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Design Methods for Maximum 
Minimum-Distance Error-Correcting Codes* 

Abstract: In error-correcting codes for combating noisy transmission channels, a central concept i s  the notion 

of minimum distance. If a code can be constructed with minimum distance between code points of 2m-k 1 I then 

any number of errors per code word which does not exceed m can be corrected,  thus increasing the reliability 
of transmission above that to be expected with no redundancy in the code. 

An upper bound on minimum distance is derived  which depends on g (the number of  code points or  messages 

required) and n (the number of binary symbols per code point). This bound is  complementary to  a  bound due 
to Hamming and uses an argument which i s  essentially due to Plotkin. 

Construction methods are presented for codes which  actually achieve the upper bound on minimum distance 
for  any g and  an  infinite class of integers n which depend on g. Sixteen  code types are described: three for 

g = 2 h - l I  six for g=2hl and seven for g=2k.  

Introduction 

Much of the  work  on synthesis of error-correcting codes 
has been devoted to devising methods of achieving  a 
certain  minimum distance between the sequences of 
binary  symbols  which are  the  code points of the code. 
Hamming1 defined distance between two  code  points  as 
the  number of correspondingly placed binary  symbols 
which differ between the two code points. As shown  by 
Hamming, a major  advantage of being able to find a code 
structure with  a  certain minimum distance, min  d, is as 
follows : 

If min d=2m+ 1, any error  pattern  containing m or fewer 
errors  can be corrected. 

If min  d =2m + 2, any error  pattern  containing m or fewer 
errors  can  be corrected. In addition, any  error  pattern 
containing (m+ 1 )  errors can  be  detected. 

The  correcting  procedure is simply to change  any re- 
ceived sequence of n symbols  which is not a code  point 
into  that  code  point which is “nearest” to  the received 
sequence. This  procedure does not depend in any  direct 
way on  the  type of noise  which may  corrupt  the trans- 
‘This paper is based in part  on a thesis submitted in partial fulfillment of 
the degree of Master of Electrical Engineering at Syracuse University 
awarded January, 1958. 

mitted code points.  However, one hopes that  error  pat- 
terns  containing e errors  are  more  probable  than  error 
patterns  containing  more  than e errors.  Whether this is 
true  or  not  for  the noise at  hand,  it is not difficult to see 
that, should we be able  to  correct all error  patterns con- 
taining e errors, we would automatically  be able  to  correct 
all error  patterns containing ( e -  1) or fewer errors if we 
chose to do so. 

Bounds on minimum distance 

Suppose we have g code points, each comprised of an 
n-binary symbol-vector. Hamming  has shown that,  for 
fixed g and n,  an  upper  bound  on  minimum distance can 
be given as follows. Define an integer m by: 

where ( 7 )  = ( N )  ! 

Then, 

( i ) ! ( N - i ) !  

min d<2m+1  for n = N ,  

min d<2m+2  for n=N+ 1 . 43 
(2) 
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In Appendix I the following upper bound on minimum 
distance is derived: 

For g=2h-  1: mind< ____ 
n[g+ll  

2g 
h= l ,2 ,3 ,4 ,5  , . . . . . .  

(The argument used  in  Appendix I is  essentially identical 
to  an argument used  by  Plotkin3,  who found an upper 
bound on g for fixed minimum d and  fixed n. Because of 
our present need for an upper bound on minimum d for 
fixed g and fixed n and also  because of the limited  avail- 
ability of Plotkin’s paper, the proof of (3) is  given in full 
in Appendix 1.) 

The bound of (3) is  sometimes larger, sometimes 
smaller than that of Hamming. Thus, the smaller of the 
two  is a better bound than either one alone. In general, 
if the ratio 2n/g is large, (3) provides a tighter bound 
than (2). For example, in his paper Hamming uses a 
form of (2) to predict the existence of a code  with n=7, 
g=4, and  min d=5 because 

( i ) + ( : > . ( 1 ) = 2 9 G q = 3 2  27 

He then points out  that  it can be  shown by trial and 
error that such a code does not exist.  Using (3), it can be 
shown analytically that such a code  does not exist  because 

7(4) 
5> ___ 

2(4-1) 
= 4+ 

The results of (2) and ( 3 )  are tabulated in Table 1 
for several  values of n and g. 

A general  property of maximum 
minimum-distance  codes 
For convenience, let us  visualize an array of the code 
points of a code as a matrix with g rows and n columns. 
Selection of a particular message or code point to be 
transmitted then amounts to selection of a row from  the 
matrix. In deriving ( 3 )  in Appendix I it is  necessary to 
assume that  for each column of the matrix we have the 
following property: 

For g= 2h(g even) : Each one of the n columns contains 
g/2 ones and g/2 zeroes. 

For g= 2h- 1 ( g  odd) : Each one of the n columns  con- 
tains (g+1)/2 ones and (g-1)/2 zeroes (or alterna- 
tively, (g-1)/2 ones and (g+1)/2 zeroes). 

Thus of all the myriad  possible  codes for a given n and 
g, we are immediately  led to consider only those  with the 
property just stated if  we  wish to attempt the construction 
of maximum minimum-distance codes. 

Construction of max min d codes forg=2h- 1 (g odd) 

44 A natural question to  ask  in view  of the previous  section 

is: how  many different columns can be formed which each 
consist of, say, (g+1)/2 ones and (g- 1)/2 zeroes?The 
answer  is: 

Let us then examine a code where we set n=Nzh-l and 
agree to use each of the types of columns  exactly 
once in forming the code matrix. For any  two  code  points, 

A ( e ) = ( a l ( e ) , u z ( e )  ,..., ante)) and A(f)=(ul(f) ,az(f)  ,...., 
a,(f)), l<e ,  f<g, wehave: 

distance from A ( e )  to A(f)  =d(Ace) ,  A ( n )  =d(A( f ) ,  Ace) )  

= 2 ai(@ -2 2 ai(e)ai(f) + 2 ai(f). ( 5 )  

These terms are evaluated separately as follows. The 
first term is a count of the number of columns  which  con- 
tain a one in row e. This is: 

n n n 

i=1 i=l  i=l 

since we remove a single “one” and a single row and 
form, once each, all possible combinations of (g-1)/2 
ones and (g-  1 ) /2 zeroes in the remaining (g- 1 ) rows. 
The third term is identical with the first. The second term 
is a count of the number of columns  which contain ones 
in both row e and row f. This is: 

because we remove  two ones and two  rows and form all 
possible combinations of (g-  3)  /2 ones and (g- 1 ) /2 
zeroes in (g-2) rows. Use of (6) and (7) in ( 5 )  gives: 

Clearly this result is independent of the choice of e and 
f ,  and hence all distances are equal and, of course, equal 
to the minimum distance for  the code.  Since we chose 
n=NZh-l, we can see from (4), (S), and (3), that  the 
codes  just constructed are max  min d codes. Such codes 
will henceforth be  called Type I codes. 

