
J. E. MacDonald

Design Methods for Maximum
Minimum-Distance Error-Correcting Codes*

Abstract: In error-correcting codes for combating noisy transmission channels, a central concept i s the notion

of minimum distance. If a code can be constructed with minimum distance between code points of 2m-k 1 I then

any number of errors per code word which does not exceed m can be corrected, thus increasing the reliability
of transmission above that to be expected with no redundancy in the code.

An upper bound on minimum distance is derived which depends on g (the number of code points or messages

required) and n (the number of binary symbols per code point). This bound is complementary to a bound due
to Hamming and uses an argument which i s essentially due to Plotkin.

Construction methods are presented for codes which actually achieve the upper bound on minimum distance
for any g and an infinite class of integers n which depend on g. Sixteen code types are described: three for

g = 2 h - l I six for g=2hl and seven for g=2k.

Introduction

Much of the work on synthesis of error-correcting codes
has been devoted to devising methods of achieving a
certain minimum distance between the sequences of
binary symbols which are the code points of the code.
Hamming1 defined distance between two code points as
the number of correspondingly placed binary symbols
which differ between the two code points. As shown by
Hamming, a major advantage of being able to find a code
structure with a certain minimum distance, min d, is as
follows :

If min d=2m+ 1, any error pattern containing m or fewer
errors can be corrected.

If min d =2m + 2, any error pattern containing m or fewer
errors can be corrected. In addition, any error pattern
containing (m+ 1) errors can be detected.

The correcting procedure is simply to change any re-
ceived sequence of n symbols which is not a code point
into that code point which is “nearest” to the received
sequence. This procedure does not depend in any direct
way on the type of noise which may corrupt the trans-
‘This paper is based in part on a thesis submitted in partial fulfillment of
the degree of Master of Electrical Engineering at Syracuse University
awarded January, 1958.

mitted code points. However, one hopes that error pat-
terns containing e errors are more probable than error
patterns containing more than e errors. Whether this is
true or not for the noise at hand, it is not difficult to see
that, should we be able to correct all error patterns con-
taining e errors, we would automatically be able to correct
all error patterns containing (e - 1) or fewer errors if we
chose to do so.

Bounds on minimum distance

Suppose we have g code points, each comprised of an
n-binary symbol-vector. Hamming has shown that, for
fixed g and n, an upper bound on minimum distance can
be given as follows. Define an integer m by:

where (7) = (N) !

Then,

(i) ! (N - i) !

min d<2m+1 for n = N ,

min d<2m+2 for n=N+ 1 . 43
(2)

IBM JOURNAL JANUARY 1960

In Appendix I the following upper bound on minimum
distance is derived:

For g=2h- 1: mind< ____
n[g+ll

2g
h= l ,2 ,3 ,4 ,5 ,

(The argument used in Appendix I is essentially identical
to an argument used by Plotkin3, who found an upper
bound on g for fixed minimum d and fixed n. Because of
our present need for an upper bound on minimum d for
fixed g and fixed n and also because of the limited avail-
ability of Plotkin’s paper, the proof of (3) is given in full
in Appendix 1.)

The bound of (3) is sometimes larger, sometimes
smaller than that of Hamming. Thus, the smaller of the
two is a better bound than either one alone. In general,
if the ratio 2n/g is large, (3) provides a tighter bound
than (2). For example, in his paper Hamming uses a
form of (2) to predict the existence of a code with n=7,
g=4, and min d=5 because

(i) + (: > . (1) = 2 9 G q = 3 2 27

He then points out that it can be shown by trial and
error that such a code does not exist. Using (3), it can be
shown analytically that such a code does not exist because

7(4)
5> ___

2(4-1)
= 4+

The results of (2) and (3) are tabulated in Table 1
for several values of n and g.

A general property of maximum
minimum-distance codes
For convenience, let us visualize an array of the code
points of a code as a matrix with g rows and n columns.
Selection of a particular message or code point to be
transmitted then amounts to selection of a row from the
matrix. In deriving (3) in Appendix I it is necessary to
assume that for each column of the matrix we have the
following property:

For g= 2h(g even) : Each one of the n columns contains
g/2 ones and g/2 zeroes.

For g= 2h- 1 (g odd) : Each one of the n columns con-
tains (g+1)/2 ones and (g-1)/2 zeroes (or alterna-
tively, (g-1)/2 ones and (g+1)/2 zeroes).

Thus of all the myriad possible codes for a given n and
g, we are immediately led to consider only those with the
property just stated if we wish to attempt the construction
of maximum minimum-distance codes.

Construction of max min d codes forg=2h- 1 (g odd)

44 A natural question to ask in view of the previous section

is: how many different columns can be formed which each
consist of, say, (g+1)/2 ones and (g- 1)/2 zeroes?The
answer is:

Let us then examine a code where we set n=Nzh-l and
agree to use each of the types of columns exactly
once in forming the code matrix. For any two code points,

A (e) = (a l (e) , u z (e) ,..., ante)) and A(f)=(ul(f) ,az(f) ,....,
a,(f)), l<e , f<g, wehave:

distance from A (e) to A(f) =d(Ace) , A (n) =d(A(f) , Ace))

= 2 ai(@ -2 2 ai(e)ai(f) + 2 ai(f). (5)

These terms are evaluated separately as follows. The
first term is a count of the number of columns which con-
tain a one in row e. This is:

n n n

i=1 i=l i=l

since we remove a single “one” and a single row and
form, once each, all possible combinations of (g-1)/2
ones and (g- 1) /2 zeroes in the remaining (g- 1) rows.
The third term is identical with the first. The second term
is a count of the number of columns which contain ones
in both row e and row f. This is:

because we remove two ones and two rows and form all
possible combinations of (g- 3) /2 ones and (g- 1) /2
zeroes in (g-2) rows. Use of (6) and (7) in (5) gives:

Clearly this result is independent of the choice of e and
f , and hence all distances are equal and, of course, equal
to the minimum distance for the code. Since we chose
n=NZh-l, we can see from (4), (S), and (3), that the
codes just constructed are max min d codes. Such codes
will henceforth be called Type I codes.

