TISTHME of

COWBNUMORLES and its

IPPICIIONS

Editors-in-Chief:
Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Duluth, Minnesota, U.S.A.
ISSN: 2689-0674 [Online] ISSN: 1183-1278 [Print]

On $\delta^{(k)}$-coloring of graph products

Merlin Thomas Ellumkalayil and Sudev Naduvath*

Abstract

An edge which is incident on two vertices that are assigned the same color is called a bad edge. A near proper coloring is a coloring that minimises the number of bad edges in a graph G, by permitting few color classes to have adjacency between the elements in it. A near proper coloring, that uses k colors where $1 \leq k \leq \chi(G)-1$, which allows at most one color class to be a non independent set to minimise the number of bad edges resulting from the same is called a $\delta^{(k)}$-coloring. In this paper, we determine the minimum number of bad edges, $b_{k}(G)$, resulting from a $\delta^{(k)}$ coloring of some graph products viz. direct product of two graphs $G \times H$ and corona product of two graphs $G \circ H$, for all different possible values of k by investigating an optimal $\delta^{(k)}$-coloring that results in minimum number of bad edges.

1 Introduction

For all terms and definitions, not defined specifically in this paper, we refer to $[1,11,19]$ and for graph classes, we refer to $[2,9]$. Further, for the terminology of graph coloring, see [3, 13, 16]. Unless mentioned otherwise, all graphs considered here are undirected, simple, finite and connected.

The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number of colors required to color a graph in such a way that if any pair of vertices receive a same color then it should be a non adjacent pair. In an improper coloring, an edge $u v$ is a bad edge if $c(u)=c(v)$, where $c(u)$ and $c(v)$ are the colors assigned to the vertices u and v respectively. If the minimum number of colors required to color a graph properly is not available, then coloring the graph by permitting only one color class to be

[^0]a non independent set so as to minimise the number of bad edges resulting from the same is called $\delta^{(k)}$-coloring (see [15]). A handful of work on a $\delta^{(k)}$-coloring of certain graph classes can be seen in the literature. The interested reader is referred to recent articles on a $\delta^{(k)}$-coloring of graphs, see $[4,7,6,5]$ and also few engrossing studies on the concept of improper and proper coloring, see $[15,17,18]$.

Definition 1.1. A coloring that permits few color classes to have adjacency between the vertices in it to minimise the number of bad edges in a graph is called a near proper coloring.
Definition 1.2. A $\delta^{(k)}$-coloring of a graph G with k available colors, where $1 \leq k \leq \chi(G)-1$, is a near proper coloring, which minimises the number of bad edges by permitting at most one color class to have adjacency between the elements in it. The minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of G is denoted by $b_{k}(G)$.

Let the k available colors required for a $\delta^{(k)}$-coloring of G be $c_{1}, c_{2} \ldots, c_{k}$ with their respective color classes $C_{1}, C_{2}, \ldots, C_{k}$, throughout the discussion. Without loss of generality, the color class C_{1} is the color class that is allowed to have adjacency between the vertices in it. It is clear from Definition 1.2 that when the number of available colors k is 1 , the number of bad edges resulting from $\delta^{(k)}$-coloring of any graph G is $|E(G)|$. Hence, we do not consider a $\delta^{(1)}$-coloring of any graph and thereby do not consider a $\delta^{(1)}$ coloring of bipartite graph as well. Now, following are the results obtained for a $\delta^{(k)}$-coloring of direct product and corona product of certain classes of graphs. The results focus on the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring and provides an optimal $\delta^{(k)}$-coloring that results in the same for each different values of k where $2 \leq k \leq \chi(G)-1$. Furthermore, the concept of independence number and independence set is also used in this paper for determining the minimum number of bad edges. The readers can refer to the below definition for independent set and independence number.

Definition 1.3. A set V of vertices in a graph G is said to be independent if no two vertices in the set V are adjacent to each other. The maximum number of vertices in an independent set is called the independence number of G and it is denoted by $\alpha(G)$.

2 A $\delta^{(k)}$-coloring of direct product of graphs

The main focus of this section is to obtain the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of direct product of two graphs. Firstly, recall the definition of direct product of two graphs:

Definition 2.1. [10] In the direct product of two graphs, two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent if both $g g^{\prime} \in E(G)$ and $h h^{\prime} \in E(H)$. The direct product of G and H is denoted by $G \times H$.

Consider two graphs G and H of order m and n respectively. In $G \times H$, there are a total of $m \times n$ vertices. Thus, there are m sets each having n vertices or n sets each having m vertices in the direct product. Throughout the discussion, it is considered that $n \geq m$ (note that, since direct product is a commutative product, all the results discussed below hold for $n<m$ as well) and that there are m set each of n vertices. The first set of n vertices is denoted as $g_{1} h_{j}$, where $1 \leq j \leq n$, the second set is denoted as $g_{2} h_{j}$, where $1 \leq j \leq n$, and so on the m-th set of n vertices is denoted as $g_{m} h_{j}$, where $1 \leq j \leq n$.

If either G or H is bipartite, then their direct product $G \times H$ is bipartite and hence the following discussion does not consider a $\delta^{(k)}$-coloring of bipartite graphs. This study solely focuses on cycle graph $C_{2 n+1}$ complete graph K_{n}. It is known that, $\chi(G \times H) \leq \min (\chi(G), \chi(H))$ (see [12]).

When $C_{m} \times C_{n}$ and $C_{m} \times K_{n}$ are considered, $\chi\left(C_{m} \times C_{n}\right)=3$, when both n and m are odd, and $\chi\left(C_{m} \times K_{n}\right)=3$, when m is odd. Thus, for these two cases a $\delta^{(2)}$-coloring is considered. For $K_{m} \times K_{n}$, the value of k will be $2 \leq k \leq \min \{m, n\}-1$. The direct product is commutative and hence the study concerned focuses on either a $\delta^{(k)}$-coloring of $G \times H$ or $H \times G$. The following are the results obtained from a $\delta^{(k)}$-coloring of direct product of cycle graph and complete graph with their possible combination.

