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A Geometric Construction
for Some Ovoids of the Hermitian Surface

Luca Giuzzi

Abstract. Multiple derivation of the classical ovoid of the Hermitian surface
H(3, q2) of PG(3, q2) is a well known, powerful method for constructing large
families of non classical ovoids of H(3, q2). In this paper, we shall provide a
geometric costruction of a family of ovoids amenable to multiple derivation.
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1. Introduction
A generator of the non–degenerate Hermitian surface H(3, q2) of PG(3, q) is a
line of PG(3, q2) fully contained in H(3, q2). An ovoid O of H(3, q2) is a set of
q3+1 points of H(3, q2) meeting each generator of the surface in exactly one point.
The intersection of H(3, q2) with a non–tangent plane is an ovoid, the so-called
classical ovoid of H(3, q2). Existence of non–classical ovoids of H(3, q2) has been
known since 1994, see [10]. However, a thorough work on the subject has begun
only recently, prompted by the discovery of new large families [2, 4].

The non–classical ovoids in [10] have been constructed using a classical idea,
originally introduced in the context of finite translation planes, namely that of
deriving a new incidence structure from an old one by partial replacement.

The procedure, derivation, is as follows. Consider the classical ovoid O of
H(3, q2), cut out on H(3, q2) by a non–tangent plane π. Given any (q + 1)–secant
� of O in π, that is a line meeting O in q +1 points, denote by �′ its polar line with
respect to the unitary polarity associated to H(3, q2). It is now possible to replace
the points O and � have in common by the points of H(3, q2) ∩ �′. The resulting
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set O� is still an ovoid of H(3, q2). A straightforward generalisation of this idea
is to replace more than one (q + 1)–secant of O, each by its own polar line. This
procedure, called multiple derivation, provides an ovoid of H(3, q2) as long as no
two of the chosen (q + 1)–secants meet in a point of O.

It is not essential for the procedure of (multiple) derivation to work to assume
the starting ovoid O to be classical, as far as O has some (q+1)–secants with good
properties. In fact, the non–classical ovoids of [2, 4] are multiply derivable. When
the replacement of O∩ � by H∩ �′, as described above, is an ovoid O�, we say that
O� is the derived ovoid of O, by its replaceable (q + 1)–secant �. More generally,
given a set L = {�1, . . . , �k} of (q + 1)–secants of O, write

OL =

(
O \

( ⋃
�i∈L

�i

))
∪

⋃
�i∈L

(H ∩ �′i).

If OL is still an ovoid, then the set L is replaceable. Clearly, the existence and
nature of replaceable sets depends heavily on the nature of O. The ovoids found
in [4] are multiply derivable.

In this paper, we shall provide a geometric construction of a family of non–
classical ovoids which are multiply derivable and determine the corresponding
collineation groups.

2. Permutable Polarities
A Hermtian variety and a quadric are said to be in permutable position if and
only if they are both preserved by the same Baer involution. The properties of
varieties in such a position have been investigated by several authors, notably by
B. Segre, see [11, 6]. We need now to state some properties of the linear collineation
group simultaneously preserving a Hermitian curve and a conic in the Desarguesian
plane PG(2, q2), over the Galois field GF(q2) of odd order q2. These properties
shall be used in Section 3 to construct derivable ovoids of the Hermitian surface
of PG(3, q2).

Lemma 2.1. Any two pairs (H, C) consisting of a non–degenerate Hermitian curve
and a conic of PG(2, q2) in permutable position are projectively equivalent.

Proof. Recall that any two non–degenerate Hermitian curves H, H′ of PG(2, q2)
are projectively equivalent. Furthermore, the full collineation group PΓU(3, q) of a
non–degenerate Hermitian curve H contains just one conjugacy class of Baer invo-
lutions. The result now follows by observing that, since H and C are in permutable
position, there exists a Baer involution preserving them both. �

Let s be any non–zero element of GF(q) and assume H(2, q2) as the non–
degenerate Hermitian curve of equation

Xq+1 − sY q+1 + Zq+1 = 0; (1)
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denote also by C the non–degenerate conic of equation

X2 − sY 2 + Z2 = 0. (2)

For fixed s, the mutual position of H(2, q2) and C is permutable, as the canon-
ical Baer involution β : (X, Y, Z) �→ (Xq, Y q, Zq) preserves both of them. The
common points of H(2, q2) and C lie in the Baer subplane PG(2, q) associated
with β. Such points are precisely those of the conic C0 of PG(2, q) with equation
X2 − sY 2 + Z2 = 0.