A variation of a Type 1 code will be designated a Type
2 code and is constructed as follows. Starting with Type 1
code, delete any one column. Thus n is diminished by
one and the minimum distance is diminished by one:

IBM JOURNAL JANUARY 1960

Table 1 Upper bound on minimum distance as a function of n and g.

Note: Upper row from Eqs. (I) and (2) (Hamming). Lower row from Eq. (3).

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 2 2 3 4 4 5 6 6 7 8 8 9 1 0 1 0 1 1 1 2 1 2 1 3

1 2 2 3 4 5 6 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 6
1 2 2 3 4 4 5 6 6 7 8 8 9 1 0 1 0 1 1 1 2 1 2 1 3

1 2 3 4 4 5 6 7 8 9 10 10 11 12 13 14 15 16
1 1 2 3 3 4 4 5 6 6 7 7 8 9 9 1 0 1 0 1 1 1 2

1 2 2 3 4 5 6 6 7 8 9 1 0 1 1 12 13 1 4 1 4 1 5
1 1 2 3 3 4 4 5 6 6 7 7 8 9 9 1 0 1 0 1 1 1 2

1 2 2 3 4 4 5 6 7 8 8 9 1 0 1 1 1 2 1 3 1 4 1 5
1 1 2 2 3 4 4 5 5 6 6 7 8 8 9 9 1 0 1 0 1 1

1 2 2 3 4 4 5 6 7 8 8 9 10 11 1 2 1 3 14 14
1 1 2 2 3 4 4 5 5 6 6 7 8 8 9 9 1 0 1 0 1 1

1 2 3 4 4 5 6 6 7 8 9 1 0 1 1 1 2 1 2 1 3 14
1 1 2 2 3 3 4 5 5 6 6 7 7 8 8 9 1 0 1 0 1 1

1 2 2 3 4 5 6 6 7 8 9 10 10 11 12 13 14
1 1 2 2 3 3 4 5 5 6 6 7 7 8 8 9 1 0 1 0 1 1

1 2 2 3 4 5 6 6 7 8 9 1 0 1 0 1 1 12 13 14
1 1 2 2 3 3 4 4 5 6 6 7 7 8 8 9 9 1 0 1 0

1 2 2 3 4 4 5 6 7 8 8 9 1 0 1 1 1 2 1 2 1 3
1 1 2 2 3 3 4 4 5 6 6 7 7 8 8 9 9 1 0 1 0

1 2 2 3 4 4 5 6 7 8 8 9 1 0 1 1 1 2 1 2 1 3
1 1 2 2 3 3 4 4 5 5 6 7 7 8 8 9 9 1 0 1 0

1 2 2 3 4 4 5 6 6 7 8 9 1 0 1 0 1 1 1 2 1 3
1 1 2 2 3 3 4 4 5 5 6 7 7 8 8 9 9 1 0 1 0

1 2 2 3 4 4 5 6 6 7 8 9 1 0 1 0 1 1 1 2 1 3
1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 9 9 1 0 1 0

1 2 2 3 4 4 5 6 6 7 8 9 1 0 1 0 1 1 1 2 1 3
1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 9 9 1 0 1 0

1 2 2 3 4 5 6 6 7 8 9 1 0 1 0 1 1 1 2 1 3
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 9 9 1 0 1 0

1 2 2 3 4 5 6 6 7 8 9 1 0 1 0 1 1 1 2 1 2
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 9 9 1 0 1 0

1 2 2 3 4 4 5 6 7 8 9 1 0 1 0 1 1 1 2 1 2
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 1 0 1 0

1 2 2 3 4 4 5 6 7 8 9 1 0 1 0 1 1 1 2 1 2
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 1 0 1 0 45

IBM JOURNAL JANUARY 1960

Use of (16) and (17) in (5) yields: The right side of (10) is necessarily an integer. The
bound on minimum distance for Type 2 codes is found
by using (9) in (3) :

To show Type 2 codes are max min d we need only
show the right side of (11) exceeds the right side of (10)
by less than unity. Thus:

The value of (18) is clearly independent of e and f, and
hence all distances are equal and, of course, equal to the
minimum distance. Since we chose n=Nzh, the A argu-
ment proves Type 4 codes are max min d.

A variation of Type 4 codes is designated Type 5 and
is formed by deleting any one column of a Type 4 matrix.
For Type 5 codes:

- [(k+1)/2)? - l I
g

n= (&?;2) - 1

mind= ()--"1. g
8/2 2k-11 The last expression of (12) is clearly less than unity

and Type 2 are thus max min d codes. (Equations quite
similar to (9) through (12) can be used to prove the rnax
min d property for other code types to be discussed in the
remainder of the paper. For brevity, this will be desig-
nated henceforth the A argument.)

Another variation of a Type 1 code will be designated a
Type 3 code. To form a Type 3 code delete any two col-
umns from a Type 1 code. We then have:

By the A argument, Type 5 codes also yield max min d
codes.

Another variation of Type 4 is designated Type 6 and
is formed by deleting any two columns from a Type 4
code matrix. This gives for Type 6 :

n= (g;2) -2

The A argument shows Type 6 are max min d codes.
Another variation for g=2h can be formed from a

Type 1 code designed for g=2h- 1. We will designate
such a variation as Type 7 and will show later that it is
very similar to a Type 4 code. Consider a Type 1 code
with one more code point affixed. Let this code point
consist of n zeroes: += (0, 0, 0, , 0,O) .

