmann code. Grassmann codes have been introduced in [10, 11] as generalizations of first
order Reed–Muller codes and they have been extensively investigated ever since; see [7, 8, 9, 10, 11].
Their parameters, as well as some of their higher weights, have been fully determined in [9].

The set Ω := εk(∆k) is a projective system of PG(Wk) ⊆ PG(
∧k

V ), hence it is natural to
consider the projective code Pn,k := C(Ω) arising from Ω. The codes Pn,k := C(Ω) are called
orthogonal k-Grassmann codes and they were introduced in [1]. Theorem 2.1 immediately provides
the length N as the number of points of ∆k and the dimension K = dimWk of Pn,k. A more
difficult task is to determine the minimum distance of an orthogonal Grassmann code. In [1] we
obtained the exact value of dmin for n = k = 2 and n = k = 3; more recently, in [3], it has been
shown that for q odd and k = 2 the minimum distance of Pn,2 is q4n−5 − q3n−4.

We now present in detail a geometric setting in which it is possible to study the weights of a
projective code arising from the image under the Plücker embedding εk of an arbitrary set of
k-subspaces.

For any vector space U , denote by U∗ its dual. It is well known that (
∧k

V )∗ ∼=
∧k

V ∗.
Suppose Ω = {ω1, . . . , ωN} ⊆ εk(Gk) to be a projective system of

∧k
V and take W := 〈Ω〉. Let

now

N (Ω) := {ϕ ∈
k∧
V ∗ : ϕ|Ω ≡ 0}

be the annihilator of the set Ω; clearly N (Ω) = N (W ). There exists a correspondence between
the elements of (

∧k
V ∗)/N (Ω) ∼= W ∗ and the codewords of C(Ω). More precisely, given any

ϕ ∈W ∗, the codeword cϕ corresponding to ϕ is defined as

cϕ := (ϕ(ω1), . . . , ϕ(ωN )).

As Ω spans W it is immediate to see that cϕ = cψ if and only if ϕ− ψ ∈ N (Ω), that is ϕ = ψ as
elements of W ∗.

Define the weight wt(ϕ) of ϕ to be the weight of cϕ, that is

wt(ϕ) := wt(cϕ) = |{ω ∈ Ω: ϕ(ω) 6= 0}|.

It is well known that linear functionals in
∧k

V ∗ are equivalent to k-linear alternating forms
defined on V . In particular, given ϕ ∈

∧k
V ∗ we can define ϕ∗ : V k → Fq as

ϕ∗(v1, . . . , vk) := ϕ(v1 ∧ v2 ∧ · · · ∧ vk)

which is a k-linear alternating form. Conversely, given a k-linear alternating form ϕ∗ : V k → Fq,
there is a unique element ϕ ∈

∧k
V ∗ such that

ϕ(v1 ∧ . . . ∧ vk) := ϕ∗(v1, . . . , vk)

for any v1, . . . , vk ∈ V . In particular, ϕ(u) = 0 for u = 〈v1 ∧ v2 ∧ · · · ∧ vk〉 ∈ Ω if and only if all
the k-tuples of elements of the vector space U := 〈v1, . . . , vk〉 are killed by ϕ∗. With a slight
abuse of notation, in the remainder of this paper we shall use the same symbol ϕ for both the
linear functional and the related k-alternating form.

For linear codes the minimum distance is the minimum of the weights of the non-zero codewords;
so, in order to obtain the minimum distance of the codes Pn,k we need to determine the maximum
number of k–spaces of V with are both totally η–singular and ϕ–totally isotropic, where ϕ is an
arbitrary k–linear alternating form which is not identically null on the elements of ∆k.
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2.2 A recursive formula for the weights
Take ϕ ∈ (

∧k
V )∗ and let u ∈ V . Then, we can define a functional ϕu ∈ (

∧k−1
V )∗ by

ϕu :

{∧k−1
V → Fq

x 7→ ϕ(u ∧ x).

Define u
∧k−2

V := {u ∧ y : y ∈
∧k−2

V } j
∧k−1

V and Vu := V /〈u〉. Observe that for any
y ∈ u

∧k−2
V we have ϕu(y) = 0. Since

∧k−1
Vu = (

∧k−1
V )/(u

∧k−2
V ), for x ∈

∧k−1
V , we

can define a functional ϕ̂u ∈ (
∧k−1

Vu)
∗ by

ϕ̂u :

{∧k−1
Vu → Fq

x+ (u
∧k−2

V ) 7→ ϕu(x).

Let now T be a set of k-subspaces of V and denote by T ⊆ V the set of vectors of V belonging
to at least one element of T . Put εk(T ) = {εk(X) : X ∈ T }. Define

Tu := {X/〈u〉 : X ∈ T , u ∈ X} ⊆ Vu and Su := 〈Tu〉.