Theorem 2.2. For $C_{m} \times C_{n}$, where m and n are odd, the number of bad edges resulting from $\delta^{(2)}$-coloring is $b_{2}\left(C_{m} \times C_{n}\right)=2 m$.

Proof. For $C_{m} \times C_{n}, \chi\left(C_{m} \times C_{n}\right)=3$ and it is a 4-regular graph. In this case, $k=2$. As mentioned above, we consider the color class C_{1} to be a non-independent set and hence it is clear that every other color class is an independent set. Hence, it is obvious that a $\delta^{(2)}$-coloring of a graph is based on the independence number of the graph. The independence number of $G \times H$ is given by $\alpha(G \times H) \geq \max \{\alpha(G)|V(H)|, \alpha(H)|V(G)|\}$ (see [10]) and
the independence number of direct product of odd cycles is already been discussed in [14] as $(n-1) \frac{m}{2}$. The minimum number of monochromatic edges obtained from $\delta^{(2)}$-coloring for an r-regular is $\frac{r(n-2 \alpha)}{2}$ (see Theorem 2.12 of [6]). Thus, the number of bad edges resulting from $\delta^{(2)}$-coloring of $C_{m} \times C_{n}$ is $b_{2}\left(C_{m} \times C_{n}\right)=\frac{4\left(m n-2(n-1) \frac{m}{2}\right)}{2}=2 m$.

Theorem 2.3. For $C_{m} \times K_{n}$, where m and n are odd, the number of bad edges resulting from $\delta^{(2)}$-coloring is $b_{2}\left(C_{m} \times K_{n}\right)=n(n-1)$.

Proof. It is known that, $\chi\left(C_{m} \times K_{n}\right)=3$ and hence $k=2$. As explained in Theorem 2.2, first the concept of independence number is used and an upper bound for the minimum number of monochromatic edges obtained from $\delta^{(2)}$-coloring is provided. It can be noted that, the independence number of $G \times H$ is $\alpha(G \times H) \geq \max \{\alpha(G)|V(H)|, \alpha(H)|V(G)|\}$ (see [10]). Thus, in this case, $\alpha\left(C_{m} \times K_{n}\right) \geq \max \left\{\alpha\left(C_{m}\right)\left|V\left(K_{n}\right)\right|, \alpha\left(K_{n}\right)\left|V\left(C_{m}\right)\right|\right\}=$ $\max \left\{n\left\lfloor\frac{m}{2}\right\rfloor, m \mid\right\}$. Since $m \leq n, \alpha\left(C_{m} \times K_{n}\right) \geq n\left\lfloor\frac{m}{2}\right\rfloor$. The number of bad edges resulting from $\delta^{(2)}$-coloring of a regular graph is $\frac{r(n-2 \alpha)}{2}$ (see Theorem 2.12 of [6]). Thus, $b_{2}\left(C_{m} \times K_{n}\right) \geq \frac{r(n-2 \alpha)}{2} \geq \frac{2(n-1)\left(m n-2 n\left\lfloor\frac{m}{2} \mathrm{~L}\right)\right.}{2} \geq n(n-1)$. Hence, $b_{2}\left(C_{m} \times K_{n}\right) \geq n(n-1)$.

It is to be proved first that, $b_{2}\left(C_{m} \times K_{n}\right)=n(n-1)$. For this, it suffices to find a $\delta^{(2)}$-coloring that results in $n(n-1)$ monochromatic edges. None of the vertices $g_{1} h_{j}$, where $1 \leq j \leq n$, are adjacent to each other. Hence, all these vertices can have a single color, say c_{1}. Each vertex $g_{1} h_{j}$ is adjacent to every $g_{2} h_{j}$ except for its corresponding vertex. Hence, the vertices $g_{2} h_{j}$ can be assigned the color c_{2} or c_{1}. However, the aim is to minimise the number of monochromatic edges and hence use the color c_{2} to color $g_{2} h_{j}$. Third set of vertices $g_{3} h_{j}$ can be colored with the color c_{1} and the fourth set $g_{4} h_{j}$ can be assigned the color c_{2}. Thus, alternatively color each n set with two colors c_{1} and c_{2} properly. The last set of n vertices that is $g_{m} h_{j}$, where $1 \leq j \leq n$, has to be given the color c_{1} to maintain the condition of a $\delta^{(k)}$ coloring of graphs. The only edges that provide monochromatic edges is the edges between the first set of vertices $\left(g_{1} h_{j}\right)$ and the m-th set of vertices $\left(g_{m} h_{j}\right)$. Each of the n vertices in the set $g_{1} h_{j}$ which has the color c_{1} are adjacent to $n-1$ vertices of the set $g_{m} h_{j}$ given the color c_{1}, which results in a situation where there are a total of $n(n-1)$ monochromatic edges. Thus, the number of bad edges resulting from $\delta^{(2)}$-coloring of $C_{m} \times K_{n}$ is $n(n-1)$.

Theorem 2.4. For $K_{m} \times K_{n}$, where m and n are odd, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring is

$$
b_{k}\left(K_{m} \times K_{n}\right)=\frac{n(n-1)(m-k)(m-k+1)}{2}
$$

Proof. It is know that, $\chi\left(K_{m} \times K_{n}\right)=\min \{m, n\}$ (see [12]). Since it is assumed that $n \geq m, \chi\left(K_{m} \times K_{n}\right)=m$ and hence k can be $2 \leq k \leq m-1$. In this case, there are two possible $\delta^{(k)}$-colorings which are as explained.

