Result.Math. 49 (2006), 81–88 1422-6383/010081-8, DOI 10.1007/s00025-006-0210-8 © 2006 Birkhäuser Verlag Basel/Switzerland

Results in Mathematics

A Geometric Construction for Some Ovoids of the Hermitian Surface

Luca Giuzzi

Abstract. Multiple derivation of the classical ovoid of the Hermitian surface $\mathcal{H}(3, q^2)$ of $PG(3, q^2)$ is a well known, powerful method for constructing large families of non classical ovoids of $\mathcal{H}(3, q^2)$. In this paper, we shall provide a geometric costruction of a family of ovoids amenable to multiple derivation.

Mathematics Subject Classification (2000). Primary 51E20; Secondary 51A50. Keywords. Ovoid, Hermitian surface, derivation, polar space, automorphism group.

1. Introduction

A generator of the non-degenerate Hermitian surface $\mathcal{H}(3, q^2)$ of PG(3, q) is a line of $PG(3, q^2)$ fully contained in $\mathcal{H}(3, q^2)$. An ovoid \mathcal{O} of $\mathcal{H}(3, q^2)$ is a set of $q^3 + 1$ points of $\mathcal{H}(3, q^2)$ meeting each generator of the surface in exactly one point. The intersection of $\mathcal{H}(3, q^2)$ with a non-tangent plane is an ovoid, the so-called classical ovoid of $\mathcal{H}(3, q^2)$. Existence of non-classical ovoids of $\mathcal{H}(3, q^2)$ has been known since 1994, see [10]. However, a thorough work on the subject has begun only recently, prompted by the discovery of new large families [2, 4].

The non-classical ovoids in [10] have been constructed using a classical idea, originally introduced in the context of finite translation planes, namely that of deriving a new incidence structure from an old one by partial replacement.

The procedure, *derivation*, is as follows. Consider the classical ovoid \mathcal{O} of $\mathcal{H}(3, q^2)$, cut out on $\mathcal{H}(3, q^2)$ by a non-tangent plane π . Given any (q+1)-secant ℓ of \mathcal{O} in π , that is a line meeting \mathcal{O} in q+1 points, denote by ℓ' its polar line with respect to the unitary polarity associated to $\mathcal{H}(3, q^2)$. It is now possible to replace the points \mathcal{O} and ℓ have in common by the points of $\mathcal{H}(3, q^2) \cap \ell'$. The resulting

The present research was performed within the activity of G.N.S.A.G.A. of the Italian INDAM with the financial support of the Italian Ministry M.I.U.R., project "Strutture geometriche, combinatorica e loro applicazioni", 2005–06.

L. Giuzzi

set \mathcal{O}_{ℓ} is still an ovoid of $\mathcal{H}(3, q^2)$. A straightforward generalisation of this idea is to replace more than one (q + 1)-secant of \mathcal{O} , each by its own polar line. This procedure, called *multiple derivation*, provides an ovoid of $\mathcal{H}(3, q^2)$ as long as no two of the chosen (q + 1)-secants meet in a point of \mathcal{O} .

It is not essential for the procedure of (multiple) derivation to work to assume the starting ovoid \mathcal{O} to be classical, as far as \mathcal{O} has some (q+1)-secants with good properties. In fact, the non-classical ovoids of [2, 4] are multiply derivable. When the replacement of $\mathcal{O} \cap \ell$ by $\mathcal{H} \cap \ell'$, as described above, is an ovoid \mathcal{O}_{ℓ} , we say that \mathcal{O}_{ℓ} is the *derived ovoid* of \mathcal{O} , by its *replaceable* (q+1)-*secant* ℓ . More generally, given a set $L = \{\ell_1, \ldots, \ell_k\}$ of (q+1)-secants of \mathcal{O} , write

$$\mathcal{O}_L = \left(\mathcal{O} \setminus \left(\bigcup_{\ell_i \in L} \ell_i \right) \right) \cup \bigcup_{\ell_i \in L} (\mathcal{H} \cap \ell'_i).$$

If \mathcal{O}_L is still an ovoid, then the set L is *replaceable*. Clearly, the existence and nature of replaceable sets depends heavily on the nature of \mathcal{O} . The ovoids found in [4] are multiply derivable.

In this paper, we shall provide a geometric construction of a family of nonclassical ovoids which are multiply derivable and determine the corresponding collineation groups.