Apply the Plücker embedding εk−1 : Gk−1 → PG(
∧k−1

Vu) to the elements X/〈u〉 ∈ Tu. Put
Ωu := {εk−1(X/〈u〉) : X/〈u〉 ∈ Tu}. The set Ωu can be regarded as a projective system of∧k−1

Su. We can consider the linear functional ϕ̃u := ϕ̂u|∧k−1 Su
which is the restriction of ϕ̂u

to
∧k−1

Su. As recalled in Section 2.1, to each codeword of C(Ωu) there correspond exactly one
functional ϕ̃′

u ∈ (
∧k−1

S∗
u)/Ñ (Ωu) where

Ñ (Ωu) := {ψ ∈
k−1∧

S∗
u : ψ|Ωu ≡ 0}.

Observe that, given ϕ̃′
u ∈ (

∧k−1
S∗
u)/Ñ (Ωu), there exists a functional ϕ̃u ∈ (

∧k−1
S∗
u) such that

wt(ϕ̃u) = wt(ϕ̃′
u).

Under the set-up introduced above, the following formula holds (see [3, Lemma 2.2]):

wt(ϕ) = 1

qk − 1

∑
u∈T

wt(ϕ̃u). (2)

Note that when T is the set of all k-subspaces of V , namely T is Gk, then T is the pointset of
V, hence Su = Vu,

∧k−1
(Su/〈u〉) =

∧k−1
Vu and ϕ̃u = ϕ̂u = ϕ̃′

u.

Observe also that if Ωu spans
∧k−1

Su, then Ñ (Ωu) is trivial and ϕ̃′
u = ϕ̃u. This happens, for

example, in the case of orthogonal Grassmann codes for q odd or k = 2. Indeed, if we specialize
to the case of line orthogonal Grassmann codes (i.e. k = 2 and T = ∆2), we have that T is the
pointset of the non-degenerate parabolic quadric Q ∼= Q(2n, q) defined by the quadratic form η.
So Tu, with u ∈ Q, is isomorphic to the non-degenerate parabolic quadric Qu having as points,
the lines of Q through u. In this case Tu ∼= Qu is naturally embedded (by ε1) as a non-degenerate
parabolic quadric Ωu ∼= Q(2n− 2, q) in a (2n− 1)-dimensional vector space Su. Hence Ωu spans
Su and Ñ (Ωu) = {0}.

3 Proof of the Main Theorem
If q = 2 and n = 2, [1, Main Result 2] shows that the minimum distance of the code is 4 = 23−22.
A direct computation proves that all 45 words of minimum weight lie in the same orbit under
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the action of the automorphism group of the code, which is isomorphic to the orthogonal linear
group GO(5, 2) in its natural action on

∧2
V .

Henceforth, we shall assume q to be even and (q, n) 6= (2, 2). As mentioned in the Introduction,
the case q even and n = 2 is also covered by [1, Main result 2].

As dimV is odd, all non–degenerate quadratic forms on V are projectively equivalent. So, for
the purposes of the present paper, we can assume to have fixed a basis B := (e1, . . . , e2n+1) of V
such that η is

η(x) :=

n∑
i=1

x2i−1x2i + x22n+1, (3)

where (xi)
2n+1
i=1 are the coordinates of a vector x ∈ V with respect to B.

Let β(x, y) := η(x+y)−η(x)−η(y) be the bilinear form associated with η by sesquilinearization.
As q is even, the bilinear form β is degenerate with 1-dimensional radical N = {x ∈ V : β(x, y) =
0 for any y ∈ V } = 〈e2n+1〉.

The set of totally singular vectors for η determine a parabolic quadric Q ∼= Q(2n, q) in PG(V ).
We recall that when p and q are distinct points of Q, the line spanned by p and q is totally
singular if and only if

η(p) = η(q) = β(p, q) = 0.

For any p ∈ Q, define
p⊥Q := 〈u ∈ Q : 〈p, q〉 ⊆ Q〉.

So p⊥Q is the tangent hyperplane at p to Q. By construction, we also have p⊥Q = {u ∈
V : β(p, u) = 0}; thus N ⊆ p⊥Q for any p ∈ Q and any line through N is tangent to Q. The point
N is called the nucleus of the quadric Q.

By Theorem 2.1, Σ := PG(〈ε2(∆2)〉) is a hyperplane of PG(
∧2

V ); more in detail, Σ is the
kernel of the functional β arising from the alternating bilinear form introduced above.

If Π is a hyperplane of PG(
∧2

V ) different form Σ, then ΠΣ := Π ∩ Σ is a hyperplane of Σ;
clearly, every hyperplane of Σ can be obtained by intersecting Σ with suitable hyperplanes of
PG(

∧2
V ).