Definition 2.2. The Hermitian curve H(2, q2) of equation (1) and the conic C of
equation (2) are in canonical permutable position in PG(2, q2) with respect to s.

Lemma 2.3. The linear collineation group G of PG(2, q2) preserving simultane-
ously both H(2, q2) and C preserves also the subplane PG(2, q). Furthermore,
G ∼= PGL(2, q) and G acts on C0 as PGL(2, q) in its 3–transitive permutation
representation.

Proof. The conic C0 is preserved by G, since C0 = C ∩ H. Denote by T the linear
collineation group of PG(2, q) preserving C0; such group is isomorphic to PGL(2, q)
and acts on C0 as PGL(2, q) in its 3–transitive permutation representation. We now
write explicitely the elements of T . Consider the collineations

γa,b : (X, Y, Z) �→ (aX + sbY, bX + aY, Z),

with a2 − sb2 = 1, a, b ∈ GF(q) and δ : (X, Y, Z) �→ (−X, Y, Z). Clearly, each
of these collineations preserves C0. Furthermore, they generate a dihedral group
Γ of order 2(q + 1). In particular, Γ is a maximal subgroup of T , see [12]. The
collineation σ : (X, Y, Z) �→ (Z, Y, X) preserves C0, but σ �∈ Γ; hence, T = 〈Γ, σ〉.
As C is the extension of C0 to PG(2, q2), the group T preserves also C. On the
other hand, each of the above mentioned collineations preserves also H(2, q2).
This assertion is obvious for δ and σ. In order to verify that it also holds for γa,b,
a further computation is required. Indeed, γa,b takes H to the Hermitian curve Hγ

of equation

(aq+1 − sqbq+1)(Xq+1 − sY q+1) + Zq+1 + (sqaqb − sabq)(XqY − Y qX).

Since aq = a, bq = b and sq = s, it follows that Hγ = H. This proves G = T . �
Lemma 2.4. Let � be a line of PG(2, q) external to C0. Then, the stabiliser in G
of any point P ∈ H(2, q2) ∩ � has order 2.

Proof. It suffices to show that for any point P ∈ � not in PG(2, q), the order of GP

is either q +1 or 2, according as P lies on C or not. Following Lemma 2.1, we may
take s in (2) to be a non–square in GF(q). All the lines external to C0 lie in the
same orbit under the action of G. Hence, we may assume without loss of generality
that the equation of � is Z = 0. The stabiliser G� of � in G is the dihedral group
Dq+1 of order 2(q+1), consisting of the q+1 rotations γa,b together with the q+1
involutorial symmetries

ξa,b : (X, Y, Z) �→ (aX − sbY, bX − aY, Z), a2 − sb2 = 1.
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The action of γa,b on � is given by the rational map m �→ (b + am)/(a + sbm). For
(a, b) �∈ {(1, 0), (0, 1)}, the only fixed points of γa,b are (

√
s, 1, 0) and (−√

s, 1, 0),
both of them on C but none on H(2, q2). Furthermore, γ0,1 and the identity γ1,0

form a subgroup of order 2 which fixes � pointwise. The action of ξa,b on � can be
described in a similar way, using the rational map m �→ (b − am)/(a − sbm). In
fact, any ξa,b has exactly two fixed points, namely (1, a + 1, 0) and (1, a − 1, 0),
both of them lying in PG(2, q) but not on H(2, q2). This completes the proof. �

Let ∆1 denote the set of points of H(2, q2) \ C0 which are covered by secants
to C0 and let ∆2 be the set of points of H(2, q2) covered by external lines to C0.

Lemma 2.5. The sets ∆1, ∆2 and the conic C0 partition H(2, q2).

Proof. Any point P ∈ H(2, q2) outside C0 lies on a unique line of PG(2, q). Since
C and H are in permutable position, this line cannot be tangent to C0, as it
contains two points of H(2, q2), namely P and its image under the canonical Baer
involution P β. �

Lemma 2.6. The group G has three orbits on H(2, q2); one of size q + 1, and two
of size (1/2)q(q + 1)(q − 1). These orbits, with the notation of Lemma 2.5, are
precisely C0, ∆1 and ∆2

Proof. By definition the group G preserves H(2, q2). The set C0 is an orbit of G on
H with size q + 1. The size of the orbit of any P ∈ H \ C0 under the action of G is
|G|/|GP |. Hence, by Lemma 2.4, any orbit on H different from C0 has size |G|/2,
that is, (1/2)q(q + 1)(q − 1). Let now P ∈ ∆1 and Q ∈ ∆2. Denote respectively
by r and s the unique line of PG(2, q) through P and Q. If P and Q were in the
same orbit under the action of G, then there would be θ ∈ G such that θ(r) = s.
On the other hand, r is secant to C, while s is an external line and G preserves C.
From this contradiction the result follows. �

Lemma 2.7. Assume L to be a point of PG(2, q) not on C0. Consider a a tangent
line t to H(2, q2) through L such that its tangency point is not on C0. Then, t is
external or secant to C according as L is external or internal to C0.