In $K_{m} \times K_{n}$, except for its corresponding vertices every vertex is adjacent to every other vertex. Thus, either every corresponding vertex, which is an independent set, can be assigned a single color or every n vertices in a single set, which is also an independent set, can be given a single color. Since $2 \leq k \leq m-1$, the former coloring will lead to a situation where there are $\frac{m(m-1)(n-k)(n-k+1)}{2}$ monochromatic edges and the latter provides $\frac{n(n-1)(m-k)(m-k+1)}{2}$ monochromatic edges. Since $n \geq m$, the minimum number of monochromatic edges obtained is $\frac{n(n-1)(m-k)(m-k+1)}{2}$, when $n>$ m, and both are same, when $n=m$. Thus, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of $K_{m} \times K_{n}$ is $\frac{n(n-1)(m-k)(m-k+1)}{2}$, when $n \geq m$.

3 A $\delta^{(k)}$-coloring of corona product of graphs

The corona product is not commutative and hence in this section all the possible combination of a $\delta^{(k)}$-coloring of corona product of path graph, cycle graph and complete graphs are taken into consideration.
Definition 3.1. [8] Let G be a graph on n vertices and H be another graph. The corona product of two graphs G and H, denoted by $G \circ H$, is obtained by taking n copies of H, and each vertex in G is adjacent to every vertex of the corresponding H. That is, every i-th vertex of G is adjacent to each vertex of i-th copy of H, where $1 \leq i \leq n$.

Throughout the section, the vertex v_{i}, where $1 \leq i \leq n$, corresponds the vertices of the graph G and the vertices $v_{i j}$, where $1 \leq i \leq m$ and $1 \leq j \leq$ m, are the vertices of the i-th copy of H corresponding to v_{i} vertex of G. For instance, the vertices $v_{11}, v_{12}, \ldots, v_{1 n}$ are the vertices of the first copy of H corresponding to the vertex v_{1} in G.

Theorem 3.2. For $P_{m} \circ P_{n}$, the number of bad edges resulting from $\delta^{(2)}$ coloring is $b_{2}\left(P_{m} \circ P_{n}\right) \leq \min \left\{\left\lceil\frac{m}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor(n-1),\left\lceil\frac{m}{2}\right\rceil(n-1)+\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\right\}$.

Proof. The corona product $P_{m} \circ P_{n}$ is 3 -colorable and hence k can only be 2. There are two possible $\delta^{(2)}$-colorings as explained below. The first coloring is to color the vertices, $v_{1}, v_{2}, \ldots, v_{m}$, of P_{m} with two colors c_{1} and c_{2} alternatively. Thus, $c\left(v_{2 i+1}\right)=c_{1}$, where $0 \leq i \leq\left\lfloor\frac{m-1}{2}\right\rfloor$ and $c\left(v_{2 i}\right)=c_{2}$, where $1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$. This coloring will provide $\left\lceil\frac{m}{2}\right\rceil$ independent vertices that have the color c_{1} and $\left\lfloor\frac{m}{2}\right\rfloor$ independent vertices with the color c_{2}.

The path graph P_{n} corresponding to the vertices of P_{m} which have the color c_{1}, can be alternatively assigned the color c_{1} and c_{2}. If every first vertex of these $\left\lceil\frac{m}{2}\right\rceil$ copies of P_{n} is given the color c_{1}, the remaining vertices of each copy is alternatively colored with c_{2} and c_{1}. This coloring will cause for a situation where there are $\left\lceil\frac{n}{2}\right\rceil$ independent vertices which have the color c_{1} and $\left\lfloor\frac{n}{2}\right\rfloor$ independent vertices the color c_{2} and vice versa if every first vertex of these $\left\lceil\frac{m}{2}\right\rceil$ copies of P_{n} is given the color c_{2}. The former will increase the number of monochromatic edges due to the increase in the number of vertices that receive the color c_{1} and the later will decrease the same by one. Hence, every first vertex of these $\left\lceil\frac{m}{2}\right\rceil$ copies of P_{n} is given the color c_{2}, and the remaining vertices of these copies are alternatively assigned the color c_{1} and c_{2}. Thus, there are $\left\lceil\frac{m}{2}\right\rceil$ vertices in P_{m} with the color c_{1} which are adjacent to $\left\lfloor\frac{n}{2}\right\rfloor$ vertices of its corresponding path graph P_{n} whose color is c_{1}, which cause a scenario where there are $\left\lceil\frac{m}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor$ monochromatic edges between them. Now, the $\left\lfloor\frac{m}{2}\right\rfloor$ copies of P_{n}, corresponding to $\left\lfloor\frac{m}{2}\right\rfloor$ vertices in P_{m} that receive the color c_{2}, should solely be given the color c_{1} to maintain the requirements of a $\delta^{(k)}$-coloring of graphs, which will cause for no monochromatic edge between these copies of P_{n} and its corresponding vertices with color c_{1} in P_{m}. However, every edge in these copies of P_{n} will be a monochromatic edge, leading to a total of $\left\lfloor\frac{m}{2}\right\rfloor(n-1)$ monochromatic edges. Thus, the total number of monochromatic edges resulting from this particular $\delta^{(2)}$-coloring is $\left\lceil\frac{m}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor(n-1)$.

In the second $\delta^{(k)}$-coloring, begin coloring vertices of P_{m} alternatively with the colors c_{2} and c_{1}. Thus, $c\left(v_{2 i+1}\right)=c_{2}$, where $0 \leq i \leq\left\lfloor\frac{m-1}{2}\right\rfloor$ and $c\left(v_{2 i}\right)=c_{1}$, where $1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$. This coloring will cause a situation where there are $\left\lceil\frac{m}{2}\right\rceil$ independent vertices that are assigned the color c_{2} and $\left\lfloor\frac{m}{2}\right\rfloor$ independent vertices with the color c_{1}, which thereby yields to coloring $\left\lceil\frac{n}{2}\right\rceil$ copies of P_{n} solely with the color c_{1}, leading to $\left\lceil\frac{m}{2}\right\rceil(n-1)$ monochromatic edges. The remaining copies of P_{n} corresponding to $\left\lfloor\frac{m}{2}\right\rfloor$ vertices of P_{m} which have the color c_{1}, are assigned the color c_{2} and c_{1} alternatively leading to $\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor$ monochromatic edges. Thus, the total
number of monochromatic edges resulting from this $\delta^{(2)}$-coloring is $\left\lceil\frac{m}{2}\right\rceil(n-$ 1) $+\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor$.