The distance from any of the code points, say A (e) , of
the original Type 1 code to the + code point is given by
(6) after we substitute (g - 1) for the g of (6). Thus,

The A argument shows Type 2 codes are max min d
codes.

Construction of max min d codes for g=2h (g even)

How many different columns can be formed which con-
tain (g/2) ones and (g/2) zeroes? The answer is:

Consider then a code (Type 4) where we take n=Nzh
and agree to use each of the N 2 h types of columns exactly
once in forming the code matrix. For any two code points,
A (e) and A (f) , the terms of (5) are evaluated as follows.
The first term is a count of the number of columns which
contain a one in row e . Reasoning as we did for (6),
this is:

The distance between any two code points both belong-
ing to the original Type 1 code is given by (8) after
substituting (g- 1) for g:

Further algebraic manipulation shows (23) and (24)
are identical in value. Thus the minimum distance of a
Type 7 code is given by either equation. Since we chose
n as that value given by (4) except that (g- 1) should be
substituted for g, for Type 7 codes we have:

The third term is identical with the first. The second is
evaluated similarly to (7), giving:

n= (t;:).

IBM JOURNAL JANUARY 1960

Table 2 Summary of code types 1 to 9.

Code
Type s n min d

*All distances equal to minimum distance.

Use of the A argument shows A=O. Since this is so, we
may derive a max min d code (T y p e 8) from Type 7
exactly as we did a Type 2 from a Type 1. Another varia-
tion of a Type 7 is called Type 9 and is formed by drop-
ping any two columns from a Type 7 code as we did in
deriving a Type 3 from a Type 1. Again the A argument
reveals Type 8 and Type 9 codes are max min d. The
results derived so far are tabulated in Table 2.

Summary and generalization of max rnin d code
Types 1 to 9

The results on code Types 1 through 9 can be applied
directly to many cases where, for a given g, the error
potential is such as to require additional redundancy,
that is, a larger value of n, but it is still desired that the
resultant code be a max min d code. Let

{ x } = greatest integer contained in x . (26)

The bounds of (3) may be written:

For g=2h: max min d=

(27)
For g=2h- 1 : max min

Suppose we have constructed a code with g=2h and
nl binary symbols per code point whose minimum dis-
tance, (min d) obeys:

Suppose we have a code with the same g=2h as the
first code and n2 binary symbols whose minimum dis-
tance, (min c/)?, obeys:

If now we form a code with n=nl+nz symbols by ad-
joining the two codes above, we form a code matrix of
g rows and 11 columns. For this new code:

minc lZ(minr l)2+(mind)~

- nlg
b-

In view of (27) , we have thus shown the new code to be
a max min d code. The argument for g=2h- 1 is identical.

This result means that certain values of n can be chosen
which yield max min d codes by adjoining any number of
codes whose minimum distance achieves equality in (3)
to at most one code whose minimum distance merely
obeys (2 7) . This generalization for many values of n is
given by Table 3 . In Table 3 we have made use of the
identity :

This identity means that for some values of n and g=2h
we have a choice of one copy of a Type 4 code or two
copies of a Type 7 code. For example, suppose we have

g = 6 and n = 40. Since (:::)= 10, we have c=4. Refer-
ring to Table 3 , line 4, we see that a max min d code can
be made: (1) by adjoining two copies of a Type 4 code,
or (2) by adjoining one copy of a Type 4 and two copies
of a Type 7 , or (3) by adjoining four copies of a Type 7
code. It should be noted that Types 7, 8, and 9 contain
the code point 4 whereas all the others do not contain 9
as a code point. In certain physical situations there may
be a valid reason for desiring the inclusion or exclusion of
4 as a code point.

It is interesting to note from Table 3 that we have
solved the problem of constructing a max min d code for
g=2 , 3 , or 4 and any value of It. The case g=2 is com-
pletely trivial since any two code points which are comple-
mentary [e.g., 4 and I = (1,1,. . .1, l)] have as minimum
distance n which satisfies (3). For g = 3 , reference to
Table 3 shows we can construct a max min d code for
n=3c or 3c- 1 or 3c-2. Since there is a c corresponding
to any n, the max min d code can always be constructed
as in Table 3. For g=4, reference to Table 3 again shows 47

IBM JOURNAL JANUARY 1960

48

we can construct a max min d code for n=3c or 3c- 1 or Consider a set of k vectors, each consisting of n binary
3c-2, so there is a c corresponding to any n. symbols:

Table 4. A(1) = (9 U l (1) &(I), a3(1),. , ,&(I))
A @) = (a 1 (2) , a2(2), a3(2),. ,a,(Z))

Construction of max min d codes for g=2k A (4) = (u1(4) 9 2 , a (4) , a,(4))

Some examples of actual code matrices are shown in

In this and some following sections we shall derive some
construction methods for g=2k. In a previous section we
discussed max min d code construction for g=2h and of
course g = 2 k is a special case of g=2h. However, the
ensuing results are important in their own right, because
the smallest value of n for which we can build a max min
d code using Table 3 is often much larger than a designer
needs to satisfy a certain minimum reliability. In the
methods of construction to be discussed, we will be able to
use a much smaller value of n for a given g=2h than con-
struction methods for g=2h would require.

The construction of max min d codes for g=2h will be
made through the use of group codes, studied extensively
by Slepian,2 who calls them group alphabets. A brief
review of the pertinent properties of group codes will
serve as an introduction to our construction procedure.

A (2k-1) (1 a (2k-1) 9 a2(2K-’), a3(2”-1), an(2’-’)) . (3 2)

Note that the superscript which identifies the vector is
a power of 2. This will be convenient subsequently. Using
the symbol 4- to denote the sum modulo 2, define the -i-
operation on two vectors A (e) and A (f) to be:

A (e) i A (f) = (a l (e) i u l (f) , . , (e) i a z (f) , ,
a,(e) i a , (f)) . (3 3)

For example :

A (@ = (l 0 1 0 1 1 0 1)

A (f) = (l 0 0 1 0 1 0 1)

A (e) t A (f) = (O 0 1 1 1 0 0 0) .