So, by Equation (1), dmin = N − maxΠ |ε2(∆2) ∩ΠΣ|, where Π ranges among all hyperplanes
of PG(

∧2
V ) different from Σ. Regarding Π as (the kernel of) a linear functional ϕΠ ∈

∧2
V ∗

we see that the cardinality of ε2(∆2) ∩ ΠΣ is the same as the number of lines of V which are
simultaneously totally singular for η and totally isotropic for ϕΠ, now considered as a bilinear
alternating form on V × V . Observe that by the correspondence between codewords of Pn,2 and
elements of

∧2
V ∗/N (ε2(∆2)) explained in Section 2.1, two functionals ϕ, ϑ ∈

∧2
V ∗ induce the

same codeword c ∈ Pn,2 if and only if ϕ− ϑ = aβ, for some a ∈ Fq.
As dim(V ) is odd, the bilinear form ϕΠ is always degenerate; denote by Rad(ϕΠ) its radical,

i.e. Rad(ϕΠ) := {x ∈ V : ϕΠ(x, y) = 0 ∀y ∈ V }.

We are now ready to prove our main theorem. We proceed in several stages. First of all we
consider in Section 3.1 those hyperplanes Π corresponding to alternating bilinear forms having
radical Rad(ϕΠ) containing the nucleus N of Q. We prove in Lemma 3.1 that the weight of these
forms is always at least q4n−5 − q2n−3, thus showing that they cannot have minimum weight.
Then, in Section 3.2 we deal with the class of hyperplanes corresponding to alternating bilinear
forms having radical not containing the nucleus N of Q. We show that a necessary condition for
the forms to correspond to minimal weight codewords is to have radical of maximum dimension
(see Theorem 3.6). Finally, we characterize the codewords of minimum weight.
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3.1 Weight of ϕΠ when N ⊆ Rad(ϕΠ)

Suppose Π to be a hyperplane of PG(
∧2

V ) corresponding to a bilinear alternating form ϕΠ

whose radical Rad(ϕΠ) contains N. For the sake of simplicity, we will write ϕ instead of ϕΠ.
Denote by W the non-degenerate symplectic polar space in V /N having as points the lines of

V through N and as lines the planes of V through N containing a line of Q. It is immediate to
see that W is defined by the non-degenerate alternating form βsp induced by β on V /N.

The projection ι from V to V /N induces an isomorphism of polar spaces from Q to W.
So, ι naturally induces an isomorphism ι between the orthogonal line-Grassmannian ∆2 and
the symplectic line-Grassmannian ∆sp

2 associated with βsp by ι(`) := 〈`,N〉/N for any ` ∈ ∆2.
Denote by Psp

n,2 the symplectic Grassmann code defined by βsp on V /N . (See [4] for more
information on symplectic Grassmann codes.)

Lemma 3.1. If N ⊆ Rad(ϕ) then wt(ϕ) ≥ q4n−5 − q2n−3.

Proof. Since N ⊆ Rad(ϕ), we can consider the (possibly degenerate) symplectic polar space Wϕ

of V /N having as points the lines of V (totally isotropic for ϕ) through N and as lines the planes
of V through N which are totally isotropic for ϕ. Denote by ϕsp the bilinear alternating form of
V /N defining Wϕ. Clearly, ϕsp is the form induced by ϕ on V /N. Since N ⊆ Rad(ϕ), given any
line ` of V with N /∈ ` which is totally isotropic for ϕ, the plane 〈N, `〉 is also totally isotropic
for ϕ. So ι(`) is a totally isotropic line for ϕsp. Conversely, if 〈`,N〉 is a totally isotropic line
for ϕsp, then ` is totally isotropic for ϕ. So, the projection ι : V → V /N induces a bijection
between the set of lines of V which are simultaneously totally singular for η and totally isotropic
for ϕ and the set of lines of V /N which are simultaneously totally isotropic for βsp and totally
isotropic for ϕsp. So wt(ϕ) = wt(ϕsp), where wt(ϕ) is intended as the weight of the codeword
induced by ϕ in the orthogonal line-Grassmann code Pn,2, while wt(ϕsp) corresponds to the
weight of a codeword cϕsp in the symplectic line-Grassmann code Psp

n,2. By the Main Theorem of
[4], wt(ϕsp) ≥ q4n−5 − q2n−3. This completes the lemma.

Observe that the isomorphism ι is not an isomorphism between the codes Pn,2 and Psp
n,2 induced

by the projective systems arising from the embedding of the respective polar Grassmannians; in
particular, we see that for q even Psp

n,2 is a proper subcode of Pn,2 with codimension 2n.

3.2 Weight of ϕΠ when N 6⊆ Rad(ϕΠ)

Suppose that Π is a hyperplane of PG(
∧2

V ) corresponding to a bilinear alternating form ϕΠ

whose radical Rad(ϕΠ) does not contain N. As in Section 3.1, we shall write ϕ instead of ϕΠ. It
is not possible to proceed now as in Section 3.1 since, under the hypothesis N 6⊆ Rad(ϕ), the
form ϕ does not induce any symplectic polar space in V /N , as there are some lines of V through
N which are not totally isotropic for ϕ.