When both the colorings are compared, the monochromatic edges obtained from both is the same, when m is even, and is $\min \left\{\left\lceil\frac{m}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor(n-\right.$ 1), $\left.\left\lceil\frac{m}{2}\right\rceil(n-1)+\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\right\}$, when m is odd.

Theorem 3.3. For $C_{m} \circ C_{n}$, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring is
$b_{k}\left(C_{m} \circ C_{n}\right)= \begin{cases}\min \left\{\frac{n(3 m-1)+4}{4}, \frac{m(n+2)}{4}\right\}, & \text { if } m \text { is odd, } n \text { is even and } k=2, \\ \min \left\{\frac{3 n(n+1)}{4}, \frac{m(n+3)+2 n}{2}\right\}, & \text { if } m \text { is even, } n \text { is odd and } k=2, \\ m, & \text { if } m, n \text { are both odd and } k=3, \\ \min \left\{\frac{3 m n}{4}, \frac{m(n+2)}{2}\right\}, & \text { if } m, n \text { are both even and } k=2,\end{cases}$

Proof. The different cases for the $\delta^{(k)}$-coloring of $C_{m} \circ C_{n}$, for different parities of m and n and for different values of k are explained as below.

Case 1: Let $k=2, m$ be odd and n be even. Let the two colors be c_{1} and c_{2}. The odd cycle C_{m} will result in one monochromatic edges when colored with c_{1} and c_{2} (see Propoition 2.3, [15]) and an even length cycle C_{n} can be properly colored with two colors. As explained in Theorem $4.5\left\lfloor\frac{m}{2}\right\rfloor$ vertices of C_{m} are assigned the color c_{2}, its corresponding C_{n} 's ($\left\lfloor\frac{m}{2}\right\rfloor$ in number) should be exclusively colored with c_{1} to meet the requirements of a $\delta^{(k)}$ coloring of graphs. This coloring will result in a condition where there exists $\left\lfloor\frac{m}{2}\right\rfloor n$ monochromatic edges. Also, the $\left\lceil\frac{m}{2}\right\rceil$ copies of C_{n} are given the color c_{1} and c_{2} alternatively as they are adjacent to $\left\lceil\frac{m}{2}\right\rceil$ vertices of C_{m} which have the color c_{1}. This coloring will yield $\left\lceil\frac{m}{2}\right\rceil \frac{n}{2}$ monochromatic edges. Thus, the total number of monochromatic edges obtained from $\delta^{(2)}$-coloring of $C_{m} \circ C_{n}$ is $\left\lfloor\frac{m}{2}\right\rfloor n+\left\lceil\frac{m}{2}\right\rceil \frac{n}{2}+1=\frac{n(3 m-1)+4}{4}$, when m is odd and n is even. Now, another possible $\delta^{(2)}$-coloring for this case is that, the cycle C_{m} is colored with a single color c_{1}, leading to m monochromatic edges and the m copies of C_{n} are alternatively assigned the color c_{1} and c_{2}. This coloring will cause for a situation where there exists $\frac{m n}{2}$ monochromatic edges between C_{m} and C_{n}. Thus, the total number of monochromatic edges obtained from this $\delta^{(2)}$-coloring is $m+\frac{m n}{2}=\frac{m(n+2)}{2}$. Hence, the number of bad edges resulting from $\delta^{(2)}$-coloring of $C_{m} \circ C_{n}$ is $\min \left\{\frac{n(3 m-1)+4}{4}, \frac{m(n+2)}{2}\right\}$, when m is odd and n is even.

Case 2: Let $k=2$ and m be even and n be odd. Since m is even, coloring C_{m} with c_{1} and c_{2} will provide no monochromatic edges in C_{m}. It is known that, there are m copies of C_{n} out of which $\frac{m}{2}$ copies that are adjacent to
the corresponding vertices of C_{m} which has the color c_{1} can be alternatively colored with c_{1} and c_{2}. Thus, there are $\left\lceil\frac{n}{2}\right\rceil$ vertices receiving the color c_{1} and $\left\lfloor\frac{n}{2}\right\rfloor$ vertices the color c_{2}. This coloring provide one monochromatic edge in each of $\frac{m}{2} C_{n}$'s and $\frac{m}{2}\left\lfloor\frac{n}{2}\right\rfloor$ monochromatic edges between them. The remaining $\frac{m}{2}$ copies of C_{n} 's that are adjacent to the vertices of C_{m} ($\left\lfloor\frac{m}{2}\right\rfloor$ vertices) which are assigned the color c_{2}, are solely colored with the color c_{1}, to meet the requirements of a $\delta^{(k)}$-coloring of graphs. This coloring will thereby result in $\left\lfloor\frac{m}{2}\right\rfloor n$ monochromatic edges. Thus, the total number of monochromatic edges resulting from this $\delta^{(2)}$-coloring is $\frac{m}{2}\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor n+$ $\frac{m}{2}=\frac{3 n}{2}\left(\frac{n+1}{2}\right)$. Now, the second possible $\delta^{(2)}$-coloring for this case is same as that of second $\delta^{(2)}$-coloring explained in Case 1 mentioned above. This coloring will lead to all the edges in C_{m} to be monochromatic (since all the m vertices are assigned the color c_{1}). However, since n is odd, there will be one monochromatic edge in each of the n copies of C_{n} and $m\left\lceil\frac{n}{2}\right\rceil$ monochromatic edges between C_{n} and C_{m}. Thus, the total number of monochromatic edges in this case is $\frac{m(n+3)+2 n}{2}$. Thus, the number of bad edges resulting from $\delta^{(2)}$-coloring of $C_{m} \circ C_{n}$ is $\min \left\{\frac{3 n(n+1)}{4}, \frac{m(n+3)+2 n}{2}\right\}$, when m is even and n is odd.