Define a larger set of vectors by the relation:

A (e) = blA (1) 4- bzA (’) -F brA (4) 4- 4- b2a-l A(””) ,
(3 4)

where each bh is either 0 or 1. For convenience let the
g=2h- 1 bh’s be determined uniquely from e by writing e in the

binary form:

Table 3 Generalization of code types 1 to 9.

i I Code

h=O

0 This means, of course, that e obeys:

0
I

g=2h

Code
n 1 Type 4 Type 5 Type 6 Type 7 T y p e 8 T y p e 9 b

0

0

0 C-2b 0

0 c- 1 -2b 1

0 0, 1,2 , . . . , c / 2 .

0 0, 1,2,. . . ,- . c- 2
2

OR b 1 0 ~ - 2 - 2 b 0 0 0 , 1 , 2 , . . . ,-. c - 2
2

[(3 1 - 2
0 0 C- 1 -2b 0 1 0 , 1 , 2 , . . .,-. c- 2

2

OR b 0 1 ~ - 1 - 2 b 0 0 0,1,2,. ..,-.
c - 2

2

IBM JOURNAL JANUARY 1960

Since there are k different bh's in (3 4) , there are 21i
different vectors represented by A (e) in (34) . These 2"
vectors will be the coded form of the 2k different code
points to be transmitted. In the terminology of the pre-
vious sections, then, the coding matrix consists of 2k rows
and n columns. The e row of the coding matrix is the
vector A (e) .

It should be noted for the sake of completeness that
the k vectors of (3 2) must be linearly independent; i.e.,
no one of them can be written as a sum modulo 2 of
some of the others. In our construction methods to be
discussed, this problem will be treated as it arises for the
various code types.

Slepian has shown that the 2lc vectors of the form of
(3 4) form an Abelian group under addition modulo 2.
A fundamental property of such mathematical objects
is the following: if A (e) and A(f) belong to the group, then
(A (e) 4-A (f)) also belongs to the group. Slepian defines
the weight of a code point by:

n
~ (A (~ >) + A (J)) = 2 (a i c e) + a i t r)) = d (A c e) , A (f)) . (3 6)

Since the group property mentioned above holds for
any two members of the group, (3 6) gives the result:
The distance between any two code points of a group code
is equal to the weight of some code point of the group.

?.=1

For example :

d (A (3) , A (z)) = w (A (3) ~ A (Z)) = W (A (~) ~ A (l) ~ A (~))

= W (A (1)) .

This result means that, if we construct group codes,
the minimum distance of the code is given by the mini-
mum nonzero weight of the code points. We must include
the term "nonzero" because + = A (o) = (0, 0, 0, . . . 0)
is always a code point and corresponds to e= f in (3 6) .

In view of (3 3) and (3 4) it is apparent that we can
write, for the binary symbol in row e and column h of the
code matrix:

Table 4 Examples of code matrices for g = 2 h or g = 2 h - 1.

Type 1 Type 3 Type 1

A (0) 1 1 1 1 0 0 0 0 0 0

0 0 1 0 0 1 0 1 A (3) 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 A (3) 0 0 1 0 0 1 0 1 0 1

0 1 0 0 1 0 0 1 A(?) 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 A (2) 0 1 0 0 1 0 0 1 1 0

1 0 0 0 1 1 1 0 A (') 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 A(1) 1 0 0 0 1 1 1 0 0 0

1 1 1 1 0 0 0 0 A (") 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

A (4) 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 A (4) 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1

A (5) 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1
g-5 r,=2. (;) -~3=15

g=6 n = (s) =20

Type I

A(0) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A (') 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

A (?) 1 1 1 1 O 0 0 O O O 1 1 1 1 1 1 O O O O l l l l l l O O O O l l l l O

A(3) 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 l 1 l 0 0 0 1 l l 0 l 1 l 0 1

A (4) 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 l 0 0 1 1 0 1 1 0 1 l 1 0 1 1

A(6) 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 l 0 1 l 0 l 1 l 0 1 1 l

A (G) 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1

49

IBM JOURNAL JANUARY 1960

We therefore find that there are exactly 2k different
types of columns corresponding to the choice of the a
terms on the right side of (37). However, we note that if
all a terms on the right of (37) are zero, then a h (e) is
identically zero for all e. This means the entire column
consists of zeroes and contributes nothing to the distance
between code points. Ruling out the all zeroes as useless,
we are left with (2"- 1) types of columns. It can be shown
that each of these types of columns consists of 2'c-1 zeroes
and 2lC-l ones and hence are of the kind found necessary
for construction of max min d codes in Appendix I.

We have seen previously that a choice for e in (34)
and hence in (37) completely determines the b terms of
(37). In view of this and the definition of the weight of
A (e) , (37) tells us that the weight of any code point is
completely determined by the number of each of the
(2k- 1) possible column types used to form the coding
matrix. As a matter of considerable notational conven-
ience, let us say that a choice of a terms of (37) has
resulted in a column of type j if we have:

j = la(1) +2a(') +4a(4) + +2k-la(2'"). (38)

Letting nj denote the number of columns of type j, we
have :

n = x n i .
z k - 1

(39)
j=1

As an example to illustrate the notion of column types,
consider the following code for k=2, n =5:

e bz bl A (e)

0 0 0 0 0 0 0 0

We may write (40) more compactly as:

[W "] = [C"] [N"] . (41 1
The [We] of (41) is always a (2 k ~ 1) matrix, [N *]

is likewise (2k x l) , whereas [C"] is always (2k X 2k).
Because of the way we assigned superscripts e to the code
points and j labels to the column types, it becomes a very
simple matter to find the [C*] matrix for (k f l) from
the [C+] matrix for k. This is illustrated in Table 5.