We will rely on Equation (2) adapted to the special case Ω = ε2(∆2). For the convenience of
the reader we write explicitly Equation (2) in this case: for any ϕ ∈

∧2
V ,

wt(ϕ) = 1

q2 − 1

∑
u∈Q

wt(ϕ̃u) (4)

where ϕ̃u : (u⊥Q/〈u〉) → Fq, ϕ̃u(x+ 〈u〉) := ϕ(u, x) with x ∈ u⊥Q and u ∈ Q. Observe that the
vector space u⊥Q/〈u〉 is naturally endowed with the quadratic form ηu : x + 〈u〉 → η(x) and
dimu⊥Q/〈u〉 = 2n − 1. It is well known that the set of all totally singular points for ηu is a
parabolic quadric Qu

∼= Q(2n−2, q) of rank n−1 in u⊥Q/〈u〉. In particular, the possible non-zero

6



weights of ϕ̃u correspond to the non-trivial hyperplane sections of Qu. So, the following lemma is
straightforward.

Lemma 3.2. Either ϕ̃u = 0 or wt(ϕ̃u) ∈ {q2n−3 − qn−2, q2n−3, q2n−3 + qn−2}.

Define
A′:= {u : u ∈ Q and ϕ̃u 6= 0}, A′ := |A′|;
B := {u : u ∈ A′ and wt(ϕ̃u) = q2n−3}, B := |B|;
C := {u : u ∈ A′ and wt(ϕ̃u) = q2n−3 + qn−2}, C := |C|.

By definition, both B and C are subsets of A′ and B,C ≥ 0. Using Equation (4) and Lemma 3.2
we can write

wt(ϕ) = q2n−3 − qn−2

q2 − 1
A′ +

qn−2

q2 − 1
B +

2qn−2

q2 − 1
C. (5)

For any u ∈ V, write u⊥ϕ := {x ∈ V : ϕ(u, x) = 0} ⊆ V.

Lemma 3.3. Let u ∈ Q. Then ϕ̃u = 0 ⇔ u⊥Q ⊆ u⊥ϕ .

Proof. Let x ∈ u⊥Q and suppose u⊥Q ⊆ u⊥ϕ . Then ϕ(u, x) = 0. So, by definition of ϕu,
ϕu(x) = 0 for any x ∈ u⊥Q , whence ϕ̃u = 0. Conversely, if ϕ̃u is identically zero, then
ϕu(x) = ϕ(u, x) = 0 ∀x ∈ u⊥Q ; so u⊥Q ⊆ u⊥ϕ .

Put
S := |{u ∈ Q : ϕ̃u = 0}| = q2n − 1−A′.

By Lemma 3.3, S = |{u ∈ Q : u⊥Q ⊆ u⊥ϕ}| = |{u ∈ Q : u⊥ϕ = V }|+ |{u ∈ Q : u⊥Q = u⊥ϕ}|.
If we define A := q2n−2 − 1− S, then Equation (5) becomes

wt(ϕ) = q4n−5 − q3n−4 +
qn−2

q2 − 1
((qn−1 − 1)A+B + 2C). (6)

Furthermore,

A = q2n−2 − 1− |{u ∈ Q : u⊥Q ⊆ u⊥ϕ}|
= q2n−2 − 1− |{Rad(ϕ) ∩Q}| − |{u ∈ Q : u⊥Q = u⊥ϕ}|. (7)

In particular, as B,C ≥ 0, if A > 0, then wt(ϕ) > q4n−5 − q3n−4.
We shall first consider non-null bilinear forms ϕ whose radical is not maximum and show that

they cannot give words of weight q4n−5 − q3n−4. Then we shall study in detail the weights arising
from bilinear forms ϕ whose radical has dimension 2n− 1.

Lemma 3.4. If N 6⊆ Rad(ϕ) and dim(Rad(ϕ)) < 2n− 1, then A > 0.

Proof. Write dim(Rad(ϕ)) = 2(n−r)+1 with 1 < r ≤ n. By Equation (7), in order to prove A > 0,
we need to provide a suitable upper bound on the cardinality of the set {u ∈ Q : u⊥Q ⊆ u⊥ϕ}.

Since N is the nucleus of the quadric Q, we have N ⊆ u⊥Q for any u ∈ Q; so, N ⊆ u⊥ϕ for
any u ∈ Q such that u⊥Q ⊆ u⊥ϕ . Consequently, u ∈ N⊥ϕ for any u ∈ Q such that u⊥Q ⊆ u⊥ϕ .
Note that Πϕ := N⊥ϕ is a (proper) hyperplane of V since N 6⊆ Rad(ϕ). Equation (7) can now be
rewritten as

A = q2n−2 − 1− |{Rad(ϕ) ∩Q}| − |{u ∈ Q ∩Πϕ : u
⊥Q = u⊥ϕ}|. (8)

Denote by V the 2n-dimensional vector space spanned by B := (ei)
2n
i=1 and for any vector

x ∈ V of coordinates (xi)2n+1
i=1 with respect to the basis B, let x be the vector of V with coordinates
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(xi)
2n
i=1 with respect to B. The map ξ : x→ x is clearly linear from V to V . We warn the reader

that V shall not be regarded as a subspace of V . Given any x = (xi)
2n
i=1 ∈ V there is exactly one

vector x ∈ Q such that x = (xi)
2n+1
i=1 ; here, x2n+1 = (x1x2 + · · ·+ x2n−1x2n)

1/2. In particular
the restriction of ξ to Q is a bijection to V .

