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Abstract

A simple orthogonal arrayOA(q2n−1, q2n−2, q, 2) is constructed by using
the action of a large subgroup of PGL(n+ 1, q2) on a set of non-degenerate
Hermitian varieties in PG(n, q2).
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1 Introduction

Let Q = {0, 1, . . . , q − 1} be a set of q symbols and consider a (k × N)-matrix
A with entries in Q. The matrix A is an orthogonal array with q levels and
strength t, in short an OA(N, k, q, t), if any (t×N)-subarray of A contains each
t× 1-column with entries in Q, exactly µ = N/qt times. The number µ is called
the index of the array A. An orthogonal array is simple when it does not contain
any repeated column.

Orthogonal arrays were first considered in the early forties, see Rao [9, 10],
and have been intensively studied ever since, see [13]. They have been widely
used in statistic, computer science and cryptography.

There are also remarkable links between these arrays and affine designs,
see [12, 14]. In particular, an OA(qµ1, k, q, 1) exists if and only if there is a
resolvable 1−(qµ1, µ1, k) design. Similarly, the existence of an OA(q2µ2, k, q, 2),
is equivalent to that of an affine 1− (q2µ2, qµ2, k) design, see [12].

∗Research supported by the Italian Ministry MIUR, Strutture geometriche, combinatoria e loro
applicazioni.
†
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A general procedure for constructing an orthogonal array depends on homo-
geneous forms f1, . . . , fk, defined over a subsetW ⊆ GF(q)n+1. The array

A(f1, . . . , fk;W) =








f1(x)

f2(x)
...

fk(x)


 : x ∈ W




,

with an arbitrary order of columns, could provide an orthogonal array only if
the size of the intersection V (fi) ∩ V (fj) ∩ W for distinct varieties V (fi) and
V (fj), is independent of the choice of i, j. Here V (f) denotes the algebraic
variety associated with f . This procedure was applied to linear functions by
Bose [2], and to quadratic functions by Fuji-Hara and Miyamoto [4, 5].

In this paper, we construct a simple OA(q2n−1, q2n−2q, 2) = A0 using the
above procedure with Hermitian forms. To do this we look into the action of a
large subgroup of PGL(n+ 1, q2) on a set of non-degenerate Hermitian varieties
in PG(n, q2). The resulting orthogonal array A0 is closely related to an affine
2−(q(2n−1), q2(n−1), q(2n−3)+· · ·+q+1) design S, that for q ≥ 2, provides a non-
classical model of the (2n−1)-dimensional affine space AG(2n−1, q). Precisely,
the points of S are labelled by the columns of A0, some parallel classes of S
correspond to the rows of A0 and each of the q parallel blocks associated with
a given row of A0 is labelled by one of the q different symbols in that row.

2 Preliminary results on Hermitian varieties

Let Σ = PG(n, q2) be the desarguesian projective space of dimension n over
GF(q2) and denote by X = (x1, x2, . . . , xn+1) homogeneous coordinates for its
points. The hyperplane Σ∞ : Xn+1 = 0 is taken as the hyperplane at infinity.

We use σ to write the involutory automorphism of GF(q2) which leaves all
the elements of the subfield GF(q) invariant. A Hermitian variety H(n, q2) is
the set of all points X of Σ which are self conjugate under a Hermitian polarity
h. If H is the Hermitian (n + 1) × (n + 1)-matrix associated with h, then the
Hermitian variety H(n, q2) has equation

XH(Xσ)T = 0 .

When H is non-singular, the corresponding Hermitian variety is non-degenerate,
whereas if H has rank n, the related variety is a Hermitian cone. The radical of
a Hermitian cone, that is the set {Y ∈ Σ | Y H(Xσ)T = 0 ∀X ∈ Σ}, consists of
one point, the vertex of the cone.
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All non-degenerate Hermitian varieties are projectively equivalent; a possible
canonical equation is

Xq+1
1 + · · ·+Xq+1

n−1 +Xq
nXn+1 +XnX

q
n+1 = 0 ; (1)

the polynomial on the left hand side of (1) is a Hermitian form. All Hermitian
cones of Σ are also projectively equivalent.