Observe that the [C*] matrix is symmetric. Further
observe that, except for the first row and column, each row
and column contains P - 1 ones and 2k-1 zeroes. The first
row and column are really unnecessary for computation
of weights since we have already agreed to set no =0, and
also we already know that Wo=O. This row and column
are merely included to show more simply the expansion
from the [C*] matrix for k to the [C"] matrix for
(k+ 1) . For later convenience, then, let us designate [C]
as the reduced matrix obtained from [C"] by deleting the
first row and first column. By deleting Wo from [W"] , we
form [W] and by deleting no from [N"] we form [N].
Thus, we still have the matrix multiplication relation:

[WI = [CI [NI . (42)

By virtue of the fact that each column of the C matrix
contains 2k-1 ones, we have the additional restraint noted
by Slepian:

2 1 0 0 1 1 1 1

3 1 1 1 0 0 0 1

For the left-most column of A (e) we have d l) = 1,
a(') = 0. Thus the appropriate j label for this column is
j = 1 from (38). The next column has a(l)=O, d 2) = 1,
giving j=2. The third column has d l) = 1, = 1, giving
j=3. The fourth column has a(l) = 1; u(2)= 1, giving j=3.
The last column has a(1) =0, d 2) = 1 , giving j=2. Thus
the j labels are, from left to right:

1 ,2 ,3 , 3 ,2 .

Hence, nl=l; n2=2; n3=2; n=nl+nz+n3=5.

Pursuing the example somewhat further we can see that
the following relations are true:

W,=W(A(O))=O

Wl=W(A(l ')=n,+ns=1+2=3

W z = W (A (')) =n2+n3=2+2=4

W3=W(A(3))=nl+nz=1+2=3.

I 50 These expressions suggest the matrix multiplication:

It is of interest that [C] possesses an inverse for any k.
Denoting by cij the entry in row i and column j of [C]
and by cij-l the entry in row i and column j of [C-l] , it
can be shown that:

(44)

where [N] = [C-l] [W] .
Thus a proposed set of weights must not only satisfy

(43) but must also yield an integer for every n j according
to (44). Slepian arrived at this result using the theory of
modular representations of mathematical groups.

Our main concern, however, is with the implications of
(42). We will derive several types of max min d codes
from this starting point.

First of all, consider a code for which g=2k and
n = 2"- 1 where we agree to use exactly one each of the
2k- 1 types of columns in the [C] matrix. In other words,
our coding matrix is exactly the [C] matrix plus an addi-
tional row of all zeroes (9 or A (0)). Saying it another
way, our coding matrix is exactly the [C"] matrix with
the left-hand column of all zeroes deleted. This means we

IBM JOURNAL JANUARY 1960

TabIe 5 Generation of IC1 for (k+ 1 I from tC1 for k .

[Cl]
k=3

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 1 1 0 1 0 0 1

Step I : Copy [C*] for k in upper right, upper left, and
lower left quadrants of [C *] for (k + 1).

Step 2: Copy the complement of [C *] for k into the
lower right-hand quadrant of [C*] for (k+l).

[C*l
k=4

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1

1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0
1 0 1 0 0 1 0 1
1 1 0 0 0 0 1 1
1 0 0 1 0 1 1 0

LC1
k = 3

1 0 1 0 1 0 1

0 1 1 0 0 1 1

1 1 0 0 1 1 0

0 0 0 1 1 1 1

1 0 1 1 0 1 0

0 1 1 1 1 0 0

1 1 0 1 0 0 1

To form [C] from [C *] :

Delete left column and top row.

c Cl
k=4

1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1

0 0 0 0 0 0 0

1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1

1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0
1 0 1 0 0 1 0 1
1 1 0 0 0 0 1 1
1 0 0 1 0 1 1 0

chose [N] such that:

[N] T = [I , 1 , 1 , , 1 1 . (45)

Inasmuch as each row of the [C] matrix contains 2""
ones and (2h"I- 1) zeroes, the W vector becomes:

[WIT= l2t-1, 27~-1, 2 ~ 1 , ,27~-11. (46)

Obviously all weights are equal and thus equal to the
minimum weight, and hence minimum distance is equal
to 2k-1. Using (3) we have:

Thus we achieve the equality of (3) for the code just
described. Such codes will be designated Type 10.

By deleting any one column we again achieve a rnax
rnin d code. The A argument is identical to that for Type 2
codes. Thus, we designate as Type 1 I rnax min d codes
these codes for which:

n=27c-2

min dG2k-1- 1 (48)

[N] contains (2'<"2) ones and a single zero anywhere.

By deleting any two columns we again realize a rnax
min d code. The A argument is identical to that used for
Type 3. Thus, we designate as Type 12 codes those codes
for which:

n=2k-3

min d=2k-1-2 (49)

[N] contains (2k-3) ones and 2 zeroes anywhere.

Further exploitation of the properties of a group can
be used to obtain max min d codes for values of n even
smaller than those given for Types 10, 11, and 12. Con-
sider the effect of starting with a [C] matrix and deleting
(2%- 1) consecutive columns beginning at the left, where
we put the restraint u =2, 3, 4, . . . , (k - 1) . Put another
way, consider using as an [N] vector:

I t " 2 U - 1" 1 +"k- 2u"+ I
[NIT=[O , O , , O , O , 1, 1 , , 1,1 1. (50)

What will happen to the weights? Considering the con-
struction of the [C] matrix, it becomes apparent that the
contribution to the weight of the various code points made
by the (2u- 1) leftmost columns is either 0 or 2u-1. Thus,
by deleting these columns we have diminished the weights
by not more than 2%-l. Since all weights equal 2"l for a
complete [C] matrix (when [N] consists of all ones), we
have for the incomplete case:

The codes described by (SO) and (51) will be desig-
nated as Type 13 codes. The A argument shows them to

52 be max min d codes.