Let S be the (2n+ 1)× (2n+ 1)-antisymmetric matrix representing ϕ with respect to B and
consider the alternating bilinear form ϕ : V × V → Fq represented (with respect to B) by the
matrix S obtained from S by removing its last row and its last column. More explicitly, if

S :=


0 s12 . . . s1,2n s1,2n+1

s12 0 . . . s2,2n s2,2n+1

...
...

...
...

s1,2n+1 s2,2n+1 . . . s2n,2n+1 0

 then S :=


0 s12 . . . s1,2n
s12 0 . . . s2,2n
...

...
s1,2n s2,2n . . . 0

 .

Analogously, let M be the (2n + 1) × (2n + 1)-antisymmetric matrix representing the bilinear
form β associated to the quadratic form η (see Equation (3)) with respect to B and consider
the alternating bilinear form β : V × V → Fq represented (with respect to B) by the matrix M
obtained form M by removing its last row and its last column:

M :=



0 1 . . . 0 0 0
1 0 . . . 0 0 0
...

. . .
...

0 0 . . . 0 1 0
0 0 . . . 1 0 0
0 0 . . . 0 0 0


and M :=


0 1 . . . 0 0
1 0 . . . 0 0
...

. . .
...

0 0 . . . 0 1
0 0 . . . 1 0

 .

Note that M is non-singular and M
−1

=M. Under these assumptions Πϕ = N⊥ϕ has equation

Πϕ :

2n∑
i=1

si,2n+1xi = 0. (9)

Claim 1. The following properties hold:

a) ϕ(x, y) = ϕ(x, y), ∀x, y ∈ Πϕ;

b) β(x, y) = β(x, y), ∀x, y ∈ Πϕ.

Proof. We shall only prove Case a), as Case b) is entirely analogous.
Let x = (xi)

2n+1
i=1 and y = (yi)

2n+1
1 be the coordinates of two vectors in Πϕ. Then, by

Equation (9),
2n∑
i=1

si,2n+1yi = 0 and
2n∑
i=1

si,2nxi = 0.
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So we have

ϕ(x, y) = (x1, x2, . . . , x2n+1)S


y1
y2
...

y2n+1

 =

2n+1∑
i,j=1
i<j

sijxjyi +

2n+1∑
i,j=1
i<j

sijxiyj =

=

2n∑
i,j=1
i<j

sijxjyi +

2n∑
i,j=1
i<j

sijxiyj + x2n+1

2n∑
i=1

si,2n+1yi + y2n+1

2n∑
i=1

si,2nxi =

= (x1, x2, . . . , x2n)S


y1
y2
...
y2n

+ x2n+1

2n∑
i=1

si,2n+1yi + y2n+1

2n∑
i=1

si,2nxi =

= xTSy = ϕ(x, y).

The condition u⊥Q = u⊥ϕ with u /∈ Rad(ϕ) holds if and only if the systems of equations
xtSu and xtMu, where x = (xi)

2n+1
i=1 are equivalent. This means that there exists an element

λ ∈ Fq \ {0} such that Su = λMu. Note that for λ = 0 we have vectors u in Rad(ϕ) and the
inclusion u⊥Q ⊆ u⊥ϕ is proper. The set

U := {u ∈ Πϕ ∩Q : ∃λ 6= 0 such that vTSu = λvTMu, ∀v ∈ V } (10)

is clearly a proper subset of

Ũ := {u ∈ Πϕ ∩Q : ∃λ 6= 0 such that vTSu = λvTMu, ∀v ∈ Πϕ}. (11)

By Claim 1, we have

Ũ = {u ∈ Πϕ ∩Q : ∃λ 6= 0 such that vTSu = λvTMu, ∀v ∈ Πϕ} =
= {u ∈ Πϕ ∩Q : ∃λ 6= 0 such that Su = λMu} =
= {u ∈ Πϕ ∩Q : u is an eigenvector of non-zero eigenvalue for MS}.

(12)

Claim 2. The number of eigenvectors of MS of non-zero eigenvalue is at most q2r−2.