A non-degenerate Hermitian variety H(n, q2) of Σ has several remarkable
properties, see [7, 11]; here we just recall the following.

(1) The number of points on H(n, q2) is

µn(q) =
1

q2 − 1

(
qn+1 + (−1)n

)
(qn − (−1)n) .

(2) A maximal subspace of Σ included in H(n, q2) has dimension
⌊
n− 1

2

⌋
.

These maximal subspaces are called generators of H(n, q2).

(3) Any line of Σ meets H(n, q2) in 1, q + 1 or q2 + 1 points. The lines meeting
H in one point are called tangent lines.

(4) The polar hyperplane πP with respect to h of a point P on H(n, q2) is the
locus of the lines through P either contained in H(n, q2) or tangent to it at
P . This hyperplane πP is also called the tangent hyperplane at P ofH(n, q2).
Furthermore,

|H(n, q2) ∩ πP | = 1 + q2µn−2(q) .

(5) Every hyperplane π of Σ which is not a tangent hyperplane of H(n, q2)

meets H(n, q2) in a non-degenerate Hermitian variety H(n− 1, q2) of π.

In Section 5 we shall make extensive use of non-degenerate Hermitian vari-
eties, together with Hermitian cones of vertex the point P∞(0, 0, . . . , 1, 0). Let
AG(n, q2) = Σ \ Σ∞ be the affine space embedded in Σ. We may provide an
affine representation for the Hermitian cones with vertex at P∞ as follows.

Let ε be a primitive element of GF(q2). Take a point (a1, . . . , an−1, 0) on the
affine hyperplane Π : Xn = 0 of AG(n, q2). We can always write ai = a1

i + εa2
i

for any i = 1, . . . , n− 1. There is thus a bijective correspondence ϑ between the
points of Π and those of AG(2n− 2, q),

ϑ(a1, . . . , an−1, 0) = (a1
1, a

2
1, . . . , a

1
n−1, a

2
n−1) .
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Pick now a hyperplane π′ in AG(2n − 2, q) and consider its pre-image π =

ϑ−1(π′) in Π. The set of all the lines P∞X with X ∈ π is a Hermitian cone
of vertex P∞. The set π is a basis of this cone.

Let T0 = {t ∈ GF(q2) : tr(t) = 0}, where tr : x ∈ GF(q2) 7→ xq + x ∈ GF(q) is
the trace function. Then, a Hermitian cone Hω,v is represented by

ωq1X1 − ω1X1 + ωq2X
q
2 − ω2X2 + · · ·+ ωqn−1X

q
n−1 − ωn−1Xn−1 = v , (2)

where ωi ∈ GF(q2), v ∈ T0 and there exists at least one i ∈ {1, . . . , n − 1} such
that ωi 6= 0.

3 Construction

In this section we provide a family of simple OA(q2n−1, q2n−2, q, 2), where n
is a positive integer and q is any prime power. Several constructions based on
finite fields of orthogonal arrays are known, see for instance [2, 4, 5]. The
construction of [2] is based upon linear transformations over finite fields. Non-
linear functions are used in [4, 5]. In [5], the authors dealt with a subgroup of
PGL(4, q), in order to obtain suitable quadratic functions in 4 variables; then, the
domain W of these functions was appropriately restricted, thus producing an
orthogonal array OA(q3, q2, q, 2). The construction used in the aforementioned
papers starts from k distinct multivariate functions f1, . . . , fk, all with a common
domainW ⊆ GF(q)n+1, which provide an array as seen in the Introduction.

In general, it is possible to generate functions fi starting from homogeneous
polynomials in n + 1 variables and considering the action of a subgroup of the
projective group PGL(n + 1, q). Indeed, any given homogeneous polynomial f
is associated with a variety V (f) in Σ of equation

f(x1, . . . , xn+1) = 0 .

The image V (f)g of V (f) under the action of an element g ∈ PGL(n+ 1, q) is a
variety V (fg) of Σ, associated with the polynomial f g.

A necessary condition for A(f1, . . . , fk;W) to be an orthogonal array, when
all the fi’s are homogeneous, is that |V (fi) ∩ V (fk) ∩W| is independent of the
choice of i, j, whenever i 6= j.