Case 3: Let $k=3$ and both m and n be odd. It can be noted that, $\chi\left(C_{m} \circ C_{n}\right)=4$, when m and n are odd, and hence $k=2$ and $k=3$. Firstly, the $\delta^{(3)}$-coloring of $C_{m} \circ C_{n}$ is discussed as follows. Since $k=3$, maximise the use of the colors c_{2} and c_{3} and minimise the use of color c_{1} as much as possible. A $\delta^{(3)}$-coloring that exactly explains the same is as follows. Assign the vertices of C_{m} alternatively with the colors c_{2} and c_{3} and the last vertex v_{m} is assigned the color c_{1}. This is a proper coloring of an odd cycle with three colors. Each of the $m-1$ copies of C_{n} corresponding to the vertices of the C_{m}, whose colors are c_{2} and c_{3}, can be given the colors c_{1} and c_{3}, and c_{1} and c_{2} respectively. This coloring will cause for a scenario where there exist one monochromatic edge in each of the $m-1$ copies of C_{n}. The corresponding C_{n} of the m-th vertex of C_{m} that is assigned the color c_{1} can be properly colored with three colors, leading to one monochromatic edge between this vertex and the m-th copy of C_{n}. Thus, the $\delta^{(3)}$-number is m, when m and n are odd.

Case 4: Let $k=2$ and both m and n be odd. In this case, there are two possible $\delta^{(2)}$-colorings as explained in Case 1 and Case 2. The first $\delta^{(2)}$ coloring is obtained by alternatively coloring C_{m} with two colors leading to one monochromatic edge in C_{m}. The $\left\lceil\frac{m}{2}\right\rceil$ copies of $C_{n} \mathrm{~s}$, corresponding to the $\left\lceil\frac{m}{2}\right\rceil$ vertices of C_{m} that are colored with c_{1} are alternatively given the color c_{1} and c_{2} and $\left\lfloor\frac{m}{2}\right\rfloor$ copies of C_{n} corresponding to $\left\lfloor\frac{m}{2}\right\rfloor$ vertices are assigned the color c_{2}, are assigned the color vertices of C_{m} which have
the color c_{2} are exclusively given the color c_{1} to meet the prerequisites of $\delta^{(k)}$-coloring of graphs. This coloring will have a total of $1+\left\lceil\frac{m}{2}\right\rceil+n\left\lfloor\frac{m}{2}\right\rfloor+$ $\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil=\frac{3 m(1+n)-n+7}{4}$ monochromatic edges in $C_{m} \circ C_{n}$. The second $\delta^{(2)}$-coloring is same as the second $\delta^{(k)}$-coloring of Case 1 . The cycle C_{m} is exclusively colored with c_{1} and the corresponding C_{n} 's are assigned the color c_{1} and c_{2}. This $\delta^{(2)}$-coloring will have $m+m+m\left\lceil\frac{n}{2}\right\rceil=\frac{m(n+5)}{2}$ monochromatic edges. Thus, the number of bad edges resulting from $\delta^{(2)}$ coloring of $C_{m} \circ C_{n}$ is $\min \left\{\frac{3 m(1+n)-n+7}{4}, \frac{m(n+5)}{2}\right\}$, when m and n are odd.

Case 5: Let $k=2$ and m and n be even. It is to be noted that, $\chi\left(C_{m} \circ C_{n}\right)=$ 3 , when both m and n are even. Hence, $k=2$. There are two possible $\delta^{(2)}$ colorings in this case which are as discussed below:

In the first $\delta^{(2)}$-coloring, the cycle C_{m} can be properly colored with two colors. Each of the $\frac{m}{2}$ copies of C_{n} are alternatively given the colors c_{1} and c_{2} as they are adjacent to $\frac{m}{2}$ vertices of C_{m} which have the color c_{1}, leading to $\frac{m n}{4}$ monochromatic edges between them. The remaining $\frac{m}{2}$ copies of C_{n} is solely assigned the color c_{2} to maintain the requirements of a $\delta^{(k)}$-coloring of graphs. Thus, this coloring will result in a situation where there are $\frac{m n}{2}$ monochromatic edges. Hence, the total number of minimum monochromatic edges obtained from this $\delta^{(2)}$-coloring is $\frac{3 m n}{4}$. Now, the second $\delta^{(2)}$-coloring is same as that of the second $\delta^{(2)}$-coloring explained in Case 1 and the number of monochromatic edges obtained from this case is $\frac{m(n+2)}{2}$. Thus, the number of bad edges resulting from $\delta^{(2)}$-coloring of $C_{m} \circ C_{n}$ is $\min \left\{\frac{3 m n}{4}, \frac{m(n+2)}{2}\right\}$, when m and n are even. This completes the proof.

Theorem 3.4. For $P_{m} \circ C_{n}$, the the number of bad edges resulting from $\delta^{(2)}$-coloring is

$$
b_{2}\left(P_{m} \circ C_{n}\right) \leq \begin{cases}\frac{3 m n}{4}, & \text { if both } m \text { and } n \text { are even } \\ \frac{3 m n-n}{4}, & \text { if } m \text { is odd and } n \text { is even } \\ \frac{3 m(n+1)}{4}, & \text { if } m \text { is even and } n \text { is odd } \\ \frac{3(m+n m+1)-n}{4}, & \text { if both } m \text { and } n \text { are odd }\end{cases}
$$

Proof. It is to be noted that, $\chi\left(P_{m} \circ C_{n}\right)=3$ and hence, $k=2$. For different parities of m and n, different possible $\delta^{(2)}$-colorings and the number of monochromatic edges obtained from the same is as explained below.

Case 1: Let both m and n be even. In this particular case, coloring P_{m} alternatively with c_{1} and c_{2} will have no monochromatic edges in P_{m}. However, the $\frac{m}{2}$ copies of C_{n} are alternatively assigned the color c_{1} and c_{2} and
the remaining $\frac{m}{2}$ copies of C_{n} will only have the color c_{1} in order to maintain the requirements of a $\delta^{(k)}$-coloring of graphs. Thus, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of $P_{m} \circ C_{n}$ is $\frac{m}{2} \frac{n}{2}+\frac{m}{2} n=\frac{3 m n}{4}$, when m and n are even.