2. Permutable Polarities

A Hermitian variety and a quadric are said to be in *permutable position* if and only if they are both preserved by the same Baer involution. The properties of varieties in such a position have been investigated by several authors, notably by B. Segre, see [11, 6]. We need now to state some properties of the linear collineation group simultaneously preserving a Hermitian curve and a conic in the Desarguesian plane $PG(2, q^2)$, over the Galois field $GF(q^2)$ of odd order q^2 . These properties shall be used in Section 3 to construct derivable ovoids of the Hermitian surface of $PG(3, q^2)$.

Lemma 2.1. Any two pairs $(\mathcal{H}, \mathcal{C})$ consisting of a non-degenerate Hermitian curve and a conic of $PG(2, q^2)$ in permutable position are projectively equivalent.

Proof. Recall that any two non-degenerate Hermitian curves \mathcal{H} , \mathcal{H}' of $PG(2, q^2)$ are projectively equivalent. Furthermore, the full collineation group $P\Gamma U(3, q)$ of a non-degenerate Hermitian curve \mathcal{H} contains just one conjugacy class of Baer involutions. The result now follows by observing that, since \mathcal{H} and \mathcal{C} are in permutable position, there exists a Baer involution preserving them both. \Box

Let s be any non-zero element of GF(q) and assume $\mathcal{H}(2, q^2)$ as the nondegenerate Hermitian curve of equation

$$X^{q+1} - sY^{q+1} + Z^{q+1} = 0; (1)$$

denote also by \mathcal{C} the non–degenerate conic of equation

$$X^2 - sY^2 + Z^2 = 0. (2)$$

For fixed s, the mutual position of $\mathcal{H}(2,q^2)$ and \mathcal{C} is permutable, as the canonical Baer involution $\beta : (X,Y,Z) \mapsto (X^q,Y^q,Z^q)$ preserves both of them. The common points of $\mathcal{H}(2,q^2)$ and \mathcal{C} lie in the Baer subplane PG(2,q) associated with β . Such points are precisely those of the conic \mathcal{C}_0 of PG(2,q) with equation $X^2 - sY^2 + Z^2 = 0$.

Definition 2.2. The Hermitian curve $\mathcal{H}(2,q^2)$ of equation (1) and the conic \mathcal{C} of equation (2) are in *canonical permutable position* in $PG(2,q^2)$ with respect to s.

Lemma 2.3. The linear collineation group G of $PG(2,q^2)$ preserving simultaneously both $\mathcal{H}(2,q^2)$ and C preserves also the subplane PG(2,q). Furthermore, $G \cong PGL(2,q)$ and G acts on \mathcal{C}_0 as PGL(2,q) in its 3-transitive permutation representation.

Proof. The conic C_0 is preserved by G, since $C_0 = C \cap \mathcal{H}$. Denote by T the linear collineation group of PG(2, q) preserving C_0 ; such group is isomorphic to PGL(2, q) and acts on C_0 as PGL(2, q) in its 3-transitive permutation representation. We now write explicitly the elements of T. Consider the collineations

$$\gamma_{a,b}: (X,Y,Z) \mapsto (aX + sbY, bX + aY, Z),$$

with $a^2 - sb^2 = 1$, $a, b \in GF(q)$ and $\delta : (X, Y, Z) \mapsto (-X, Y, Z)$. Clearly, each of these collineations preserves C_0 . Furthermore, they generate a dihedral group Γ of order 2(q + 1). In particular, Γ is a maximal subgroup of T, see [12]. The collineation $\sigma : (X, Y, Z) \mapsto (Z, Y, X)$ preserves C_0 , but $\sigma \notin \Gamma$; hence, $T = \langle \Gamma, \sigma \rangle$. As C is the extension of C_0 to $PG(2, q^2)$, the group T preserves also C. On the other hand, each of the above mentioned collineations preserves also $\mathcal{H}(2, q^2)$. This assertion is obvious for δ and σ . In order to verify that it also holds for $\gamma_{a,b}$, a further computation is required. Indeed, $\gamma_{a,b}$ takes \mathcal{H} to the Hermitian curve \mathcal{H}^{γ} of equation

$$(a^{q+1} - s^q b^{q+1})(X^{q+1} - sY^{q+1}) + Z^{q+1} + (s^q a^q b - sab^q)(X^q Y - Y^q X).$$

Since $a^q = a$, $b^q = b$ and $s^q = s$, it follows that $\mathcal{H}^{\gamma} = \mathcal{H}$. This proves G = T. \Box

Lemma 2.4. Let ℓ be a line of PG(2,q) external to C_0 . Then, the stabiliser in G of any point $P \in \mathcal{H}(2,q^2) \cap \ell$ has order 2.