Proof. Let V0 := ker(MS) be the eigenspace of eigenvalue 0 of MS.
To prove Claim 2 we shall first show that dim(V0) = dim(Rad(ϕ)) + 1. As M is non-singular,

V0 = ker(S). Furthermore, since S is a (2n× 2n)-minor of S, we have rank (S)− 2 ≤ rank (S) ≤
rank (S). In particular, dim(Rad(ϕ))−1 ≤ dimV0 ≤ dim(Rad(ϕ))+1. Define Rad(ϕ) := {x : x ∈
Rad(ϕ)}. We claim that Rad(ϕ) is a proper subspace of V0. Indeed, let w ∈ Rad(ϕ). As Rad(ϕ) ⊂
Πϕ and w ∈ Rad(ϕ) we have, by Claim 1, that ϕ(w, x) = 0 = ϕ(w, x) for any x ∈ Πϕ. This implies
Sw = 0; so w ∈ V0. Furthermore, dim(Rad(ϕ)) = dim(Rad(ϕ)). Indeed, let (b1, . . . , b2(n−r)+1)

be a basis of Rad(ϕ) then (b1, . . . , b2(n−r)+1) is clearly a generating set for Rad(ϕ). If the latter
vectors were to be linearly dependent, then there would be α1, . . . , α2(n−r)+1, not all zero, such
that α1b1 + · · · + α2(n−r)+1b2(n−r)+1 = 0. Then v := α1b1 + · · · + α2(n−r)+1b2(n−r)+1 6= 0 and
v = 0. This means v = γe2n+1 ∈ Rad(ϕ) for some γ 6= 0, a contradiction as N 6⊆ Rad(ϕ). So,
dim(V0) ≥ dim(Rad(ϕ)) = dim(Rad(ϕ)) = 2(n − r) + 1. Since S is an antisymmetric matrix
of odd order, dim(Rad(ϕ)) = dim(Rad(ϕ)) = dim(ker(S)) is odd. On the other hand S is, by
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construction, an antisymmetric matrix of even order, so dim(V0) = dim(ker(S)) is even; hence
dim(V0) 6= dim(Rad(ϕ)) = 2(n− r) + 1. It follows that

dim(V0) = 2n− 2r + 2 = dim(Rad(ϕ)) + 1. (13)

Suppose now that there are t ≥ 0 eigenspaces Vλ1
, . . . , Vλt

of MS of non-zero eigenvalues
λ1, . . . , λt and let di := dim(Vλi) ≥ 1. Note that if t = 0 then we immediately have A > 0.
Suppose also d1 ≤ d2 ≤ · · · ≤ dt. Then,

t∑
i=1

di + dim(V0) ≤ dim(V ).

By Equation (13), we have
t∑
i=1

di ≤ 2n− dim(V0) ≤ 2r − 2; (14)

so, by the properties of the exponential function,

t∑
i=1

(|Vλi
| − 1) =

t∑
i=1

(qdi − 1) ≤ q
∑t

i=1 di − t ≤ q2r−2.

Suppose 3 ≤ dim(Rad(ϕ)) ≤ 2n− 3. By Equation (7),

A = q2n−2 − 1− |{Rad(ϕ) ∩Q}| − |{u ∈ Q : u⊥Q = u⊥ϕ}|;

using Equations (8), (10), (11) and (12),

A ≥ q2n−2 − 1− (|Rad(ϕ)| − 1)− |U | ≥ q2n−2 − q2n−2r+1 − |Ũ |.

By Claim 2, |Ũ | ≤ q2r−2; hence,

A ≥ q2n−2 − q2n−2r+1 − q2r−2. (15)

Under the assumption 3 ≤ dim(Rad(ϕ)) ≤ 2n− 3, we have 2 ≤ r ≤ n− 1. So, 2r − 2 ≤ 2n− 4
and 2n+ 1− 2r ≤ 2n− 3. By taking these two inequalities into account in Equation (15) we get

A ≥ q2n−2 − q2n−2r+1 − q2r−2 ≥ q2n−2 − q2n−3 − q2n−4 > 0.

This completes the proof for 3 ≤ dim(Rad(ϕ)) ≤ 2n− 3. Note that if r = n the last inequality
does not hold.

Suppose dim(Rad(ϕ)) = 1. This is equivalent to say r = n. In this case, by Equation (13),
dimV0 = dim(ker(S)) = 2. By Equation (14), the maximum dimension of an eigenspace of MS
is 2n− 2.

Define
Πϕ := {x : x ∈ Q ∩Πϕ}.

Then, Πϕ is the hyperplane of V of equation
∑2n
i=1 si,2n+1xi = 0 and the map ξ : x → x is a

bijection between the points of Q∩Πϕ and those of Πϕ.
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Claim 3.
|Ũ | =

∑
λ6=0

|Πϕ ∩ Vλ|.

Proof. For λ a non-zero eigenvalue of MS, define Ũλ := {u ∈ Πϕ ∩Q : MSu = λu}. By the above
considerations, |Ũλ| = |Πϕ∩Vλ|. Furthermore, Ũλ∩ Ũµ = ∅ for λ 6= µ and, by (12), Ũ =

⋃
λ6=0 Ũλ.

This proves the claim.