Here, we consider homogeneous polynomials which are Hermitian forms of
GF(q2)[X1, . . . , Xn, Xn+1]. Denote by G the subgroup of PGL(n+ 1, q2) consist-
ing of all collineations represented by

α(X ′1, . . . , X
′
n+1) = (X1, . . . , Xn+1)M
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where α ∈ GF (q2) \ {0}, and

M =




1 0 · · · 0 j1 0

0 1 · · · 0 j2 0
...

...
0 0 1 jn−1 0

0 0 · · · 0 1 0

i1 i2 · · · in−1 in 1




−1

, (3)

with is, jm ∈ GF(q2). The group G has order q2(2n−1). It stabilises the hyper-
plane Σ∞, fixes the point P∞(0, . . . , 0, 1, 0) and acts transitively on AG(n, q2).

LetH be the non-degenerate Hermitian variety associated with the Hermitian
form

F = Xq+1
1 + · · ·+Xq+1

n−1 +Xq
nXn+1 +XnX

q
n+1 .

The hyperplane Σ∞ is the tangent hyperplane at P∞ of H. The Hermitian form
associated with the variety Hg, as g varies in G, is

F g = Xq+1
1 + · · ·+Xq+1

n−1 +Xq
nXn+1 +XnX

q
n+1

+Xq+1
n+1(iq+1

1 + · · ·+ iq+1
n−1 + iqn + in)

+ tr
(
Xq
n+1(X1(iq1 + j1) + · · ·+Xn−1(iqn−1 + jn−1))

)
.

(4)

The subgroup Ψ of G preserving H consists of all collineations whose matrices
satisfy the condition





j1 = −iq1
...

jn−1 = −iqn−1

iq+1
1 + · · ·+ iq+1

n−1 + iqn + in = 0 .

Thus, Ψ contains q(2n−1) collineations and acts on the affine points of H as a
sharply transitive permutation group. Let C = {a1 = 0, . . . , aq} be a transversal
of T0, viewed as an additive subgroup of GF(q2). Furthermore, let R denote the
subset of G whose collineations are induced by

M ′ =




1 0 · · · 0 0 0

0 1 · · · 0 0 0
...

...
0 0 1 0 0

0 0 · · · 0 1 0

i1 i2 · · · in−1 in 1




−1

, (5)
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where i1, . . . , in−1 ∈ GF (q2), and for each tuple (i1, . . . , in−1), the element in
is the unique solution in C of equation

iq+1
1 + · · ·+ iq+1

n−1 + iqn + in = 0 . (6)

The set R has cardinality q2n−2 and can be used to construct a set of Hermitian
forms {F g | g ∈ R} whose related varieties are pairwise distinct.

Theorem 3.1. For any given prime power q, the matrix A = A(F g , g ∈ R;W),
where

W = {(x1, . . . , xn+1) ∈ GF(q2)n+1 : xn+1 = 1},
is an OA(q2n, q2n−2, q, 2) of index µ = q2n−2.

Proof. It is sufficient to show that the number of solutions inW to the system
{
F (X1, X2, . . . , Xn, Xn+1) = α

F g(X1, X2, . . . , Xn, Xn+1) = β
(7)

is q2n−2 for any α, β ∈ GF(q), g ∈ R \ {id}. By definition of W , this system is
equivalent to
{
Xq+1

1 + · · ·+Xq+1
n−1 +Xq

n +Xn = α

Xq+1
1 + · · ·+Xq+1

n−1 +Xq
n +Xn + tr

(
X1i

q
1 + · · ·+Xn−1i

q
n−1

)
= β .

(8)

Subtracting the first equation from the second we get

tr(X1i
q
1 + · · ·+Xn−1i

q
n−1) = γ , (9)

where γ = β − α. Since g is not the identity, (iq1, . . . , i
q
n−1) 6= (0, . . . , 0); hence,

equation (9) is equivalent to the union of q linear equations in X1, . . . , Xn−1

over GF(q2). Thus, there are q2n−3 tuples (X1, . . . , Xn−1) satisfying (9). For
each such a tuple, (8) has q solutions in Xn that provide a coset of T0 in GF(q2).
Therefore, the system (7) has q2n−2 solutions inW and the result follows.