Proof. It suffices to show that for any point $P \in \ell$ not in PG(2, q), the order of G_P is either q + 1 or 2, according as P lies on C or not. Following Lemma 2.1, we may take s in (2) to be a non–square in GF(q). All the lines external to C_0 lie in the same orbit under the action of G. Hence, we may assume without loss of generality that the equation of ℓ is Z = 0. The stabiliser G_{ℓ} of ℓ in G is the dihedral group D_{q+1} of order 2(q+1), consisting of the q+1 rotations $\gamma_{a,b}$ together with the q+1 involutorial symmetries

$$\xi_{a,b}: (X,Y,Z) \mapsto (aX - sbY, bX - aY, Z), \quad a^2 - sb^2 = 1.$$

L. Giuzzi

The action of $\gamma_{a,b}$ on ℓ is given by the rational map $m \mapsto (b+am)/(a+sbm)$. For $(a,b) \notin \{(1,0), (0,1)\}$, the only fixed points of $\gamma_{a,b}$ are $(\sqrt{s}, 1, 0)$ and $(-\sqrt{s}, 1, 0)$, both of them on \mathcal{C} but none on $\mathcal{H}(2, q^2)$. Furthermore, $\gamma_{0,1}$ and the identity $\gamma_{1,0}$ form a subgroup of order 2 which fixes ℓ pointwise. The action of $\xi_{a,b}$ on ℓ can be described in a similar way, using the rational map $m \mapsto (b-am)/(a-sbm)$. In fact, any $\xi_{a,b}$ has exactly two fixed points, namely (1, a + 1, 0) and (1, a - 1, 0), both of them lying in PG(2, q) but not on $\mathcal{H}(2, q^2)$. This completes the proof. \Box

Let Δ_1 denote the set of points of $\mathcal{H}(2, q^2) \setminus \mathcal{C}_0$ which are covered by secants to \mathcal{C}_0 and let Δ_2 be the set of points of $\mathcal{H}(2, q^2)$ covered by external lines to \mathcal{C}_0 .

Lemma 2.5. The sets Δ_1 , Δ_2 and the conic C_0 partition $\mathcal{H}(2, q^2)$.

Proof. Any point $P \in \mathcal{H}(2, q^2)$ outside \mathcal{C}_0 lies on a unique line of PG(2, q). Since \mathcal{C} and \mathcal{H} are in permutable position, this line cannot be tangent to \mathcal{C}_0 , as it contains two points of $\mathcal{H}(2, q^2)$, namely P and its image under the canonical Baer involution P^{β} .

Lemma 2.6. The group G has three orbits on $\mathcal{H}(2, q^2)$; one of size q + 1, and two of size (1/2)q(q+1)(q-1). These orbits, with the notation of Lemma 2.5, are precisely \mathcal{C}_0 , Δ_1 and Δ_2

Proof. By definition the group G preserves $\mathcal{H}(2, q^2)$. The set \mathcal{C}_0 is an orbit of G on \mathcal{H} with size q + 1. The size of the orbit of any $P \in \mathcal{H} \setminus \mathcal{C}_0$ under the action of G is $|G|/|G_P|$. Hence, by Lemma 2.4, any orbit on \mathcal{H} different from \mathcal{C}_0 has size |G|/2, that is, (1/2)q(q+1)(q-1). Let now $P \in \Delta_1$ and $Q \in \Delta_2$. Denote respectively by r and s the unique line of PG(2,q) through P and Q. If P and Q were in the same orbit under the action of G, then there would be $\theta \in G$ such that $\theta(r) = s$. On the other hand, r is secant to \mathcal{C} , while s is an external line and G preserves \mathcal{C} . From this contradiction the result follows.

Lemma 2.7. Assume L to be a point of PG(2,q) not on C_0 . Consider a a tangent line t to $\mathcal{H}(2,q^2)$ through L such that its tangency point is not on C_0 . Then, t is external or secant to C according as L is external or internal to C_0 .