A variation of a Type 1 code will  be  designated a Type 
2 code and is constructed as follows. Starting with Type 1 
code,  delete  any one column. Thus n is diminished by 
one and the minimum distance is diminished by one: 
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Table 1 Upper bound on minimum  distance as a function of n and g. 

Note: Upper  row from Eqs. ( I )  and (2)  (Hamming). Lower  row from Eq. (3). 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2 3 4 5 6 7 8 9 10 11 12 13  14  15 16 17  18  19 20 
2 3 4 5 6 7 8 9 10 11 12 13 14  15 16 17  18 19  20 

1 2 3 4 4 5 6 7 8 9 10 11 12  13 14 15 16 17  18 
1 2 2 3 4 4 5 6 6  7 8 8 9 1 0 1 0 1 1 1 2 1 2 1 3  

1 2 2 3 4 5 6 6  7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 6  
1 2 2 3 4 4 5 6 6  7 8 8 9 1 0 1 0 1 1 1 2 1 2 1 3  

1 2 3 4 4 5 6  7 8 9 10  10 11 12 13 14 15 16 
1 1 2 3 3 4 4 5  6 6 7 7 8 9 9 1 0 1 0 1 1 1 2  

1 2 2 3 4 5 6  6 7 8 9 1 0 1 1  12  13 1 4 1 4 1 5  
1 1 2 3 3 4 4 5 6  6 7 7 8 9 9 1 0 1 0 1 1 1 2  

1 2 2 3 4 4 5  6 7 8 8 9 1 0 1 1  1 2 1 3   1 4 1 5  
1 1 2 2 3 4 4 5  5 6 6 7 8 8 9 9 1 0 1 0 1 1  

1 2 2 3 4 4 5  6 7 8 8 9 10 11 1 2 1 3  14  14 
1 1 2 2 3 4 4 5  5 6 6 7 8 8 9 9 1 0 1 0 1 1  

1 2 3 4 4 5  6 6 7 8 9 1 0 1 1  1 2 1 2 1 3  14 
1 1 2 2 3 3 4 5  5 6 6 7 7 8 8 9 1 0 1 0 1 1  

1 2 2 3 4 5  6 6 7 8 9 10 10 11 12 13 14 
1 1 2 2 3 3 4 5  5 6 6 7 7 8 8 9 1 0 1 0 1 1  

1 2 2 3 4 5  6 6 7 8 9 1 0 1 0 1 1  12  13  14 
1 1 2 2 3 3 4 4  5 6 6 7 7 8 8 9 9 1 0 1 0  

1 2 2 3 4 4 5  6 7 8 8 9 1 0 1 1 1 2 1 2 1 3  
1 1 2 2 3 3 4 4  5 6 6 7 7 8 8 9 9 1 0 1 0  

1 2 2 3 4 4 5  6 7 8 8 9 1 0 1 1 1 2 1 2 1 3  
1 1 2 2 3 3 4 4  5 5 6 7 7 8 8 9 9 1 0 1 0  

1 2 2 3 4 4 5  6 6 7 8 9 1 0 1 0 1 1 1 2 1 3  
1 1 2 2 3 3 4 4  5 5 6 7 7 8 8 9 9 1 0 1 0  

1 2 2 3 4 4 5  6 6 7 8 9 1 0 1 0 1 1 1 2 1 3  
1 1 2 2 3 3 4 4  5 5 6 6 7 8 8 9 9 1 0 1 0  

1 2 2 3 4 4 5  6 6 7 8 9 1 0 1 0 1 1 1 2 1 3  
1 1 2 2 3 3 4 4  5 5 6 6 7 8 8 9 9 1 0 1 0  

1 2 2 3 4 5  6 6 7 8 9 1 0 1 0 1 1 1 2 1 3  
1 1 2 2 3 3 4 4  5 5 6 6 7 7 8 9 9 1 0 1 0  

1 2 2 3 4 5  6 6 7 8 9 1 0 1 0 1 1 1 2 1 2  
1 1 2 2 3 3 4 4  5 5 6 6 7 7 8 9 9 1 0 1 0  

1 2 2 3 4 4  5 6 7 8 9 1 0 1 0 1 1 1 2 1 2  
1 1 2 2 3 3 4 4  5 5 6 6 7 7 8 8 9 1 0 1 0  

1 2 2 3 4 4  5 6 7 8 9 1 0 1 0 1 1 1 2 1 2  
1 1 2 2 3 3 4 4  5 5 6 6 7 7 8 8 9 1 0 1 0  45 
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Use of (16) and (17) in ( 5 )  yields: The right side of (10) is necessarily an integer. The 
bound on minimum  distance for  Type 2 codes  is found 
by using (9) in (3) : 

To show Type 2 codes are  max min d we need  only 
show  the  right side of ( 11) exceeds the right side of (10) 
by less than unity. Thus: 

The value of ( 18) is clearly independent of e and f, and 
hence  all distances are  equal  and, of course, equal  to  the 
minimum distance. Since we chose n=Nzh, the A argu- 
ment proves Type 4 codes are  max min d. 

A  variation of Type 4 codes is designated Type  5 and 
is formed by deleting any  one column of a Type 4 matrix. 
For  Type 5 codes: 

- [( k+1)/2)? - l I  
g 

n= (&?;2) - 1  

mind= ( )--"1. g 
8/2  2k-11 The last expression of (12) is clearly less than unity 

and  Type 2 are  thus  max min  d codes. (Equations  quite 
similar to (9) through ( 12) can be used to prove the rnax 
min  d  property for  other  code types to be discussed in  the 
remainder of the paper. For brevity, this will be desig- 
nated  henceforth the A argument.) 

Another variation of a Type 1 code will be designated a 
Type  3 code. To  form a Type 3 code delete any two col- 
umns from a Type 1 code. We then have: 

By the A argument, Type 5 codes also yield max min d 
codes. 

Another variation of Type 4 is designated Type  6 and 
is formed by deleting any two  columns from a Type 4 
code  matrix.  This gives for  Type 6 :  

n= ( g;2) -2 

The A argument shows Type 6 are  max min d codes. 
Another variation for g=2h can be formed  from a 

Type 1 code designed for g=2h- 1. We will designate 
such a  variation  as Type  7 and will show later  that it is 
very similar to a Type 4 code. Consider a Type 1 code 
with one  more code  point affixed. Let this  code  point 
consist of n zeroes: += (0,  0, 0, . . . . . , 0,O) . 

The distance from any of the  code points, say A ( e ) ,  of 
the original Type 1 code to  the + code  point is given by 
(6) after we substitute (g -  1) for  the g of (6).  Thus, 

The A argument shows Type 2 codes are  max min d 
codes. 