The array A of Theorem 3.1 is not simple since

F g(x1, . . . , xn, 1) = F g(x1, . . . , xn + r, 1) (10)

for any g ∈ R, and r ∈ T0.

We now investigate how to extract a subarray A0 of A which is simple. We
shall need a preliminary lemma.

Lemma 3.2. Let x ∈ GF(q2) and suppose tr(αx) = 0 for any α ∈ GF(q2). Then,
x = 0.
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Proof. Consider GF(q2) as a 2-dimensional vector space over GF(q). By [8, The-
orem 2.24], for any linear mapping Ξ : GF(q2) → GF(q), there exists exactly
one α ∈ GF(q2) such that Ξ(x) = tr(αx). In particular, if tr(αx) = 0 for any
α ∈ GF(q2), then x is in the kernel of all linear mappings Ξ. It follows that
x = 0.

Theorem 3.3. For any prime power q, the matrix A0 = A(F g , g ∈ R,W0), where

W0 = {(x1, . . . , xn+1) ∈ W : xn ∈ C}

is a simple OA(q2n−1, q2n−2, q, 2) of index µ = q2n−3 .

Proof. We first show that A0 does not contain any repeated column. Let A
be the array introduced in Theorem 3.1, and index its columns by the corre-
sponding elements inW . Observe that the column (x1, . . . , xn, 1) is the same as
(y1, . . . , yn, 1) in A if, and only if,

F g(x1, . . . , xn, 1) = F g(y1, . . . , yn, 1) ,

for any g ∈ R. We thus obtain a system of q2n−2 equations in the 2n indetermi-
nates x1, . . . xn, y1, . . . , yn. Each equation is of the form

tr(xn − yn) =

n−1∑

t=1

(
yq+1
t − xq+1

t + tr(at(yt − xt))
)
, (11)

where the elements at = iqt vary in GF(q2) in all possible ways. The left hand
side of the equations in (11) does not depend on the elements at; in particular,
for a1 = a2 = · · · = at = 0 we have

tr(xn − yn) =

n−1∑

t=1

(yq+1
t − xq+1

t ) ;

hence,

n−1∑

t=1

(yq+1
t − xq+1

t ) =

n−1∑

t=1

(
yq+1
t − xq+1

t + tr(at(yt − xt))
)
.

Thus,
∑n−1
t=1 tr(at(yt − xt)) = 0. By the arbitrariness of the coefficients at ∈

GF(q2), we obtain that for any t = 1, . . . n− 1, and any α ∈ GF(q2),

tr(α(yt − xt)) = 0 .

Lemma 3.2 now yields xt = yt for any t = 1, . . . , n − 1 and we also get from
(11)

tr(xn − yn) = 0 .
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Thus, xn and yn are in the same coset of T0. It follows that two columns of
A are the same if and only if the difference of their indexes in W is a vector
of the form (0, 0, 0, . . . , 0, r, 0) with r ∈ T0. By construction, there are no two
distinct vectors in W0 whose difference is of the required form; thus, A0 does
not contain repeated columns.

The preceding argument shows that the columns of A are partitioned into
q2n−1 classes, each consisting of q repeated columns. Since A0 is obtained
from A by deletion of q − 1 columns in each class, it follows that A0 is an
OA(q2n−1, q2n−2, q, 2) of index q2n−3.

4 Some examples

We now apply Theorem 3.3 to construct an orthogonal array for n = 2 and
q = 3.

Denote by ω a primitive element of GF(9), root of the irreducible polynomial
x2 + 2x + 2 over GF (3). Then, T0 = {0, ω2, ω6}, whereas a transversal of T0 in
GF(9) is C = GF (3). Thus, the setW0 consists of the following elements:

(0, 0, 1) (0, 1, 1) (0, 2, 1) (1, 0, 1) (1, 1, 1) (1, 2, 1)

(2, 0, 1) (2, 1, 1) (2, 2, 1) (ω, 0, 1) (ω, 1, 1) (ω, 2, 1)

(ω2, 0, 1) (ω2, 1, 1) (ω2, 2, 1) (ω3, 0, 1) (ω3, 1, 1) (ω3, 2, 1)

(ω5, 0, 1) (ω5, 1, 1) (ω5, 2, 1) (ω6, 0, 1) (ω6, 1, 1) (ω6, 2, 1)

(ω7, 0, 1) (ω7, 1, 1) (ω7, 2, 1).