Proof. Let \mathcal{H} and \mathcal{C}_0 be in canonical permutable position, as described in Definition 2.2, with respect to a non-zero element $s \in \mathrm{GF}(q)$. The tangents to \mathcal{H} through the origin O = (0, 0, 1) are the lines t_m of equation Y = mX with

$$sm^{q+1} = 1.$$
 (3)

Furthermore,

 $sm^2 - 1 = \begin{cases} \text{non-square in } \operatorname{GF}(q^2) & \text{if } t_m \text{ is an external line to } \mathcal{C}, \\ \text{non-zero square in } \operatorname{GF}(q^2) & \text{if } t_m \text{ is secant to } \mathcal{C}. \end{cases}$

Let $d = sm^2 - 1$ and assume $d \neq 0$. Then, $(d+1)^{(q+1)/2} = (sm^2)^{(q+1)/2} = s^{(q+1)/2}m^{q+1}$. By (3),

$$(d+1)^{(q+1)/2} = s^{(q-1)/2}.$$
(4)

Vol. 49 (2006) Construction of Some Ovoids of the Hermitian Surface

Hence, $(d+1)^{q+1} = 1$. Therefore, $d^q + d^{q-1} + 1 = 0$, that is,

$$d^{q-1} = -(d+1)^q. (5)$$

Denote now by $\eta(x) = x^{(q^2-1)/2}$ the quadratic character of $x \in GF(q^2)^*$. By (5), $\eta(d) = (d^{q-1})^{(q+1)/2} = (-1)^{(q+1)/2} (d+1)^{q(q+1)/2}$. Taking (4) into account, this may be written as $(-1)^{(q+1)/2} s^{q(q-1)/2} = (-1)^{(q+1)/2} s^{(q-1)/2}$. Hence,

$$\eta(d) = (-1)^{(q+1)/2} s^{(q-1)/2}.$$
(6)

To study the case $q \equiv 1 \pmod{4}$ and L external to C_0 , choose a non-zero square element s in GF(q). Then, the origin O is an external point to C_0 . Up to a linear collineation in PGL(2,q), as given in Lemma 2.3, L may be taken to be O. In this case, (6) reads $\eta(sm^2 - 1) = -1$, and t_m is an external line to C. For the case when L is an internal point to C_0 , take s as a non-square element in GF(q); applying the preceding argument we get $\eta(sm^2 - 1) = 1$, showing that t_m is a secant to C. The same method applies to the case $q \equiv 3 \mod 4$.

3. Multiply Derivable Ovoids

Let P be the pole of a non-tangent plane π to $\mathcal{H}(3, q^2)$ with respect to the unitary polarity associated with the Hermitian surface. Denote by $\mathcal{H}(2, q^2)$ the Hermitian curve cut out on $\mathcal{H}(3, q^2)$ by π and choose a conic \mathcal{C} of π in permutable position with $\mathcal{H}(2, q^2)$. As before, we write $\mathcal{C}_0 = \mathcal{C} \cap \mathcal{H}(2, q^2)$. We now show how Lemmas 2.3, 2.5 and 2.6 can be used to geometrically construct multiply derivable ovoids of $\mathcal{H}(3, q^2)$ containing either $\Delta_1 \cup \mathcal{C}_0$ or $\Delta_2 \cup \mathcal{C}_0$.

We observe that there are $N = q^2 - q$ lines, say r_1, \ldots, r_N , joining P to a point of $\mathcal{C} \setminus \mathcal{C}_0$, and each of these lines meets $\mathcal{H}(3, q^2)$ in q + 1 points. For every $i = 1, \ldots, N$, take half of the q + 1 points in common between r_i and $\mathcal{H}(3, q^2)$. The set Θ of all these points has size $(1/2)(q^3 - q)$. Add now Θ to either $\Delta_1 \cup \mathcal{C}_0$ or $\Delta_2 \cup \mathcal{C}_0$. The resulting set \mathcal{O}' contains as many points as an ovoid does. When \mathcal{O}' happens to be an ovoid, it will be called an ovoid of type (1) or (2) according as \mathcal{O}' contains Δ_1 or Δ_2 . Examples of ovoids of type (1) were constructed in [4].

We shall now investigate derivability of ovoids of type (1).

Theorem 3.1. Any ovoid \mathcal{O} of type (1) is derivable.