Construction of max min d codes for g=2h ( g  even) 

How many different columns can be formed which  con- 
tain (g/2) ones  and (g/2) zeroes? The answer is: 

Consider then  a  code (Type 4) where we take n=Nzh 
and agree  to  use  each of the N 2 h  types of columns exactly 
once in forming  the  code  matrix. For  any  two  code points, 
A ( e )  and A ( f ) ,  the terms of (5) are evaluated  as follows. 
The first term is a count of the  number of columns  which 
contain  a one in row e .  Reasoning as we did for (6), 
this is: 

The distance between any two code  points both belong- 
ing to  the original Type 1 code is given by (8) after 
substituting (g-  1) for g: 

Further algebraic  manipulation shows (23) and (24) 
are identical in value. Thus  the minimum  distance of a 
Type 7 code is given by either  equation.  Since  we chose 
n as  that value given by (4) except that (g- 1) should be 
substituted for g, for  Type 7 codes we have: 

The third term is identical  with the first. The second is 
evaluated similarly to (7),  giving: 

n= (t;:). 
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Table 2 Summary of code types 1 to 9. 

Code 
Type  s n min d 

*All distances  equal to minimum distance. 

Use of the A argument shows A=O. Since  this is so, we 
may derive  a max  min d code ( T y p e  8 )  from  Type 7 
exactly  as we did  a Type 2 from a Type 1. Another varia- 
tion of a Type 7 is called Type  9 and is formed by drop- 
ping  any two columns from a Type 7 code as we did in 
deriving  a Type 3 from a Type 1. Again the A argument 
reveals Type 8 and  Type 9 codes are  max  min d. The 
results  derived so far  are  tabulated  in  Table 2. 

Summary and  generalization of max rnin d code 
Types 1 to 9 

The results on  code  Types 1 through 9 can be  applied 
directly to  many cases where, for a given g, the  error 
potential is such as to  require  additional  redundancy, 
that is, a  larger  value of n, but it is still desired that  the 
resultant code be  a max  min d code. Let 

{ x }  = greatest  integer  contained in x . (26) 

The  bounds of ( 3 )  may be  written: 

For g=2h: max min d= 

(27) 
For g=2h- 1 : max min 

Suppose we have constructed a  code  with g=2h and 
nl binary  symbols  per code  point whose minimum dis- 
tance,  (min d )  obeys: 

Suppose we have  a code with the  same g=2h as the 
first code and n2 binary  symbols whose minimum dis- 
tance, (min c/)?,  obeys: 

If now we form a code with n=nl+nz symbols by ad- 
joining the  two codes  above, we form a code  matrix of 
g rows  and 11 columns. For this new code: 

minc lZ(minr l )2+(mind)~  

- nlg 
b- 

In view of (27) ,  we have thus shown the new code  to be 
a max min d code. The  argument  for g=2h- 1 is identical. 

This result means  that certain  values of n can be chosen 
which yield max  min d codes by adjoining any  number of 
codes whose minimum  distance  achieves  equality in (3) 
to  at most one  code whose minimum  distance merely 
obeys ( 2 7 ) .  This generalization for  many values of n is 
given by Table 3 .  In Table 3 we have made use of the 
identity : 

This identity means  that  for some values of n and g=2h 
we have a  choice of one  copy of a Type 4 code  or  two 
copies of a Type 7 code. For example, suppose we have 

g =  6 and n = 40. Since (:::)= 10, we have c=4. Refer- 
ring  to  Table 3 ,  line 4, we see that a max  min d code  can 
be  made: ( 1) by adjoining two copies of a Type 4 code, 
or (2) by  adjoining one  copy of a Type 4 and  two copies 
of a Type 7 ,  or ( 3 )  by adjoining four copies of a Type 7 
code. It should  be  noted that  Types 7, 8, and 9 contain 
the  code point 4 whereas  all the  others  do  not contain 9 
as  a code point. In  certain physical  situations there  may 
be a valid reason for desiring the inclusion or exclusion of 
4 as a code  point. 

It is interesting to  note  from  Table 3 that  we  have 
solved the  problem  of constructing  a max  min d code  for 
g=2 ,  3 ,  or 4 and  any value of It. The case g=2  is com- 
pletely trivial  since any two code points  which are comple- 
mentary [e.g., 4 and I =  (1,1,. . .1, l ) ]  have as minimum 
distance n which satisfies (3).  For g = 3 ,  reference  to 
Table 3 shows we can  construct a max  min d code  for 
n=3c or 3c- 1 or 3c-2. Since  there is a c corresponding 
to any n, the  max  min d code  can always be constructed 
as in Table 3. For g=4, reference  to  Table 3 again shows 47 
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48 

we can  construct a max min d code  for n=3c or 3c- 1 or Consider  a  set of k vectors, each consisting of n binary 
3c-2, so there is a c corresponding to  any n. symbols: 

Table 4. A(1)  = ( 9  U l ( 1 )  &(I), a3(1),. . . . . . , ,&(I)) 
A @ )  = ( a 1 ( 2 ) ,  a2(2), a3(2),. . . . . . . ,a,(Z)) 

Construction of max min d codes  for g=2k A ( 4 ) =  ( u1(4) 9 2 ,  a (4) . . . . . . , a,(4)) 

Some examples of actual code  matrices are shown  in 

In this and  some following  sections we shall  derive  some 
construction methods for g=2k. In a  previous  section we 
discussed max  min d code  construction for g=2h and of 
course g = 2 k  is a  special  case of g=2h. However, the 
ensuing  results are  important  in  their  own right,  because 
the smallest  value of n for which we can build a max min 
d code  using Table 3 is often  much  larger  than a designer 
needs to satisfy  a  certain minimum reliability. In  the 
methods of construction  to be discussed, we will be  able to 
use a much smaller  value of n for a given g=2h than con- 
struction  methods  for g=2h would  require. 

The  construction of max  min d codes for g=2h will be 
made  through  the use of group codes, studied extensively 
by Slepian,2 who calls them group alphabets. A brief 
review of the  pertinent properties of group codes will 
serve  as an  introduction  to  our construction  procedure. 

A (2k-1)  ( 1  a (2k-1) 9 a2(2K-’), a3(2”-1),  . . . . an(2’-’) ) . ( 3 2 )  

Note  that  the superscript  which identifies the vector is 
a  power of 2. This will be convenient  subsequently.  Using 
the symbol 4- to denote  the  sum  modulo 2, define the -i- 
operation  on  two vectors A ( e )  and A (f) to be: 

A ( e ) i A ( f ) = ( a l ( e ) i u l ( f ) , . , ( e ) i a z ( f ) ,  . . . . . . , 
a,(e) i a , ( f ) )  . ( 3 3 )  

For example : 

A ( @ = ( l  0 1 0 1 1 0 1 )  

A ( f ) = ( l  0 0 1 0 1 0 1 )  

A ( e ) t A ( f ) = ( O  0 1 1 1 0 0 0 ) .  