Case 2: Let m be odd and n be even. As explained in Theorem 4.5, there can be two possible $\delta^{(2)}$-colorings for this case. The first coloring is when P_{m} is alternatively given the colors c_{1} and c_{2} and the second one the vertices of P_{m} is assigned the colors c_{2} and c_{1} alternatively. The former will cause a situation where there are $\left\lceil\frac{m}{2}\right\rceil \frac{n}{2}+\left\lfloor\frac{m}{2}\right\rfloor n=\frac{n(3 m-1)}{4}$ monochromatic edges in the graph and the latter yields $\left\lceil\frac{m}{2}\right\rceil n+\left\lfloor\frac{m}{2}\right\rfloor \frac{n}{2}=\frac{n(3 m+1)}{4}$ monochromatic edges. Thus, when the two $\delta^{(k)}$-colorings are compared the number of bad edges resulting from $\delta^{(2)}$-coloring of $P_{m} \circ C_{n}$ is $\frac{n(3 m-1)}{4}$, when m is odd and n is even.

Case 3: Let m be even and n be odd. Since m is even, coloring the vertices of P_{m} alternatively with c_{1} and c_{2} or c_{2} and c_{1}, will have same number of monochromatic edges in $P_{m} \circ C_{n}$. Thus, alternatively color the path P_{m} with the colors c_{1} and c_{2}. The corresponding C_{n} 's of each of the vertices in P_{m} that have received the color c_{1} are alternatively assigned the color c_{1} and c_{2}. This coloring will provide one monochromatic edge in each of these C_{n} and $\frac{m}{2}\left\lceil\frac{n}{2}\right\rceil$ of monochromatic edges between them. The remaining copies of C_{n} corresponding to $\frac{m}{2}$ vertices of P_{m} that have the color c_{2}, is colored with the color c_{1} in order to maintain the requirements of a $\delta^{(k)}$ coloring of graphs. This coloring will cause for a situation where there are $\frac{n m}{2}$ monochromatic edges between them. Thus, the number of bad edges resulting from $\delta^{(2)}$-coloring of $P_{m} \circ C_{n}$ is $\frac{m}{2}\left\lceil\frac{n}{2}\right\rceil+\frac{n m}{2}+\frac{m}{2}=\frac{3 m(n+1)}{4}$, when m is even and n is odd.

Case 4: Let m and n be odd. As explained in Theorem 4.5, there can be two possible $\delta^{(2)}$-colorings, one where the vertices of P_{m} are assigned the color c_{1} and c_{2} alternatively and the other vice versa. The former results in $\left\lceil\frac{m}{2}\right\rceil$ monochromatic edges in the cycles C_{n} that are given the colors c_{1} and c_{2} and $\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil$ monochromatic edges between P_{m} and C_{n}. There are n monochromatic edges in $\left\lfloor\frac{m}{2}\right\rfloor$ cycle C_{n} that are corresponding to $\left\lfloor\frac{m}{2}\right\rfloor$ vertices of P_{m} whose color is c_{2}, which provides $n\left\lfloor\frac{m}{2}\right\rfloor$ monochromatic edges between these copies of C_{n} and P_{m}. Thus, the $\delta^{(2)}$-coloring is $\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil+$ $\left\lceil\frac{m}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor n=\frac{3(m+m n+1)-n}{4}$ in $P_{m} \circ C_{n}$, when m and n are odd.

The latter will result in $\left\lfloor\frac{m}{2}\right\rfloor$ monochromatic edges in the $\left\lfloor\frac{m}{2}\right\rfloor$ copies of C_{n} which have the colors c_{1} and c_{2} and $\left\lfloor\frac{m}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$ monochromatic edges between P_{m} and C_{n}. Between $\left\lceil\frac{m}{2}\right\rceil$ vertices of P_{m} which have the color c_{2} and its
corresponding copies of C_{n} that are solely colored with c_{1}, there are $\left\lceil\frac{m}{2}\right\rceil n$ monochromatic edges. Thus, there are a total of $\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil n=$ $\frac{3(m+m n-1)+n}{4}$ monochromatic edges resulting from this coloring.

Now, when both the $\delta^{(2)}$-colorings are compared, the the number of bad edges resulting from $\delta^{(2)}$-coloring of $P_{m} \circ C_{n}$ is $\frac{3(m+m n+1)-n}{4}$, when both m and n are odd.

Theorem 3.5. For $P_{m} \circ K_{n}$, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring is $b_{k}\left(P_{m} \circ K_{n}\right)=\frac{m(n-k+2)(n-k+1)}{2}$.

Proof. It can be noted that, $\chi\left(P_{m} \circ K_{n}\right)$ is $n+1$ and hence $2 \leq k \leq n$. Color the vertices of P_{n} alternatively with the colors c_{1} and c_{2}. There are $\left\lceil\frac{m}{2}\right\rceil$ vertices that receive the color c_{1} and $\left\lfloor\frac{m}{2}\right\rfloor$ vertices that are given the color c_{2}. Each of the copies of K_{n} corresponding to each of the $\left\lceil\frac{m}{2}\right\rceil$ vertices of P_{m} that receive the color c_{1} will cause $\left\lceil\frac{m}{2}\right\rceil \frac{(n-k+1)(n-k)}{2}$ monochromatic edges (see Theorem 2.7, [15], for the $\delta^{(k)}$-coloring of K_{n}) and $\left\lceil\frac{m}{2}\right\rceil(n-k+1)$ monochromatic edges between them. For the remaining $\left\lfloor\frac{m}{2}\right\rfloor$ copies of K_{n} 's corresponding to the vertices that are assigned the color c_{2} in P_{m}, there are $\frac{(n-k+2)(n-k+1)}{2}$ monochromatic edges. This is because, the color c_{2} cannot be used to color K_{n} in order to maintain the conditions of a $\delta^{(k)}$ coloring of graphs. Also, there will not be any monochromatic edge between them. Thus, the total number of monochromatic edges obtained from this $\delta^{(k)}$-coloring is $\left\lceil\frac{m}{2}\right\rceil \frac{(n-k+1)(n-k)}{2}+\left\lceil\frac{m}{2}\right\rceil(n-k+1)+\left\lfloor\frac{m}{2}\right\rfloor \frac{(n-k+2)(n-k+1)}{2}=$ $(n-k+1)\left(\left\lceil\frac{m}{2}\right\rceil \frac{(n-k)}{2}+\left\lfloor\frac{m}{2}\right\rfloor \frac{(n-k+2)}{2}+1\right)$. In other words, it can be said that, in $P_{m} \circ K_{n}$ each vertex of P_{m} is adjacent to every vertex of K_{n} and hence there are m number of disjoint K_{n+1}. It is known that, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of K_{n+1} is $\frac{(n-k+1)(n-k)}{2}$ (see Theorem 2.7, [15]). Thus, in this case, each K_{n+1} will have $\frac{(n-k+2)(n-k+1)}{2}$ monochromatic edges. Thus, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of $P_{m} \circ K_{n}$ is $\frac{m(n-k+2)(n-k+1)}{2}$.
Theorem 3.6. For $C_{m} \circ P_{n}$, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring is