Proof. Since $\mathcal{H}(2,q^2)$ and \mathcal{C} are in permutable position, the orthogonal polarity of PG(2,q) arising from \mathcal{C}_0 may be extended to the unitary polarity of $PG(2,q^2)$ associated with $\mathcal{H}(2,q^2)$. Assume that \mathcal{O} is an ovoid of type (1). Then, any (q+1)secant ℓ of \mathcal{O} lying in π has q-1 points in Δ_1 and 2 points in \mathcal{C}_0 . In particular, ℓ is a secant to \mathcal{C}_0 . We claim that ℓ is a replaceable (q+1)-secant. To prove it, consider the polar line ℓ' of ℓ with respect to the unitary polarity associated to $\mathcal{H}(3,q^2)$ and assume, by contradiction, that there is a point $R \in \ell' \cap \mathcal{H}(3,q^2)$ conjugate to a point $U \in \mathcal{O}$. Then, $U \notin PG(2,q)$, and the generator g through U and R meets π in a point $V \in \mathcal{H}(2,q^2)$. Since V is conjugate to P, the plane ϕ through P, Rand U is tangent to $\mathcal{H}(3,q^2)$ with tangency point V. Therefore, ϕ meets π in the L. Giuzzi

tangent t to $\mathcal{H}(2, q^2)$ at V. Both points $L = \ell' \cap \pi$ and $S = PU \cap \pi$ lie on t. Note that $V \notin \mathcal{C}_0$, otherwise t would be a tangent to \mathcal{C}_0 and, hence, to \mathcal{C} contradicting $S \in t$. Now, Lemma 2.7 applies to t; this implies that L must be an internal point to \mathcal{C}_0 . On the other hand, L is the pole of ℓ with respect to the polarity arising from \mathcal{C}_0 . Since ℓ is secant to \mathcal{C}_0 , the point L must be external to \mathcal{C}_0 . This final contradiction completes the proof.

To prove that any ovoid of type (1) is indeed multiply derivable, the following result is needed.

Lemma 3.2. Let $\mathcal{L} = \{\ell_1, \ldots, \ell_k\}$ be a set of secants to \mathcal{C}_0 , and let L_1, \ldots, L_k denote their poles. If the common point of any two lines ℓ_i, ℓ_j lies outside \mathcal{C}_0 , or, equivalently, if no line joining two points L_i, L_j is tangent to \mathcal{C}_0 , then \mathcal{L} is a replaceable set of any ovoid of type (1) containing \mathcal{C}_0 .

Proof. By Theorem 3.1, it is enough to show that no point on ℓ'_i is conjugate to a point on ℓ'_j . Assume by contradiction that $R_i \in \ell'_i \cap \mathcal{H}(3, q^2)$ and $R_j \in \ell'_j \cap \mathcal{H}(3, q^2)$ are two conjugate points, and let V be the common point of the line $R_i R_j$ with the plane π . Arguing as in the proof of the Theorem 3.1, it turns out that the tangent line t to $\mathcal{H}(2, q^2)$ at V must contain both L_i and L_j . Therefore, t is a line of PG(2, q) and $V \in \mathcal{C}_0$. In particular, t is the tangent to \mathcal{C}_0 at V. Then V would be the common point of ℓ_i and ℓ_j — a contradiction.

Note that examples of replaceable sets \mathcal{L} of size $k \leq (1/2)(q+1)$ for an ovoid of type (1) are provided by any k external lines to \mathcal{C}_0 through an internal point of \mathcal{C} . Such examples are called *linear*. Hence, using Lemma 3.2 we get the following result.

Theorem 3.3. Any ovoid of type (1) is k-fold derivable, for every $k \leq (1/2)(q+1)$.

We remark that any replaceable set has size at most (1/2)(q+1). We now exhibit another infinite family of replaceable sets. Assume that $q^2 \equiv 1 \pmod{10}$. Then, PSL(2, q) contains a subgroup M isomorphic to A_5 . Since A_5 has 15 involutions, M contains 15 involutory homologies. The axes of these are pairwise distinct secants to C_0 , see [7, 8, 9]. We show that such secants form a replaceable set \mathcal{L} . Assume, on the contrary, that there are two involutory homologies $\varphi_1, \varphi_2 \in M$ such that their axes meet in a point T of C_0 . Then, $\varphi_1\varphi_2$ fixes T but no any other point of C_0 . Therefore, the order of $\varphi_1\varphi_2$ is divisible by p. But this is impossible, as p does not divide the order of A_5 .