Proof. Let H and C0 be in canonical permutable position, as described in Defini-
tion 2.2, with respect to a non–zero element s ∈ GF(q). The tangents to H through
the origin O = (0, 0, 1) are the lines tm of equation Y = mX with

smq+1 = 1. (3)

Furthermore,

sm2 − 1 =
{

non–square in GF(q2) if tm is an external line to C,
non–zero square in GF(q2) if tm is secant to C.

Let d = sm2 − 1 and assume d �= 0. Then, (d + 1)(q+1)/2 = (sm2)(q+1)/2 =
s(q+1)/2mq+1. By (3),

(d + 1)(q+1)/2 = s(q−1)/2. (4)
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Hence, (d + 1)q+1 = 1. Therefore, dq + dq−1 + 1 = 0, that is,

dq−1 = −(d + 1)q. (5)

Denote now by η(x) = x(q2−1)/2 the quadratic character of x ∈ GF(q2)�. By (5),
η(d) = (dq−1)(q+1)/2 = (−1)(q+1)/2(d + 1)q(q+1)/2. Taking (4) into account, this
may be written as (−1)(q+1)/2sq(q−1)/2 = (−1)(q+1)/2s(q−1)/2. Hence,

η(d) = (−1)(q+1)/2s(q−1)/2. (6)

To study the case q ≡ 1 (mod 4) and L external to C0, choose a non–zero square
element s in GF(q). Then, the origin O is an external point to C0. Up to a linear
collineation in PGL(2, q), as given in Lemma 2.3, L may be taken to be O. In this
case, (6) reads η(sm2−1) = −1, and tm is an external line to C. For the case when
L is an internal point to C0, take s as a non–square element in GF(q); appplying
the preceding argument we get η(sm2 − 1) = 1, showing that tm is a secant to C.
The same method applies to the case q ≡ 3 mod 4. �

3. Multiply Derivable Ovoids
Let P be the pole of a non–tangent plane π to H(3, q2) with respect to the unitary
polarity associated with the Hermitian surface. Denote by H(2, q2) the Hermitian
curve cut out on H(3, q2) by π and choose a conic C of π in permutable position with
H(2, q2). As before, we write C0 = C∩H(2, q2). We now show how Lemmas 2.3, 2.5
and 2.6 can be used to geometrically construct multiply derivable ovoids of H(3, q2)
containing either ∆1 ∪ C0 or ∆2 ∪ C0.

We observe that there are N = q2 − q lines, say r1, . . . , rN , joining P to a
point of C \ C0, and each of these lines meets H(3, q2) in q + 1 points. For every
i = 1, . . .N , take half of the q + 1 points in common between ri and H(3, q2). The
set Θ of all these points has size (1/2)(q3 − q). Add now Θ to either ∆1 ∪ C0 or
∆2 ∪ C0. The resulting set O′ contains as many points as an ovoid does. When O′

happens to be an ovoid, it will be called an ovoid of type (1) or (2) according as
O′ contains ∆1 or ∆2. Examples of ovoids of type (1) were constructed in [4].

We shall now investigate derivability of ovoids of type (1).

Theorem 3.1. Any ovoid O of type (1) is derivable.