$$
b_{2}\left(C_{m} \circ P_{n}\right)= \begin{cases}\frac{3 m(n-1)}{4}, & \text { if } m \text { is even and for any } n, \\ \frac{(3 m-1)(n-1)+4}{4}, & \text { if } m \text { is odd and for any } n\end{cases}
$$

Proof. It is known that, $\chi\left(C_{m} \circ P_{n}\right)=3$ and hence $k=2$. The following are the two cases discussed for a $\delta^{(2)}$-coloring of $C_{m} \circ P_{n}$ for different parities of m and n.

Case 1: Let m be even. The cycle C_{m} of even length can be properly colored with two colors with $\frac{m}{2}$ possibility for each color, leading to no monochromatic edge in it. The $\frac{m}{2}$ copies of P_{n}, corresponding to $\frac{m}{2}$ vertices of C_{m} which have the color c_{1}, can be alternatively assigned the color c_{2} and c_{1} respectively, leading to a total of $\frac{m}{2}\left\lfloor\frac{n}{2}\right\rfloor$ monochromatic edges between them (Note that, if the $P_{n} \mathrm{~s}$ are alternatively colored with the colors c_{1} and c_{2}, there will be $\left\lceil\frac{n}{2}\right\rceil$ vertices that receive the color c_{1}, leading to $\left\lceil\frac{n}{2}\right\rceil$ monochromatic edges between the C_{m} and P_{n} which is more in number when compared to $\frac{m}{2}\left\lfloor\frac{n}{2}\right\rfloor$ monochromatic edges). The remaining $\frac{m}{2}$ copies of P_{n} are exclusively colored with c_{1} as they are adjacent to the vertices of C_{m} which have the color c_{2}, to maintain the requirements of a $\delta^{(k)}$ coloring of graphs. This coloring will provide a situation where there are $\frac{m}{2}(n-1)$ monochromatic edges. Thus, the number of bad edges resulting from $\delta^{(2)}$-coloring is of $C_{m} \circ P_{n}$ is $\frac{m}{2}\left\lfloor\frac{n}{2}\right\rfloor+\frac{m}{2}(n-1)=\frac{3 m(n-1)}{4}$, when m is even.

Case 2: Consider m to be odd. It can be noted that, the number of bad edges resulting from $\delta^{(2)}$-coloring of a cycle of odd length is 1 , with $\left\lceil\frac{m}{2}\right\rceil$ vertices receiving the color c_{1} and $\left\lfloor\frac{m}{2}\right\rfloor$ vertices the color c_{2}. As explained in the above-mentioned case, P_{n} 's that are adjacent to its corresponding vertices that are assigned the color c_{1} will yield a total of $\left\lceil\frac{m}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor$ monochromatic edges and P_{n} 's adjacent to the vertices that have the color c_{2} will lead in $\left\lfloor\frac{m}{2}\right\rfloor(n-1)$ monochromatic edges. Thus, the number of bad edges resulting from $\delta^{(2)}$-coloring of $C_{m} \circ P_{n}$ is $1+\left\lceil\frac{m}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor(n-1)=\frac{(3 m-1)(n-1)+4}{4}$, when m is odd.

Theorem 3.7. For $C_{m} \circ K_{n}$, the $\delta^{(k)}$-coloring is

$$
b_{k}\left(C_{m} \circ K_{n}\right) \leq \begin{cases}\frac{m(n-k+1)(n-k+2)}{2}, & \text { if } m \text { is even }, \\ \frac{m(n-k+1)(n-k+2)+2}{2}, & \text { if } m \text { is odd } .\end{cases}
$$

Proof. The chromatic number of $C_{m} \circ K_{m}$ is $n+1$ and hence $2 \leq k \leq n$. For the different parities of m, there are two cases that are addressed separately as follows.

Case 1: Let m be even. It is known that, $\chi\left(C_{2 n}\right)=2$ and hence for any k, the even cycle C_{m} will yield no monochromatic edges. As explained in Theorem 3.6, every $\frac{m}{2}$ copies of K_{n}, adjacent to $\frac{m}{2}$ vertices of C_{m}, receiving the color c_{1}, will yield a total $\frac{m}{2} \frac{(n-k+1)(n-k)}{2}$ monochromatic edges in these K_{n}. Also, there are $\frac{m}{2}(n-k+1)$ monochromatic edges between these K_{n} and C_{m}. The remaining $\frac{m}{2}$ copies of K_{n}, adjacent to $\frac{m}{2}$ vertices of C_{m}, having the color other than c_{1}, cannot be assigned that
particular color to meet the requirements of a $\delta^{(k)}$-coloring of graphs. Thus, these $\frac{m}{2}$ copies of K_{n} are colored with $k-1$ colors, leading to a total of $\frac{m}{2} \frac{(n-k+2)(n-k+1)}{2}$ monochromatic edges. Hence, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of $C_{m} \circ K_{n}$ is $\frac{m}{2} \frac{(n-k+1)(n-k)}{2}+$ $\frac{m}{2}(n-k+1)+\frac{m}{2} \frac{(n-k+2)(n-k+1)}{2}=\frac{m(n-k+1)(n-k+2)}{2}$, when m is even.