Claim 4. Assume that there are t > 0 distinct eigenspaces Vλi
for MS of non-zero eigenvalue.

Then,
t∑
i=1

|Πϕ ∩ Vλi
| ≤ |Πϕ ∩ Z|,

where Z = ⊕ti=1Vλi
and dim(Z) ≤ 2n− 2.

Proof. Suppose t ≥ 2. Take two eigenspaces Vλ1
and Vλ2

of MS with dimension respectively
d1, d2 ≤ 2n− 2 and define Z := Vλ1

⊕ Vλ2
. As Vλ1

∪ Vλ2
≤ Z, we have |Πϕ ∩ Vλ1

|+ |Πϕ ∩ Vλ2
| =

|Πϕ ∩ (Vλ1 ∪ Vλ2)| ≤ |Πϕ ∩ Z|. So

t∑
i=1

|Vλi ∩Πϕ| ≤ |Z ∩Πϕ|+
t∑
i=3

|Vλi ∩Πϕ|.

Iterating this procedure t− 1 times we get
∑t
i=1 |Vλi ∩Πϕ| ≤ |Z ′ ∩Πϕ| where Z ′ := ⊕ti=1Vλi . As∑

di ≤ 2n− 2, we have the claim.

Using Claim 4, we see that a matrix MS having the maximum number of eigenvectors (of non-
null eigenvalues) can be taken so that it admits exactly one eigenspace Vλ with dimVλ = 2n− 2.
We shall assume this to be the case in the remainder of the section. So, by Equation (12) and
Claim 3,

A ≥ q2n−2 − 1− (q − 1)−
t∑
i=1

|Πϕ ∩ Vλi
| ≥ q2n−2 − q − |Vλ ∩Πϕ|. (16)

Recall that Πϕ is a hyperplane of V ; so |Vλ ∩ Πϕ| can assume only two values depending
on whether Πϕ intersects Vλ in a hyperplane or Πϕ properly contains Vλ. In the former case,
dim(Vλ ∩ Πϕ) = 2n − 3; hence |Vλ ∩ Πϕ| = q2n−3 and Equation (16) gives A > 0, proving the
lemma.

In the latter case, Equation (16) is not sufficient, as it gives A ≥ −q. To rule out this
possibility we need a more accurate lower bound for A. To this aim, consider Equation (7) under
the assumption Vλ ⊆ Πϕ. We have

A ≥ q2n−2 − 1− (q − 1)− |{u ∈ Q ∩Πϕ : u
⊥Q = u⊥ϕ}|.

Also,

|{u ∈ Q ∩Πϕ : u
⊥Q = u⊥ϕ}| = |{u ∈ Πϕ ∩Q : xtSu = λxtMu,∀x ∈ V }| =

= |{u ∈ Q ∩Πϕ : x
t(S − λM)u = 0, ∀x ∈ V }| ≤ |{u ∈ Πϕ : u ∈ ker(S − λM)}|. (17)

Observe that to any vector in ȳ ∈ ker(S − λM) there correspond at most one vector y ∈
ker(S − λM) because if y1, y2 ∈ ker(S − λM), y1 6= y2 and y1 = y2 ∈ ker(S − λM), then
〈y1 − y2〉 = 〈e2n+1〉 = N and e2n+1 ∈ ker(S − λM). As Me2n+1 = 0, this implies xTSe2n+1 =
0, ∀x ∈ V ; hence, 〈e2n+1〉 = N ⊆ Rad(ϕ), against our hypothesis.
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So, dim(ker(S − λM)) − 1 ≤ dim(ker(S − λM)) ≤ dim(ker(S − λM)). By construction,
dim(ker(S − λM)) = dim(Vλ) ≤ 2n− 2; furthermore, dim(ker(S − λM)) is odd because S − λM
is a (2n+ 1)× (2n+ 1)-antisymmetric matrix. So, dim(ker(S − λM)) = 2n− 3.

As (n, q) 6= (2, 2), by Equations (7) and (17) we have

A ≥ q2n−2 − 1− (q − 1)− |{u ∈ V : u ∈ ker(S − λM)}| ≥ q2n−2 − q2n−3 − q > 0.

This proves the lemma.

Combining Equation (6), Lemma 3.1 and Lemma 3.4, we have the following.

Corollary 3.5. If N ⊆ Rad(ϕ) or N 6⊆ Rad(ϕ) and dim(Rad(ϕ)) < 2n − 1, then wt(ϕ) >
q4n−5 − q3n−4.

There remains to consider the class of alternating bilinear forms having radical of maximum
dimension not containing the nucleus N.

Lemma 3.6. If N 6⊆ Rad(ϕ) and dim(Rad(ϕ)) = 2n − 1, then wt(ϕ) ≥ q4n−5 − q3n−4. If
dim Rad(ϕ) = 2n−1 and Rad(ϕ)∩Q is a cone of vertex a point P projecting a hyperbolic quadric
Q+(2n− 3, q), then wt(ϕ) = q4n−5 − q3n−4.