IBM JOURNAL JANUARY 1960

It is not obvious from the preceding discussion of
Type 13 codes that we actually obtain 2k different se-
quences from the (2"2%) rightmost colums of the C
matrix. The simplest way to see this is to assume the
converse. If two such sequences, say A (e) and A (,) , are
identical, then, since Ate) t A (f) is also a member of the
group code, there would have to exist a row corresponding
to (Ace) 4- A (f)) in the original [C] matrix which had
ones in the (2%-l- 1) leftmost positions. However, from
the method of construction of the [C] matrix, it is appar-
ent that each row contains either no ones or 2%-l ones in
the (2%- 1) leftmost positions. This guarantees, then,
that there are no duplications in the 2'6 X (2"- 2") coding
matrix. This is equivalent to guaranteeing that there exist
k rows which are linearly independent under addition
modulo 2.

A simple variation of a Type 13 code can be formed
by deleting any one column from a Type 13 code. We
will designate such a code as Type 14. It is apparent that
we have for a Type 14 code the following relations:

n=27$-2U-1
(52) min W=min dZ2k-1-2U-1- 1 .

Application of the a argument gives the result that
Type 14 codes are max min d.

To show that the 2k code points of a Type 14 code are
all different, we use essentially the same argument as used
for Type 13. If two code points, say A (e) and A(f) are
identical, they must have differed only in the deleted posi-
tion of the parent Type 13 code. This would require a row
of the [C] matrix corresponding to (A (e) i A (f)) to con-
tain (2k-1- 1) ones in the (2%- 1) leftmost positions and
a single one in the (2Tc-2tb) rightmost positions. Since the
(2%- 1) leftmost positions contain either no ones or 2U-1
ones, this is impossible.

There is still another variation of Type 13 codes which
yields max min d codes for still smaller values of n than
those discussed previously. We will call the present varia-
tion Type IS codes. They are to be constructed as follows:
Start with a Type 13 code which has been derived from a
[C] matrix by deleting the first (2"- 1) columns, where
v=2, 3, 4, . . . , k-2. (Note that the upper limit on v is
smaller than the upper limit u, so we certainly have a
Type 13 code.)

As a preliminary, we prove no code point of the Type
13 code contains all ones in its (2'"-2") positions. Assume
the converse. Then the row of the [C] matrix corre-
sponding to the code point of all ones would have
2k-1-(2k-2w) =(2"-2k-1) ones in the (2w-1) leftmost
positions. Since (2 u - 2k-1) is negative for the restriction
placed on v, this is impossible. (Indeed, if we permitted
v = k - 1, not only could the code point of all ones exist
in the Type 13 code, but it actually would exist.)

The code points of the Type 13 code are designated
A (") (or +), A(1) , A (?) , A(3) , . . . , A (z n - l) as before, with
A (e) and A (f) as two typical code points. We have proved
that I = (1, 1, 1, . . . , 1, 1, 1) is not a member of this
group. This also guarantees that, if A (e) belongs to the

group, then (Z i A (e)) does not belong to the group. Now
consider the group code containing the following mem-
bers: A(o) , A (l) , A @) , A(3) , . . . , A(2k-0, 1, I /A(l , ,
Zi-A (2) , 14-A (3), . . . Z4-A (* ' - I) . Since the weight of A (e)
i s n / 2 [see (51)] the weight of A (e) il is likewise n / 2 .
Since the weight of I is n, the minimum weight and hence
minimum distance of the new group code is n / 2 , where n
is the same as for the parent Type 13 code. For the new
code, however, we have doubled the number of code
points. We have then the following associations:

Type I3 Type 15

Our discussion of Type 15 codes is simplified by re-
placing k + 1 by k. Thus, for Type 15 codes, we have:

n = 2 " l - 2 " ; v = 2 , 3 , 4 , , k - 3
min d = 2 7 c - ? - p z (53)

Once again the A argument is used to show Type 15
codes are max min d .

It is perhaps not obvious that Type 15 codes are really
different from Type 13 codes. In Type 13 codes, to prove
that the code points were distinct and each had weight

(k - 1). This means the smallest value of n obtainable is:
2k-1-2~-1 , we had to restrict u to be not greater than

n,2k-2~,2k-2k-1,2k-1 (54)

Thus (5 4) means we may form a Type 13 code by
retaining the 27c-1 rightmost columns of the [C] matrix
for use in the coding matrix. By contrast, Type 15 codes
realize the construction of max min d codes for values of
n given by (5 3) , which is obviously smaller than (5 4) .
In reality, then, Type 15 codes are constructed by utilizing
in the coding matrix the (2lC-l-2") rightmost columns of
the [C] matrix.

By deleting any one column of a Type 15 code, we
again have a max min d code which we designate Type 16.
The appropriate relations are:
n=2k-1-2"- 1
min d=2k-1-2V-1-1 . (55)

Summary and generalization of max min d code
Types 10 to 16

A summary of Codes 10 through 16 is given in Table 6.
Some illustrative examples of these code types are given
in Tables 7a and 7b.

In a previous section, we proved that max min d codes
could be constructed by adjoining any number of codes
which achieved the equality in (3) to at most one code
which obeyed (27). This result naturally applies to

code Types 10 through 16 as well as to previous codes.
Indeed, when g=2k, we may adjoin certain codes from
the first set and certain codes from the second set. In the
interests of simplicity, however, we will restrict our atten-
tion to adjoining codes only from Types 10 through 16.
The resultant generalization of code Types 10 through
16 is given in Table 8.