Define  a  larger set of vectors by the  relation: 

A (e)  = blA (1) 4- bzA (’) -F brA (4)  4- . . . . . . 4- b2a-l A(””) , 
( 3 4 )  

where each bh is either 0 or 1. For convenience let the 
g=2h- 1 bh’s be determined  uniquely from e by writing e in the 

binary form: 

Table 3 Generalization of code types 1 to 9. 

i I Code 

h=O 

0 This means, of course,  that e obeys: 

0 
I 

g=2h 

Code 
n 1 Type 4 Type 5 Type 6 Type 7 T y p e 8   T y p e  9 b 

0 

0 

0 C-2b  0 

0 c- 1 -2b  1 

0 0, 1,2 ,  . . . , c / 2 .  

0 0, 1,2,. . . ,- . c-  2 
2 

OR b 1 0 ~ - 2 - 2 b  0 0 0 , 1 , 2 , .  . . ,-. c - 2  
2 

[( 3 1  - 2  
0 0 C- 1 -2b  0 1 0 , 1 , 2 , .  . .,-. c- 2 

2 

OR b 0 1 ~ - 1 - 2 b  0 0 0,1,2,. ..,-. 
c - 2  

2 
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Since there  are k different bh's in ( 3 4 ) ,  there  are 21i 
different  vectors  represented by A ( e )  in (34 ) .  These 2" 
vectors will be the  coded  form of the 2k different code 
points to be  transmitted. In  the terminology of the  pre- 
vious  sections,  then, the coding matrix consists of 2k rows 
and n columns. The e row of the coding matrix is the 
vector A (e ) .  

It should be noted for the sake of completeness that 
the k vectors of ( 3 2 )  must be linearly independent; i.e., 
no  one of them can be  written  as  a sum  modulo 2 of 
some of the others. In  our construction  methods to be 
discussed, this  problem will be treated  as it arises for  the 
various code types. 

Slepian has shown that  the 2lc vectors of the  form of 
( 3 4 )  form  an Abelian group  under addition modulo 2.  
A fundamental  property of such mathematical  objects 
is the following: if A ( e )  and A(f)  belong to  the  group,  then 
( A  ( e )  4-A ( f )  ) also belongs to  the group.  Slepian defines 
the weight of a code point by: 

n 
~ ( A ( ~ > ) + A ( J ) ) =  2 ( a i c e ) + a i t r ) ) = d ( A c e ) , A ( f ) ) .  ( 3 6 )  

Since the  group  property mentioned  above  holds for 
any two  members of the  group, ( 3 6 )  gives the  result: 
The distance between any two code  points of a  group  code 
is equal to  the weight of some code point of the group. 

?.=1 

For example : 

d ( A ( 3 ) , A ( z ) ) = w ( A ( 3 ) ~ A ( Z ) ) = W ( A ( ~ ) ~ A ( l ) ~ A ( ~ ) )  

= W ( A ( 1 ) ) .  

This result means  that, if we construct  group codes, 
the minimum  distance of the  code is given by the mini- 
mum  nonzero weight of the  code points. We must  include 
the  term "nonzero" because + = A ( o )  = (0, 0, 0, . . . 0) 
is always a code point and corresponds to e= f in ( 3 6 ) .  

In view of ( 3 3 )  and ( 3 4 )  it is apparent  that we can 
write, for  the binary  symbol  in row e and  column h of the 
code  matrix: 

Table 4 Examples of code matrices  for g = 2 h  or g = 2 h -  1.  

Type 1 Type 3 Type 1 

A (0) 1 1 1 1 0 0 0 0 0 0  

0 0 1 0 0 1 0 1  A ( 3 )  0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1  A ( 3 )  0 0 1 0 0 1 0 1 0 1  

0 1 0 0 1 0 0 1  A(?) 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0  A ( 2 )  0 1 0 0 1 0 0 1 1 0  

1 0 0 0 1 1 1 0  A ( ' )  1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0  A(1)  1 0 0 0 1 1 1 0 0 0  

1 1 1 1 0 0 0 0  A ( " )  1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0  

A ( 4 )  0 0 0 1 0 0 1 0 1 1  0 0 0 1 0 0 1 0  A ( 4 )  0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1  

A ( 5 )  0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1  
g-5  r,=2. (;) -~3=15  

g=6 n =  ( s )  =20 

Type I 

A(0)  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

A ( ' )  1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0  

A ( ? )  1 1 1 1 O 0 0 O O O 1 1 1 1 1 1 O O O O l l l l l l O O O O l l l l O  

A(3)  1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 l 1 l 0 0 0 1 l l 0 l 1 l 0 1  

A ( 4 )  0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 l 0 0 1 1 0 1 1 0 1 l 1 0 1 1  

A(6)  0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 l 0 1 l 0 l 1 l 0 1 1 l  

A ( G )  0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1  

49 
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We therefore find that  there  are exactly 2k different 
types of columns  corresponding to  the choice of the a 
terms  on  the right  side of (37). However, we note  that if 
all a terms  on  the right of (37) are  zero,  then a h ( e )  is 
identically zero  for all e.  This  means  the  entire  column 
consists of zeroes and  contributes nothing to  the distance 
between code points.  Ruling out  the all zeroes  as useless, 
we are left  with (2"- 1) types of columns. It  can be shown 
that each of these types of columns consists of 2'c-1 zeroes 
and 2lC-l ones and hence are of the kind found necessary 
for construction of max  min d codes  in Appendix I. 

We have seen previously that a  choice for e in (34) 
and hence in (37) completely  determines the b terms of 
(37). In view of this and  the definition of the weight of 
A ( e ) ,  (37) tells us that  the weight of any  code  point is 
completely  determined  by the  number of each of the 
(2k- 1 ) possible column  types used to form  the coding 
matrix.  As  a matter of considerable  notational  conven- 
ience, let us say that a  choice of a terms of (37) has 
resulted  in  a  column of type j if  we have: 

j =  la(1) +2a(')  +4a(4) + . . . . +2k-la(2'"). (38) 

Letting nj denote  the  number of columns of type j, we 
have : 

n = x n i .  
z k - 1  

(39) 
j=1 

As an example to illustrate the notion of column types, 
consider the following code  for k=2, n =5:  

e bz bl A ( e )  

0 0 0  0 0 0 0 0  

We  may  write (40) more compactly as: 

[ W " ]  = [C"]  [N"] . (41 1 
The [We]  of (41) is always a ( 2 k ~  1) matrix, [ N * ]  

is likewise (2k x l ) ,  whereas [C"] is always (2k X 2k). 
Because of the way we assigned superscripts e to  the  code 
points and j labels to  the  column types, it becomes  a  very 
simple matter  to find the [C*] matrix  for ( k f l )  from 
the [C+] matrix  for k. This is illustrated in Table 5. 