The smallest case is q = 29 and the size of \mathcal{L} is 15 = (1/2)(q+1). This shows that replaceable sets of maximum size are not necessarily linear.

It is possible that more infinite families of non-linear replaceable sets may arise from Lemma 3.2. However, if the common point of any two lines in \mathcal{L} is internal to \mathcal{C} , then only sporadic examples seem to exist, namely for $q \equiv 3 \pmod{4}$ and $q \leq 31$. This follows from the main conjecture in [1].

In the above construction, the group M preserves the set \mathcal{L} . From Section 4 of [4], the linear collineation group Γ preserving the ovoid of type (1) contains

a normal subgroup H such that $\Gamma/H \cong PGL(2,q)$ and H is a homology group of order (1/2)(q+1) with axis π . In particular, Γ/H acts on π as PGL(2,q), preserving both $\mathcal{H}(2,q^2)$ and \mathcal{C} . It follows that Γ has a subgroup Φ containing Hsuch that $M = \Phi/H \cong A_5$. In particular, the linear collineation group of every multiply derived ovoid arising from \mathcal{L} is non-solvable.

It is natural to ask whether any non-trivial linear collineation group H of the replaceable set \mathcal{L} may be lifted to a linear collineation group of the derived ovoid \mathcal{O}' . Clearly, the answer depends on the geometry of the original ovoid \mathcal{O} from which \mathcal{O}' arose. However, when \mathcal{O} is the ovoid of type (1) constructed in [4], the answer is affirmative, as it is stated in the following theorem.

Theorem 3.4. Let \mathcal{O}' be an ovoid arising from the ovoid of type (1) given in [4], by multiple derivation with respect to a replaceable set \mathcal{L} . If \mathcal{L} consists of (1/2)(q+1)lines through an internal point to \mathcal{C}_0 , then the linear collineation group Γ preserving \mathcal{O}' contains a homology group Φ of order (1/2)(q+1).

Acknowledgements

The author wishes to thank Professor G. Korchmáros for several useful discussions on the topics here–within investigated.

References

- A. Blokhuis, A. Seress and H.A. Wilbrink, Characterization of complete exterior sets of conics, Combinatorica 12 (1992), 143–147.
- [2] A. Cossidente and G.L. Ebert, Permutable polarities and a class of ovoids of the Hermitian surface, European J. Combin 25 (2004), 1059–1066.
- [3] A. Cossidente and G. Korchmáros, Transitive Ovoids of the Hermitian Surface of PG(3, q²), with q even, J. Combin. Theory Ser. A 101 (2003), 117–130.
- [4] L. Giuzzi and G. Korchmáros Ovoids of the Hermitian Surface in Odd Characteristic, Adv. Geom. suppl. (2003), S49–S58.
- [5] A. Gunawardena, Primitive ovoids in $O_8^+(q)$, J. Combin. Theory Ser. A 89 (2000), 70–76.
- [6] J.W.P. Hirschfeld, "Projective Geometries Over Finite Fields," Oxford University Press, Oxford, 1998.
- [7] G. Korchmáros, A combinatorial characterization of the dihedral subgroups of order 2(p^r + 1) of PGL(2, p^r), Geom. Dedicata 9 (1980), no. 3, 381–384.
- [8] G. Korchmáros, Recent results in combinatorial geometry. Symposia Mathematica, Vol. XXVIII (Rome, 1983), 113–125, Sympos. Math., XXVIII, Academic Press, London, 1986.
- H. Lüneburg, Charakterisierungen der endlichen desarguesschen projektiven Ebenen, Math. Z. 85 (1964), 419–450.
- [10] S. Payne and J.A. Thas, Spreads and ovoids in finite generalizes quadrangles, Geom. Dedicata 52 (1994) 227–253.

- B. Segre, Forme e geometrie Hermitiane, con particolare riguardo al caso finito, Ann. Mat. Pura Appl. 70 (1965) 1–201.
- [12] R. Valentini, M.L. Madan, A hauptsatz of L.E. Dickson and Artin-Schreirer extensions., J. Reine Angew. Math. 318 (1980) 156–177.

Luca Giuzzi Dipartimento di Matematica Politecnico di Bari via E. Orabona 4 I-70125 Bari Italy e-mail: giuzzi@ing.unibs.it giuzzi@dm.uniba.it