Comparison of Types 1 to 16 max min d codes
and other codes

Hamming1 has described a construction method for codes
which always achieve the maximum minimum-distance
when n and g=2k are chosen such that the resultant max
min d is 3 or 4. For the single error-correcting Hamming
codes, using the notation of the present paper, the param-
eter n is chosen to be the smallest integer satisfying

2% - > 2 k .
n + l

(56)

Comparison of (56) with (1) and (2) shows the maxi-
mum minimum-distance under this value of n is always 3,
and Hamming codes are thus max min d codes. It should
be noted that Hamming codes are always "low redun-
dancy" codes and that the bound on min d of (1) and
(2) is generally much lower than the bound on min d of
(3) for low-redundancy cases. As remarked previously,
the lower of the two bounds is naturally a tighter bound
than either one used alone. Hamming also describes a
construction method which uses a value of n which is one
higher than the smallest integer satisfying (56). These
codes yield a min d of 4 and hence are also max min d
codes in agreement with (1) and (2) . Both Hamming
codes are group codes.

Plotkin3 has described a construction method for max
min d codes for certain values of g and a particular value
of n dependent on g. Reference 4 gives a description of
Plotkin's construction methods. Plotkin chooses the num-
ber of code points, g, so that:

g=8h, where 4h- 1 is a prime number

n=4h (57)

min d= 2h .
Plotkin codes formed in accordance with (57) are shown
to be max min d by using the A argument.

Plotkin's codes coincide with the codes of the present
paper in one instance. In particular, with a Type 13 code,
choosing u = k - 1, pertinent parameters can be written:

g=21C=8(2k--3) =8h

n=2k-1=4h (5 8)

min d=2"-2=2h.

Written in the above form, it is clear that a Type 13
code with u= k- 1 is a Plotkin code provided (2k-1- 1)
is a prime number. The first few values for which this is
true are k = 2 , 4 , 6, 8. Of course, not all Type 13 codes
with u= k- 1 are Plotkin codes, but they are max min 53

IBM JOURNAL JANUARY 1960

d codes. Conversely, not all Plotkin codes are Type 13
with u = k - 1 , but they are max min d codes.

Reeds has described a construction method for group
codes devised by D. E. Muller. Using the notation of the
present paper, Reed-Muller codes may be summarized
as follows:

n=2a; a=2, 3 ,4 ,5 ,

g=2", where k= 2 ; r = l , 2 , 3 , 4 , (a - 2) . (5 9)
i=O (4)

min d=2"-'.

Using the A argument, it can be shown that Reed-
Muller codes are max min d if and only if r= 1. When
r = 1 , Reed-Muller codes are identical with Type 13 codes
with u=k- 1.

Conclusions

After describing an alternative upper bound on minimum
distance to that given by Hamming, we have given com-
plete construction methods for codes which achieve the
upper bound. Such codes exist for any value of g (the
desired number of code points) and an infinitely large
class of integers n (the number of binary symbols per

Table 6 Summary of code types 10 to 16.

g=2k

Code Type n min d [N I

10 2k- 1
[e-- 276- 1 ___ +I

2k-1 [1 , 1 , 1 , , l , l , l]

11
[2'c-2 -+I

2k- 2 2k-1- 1 [O , l , l) , l , l , l]

Note: Single zero can be placed any-
where in vector [N] .

12
[e-- 2" - 3

2k- 3 2k-1- 2 [0,0,1,1) 1 , 1 , 1 I
-+I

Note: Two zeroes can be placed any-
where in vector [N] .

[e - 2 " - 1 -+I +-22"-2U- +I
13 2k- 2u 2k-1-2u-1 [0,o ,) 0,0 ,1 ,1 , , 1 , l I

Note: u=2, 3,4, , k - 1.

14 2k- 2u- 1
] c - 2 U - l - ~ [* [e 2 " 2 2 U - l - , [

2k-1-2u-1- 1 0,o 0 , 0 , 0 , 1 , 1) 1 , 1

Note 1: u=2, 3,4 , k - 1.

Note 2: Starred zero can be placed any-
where in 2k-2U rightmost positions
of [N] vector.

I .+ 2k--1+ 2" - 1 +I +- 27~-1- 2" -+I
15 2k-1-2" 2k-2-2v-1 0,o 0 , 0 , 1 , 1 , 1 , l

Note: v=2, 3,4 , k-3.

I t-2"-1+ 2"- 1-, I * I e2k-1" 2v- 1 +I
16 2k-1- 2v- 1 27C-2-2"-1- 1 0,o 0,o 0 1 , l) 1 , l

Note 1: v=2 , 3 ,4 , k-3.

Note 2: Starred zero can be placed any-
where in 2k--1- 2" rightmost positions

54 of [N] vector.

1 IBM JOURNAL JANUARY 1960

depends on the desired value of g. In all, sixteen different
code types have been described and the appropriate proof
of the maximum minimum-distance property presented.
Three code types are devoted to the case g = 2 h - 1, six
types to the case g==2h, and seven types to the case g = 2 k .
It has been shown that these construction methods coin-
cide only in a very few special cases with the results of
Hamming and those of Plotkin. The present results are
thus complementary to the only previous contributions to
the construction problem of which the author is aware.