In this case, there are exactly 9 Hermitian forms to consider, namely

Fα(X1, X2, X3) = X3
1 +Xq

2X3 +X2X
q
3 + tr(X1X

q
3α

q) ,

as α varies in GF(9). The result is theOA(27, 9, 3, 2) of index 3 shown in Table 1.

The computer algebra system [6] has been used to construct larger orthog-
onal arrays. The actual code is outlined in Table 2, while the result for n = 3,
q = 2, which is an OA(32, 16, 2, 2), is in Table 3.

5 A non-classical model of AG(2n− 1, q)

We keep the notation introduced in the previous sections. We are going to
construct an affine 2 −

(
q2n−1, q2n−2, q(2n−3) + · · ·+ q + 1

)
design S that, as

pointed out in Remark 5.2, is related to the array A0 defined in Theorem 3.3.
Our construction is a generalisation of [1].
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021102102210102210210102210

021021210021102021102102102

021210021102102102021102021

021210021021021210102210210

021102102102021021021210102

021210021210210021210021102

021021210102210210021021210

021102102021210102102021021

021021210210021102210210021

Table 1: Orthogonal array for n = 2 and q = 3

Let us again consider the subgroup G of PGL(n + 1, q2) whose collineations
are induced by the matrices in (3). The group G acts on the set of all Hermitian
cones of the form (2) as a permutation group. In this action, G has q(2n−3) +

· · ·+ 1 orbits, each of size q. In particular, the q(2n−3) + · · ·+ 1 Hermitian cones
Hω,0 of affine equation

ωq1X1 − ω1X1 + ωq2X
q
2 − ω2X2 + · · ·+ ωqn−1X

q
n−1 − ωn−1Xn−1 = 0 , (12)

with (ω1, . . . , ωn−1) ∈ GF (q2)n−1 \{(0, . . . , 0)}, constitute a system of represen-
tatives for these orbits.

The stabiliser in G of the origin O(0, . . . , 0, 1) fixes the line OP∞ point-wise,
while is transitive on the points of each other line passing through P∞. Further-
more, the centre of G comprises all collineations induced by




1 0 · · · 0 0 0

0 1 · · · 0 0 0
...

...
0 0 1 0 0

0 0 · · · 0 1 0

0 0 · · · 0 in 1




−1

(13)

with in ∈ GF (q2). The subset of G consisting of all collineations induced by
(13) with in ∈ T0 is a normal subgroup N of G that acts semiregularly on
the affine points of AG(n, q2) and preserves each line parallel to the Xn-axis.
Furthermore, N is contained in Ψ and also preserves every affine Hermitian
cone Hω,v.

We may now define an incidence structure S = (P ,B, I) as follows. The
set P consists of all the point-orbits of AG(n, q2) under the action of N . Write
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n:=3; q:=3;

Tr2:=function(x)

return x+x^q;

end;;

Hval:=function(X,I)

return

Sum(List(X{[1..n-1]},a->a^(q+1)))+

Tr2(X[n])+

Tr2(Sum(List([1..n-1],i->X[i]*I[i]^q)));

end;;

IVec:=Elements(GF(q^2)^(n-1));

T0:=Filtered(Elements(GF(q^2)),t->Tr2(t)=0*Z(q));

C:=Set(GF(q^2),t->Set(T0,u->u+t)[1]);

W0:=Set(Cartesian(GF(q^2)^(n-1),C),

u->Concatenation(u[1],[u[2],Z(q)^0]));;

OA:=List(IVec,t->List(W0,u->Hval(u,t)));;

Table 2: Code for the construction of an OA(35, 34, 3, 2).

N(x1, . . . , xn) for the orbit of the point (x1, . . . , xn) in AG(n, q2) under the action
of N .