Proof. Since H(2, q2) and C are in permutable position, the orthogonal polarity
of PG(2, q) arising from C0 may be extended to the unitary polarity of PG(2, q2)
associated with H(2, q2). Assume that O is an ovoid of type (1). Then, any (q+1)–
secant � of O lying in π has q−1 points in ∆1 and 2 points in C0. In particular, � is
a secant to C0. We claim that � is a replaceable (q+1)–secant. To prove it, consider
the polar line �′ of � with respect to the unitary polarity associated to H(3, q2)
and assume, by contradiction, that there is a point R ∈ �′ ∩H(3, q2) conjugate to
a point U ∈ O. Then, U �∈ PG(2, q), and the generator g through U and R meets
π in a point V ∈ H(2, q2). Since V is conjugate to P , the plane φ through P, R
and U is tangent to H(3, q2) with tangency point V . Therefore, φ meets π in the
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tangent t to H(2, q2) at V . Both points L = �′ ∩ π and S = PU ∩ π lie on t. Note
that V �∈ C0, otherwise t would be a tangent to C0 and, hence, to C contradicting
S ∈ t. Now, Lemma 2.7 applies to t; this implies that L must be an internal point
to C0. On the other hand, L is the pole of � with respect to the polarity arising
from C0. Since � is secant to C0, the point L must be external to C0. This final
contradiction completes the proof. �

To prove that any ovoid of type (1) is indeed multiply derivable, the following
result is needed.

Lemma 3.2. Let L = {�1, . . . �k} be a set of secants to C0, and let L1, . . . , Lk

denote their poles. If the common point of any two lines �i, �j lies outside C0,
or, equivalently, if no line joining two points Li, Lj is tangent to C0, then L is a
replaceable set of any ovoid of type (1) containing C0.

Proof. By Theorem 3.1, it is enough to show that no point on �′i is conjugate to a
point on �′j. Assume by contradiction that Ri ∈ �′i∩H(3, q2) and Rj ∈ �′j ∩H(3, q2)
are two conjugate points, and let V be the common point of the line RiRj with
the plane π. Arguing as in the proof of the Theorem 3.1, it turns out that the
tangent line t to H(2, q2) at V must contain both Li and Lj . Therefore, t is a line
of PG(2, q) and V ∈ C0. In particular, t is the tangent to C0 at V . Then V would
be the common point of �i and �j — a contradiction. �

Note that examples of replaceable sets L of size k ≤ (1/2)(q +1) for an ovoid
of type (1) are provided by any k external lines to C0 through an internal point
of C. Such examples are called linear. Hence, using Lemma 3.2 we get the following
result.

Theorem 3.3. Any ovoid of type (1) is k–fold derivable, for every k ≤ (1/2)(q+1).

We remark that any replaceable set has size at most (1/2)(q + 1). We now
exhibit another infinite family of replaceable sets. Assume that q2 ≡ 1 (mod 10).
Then, PSL(2, q) contains a subgroup M isomorphic to A5. Since A5 has 15 involu-
tions, M contains 15 involutory homologies. The axes of these are pairwise distinct
secants to C0, see [7, 8, 9]. We show that such secants form a replaceable set L.
Assume, on the contrary, that there are two involutory homologies ϕ1, ϕ2 ∈ M
such that their axes meet in a point T of C0. Then, ϕ1ϕ2 fixes T but no any other
point of C0. Therefore, the order of ϕ1ϕ2 is divisible by p. But this is impossible,
as p does not divide the order of A5.

The smallest case is q = 29 and the size of L is 15 = (1/2)(q +1). This shows
that replaceable sets of maximum size are not necessarily linear.

It is possible that more infinite families of non–linear replaceable sets may
arise from Lemma 3.2. However, if the common point of any two lines in L is
internal to C, then only sporadic examples seem to exist, namely for q ≡ 3 (mod 4)
and q ≤ 31. This follows from the main conjecture in [1].

In the above construction, the group M preserves the set L. From Section
4 of [4], the linear collineation group Γ preserving the ovoid of type (1) contains
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a normal subgroup H such that Γ/H ∼= PGL(2, q) and H is a homology group
of order (1/2)(q + 1) with axis π. In particular, Γ/H acts on π as PGL(2, q),
preserving both H(2, q2) and C. It follows that Γ has a subgroup Φ containing H
such that M = Φ/H ∼= A5. In particular, the linear collineation group of every
multiply derived ovoid arising from L is non–solvable.

It is natural to ask whether any non–trivial linear collineation group H of
the replaceable set L may be lifted to a linear collineation group of the derived
ovoid O′. Clearly, the answer depends on the geometry of the original ovoid O
from which O′ arose. However, when O is the ovoid of type (1) constructed in [4],
the answer is affirmative, as it is stated in the following theorem.

Theorem 3.4. Let O′ be an ovoid arising from the ovoid of type (1) given in [4], by
multiple derivation with respect to a replaceable set L. If L consists of (1/2)(q +1)
lines through an internal point to C0, then the linear collineation group Γ preserv-
ing O′ contains a homology group Φ of order (1/2)(q + 1).
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