The bound to be derived depends on the simple fact that
the minimum distance cannot exceed the average dis-
tance. The average distance is, of course, the ratio of the
sum of all distances to the number of distances. Let the g
code points (each an n-binary symbol-vector) be desig-
nated by A (i); 1 Q j (g . The number of distances is equiva-
lent to the combination of g things taken 2 at a time, or

Table 7a Examples of code types 10 to 16.

k = 3

Code Type n min d Remarks

10 7 4 Single error correcting, double error detecting (Hamming)

11 6 3 Single error correcting (Hamming)

12 5 2 Single error detecting

13 4 2 u=2; Single error detecting (Parity Check)

14 3 1 u = 2; N o redundancy

Type I O
Code Matrix

0 0 0 0

1 0 1 0

0 1 1 0

1 1 0 0

0 0 0 1

1 0 1 1

0 1 1 1

1 1 0 1

0 0 0

1 0 1

0 1 1

1 1 0
1 1 1

0 1 0

1 0 0

0 0 1

Type 12
Code Matrix

0 0 0 0
1 0 1 0

1 0 0 1

0 0 1 1

0 1 1 1

1 1 0 1

1 1 1 0
0 1 0 0

[NI
0

1 0

1 0

0 1
1 1

0 1

0 1

1 1

Type 13
Code Matrix

0 0 0 0

0 1 0 1

0 0 1 1

0 1 1 0
1 1 1 1

1 0 1 0

1 1 0 0

1 0 0 1

Type I I
Code Matrix

0 0 0 0 0 0

1 0 1 0 1 0

0 1 1 0 0 1

1 1 0 0 1 1

0 0 0 1 1 1

1 0 1 1 0 1

0 1 1 1 1 0

1 1 0 1 0 0

CNI
Type I4
Code Matrix

A(O) 0 0 0

A (l) 1 0 1

A @) 0 1 1

A (3) 1 1 0

A (4) 1 1 1
A(5) 0 1 0

A (6) 1 0 0

A (7) 0 0 1

0

0
0

0

1

1

1 55

IBM JOURNAL JANUARY 1960

where the summation on e and f is for all e such that
1 <e<g- 1 and all f such that f >e . Thus, the leftmost

summation sign implies terms, one for each distance.
By interchanging the order of summation (1.2) can be
written :

2 [ai(e)--ai(e) ai(f)+ai(f)]
i=1

Table 76 Examples of code types 10 to 16.

k = 6

Code
Type n min d Remarks

10 63 32

11 62 31

12 61 30

13 60 30 u=2
56 28 u=3
48 24 u=4
32 16 u=5

14

15

16

59 29 u=2
55 27 u=3
47 23 u=4
31 15 u=5

28 14 v=2
24 12 v=3

27 13 v=2
23 11 v=3

Table 8 Generalization of code types 10 to 16.

t = l , 2,3 ,4 ,
Code Type:

n 10 11 12 13 14 15 16

(2"-l)t t 0 0 0 0 0 0

(2k- 1)t- 1 t - 1 1 0 0 0 0 0

(2k- 1)t--2 t - 1 0 1 0 0 0 0

(276-1)t-2~ t - 1 0 0 0 1 0 0

(2"-l)t-2k-1-22" t - 1 0 0 0 0 0 1

Note: u=2, 3,4, , k-1
56 ~ = 2 , 3 , 4 , , k-3

IBM JOURNAL JANUARY 1960

Now each di in (1.3) is obviously non-negative, SO we
can write:

(maxD)<n(maxdi) . (1.4)

Using the definition of average distance we have:

maximum average distance = (max D)

Therefore:

where from (1.3) :

di = 2 [a i (e) -22ai (e) aitf)+aitf)]. (1.7)

In the above expression, a term such as ai(h), where
1 < h < g, will appear (g - 1) times since A (h) participates
in (g-1) distances. A term such as -2ai(P)ai(Q) will

appear only once, but there will be terms of this form

corresponding to the g distances. Let column i of any
coding matrix have x ones and (g-x) zeroes in the ith
column. Realizing that each term in (1.7) such as ai(h) or
al(p) ai(@ is either zero or one, we can write (1.7) as:

e, f

(9
(2)

C&=(g- 1)x-2 = g x - x 2 , (3
where x=O, 1,2,3, , g . (1.8)

Thus we simply seek that integer x which will maximize
(g x - x ?) . Two cases must be treated.

(1) If g = 2 h , then (gx -x2) has a simple maximum at
~ = g / 2 . Thus:

maxdi=g[+] - [+] = -. 2 g2

4

(2) If g=2h- 1, then (gx-x*) attains a maximum value
for x=(g-1)/2 or x=(g+1)/2. For either value
of x, the maximum value is:

max d i = g - [IT] g- 1 g-1

Using these results in (1.6) we have:

For g=2h:

maximum minimum-distance Q ~ = ~

ng? ng

2(g- 1)

n(g2- 1) n (g + 1)
maximum minimum-distance -~ -

2g

References

1. R. W. Hamming, “Error Detecting and Error Correcting
Codes,” Bell System Technical JoIIrnol, 29, 147-160
(1950).

2. D. Slepian, “A Class of Binary Signalling Alphabets,” Bell
System Technical Journal, 35, 203-234 (1956).

3. M. Plotkin, “Binary Codes with Specified Minimum Dis-
tance,” University of Pennsylvania Research Division Re-
port 51-20, January, 195 1 .

4. D. D. Joshi, “A Note on Upper Bounds for Minimum Dis-
tance Codes,” Informution and Control, 1,289-295 (1959).

5 . I. S. Reed, “A Class of Multiple-Error-Correcting Coding
and Decoding Schemes,” IRE Trrms. Infortnulion Theory,

6. L. Calabi and H. G . Haefeli, “A Class of Binary Systematic
Codes, etc.,”IRE Trans. Circuit Theory, CT-6 (May 1959).

4, 38-49 (1954).

7. H. W. Kautz, “A Class of Multiple-Error-Correcting-Codes
for Data Transmission and Recording,” Tech. Report No.
5. CRI 2124, Stanford Research Institute, Menlo Park,
Calif.

8. E. Prange, “Some Cyclic Error Correcting Codes,” ASTIA
Doc. No. AD152386, Air Force Cambridge Research Cen-
ter, April 1958.

9. N. Honda. “The Seauential Error-Correcting Code,” Science
Reports if the Research Institute, Tohoku University,
Series H, 8, NO. 3. 1956.

Revised manuscript received September 17, I959

57

IBM JOURNAL JANUARY 1960