The elements of B are the images of the Hermitian variety H of affine equa-
tion

Xq+1
1 + · · ·+Xq+1

n−1 +Xq
n +Xn = 0 , (14)

together with the images of the Hermitian cones (12) under the action of G. If
a block B ∈ B arises from (14), then it will be called Hermitian-type, whereas if
B arises from (12), it will be cone-type. Incidence is given by inclusion.

Theorem 5.1. The aforementioned incidence structure S is an affine

2− (q(2n−1), q2(n−1), q(2n−3) + · · ·+ q + 1)

design, isomorphic, for q > 2, to the point-hyperplane design of the affine space
AG(2n− 1, q).

Proof. By construction, S has q2n−1 points and q(2n−1) +q2(n−1) + · · ·+q blocks,
each block consisting of q2(n−1) points.

We first prove that the number of blocks through any two given points is
q(2n−3) + · · ·+q+1. Since S has a point-transitive automorphism group, we may
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01101010100101011001010110010101

01100101100110101001101010011010

01011001101001101010011010100110

01010110101010011010100110101001

01101010100101010110101001101010

01100101100110100110010101100101

01011001101001100101100101011001

01010110101010010101011001010110

01101010011010101001010101101010

01100101011001011001101001100101

01011001010110011010011001011001

01010110010101101010100101010110

01101010011010100110101010010101

01100101011001010110010110011010

01011001010110010101100110100110

01010110010101100101011010101001

Table 3: Orthogonal array for n = 3 and q = 2

assume, without loss of generality, one of these points to be O = N(0, . . . , 0).
Let A = N(x1, x2, . . . , xn) be the other point. We distinguish two cases, accord-
ing as the points lie on the same line through P∞ or not.

We begin by considering the case (0, 0, . . . , 0) 6= (x1, x2, . . . , xn−1). The line `
represented by X1 = x1, . . . , Xn−1 = xn−1, is a secant to the Hermitian variety
H. Since the stabiliser of the origin is transitive on the points of `, we may
assume that A ⊆ H; in particular, (x1, x2, . . . , xn) ∈ H and

xq+1
1 + · · ·+ xq+1

n−1 + xqn + xn = 0 . (15)

Observe that this condition is satisfied by every possible representative of A.
Another Hermitian-type block, arising from the variety Hg associated with the
form (4), contains the points O and A if and only if

iq+1
1 + · · ·+ iq+1

n−1 + iqn + in = 0 (16)

and

xq+1
1 + · · ·+ xq+1

n−1 + xqn + xn + xq1(i1 + jq1) + · · ·+ xqn−1(in−1 + jqn−1)

+ x1(iq1 + j1) + · · ·+ xn−1(iqn−1 + jn−1) + iq+1
1 + · · ·+ iq+1

n−1 + iqn + in = 0 .

(17)

Given (15) and (16), equation (17) becomes

tr(x1(iq1 + j1) + · · ·+ xn−1(iqn−1 + jn−1)) = 0 . (18)
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Condition (16) shows that there are q2n−1 possible choices for the tuples i =

(i1, . . . , in); for any such a tuple, because of (18), we get q2n−3 values for j =

(j1, . . . , jn−1). Therefore, the total number of Hermitian-type blocks through
the points O and A is exactly

q4(n−1)

q2n−1
= q2n−3 .

On the other hand, cone-type blocks containing O and A are just cones with
basis a hyperplane of AG(2n − 2, q), through the line joining the affine points
(0, . . . , 0) and θ(x1, . . . , xn−1, 0); hence, there are precisely q2n−4 + · · · + q + 1

of them.

We now deal with the case (x1, x2, . . . , xn−1) = (0, 0, . . . , 0). A Hermitian-
type block through (0, . . . , 0) meets theXn-axis at points of the form (0, . . . , 0, r)

with r ∈ T0. Since xn /∈ T0, no Hermitian-type block may contain both O and
A. On the other hand, there are q2n−3 + · · · + q + 1 cone-type blocks through
the two given points that is, all cones with basis a hyperplane in AG(2n − 2, q)

containing the origin of the reference system in AG(2n− 2, q). It follows that S
is a 2− (q(2n−1), q2(n−1), q(2n−3) + · · ·+ q + 1) design.