Observe that  the [C*] matrix is symmetric. Further 
observe that, except for  the first row  and  column,  each row 
and  column contains P - 1  ones  and 2k-1 zeroes. The first 
row  and  column  are really unnecessary for computation 
of weights since we have  already  agreed to  set no =0, and 
also we already know  that Wo=O. This  row  and  column 
are merely included to show more simply the expansion 
from  the [C*] matrix  for k to  the [C"] matrix for 
(k+ 1 ) .  For  later convenience, then, let us designate [C] 
as the reduced matrix obtained from [C"] by deleting the 
first row and first column. By deleting Wo from [ W"] , we 
form [W] and by deleting no from [N"] we form [N]. 
Thus, we still have the  matrix multiplication relation: 

[ WI = [CI [NI . (42) 

By virtue of the  fact  that  each column of the C matrix 
contains 2k-1 ones, we have the additional restraint noted 
by Slepian: 

2 1 0  0 1 1 1 1  

3 1 1  1 0 0 0 1  

For  the left-most column of A ( e )  we have d l )  = 1, 
a(') = 0. Thus  the  appropriate j label for this column is 
j =  1 from (38). The next column  has a(l)=O, d 2 )  = 1, 
giving j=2. The  third  column has d l )  = 1, = 1, giving 
j=3. The  fourth column has a(l)  = 1; u(2)= 1, giving j=3. 
The last column has a(1) =0, d 2 ) = 1 ,  giving j=2. Thus 
the j labels are,  from left to  right: 

1 ,2 ,3 ,   3 ,2 .  

Hence, nl=l;  n2=2;  n3=2; n=nl+nz+n3=5. 

Pursuing  the example  somewhat further we can see that 
the following relations are  true: 

W,=W(A(O) )=O 

Wl=W(A(l ')=n,+ns=1+2=3 

W z = W ( A ( ' ) )  =n2+n3=2+2=4 

W3=W(A(3))=nl+nz=1+2=3.  

I 50 These expressions suggest the  matrix multiplication: 

It is of interest that [C] possesses an inverse for any k. 
Denoting by cij the  entry in  row i and  column j of [C] 
and by cij-l the  entry in row i and column j of [C-l] , it 
can be  shown that: 

(44) 

where [ N ]  = [ C-l] [ W] . 
Thus a  proposed set of weights must not only satisfy 

(43) but must also yield an integer for every n j  according 
to (44). Slepian  arrived at this  result using the  theory of 
modular representations of  mathematical groups. 

Our main concern, however, is with the implications of 
(42). We will derive  several  types of max min d codes 
from this  starting  point. 

First of all, consider  a code  for which g=2k and 
n = 2"- 1 where we agree  to use exactly one  each of the 
2k- 1 types of columns in the [C] matrix. In  other words, 
our coding matrix is exactly the [C] matrix plus an addi- 
tional  row of all zeroes (9 or A (0)). Saying it another 
way, our coding matrix is exactly the [C"] matrix with 
the left-hand column of all zeroes  deleted. This means we 
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TabIe 5 Generation of IC1 for (k+ 1 I from tC1 for k .  

[Cl] 
k=3 

0 0 0 0 0 0 0 0  

0 1 0 1 0 1 0 1  

0 0 1 1 0 0 1 1  

0 1 1 0 0 1 1 0  

0 0 0 0 1 1 1 1  

0 1 0 1 1 0 1 0  

0 0 1 1 1 1 0 0  

0 1 1 0 1 0 0 1  

Step I :  Copy [C*]  for k in  upper right, upper  left,  and 
lower  left quadrants of [ C * ]  for ( k +  1). 

Step 2: Copy  the complement of [ C * ]  for k into  the 
lower  right-hand quadrant of [C*] for (k+l). 

[C*l 
k=4 

0 0 0 0 0 0 0 0  
0 1 0 1 0 1 0 1  
0 0 1 1 0 0 1 1  
0 1 1 0 0 1 1 0  
0 0 0 0 1 1 1 1  
0 1 0 1 1 0 1 0  
0 0 1 1 1 1 0 0  
0 1 1 0 1 0 0 1  

0 0 0 0 0 0 0 0  

0 1 0 1 0 1 0 1  
0 0 1 1 0 0 1 1  
0 1 1 0 0 1 1 0  
0 0 0 0 1 1 1 1  
0 1 0 1 1 0 1 0  
0 0 1 1 1 1 0 0  
0 1 1 0 1 0 0 1  

0 0 0 0 0 0 0 0  

0 1 0 1 0 1 0 1  
0 0 1 1 0 0 1 1  
0 1 1 0 0 1 1 0  
0 0 0 0 1  1 1  1 
0 1 0 1 1 0 1 0  
0 0 1 1 1 1 0 0  
0 1 1 0 1 0 0 1  

1 1 1 1 1 1 1 1  
1 0 1 0 1 0 1 0  
1 1 0 0 1 1 0 0  
1 0 0 1 1 0 0 1  
1 1 1 1 0 0 0 0  
1 0 1 0 0 1 0 1  
1 1 0 0 0 0 1 1  
1 0 0 1 0 1 1 0  

LC1 
k = 3  

1 0 1 0 1 0 1  

0 1 1 0 0 1 1  

1 1 0 0 1 1 0  

0 0 0 1 1 1 1  

1 0 1 1 0 1 0  

0 1 1 1 1 0 0  

1 1 0 1 0 0 1  

To form [ C ]  from [ C * ] :  

Delete left column and  top row. 

c Cl 
k=4 

1 0 1 0 1 0 1  
0 1 1 0 0 1 1  
1 1 0 0 1 1 0  
0 0 0 1 1 1 1  
1 0 1 1 0 1 0  
0 1 1 1 1 0 0  
1 1 0 1 0 0 1  

0 1 0 1 0 1 0 1  
0 0 1 1 0 0 1 1  
0 1 1 0 0 1 1 0  
0 0 0 0 1 1 1 1  
0 1 0 1 1 0 1 0  
0 0 1 1 1 1 0 0  
0 1 1 0 1 0 0 1  

0 0 0 0 0 0 0  

1 0 1 0 1 0 1  
0 1 1 0 0 1 1  
1 1 0 0 1 1 0  
0 0 0 1 1 1 1  
1 0 1 1 0 1 0  
0 1 1 1 1 0 0  
1 1 0 1 0 0 1  

1 1 1 1 1 1 1 1  
1 0 1 0 1 0 1 0  
1 1 0 0 1 1 0 0  
1 0 0 1 1 0 0 1  
1 1 1 1 0 0 0 0  
1 0 1 0 0 1 0 1  
1 1 0 0 0 0 1 1  
1 0 0 1 0 1 1 0  



chose [ N ]  such  that: 

[ N ] T = [ I ,  1 , 1 , .  . . . . , 1 1 .  (45) 

Inasmuch  as each row of the [ C ]  matrix contains 2"" 
ones and  (2h"I-  1) zeroes, the W  vector  becomes: 

[WIT= l2t-1, 27~-1, 2 ~ 1 ,  . . . . . ,27~-11. (46) 

Obviously all weights are  equal  and  thus  equal  to the 
minimum weight, and hence minimum distance is equal 
to  2k-1. Using (3) we have: 

Thus we achieve the equality of (3)  for  the  code just 
described. Such codes will be  designated Type  10. 