Proof. As dim Rad(ϕ) = 2n−1, a line ` of Q is totally isotropic for ϕ if and only if `∩Rad(ϕ) 6= {0}.
To determine the weight wt(ϕ) of ϕ we just need to determine the number of totally singular
lines of Q with non-trivial intersection with Rad(ϕ).

Let P ∈ Q ∩ Rad(ϕ), then all lines through P meet Rad(ϕ) non-trivially. There are exactly
(q2n−2 − 1)/(q− 1) such lines. Each line ` contained in Q∩Rad(ϕ) ends up being counted (q+1)
times; so we need to determine the number

|(Q∩ Rad(ϕ))|q
2n−2 − 1

q − 1
− q|{totally singular lines contained in Rad(ϕ)}|.

Denote the number of totally singular lines contained in Rad(ϕ) by σ(Q∩ Rad(ϕ)).
There are four types of sections obtained by intersecting a parabolic quadric Q with a space

Πa ∩Πb of codimension 2; indeed

1. if Πa ∩Q is an elliptic quadric Q−(2n− 1, q), then Πa ∩Πb ∩Q is either a parabolic quadric
Q(2n− 2, q) or a cone over an elliptic quadric Q−(2n− 3, q).

2. if Πa ∩ Q is a hyperbolic quadric Q+(2n − 1, q), then Πa ∩ Πb ∩ Q is either a parabolic
quadric Q(2n− 2, q) or a cone over a hyperbolic quadric Q+(2n− 3, q).

3. if Πa is tangent to Q, then Πa ∩ Q is a cone over a parabolic quadric Q(2n − 2, q). The
possible intersections of Πa ∩Q with Πb are now:

(a) a parabolic quadric Q(2n− 2, q) (if Πb does not pass through the vertex of Πa ∩Q);
(b) a quadric with vertex a line and basis a parabolic quadric Q(2n− 4, q);
(c) a cone over a hyperbolic quadric Q+(2n− 3, q);
(d) a cone over an elliptic quadric Q−(2n− 3, q).

So Q∩ Rad(ϕ) is either:
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a) a parabolic quadric Q(2n− 2, q); then,

|Q ∩ Rad(ϕ)| = q2n−2 − 1

q − 1
, σ(Q∩ Rad(ϕ)) = (q2n−4 − 1)(q2n−2 − 1)

(q2 − 1)(q − 1)
;

then the weight is
wt(ϕ) = q4n−5 − q2n−3;

b) a cone of vertex a point P over a hyperbolic quadric Q+(2n− 3, q); then,

|Q ∩ Rad(ϕ)| = q
(qn−1 − 1)(qn−2 + 1)

q − 1
+ 1;

σ(Q∩ Rad(ϕ)) = (qn−1 − 1)(qn−2 + 1)

q − 1
+ q2

(q2n−4 − 1)(qn−1 − 1)(qn−3 + 1)

(q2 − 1)(q − 1)
;

then the weight is
wt(ϕ) = q4n−5 − q3n−4;

c) a cone of vertex a point P over an elliptic quadric Q−(2n− 3, q); then,

|Q ∩ Rad(ϕ)| = q
(qn−1 + 1)(qn−2 − 1)

q − 1
+ 1;

σ(Q∩ Rad(ϕ)) = (qn−1 + 1)(qn−2 − 1)

q − 1
+ q2

(q2n−4 − 1)(qn−1 + 1)(qn−3 − 1)

(q2 − 1)(q − 1)
;

then the weight is
wt(ϕ) = q4n−5 + q3n−4;

d) a singular quadric with vertex a line ` and basis a parabolic quadric Q(2n− 4, q); then

|Q ∩ Rad(ϕ)| = q2
q2n−4 − 1

q + 1
+ (q + 1) =

q2n−2 − 1

q − 1
;

σ(Q∩ Rad(ϕ)) = 1 + q
q2n−4 − 1

q − 1
+ q2

(
q2

(q2n−6 − 1)(q2n−4 − 1)

(q2 − 1)(q − 1)
+

(q2n−4 − 1)

q − 1

)
;

then the weight is
wt(ϕ) = q4n−5.

Theorem 3.7. If N 6⊆ Rad(ϕ) then wt(ϕ) ≥ q4n−5 − q3n−4. Moreover, if N 6⊆ Rad(ϕ) and
dim(Rad(ϕ)) = 2n− 1 there exist codewords of weight q4n−5 − q3n−4.

Proof. The theorem follows from Corollary 3.5 and Lemma 3.6.

Combining the result for (q, n) = (2, 2), Theorem 3.7 and Lemma 3.6, we have the following.

Corollary 3.8. All minimum weight codewords of Pn,2 for q even are projectively equivalent.

Our Main Theorem follows from Corollary 3.5, Theorem 3.7 and Corollary 3.8. �
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