Now we recall that two blocks of a design are parallel if they are either coin-
cident or disjoint. In order to show that S is indeed an affine design we need to
check the following two properties, see [3, Section 2.2, page 72]:

(a) any two distinct blocks either are disjoint or have q2n−3 points in common;

(b) given a pointN(x1, . . . , xn) ∈ P and a blockB ∈ B such thatN(x1, . . . , xn) /∈
B, there exists a unique block B′ ∈ B satisfying both N(x1, . . . , xn) ∈ B′
and B ∩ B′ = ∅.

We start by showing that (a) holds for any two distinct Hermitian-type blocks.
As before, we may suppose one of them to be H and denote by Hg the other
one, associated with the form (4). We need to solve the system of equations
given by (15) and (17). Subtracting (15) from (17),

tr(x1(iq1 + j1) + · · ·+ xn−1(iqn−1 + jn−1)) = γ , (19)

where γ = −(iq+1
1 + · · ·+ iq+1

n−1 + iqn + in).

Suppose that (iq1 +j1, . . . , i
q
n−1 +jn−1) 6= (0, . . . , 0). Arguing as in the proof of

Theorem 3.1, we see that there are q2n−3 tuples (x1, . . . , xn−1) satisfying (19)
and, for each such a tuple, (15) has q solutions in xn. Thus, the system given by
(15) and (17) has q2n−2 solutions; taking into account the definition of points
of S, it follows that the number of the common points of the two blocks under
consideration is indeed q2n−3.
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In the case (iq1 + j1, . . . , i
q
n−1 + jn−1) = (0, . . . , 0), either γ 6= 0 and the two

blocks are disjoint, or γ = 0 and the two blocks are the same.

We now move to consider the case wherein both blocks are cone-type. The
bases of these blocks either are disjoint or share q2(n−2) affine points; in the
former case, the blocks are disjoint; in the latter, they have q2(n−2) lines in
common. Since each line of AG(n, q2) consists of q points of S, the intersection
of the two blocks has size q2n−3.

We finally study the intersection of two blocks of different type. We may
assume again the Hermitian-type block to be H. Let then C be cone-type. Each
generator of C meets the Hermitian variety H in q points which form an orbit
of N . Therefore, the number of common points between the two blocks is, as
before, q2n−3; this completes the proof of (a).

We are now going to show that property (b) is also satisfied. By construction,
any cone-type block meets every Hermitian-type block. Assume first B to be the
Hermitian variety H and P = N(x1, x2, . . . , xn) 6⊆ H. Since we are looking for
a block B′ through P , disjoint from H, also B′ must be Hermitian-type. Let β
be the collineation induced by




1 0 · · · 0 0 0

0 1 · · · 0 0 0
...

...
0 0 1 0 0

0 0 · · · 0 1 0

0 0 · · · 0 in 1




−1

,

with iqn + in + xq+1
1 + · · ·+ xq+1

n−1 + xqn + xn = 0. Then, the image B′ of H under
β is disjoint from H and contains the set P . To prove the uniqueness of the
block satisfying condition (b), assume that there is another block B̃, which is
the image of H under the collineation ω induced by




1 0 · · · 0 b1 0

0 1 · · · 0 b2 0
...

...
0 0 1 bn−1 0

0 0 · · · 0 1 0

a1 a2 · · · an−1 an 1




−1

and such that B̃ ∩H = ∅ and P ⊆ B̃. As B̃ and H are disjoint, the system given
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by (15) and

xq+1
1 + · · ·+ xq+1

n−1 + xqn + xn + xq1(a1 + bq1) + · · ·+ xqn−1(an−1 + bqn−1)

+ x1(aq1 + b1) + · · ·+ xn−1(aqn−1 + bn−1) + aq+1
1 + · · ·+ aq+1

n−1 + aqn + an = 0

(20)

must have no solution. Arguing as in the proof of (a), we see that this implies
that (aq1 + b1, . . . , a

q
n−1 + bn−1) = (0, . . . , 0). On the other hand, P ∈ B̃ ∩ B′

yields iqn + in + aq+1
1 + · · ·+ aq+1

n−1 + aqn + an = 0, that is ω−1β is in the stabiliser
Ψ of H in G; hence, B′ = B̃.