By deleting  any one  column we again  achieve  a rnax 
rnin d code. The A argument is identical to  that  for  Type 2 
codes. Thus, we designate  as Type 1 I rnax min d codes 
these  codes for which: 

n=27c-2 

min dG2k-1- 1 (48) 

[ N ]  contains (2'<"2) ones and a single zero anywhere. 

By deleting any two columns we again realize a rnax 
min d code. The A argument is identical to  that used for 
Type 3. Thus, we designate  as Type 12 codes those  codes 
for which: 

n=2k-3 

min d=2k-1-2 (49) 

[N] contains (2k-3) ones and 2 zeroes  anywhere. 

Further exploitation of the properties of a group  can 
be used to  obtain  max  min d codes for values of n even 
smaller than those given for  Types  10,  11,  and  12.  Con- 
sider the effect of starting with  a [ C ]  matrix  and deleting 
(2%-  1) consecutive  columns beginning at  the left,  where 
we put  the restraint u =2, 3, 4, . . . , ( k -  1) .  Put  another 
way, consider using as  an [ N ]  vector: 

I t " 2 U -  1" 1 +"k- 2u"+ I 
[NIT=[  O , O , .  . . . , O , O ,  1, 1 , .  . . . . , 1,1 1. (50 )  

What will happen  to  the weights? Considering the con- 
struction of the [C] matrix, it becomes apparent  that  the 
contribution  to  the weight of the various code points made 
by the  (2u- 1 )  leftmost  columns is either 0 or 2u-1. Thus, 
by deleting  these  columns we have diminished the weights 
by not  more  than  2%-l. Since all weights equal 2"l for a 
complete [C]  matrix  (when [ N ]  consists of all ones), we 
have  for  the incomplete  case: 

The codes  described by (SO) and (51) will be desig- 
nated as Type  13 codes. The A argument shows them to 

52 be max  min d codes. 
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It is not  obvious from  the preceding discussion of 
Type  13 codes that we actually obtain 2k different se- 
quences from  the (2"2%) rightmost  colums of the C 
matrix. The simplest way to see this is to assume the 
converse. If two such sequences,  say A ( e )  and A ( , ) ,  are 
identical,  then,  since Ate)  t A ( f )  is also a member of the 
group code, there would have to exist a  row  corresponding 
to (Ace) 4- A ( f ) )  in the original [C] matrix which had 
ones in the  (2%-l- 1) leftmost positions. However, from 
the method of construction of the [ C ]  matrix, it is appar- 
ent  that  each  row contains either  no  ones  or 2%-l ones  in 
the  (2%-  1) leftmost positions. This guarantees,  then, 
that  there  are  no duplications  in the 2'6 X (2"- 2") coding 
matrix.  This is equivalent to guaranteeing that  there exist 
k rows  which are linearly independent under addition 
modulo 2. 

A  simple  variation of a Type 13 code  can be  formed 
by deleting any  one  column  from a Type 13 code. We 
will designate such a code as Type 14. It is apparent  that 
we have  for a Type 14 code the following relations: 

n=27$-2U-1 
(52) min W=min dZ2k-1-2U-1- 1 . 

Application of the a argument gives the result that 
Type  14 codes are  max min d. 

To show that  the 2k code points of a Type  14 code are 
all different, we use essentially the  same  argument as used 
for  Type 13. If two code points,  say A ( e )  and A(f)  are 
identical, they must have differed only in the deleted posi- 
tion of the  parent  Type 13 code. This would require a row 
of the [ C ]  matrix corresponding to ( A  ( e )  i A ( f ) )  to con- 
tain (2k-1- 1 )  ones  in the  (2%-  1) leftmost positions and 
a single one in the (2Tc-2tb)  rightmost positions. Since the 
(2%- 1)  leftmost positions contain either no ones or 2U-1 
ones,  this is impossible. 

There is still another variation of Type  13 codes which 
yields max  min d codes for still smaller values of n than 
those discussed previously. We will call the present  varia- 
tion Type  IS codes. They  are  to be  constructed as follows: 
Start with  a Type 13 code  which has been derived from a 
[C] matrix by deleting the first (2"- 1 )  columns, where 
v=2, 3, 4, . . . , k-2.  (Note  that  the  upper limit on v is 
smaller than  the  upper limit u,  so we certainly have a 
Type 13 code.) 

As a  preliminary, we prove  no  code  point of the  Type 
13  code  contains all ones in its (2'"-2") positions. Assume 
the converse. Then  the  row of the [ C ]  matrix  corre- 
sponding to  the  code  point of all ones would have 
2k-1-(2k-2w) =(2"-2k-1)  ones  in  the (2w-1) leftmost 
positions. Since ( 2 u  - 2k-1) is negative for  the restriction 
placed on v, this is impossible. (Indeed, if we permitted 
v =  k -  1, not  only  could the  code point of all ones exist 
in the  Type  13  code, but it actually would exist.) 

The  code points of the  Type  13  code  are designated 
A ( " )  (or +), A(1) ,  A ( ? ) ,  A(3 ) ,  . . . , A ( z n - l )  as  before,  with 
A ( e )  and A ( f )  as  two  typical code points. We  have proved 
that I = (  1, 1, 1, . . . , 1,  1, 1 )  is not a member of this 
group.  This also guarantees that, if A ( e )  belongs to  the 



group, then ( Z i A ( e ) )  does  not belong to  the group. Now 
consider the  group  code containing the following mem- 
bers: A(o) ,  A ( l ) ,   A @ ) ,  A(3 ) ,  . . . , A(2k-0, 1, I /A( l , ,  
Zi-A ( 2 ) ,  14-A (3), . . . Z4-A ( * ' - I ) .  Since the weight of A ( e )  
i s n / 2  [see (51)] the weight of A ( e )  il is likewise n / 2 .  
Since the weight of I is n, the  minimum weight and  hence 
minimum  distance of the new group  code is n / 2 ,  where n 
is the  same as for  the  parent  Type 13 code. For the new 
code,  however, we have doubled the  number of code 
points. We have then  the following associations: 

Type I3  Type 15 

Our discussion of Type 15 codes is simplified by re- 
placing k + 1 by k. Thus,  for  Type 15 codes, we have: 

n = 2 " l - 2 " ;   v = 2 , 3 , 4 , .  . . . . , k - 3  
min d = 2 7 c - ? - p z  (53) 

Once again the A argument is used to  show  Type 15 
codes are  max min d .  

It is perhaps  not obvious that  Type 15 codes are really 
different from  Type 13 codes. In  Type 13 codes, to prove 
that  the  code points  were  distinct and  each  had weight 

( k -  1). This  means  the smallest value of n obtainable is: 
2k-1-2~-1 , we had  to restrict u to be not  greater  than 

n,2k-2~,2k-2k-1,2k-1 (54) 

Thus ( 5 4 )  means we may form a Type 13 code by 
retaining the 27c-1 rightmost  columns of the [C] matrix 
for use in the coding  matrix. By contrast,  Type 15 codes 
realize the construction of max min d codes for values of 
n given by ( 5 3 ) ,  which is obviously smaller than ( 5 4 ) .  
In reality, then,  Type 15 codes are constructed by utilizing 
in the coding matrix  the (2lC-l-2") rightmost  columns of 
the [ C ]  matrix. 

By deleting  any one column of a Type 15 code, we 
again have a max min d code which we designate Type 16. 
The  appropriate relations are: 
n=2k-1-2"- 1 
min d=2k-1-2V-1-1 . (55) 

Summary and generalization of max min d code 
Types 10 to 16 

A summary of Codes 10 through 16 is given in Table 6. 
Some illustrative  examples of these code types are given 
in Tables  7a  and 7b. 

In a  previous section, we proved that  max  min d codes 
could  be constructed by  adjoining any  number of codes 
which  achieved the equality  in ( 3 )  to at most one  code 
which  obeyed (27). This result naturally applies to 

code Types 10 through 16 as well as to previous codes. 
Indeed, when g=2k,  we may adjoin certain codes from 
the first set and certain  codes from  the second set. In  the 
interests of simplicity, however, we will restrict our atten- 
tion to adjoining  codes  only from Types 10 through 16. 
The resultant  generalization of code Types 10 through 
16 is given in Table 8. 

Comparison of Types 1 to 16 max min d codes 
and other codes 

Hamming1  has  described  a  construction method  for codes 
which always achieve the maximum  minimum-distance 
when n and g=2k are chosen such  that  the resultant max 
min d is 3 or 4.  For the single error-correcting Hamming 
codes, using the  notation of the present paper,  the  param- 
eter n is chosen to be the smallest  integer  satisfying 

2% - > 2 k .  
n + l  

(56) 

Comparison of (56) with ( 1) and ( 2 )  shows the maxi- 
mum minimum-distance under this  value of n is always 3,  
and  Hamming codes are  thus  max min d codes. It should 
be noted that  Hamming codes are always "low redun- 
dancy"  codes and  that  the  bound  on  min d of ( 1) and 
( 2 )  is generally much lower than  the  bound  on min d of 
( 3 )  for low-redundancy cases. As remarked previously, 
the lower of the two  bounds is naturally  a tighter bound 
than either one used alone. Hamming also describes a 
construction  method which uses a  value of n which is one 
higher than  the smallest integer  satisfying (56). These 
codes yield a min d of 4 and  hence  are also max  min d 
codes  in  agreement  with (1) and ( 2 ) .  Both Hamming 
codes are  group codes. 

Plotkin3 has described  a  construction method  for  max 
min d codes for  certain values of g and a particular value 
of n dependent  on g.  Reference 4 gives a  description of 
Plotkin's construction methods.  Plotkin  chooses the  num- 
ber of code points, g,  so that: 

g=8h,  where 4h- 1 is a  prime number 

n=4h (57) 

min d= 2h . 
Plotkin  codes formed in accordance with (57)  are shown 
to be max min d by using the A argument. 

Plotkin's codes  coincide  with the codes of the present 
paper in one instance. In  particular, with  a Type 13 code, 
choosing u = k -  1, pertinent  parameters  can be  written: 

g=21C=8(2k--3) =8h 

n=2k-1=4h ( 5 8 )  

min d=2"-2=2h.  

Written  in  the above form,  it is clear that a Type 13 
code with u= k- 1 is a Plotkin  code provided (2k-1- 1) 
is a prime  number.  The first few values for which  this is 
true  are k = 2 ,   4 ,  6, 8. Of course, not all Type 13 codes 
with u= k- 1 are Plotkin  codes, but they are  max  min 53 
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d codes. Conversely, not all Plotkin codes are  Type 13 
with u = k -  1 ,  but they are  max min d codes. 

Reeds has described  a construction  method  for  group 
codes devised by D. E. Muller.  Using the  notation of the 
present paper, Reed-Muller  codes may be  summarized 
as  follows: 

n=2a;  a=2,   3 ,4 ,5 , .  . . . .  

g=2", where k= 2 ; r = l ,   2 , 3 , 4 , .  . . .  ( a - 2 ) .   ( 5 9 )  
i=O ( 4 )  

min d=2"-'. 

Using the A argument, it can be  shown that Reed- 
Muller  codes are  max min d if and only if r= 1. When 
r = 1 ,  Reed-Muller  codes are identical  with Type 13 codes 
with u=k- 1. 

Conclusions 

After describing an alternative upper bound on minimum 
distance to  that given by Hamming, we have given com- 
plete  construction  methods for codes  which  achieve the 
upper bound. Such codes  exist for  any value of g (the 
desired number of code  points)  and  an infinitely large 
class of integers n (the  number of binary symbols  per 

Table 6 Summary of code types 10 to 16. 

g=2k 

Code  Type n min d [ N I  

10 2k- 1 
[ e-- 276- 1 ___ +I 

2k-1 [ 1 , 1 , 1 ,  . . . . . . . . . ,  l , l , l ]  

11  
[ 2'c-2 -+I 

2k-  2 2k-1- 1 [ O , l , l )  . . . . . . . . . ,  l , l , l ]  

Note:  Single  zero  can  be placed any- 
where  in  vector [ N ]  . 

12 
[ e-- 2" - 3 

2k- 3 2k-1- 2 [ 0,0,1,1)  . . . . . . . . .  1 , 1 , 1  I 
-+I 

Note: Two zeroes  can  be placed any- 
where  in  vector [ N ]  . 

[ e - 2 " - 1  -+I +-22"-2U- +I 
13 2k- 2u 2k-1-2u-1 [ 0,o , . . . . )  0,0 ,1 ,1 ,  . . . . . . . ,  1 , l  I 

Note:  u=2,  3,4, .  ..... , k -  1. 

14 2k- 2u- 1 
] c - 2 U - l - ~ [ * [ e 2 " 2 2 U - l - , [  

2k-1-2u-1- 1 0,o  . . . . . .  0 , 0 , 0 , 1 , 1 )  . . . . . .  1 , 1  

Note 1: u=2, 3,4 , .  . . . . . . .  k -  1. 

Note 2: Starred zero  can  be placed any- 
where  in 2k-2U rightmost positions 
of [ N ]  vector. 