Now, assume B to be a cone-type block. Denote by π its basis and let
P ′ = (x1

1, x
2
1, . . . , x

1
n−1, x

2
n−1) be the image ϑ(x1, . . . , xn−1, 0) on the affine space

AG(2n − 2, q) identified, via ϑ, with the affine hyperplane Xn = 0. In AG(2n −
2, q) there is a unique hyperplane π′ passing trough the point P ′ and disjoint
from π. This hyperplane π′ uniquely determines the block B′ with property (b).

In order to conclude the proof of the current theorem we shall require a deep
characterisation of the high-dimensional affine space, namely that an affine de-
sign S whose parallel classes contain q > 2 blocks is an affine space if and only
if every line consists of exactly q points, see [3, Theorem 12, p. 74].

Recall that the line of a design D through two given points L,M is defined
as the set of all points of D incident to every block containing both L and M .
Thus, choose two distinct points in S. As before, we may assume that one of
them is O = N(0, . . . , 0) and let A = N(x1, . . . , xn) be the other one.

Suppose first that A lies on the Xn-axis. In this case, as we have seen before,
there are exactly q2n−3 + · · · + q + 1 blocks incident to both O and A, each of
them cone-type. Their intersection consists of q points of S on the Xn-axis.

We now examine the case where A is not on the Xn-axis. As before, we may
assume that A ⊆ H, hence (15) holds. Exactly q2n−3 + · · · + q + 1 blocks are
incident to both O and A: q2n−2 are Hermitian-type, the remaining q2n−4 +

· · ·+ q+ 1 being cone-type. Hermitian-type blocks passing through O and A are
represented by

Xq+1
1 + · · ·+Xq+1

n−1 +Xq
n +Xn +Xq

1 (i1 + jq1) + · · ·+Xq
n−1(in−1 + jqn−1)

+X1(iq1 + j1) + · · ·+Xn−1(iqn−1 + jn−1) = 0 , (21)

with (18) satisfied. Set xs = x1
s + εx2

s for any s = 1, . . . , n − 1, with x1
s , x

2
s ∈

GF(q). The cone-type blocks incident to both O and A are exactly those with ba-
sis a hyperplane of AG(2n−2, q) containing the line through the points (0, . . . , 0)

and (x1
1, x

2
1, . . . , x

1
n−1, x

2
n−1). Hence, these blocks share q generators, say rt,
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with affine equations of the form

rt





X1 = tx1

...

Xn−1 = txn−1

as t ranges over GF(q). Each generator rt meets the intersection of the Hermitian-
type blocks through O and A at those points (tx1, tx2, . . . , txn−1, xn) satisfying
each of the equations (21), that is

t2xq+1
1 + · · ·+ t2xq+1

n−1 + xqn + xn + txq1(i1 + jq1) + · · ·+ txqn−1(in−1 + jqn−1)

+ tx1(iq1 + j1) + · · ·+ txn−1(iqn−1 + jn−1) = 0 . (22)

Given (15), (18), equations (22) become

xqn + xn − t2(xqn + xn) = 0 . (23)

Since t2(xqn+xn) ∈ GF(q), (23) has q solutions, all of the form {xn+r | r ∈ T0}.
The point-set {(tx1, tx2, . . . , txn−1, xn + r) | r ∈ T0} coincides with the point
N(tx1, tx2, . . . , txn−1, xn) ∈ P . As t varies inGF (q), we get that the intersection
of all blocks containing O and A consists, in this case also, of q points of S.

Remark 5.2. The array A0 defined in Theorem 3.3 is closely related to the affine
design S = (P ,B, I). Precisely, W0 is a set of representatives for P . The rows
of A0 are generated by the forms F g for g varying in R, whose associated Her-
mitian varieties provide a set of representatives for the q2n−2 parallel classes of
Hermitian-type blocks in B.

Two orthogonal arrays with the same parameters are said to be equivalent if
one can be obtained from the other by permutations of the columns, of the rows,
and of the symbols in each column. Since S is an affine design isomorphic to
AG(2n−1, q) for q > 2, it turns out that the array A0 is equivalent to a sub-array
of the standard orthogonal array, associated with the classical affine design, as
described in [12, 14].
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