I .+ 2k--1+  2" - 1 +I +- 27~-1- 2" -+I 
15 2k-1-2" 2k-2-2v-1 0,o . . . . . . .  0 , 0 , 1 , 1 ,  . . . . . .  1 , l  

Note:  v=2, 3,4 , .  . . . . . .  k-3.  

I t-2"-1+ 2"- 1-, I * I e2k-1" 2v- 1 +I 
16  2k-1- 2v- 1 27C-2-2"-1- 1 0,o . . . . . . .  0,o 0 1 , l )  . . . . . .  1 , l  

Note 1: v=2 ,   3 ,4 , .  . . . .  k-3. 

Note 2: Starred zero  can be placed any- 
where in 2k--1-  2" rightmost  positions 

54 of [ N ]  vector. 
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depends on  the desired  value of g. In all, sixteen different 
code types have  been  described and  the  appropriate proof 
of the maximum  minimum-distance property presented. 
Three code types are devoted to  the case g = 2 h -  1, six 
types to  the case g==2h, and seven types to  the case g = 2 k .  
It  has been shown that these construction methods  coin- 
cide only  in a very few  special cases with the results of 
Hamming  and those of Plotkin. The present  results are 
thus complementary to  the only  previous  contributions to 
the construction  problem of which the  author is aware. 

The bound to be  derived  depends on  the simple fact  that 
the minimum  distance cannot exceed the average dis- 
tance. The average  distance is, of course, the  ratio of the 
sum of all distances to  the  number of distances. Let  the g 
code points (each  an n-binary symbol-vector) be desig- 
nated by A (i); 1 Q j ( g .  The  number of distances is equiva- 
lent to the combination of g things taken 2 at a  time, or 

Table 7a Examples of code types 10 to 16. 

k = 3  

Code  Type n min d Remarks 

10 7 4 Single error correcting,  double error detecting (Hamming) 

11 6 3 Single error  correcting  (Hamming) 

12 5 2 Single error detecting 

13 4 2 u=2; Single error detecting (Parity  Check) 

14 3 1 u = 2; N o  redundancy 

Type I O  
Code Matrix 

0 0 0 0  

1 0 1 0  

0 1 1 0  

1 1 0 0  

0 0 0 1  

1 0 1 1  

0 1 1 1  

1 1 0 1  

0 0 0  

1 0 1  

0 1 1  

1 1 0  
1 1 1  

0 1 0  

1 0 0  

0 0 1  

Type 12 
Code  Matrix 

0 0 0 0  
1 0 1 0  

1 0 0 1  

0 0 1 1  

0 1 1 1  

1 1 0 1  

1 1 1 0  
0 1 0 0  

[NI 
0 

1 0 

1 0 

0 1 
1 1 

0 1 

0 1 

1 1 

Type 13 
Code  Matrix 

0 0 0 0  

0 1 0 1  

0 0 1 1  

0 1 1 0  
1 1 1 1  

1 0 1 0  

1 1 0 0  

1 0 0 1  

Type I I 
Code  Matrix 

0 0 0 0 0 0  

1 0 1 0 1 0  

0 1 1 0 0 1  

1 1 0 0 1 1  

0 0 0 1 1 1  

1 0 1 1 0 1  

0 1 1 1 1 0  

1 1 0 1 0 0  

CNI 
Type I4 
Code  Matrix 

A(O) 0 0 0 

A ( l )  1 0 1 

A @ )  0 1 1 

A ( 3 )  1 1 0 

A ( 4 )  1 1 1 
A(5) 0 1 0 

A ( 6 )  1 0 0 

A ( 7 )  0 0 1 

0 

0 
0 

0 

1 

1 

1 55 
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where the  summation  on e and f is for all e such  that 
1 <e<g- 1 and all f such  that f >e .  Thus,  the leftmost 

summation sign implies terms, one  for  each distance. 
By interchanging the  order of summation (1.2) can be 
written : 

2 [ai(e)--ai(e) ai(f)+ai(f)]  
i=1 

Table  76 Examples of code  types 10 to 16. 

k = 6  

Code 
Type n min d Remarks 

10  63 32 

11 62 31 

12 61 30 

13 60 30 u=2 
56 28 u=3 
48  24 u=4 
32 16 u=5 

14 

15 

16 

59  29 u=2 
55 27 u=3 
47  23 u=4 
31 15 u=5 

28  14 v=2 
24  12 v=3 

27  13 v=2 
23 11 v=3 

Table 8 Generalization of code types 10 to 16. 

t = l ,  2,3 ,4 , .  . . . . 
Code  Type: 

n 10 11 12  13 14 15 16 

(2"-l)t t 0 0 0 0 0 0  

(2k- 1)t- 1 t - 1 1 0 0 0 0 0  

(2k- 1)t--2 t - 1 0 1 0 0 0 0  

(276-1)t-2~ t - 1 0 0 0 1 0 0  

(2"-l)t-2k-1-22" t - 1  0 0 0 0 0 1 

Note: u=2,  3,4, . . . . , k-1 
56 ~ = 2 , 3 , 4 , .  . . . , k-3 

IBM JOURNAL JANUARY 1960 

Now each di in (1.3) is obviously  non-negative, SO we 
can write: 

(maxD)<n(maxdi ) .  (1.4) 

Using the definition of average  distance we  have: 

maximum average  distance = (max D) 

Therefore: 

where  from (1.3) : 

di = 2 [a i (e ) -22ai (e )  aitf)+aitf)]. (1.7) 

In  the above  expression,  a term  such as ai(h), where 
1 < h < g, will appear ( g  - 1) times  since A ( h )  participates 
in (g-1) distances. A term  such  as -2ai(P)ai(Q) will 

appear only once,  but  there will be terms of this form 

corresponding  to the g distances. Let  column i of any 
coding matrix  have x ones and (g-x) zeroes in  the ith 
column. Realizing that  each  term in (1.7) such as ai(h) or 
al(p)  ai(@ is either zero or one, we  can write (1.7) as: 

e, f 

( 9  
(2) 

C&=(g- 1)x-2 = g x - x 2 ,  (3 
where x=O, 1,2,3,  . . . . , g . (1.8) 

Thus we simply seek that integer x which will maximize 
( g x - x ? )  . Two cases must  be treated. 

(1) If g = 2 h ,  then (gx -x2 )  has a  simple maximum  at 
~ = g / 2 .  Thus: 

maxdi=g[+] - [+] = -. 2 g2 

4 

(2) If g=2h- 1, then (gx-x*) attains a  maximum  value 
for x=(g-1)/2 or x=(g+1)/2. For either  value 
of x, the  maximum value is: 

max d i = g  - [IT] g- 1 g-1 

Using these results in (1.6) we have: 

For g=2h: 

maximum  minimum-distance Q ~ = ~ 

ng? ng 

2(g-  1) 

n(g2-  1 ) n ( g +  1) 
maximum  minimum-distance -~ - 

2g 
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