Case 2: Let m be odd. The minimum colors required to color an odd cycle is 3 and hence $2 \leq k \leq n$. When $k \geq 3, C_{m}$ will cause to a scenario where there are no monochromatic edges. However, when $k=2$, there will be a monochromatic edge in C_{m}. A common $\delta^{(k)}$-coloring for both the cases is discussed as follows. Color C_{m} with only two colors, say c_{1} and c_{2}. This will cause a situation where there exists one monochromatic edge in C_{m} (see Proposition 2.3, [15]). As explained in Theorem 4.9 and Case 1 of the current theorem, the $\left\lceil\frac{m}{2}\right\rceil$ copies of K_{n} that are adjacent to $\left\lceil\frac{m}{2}\right\rceil$ vertices of C_{m} which have the color c_{1}, will result in $\left\lceil\frac{m}{2}\right\rceil \frac{(n-k+1)(n-k)}{2}$ and $\left\lfloor\frac{m}{2}\right\rfloor$ copies of K_{n}, adjacent to $\left\lfloor\frac{m}{2}\right\rfloor$ vertices of C_{m} which are assigned the color c_{2}, will have $\left\lfloor\frac{m}{2}\right\rfloor \frac{(n-k+2)(n-k-1)}{2}$ monochromatic edges. Now, between the vertices of C_{m} that receive the color c_{1} and its corresponding copies of K_{n}, there are $\left\lceil\frac{m}{2}\right\rceil(n-k+1)$ monochromatic edges. Thus, the total number of monochromatic edges resulting from $\delta^{(k)}$-coloring of $C_{m} \circ K_{n}$ is $1+\left\lceil\frac{m}{2}\right\rceil \frac{(n-k+1)(n-k)}{2}+\left\lfloor\frac{m}{2}\right\rfloor \frac{(n-k+2)(n-k-1)}{2}+\left\lceil\frac{m}{2}\right\rceil(n-k+1)=$ $\frac{m(n-k+1)(n-k+2)+2}{2}$, when m is odd.

When $k \geq 3$, the odd cycle can properly be colored with three colors and this coloring will provide no monochromatic edge in C_{m}. However, there will be a total of $\left\lceil\frac{m}{2}\right\rceil$ vertices that receive the color other than the color c_{1} and $\left\lfloor\frac{m}{2}\right\rfloor$ vertices that receive the color c_{1}, which will cause a situation where there exists $\left\lceil\frac{m}{2}\right\rceil \frac{(n-k+2)(n-k+1)}{2}$ and $\left\lfloor\frac{m}{2}\right\rfloor \frac{(n-k+1)(n-k)}{2}$ monochromatic edges between C_{m} and K_{n}. Now, when both the colorings are compared, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of above mentioned $\delta^{(k)}$-colorings are the same. This completes the proof.

Theorem 3.8. For $K_{m} \circ P_{n}$, the $\delta^{(k)}$-coloring is

$$
b_{k}\left(K_{m} \circ P_{n}\right) \leq \begin{cases}\frac{(m-k+1)(m-k)}{2}, & \text { if } k \geq 3 \\ \frac{(m-1)(m-2)}{2}+(n-1)+(m-1)\left\lfloor\frac{n}{2}\right\rfloor, & \text { if } k=2\end{cases}
$$

Proof. The chromatic number of $K_{m} \circ P_{n}$ is m. Thus, the available colors are $2 \leq k \leq m-1$. There are two cases for two different values of k which are as explained below.

Case 1: Consider the case where $k \geq 3$. It is known that, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of K_{n} is $\frac{(n-k+1)(n-k)}{2}$ (see Theorem 2.7, [15]). Since the graph $K_{m} \circ P_{n}$ has a clique of order m, the minimum number of monochromatic edges that $b_{k}\left(K_{m} \circ P_{n}\right) \geq b_{k}\left(K_{m}\right)$. Is it proved that, in this case it is exactly $b_{k}\left(K_{m}\right)$. The minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of K_{m} is $\frac{(m-k+1)(m-k)}{2}$. Since $k \geq 3, P_{n}$ can be properly colored with any two colors other than the color assigned to its corresponding vertex of K_{m}. Thus, there are no monochromatic edges between K_{m} and the m copies of P_{n}. Hence, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of $K_{m} \circ P_{n}$ is $\frac{(m-k+1)(m-k)}{2}$.

Case 2: Let $k=2$. Coloring the complete graph K_{m} with two colors will result in $\frac{(m-k+1)(m-k)}{2}=\frac{(m-1)(m-2)}{2}$ monochromatic edges. This is because, only one vertex say the vertex v_{1} can be assigned the color c_{2} and all the remaining vertices must be assigned with color c_{1}, to maintain the conditions of a $\delta^{(k)}$-coloring of graphs. Among the m copies of P_{n} the one which is adjacent to the vertex v_{1} of K_{m} is colored with the color c_{1}, to meet the requirements of a $\delta^{(k)}$-coloring of graphs. This coloring will result in a situation where there are $n-1$ monochromatic edges in that particular P_{n}. The remaining $m-1$ copies of P_{n}, adjacent to the its corresponding vertices of K_{m} which have the color c_{1}, can be alternatively colored with the colors c_{2} and c_{1} respectively (and not c_{1} and c_{2} respectively, as it will maximise the use of the color c_{1} and thereby maximise the number of monochromatic edges between them). Thus, this coloring will cause for a situation where there are $(m-1)\left\lfloor\frac{n}{2}\right\rfloor$ monochromatic edges between them. Thus, the number of bad edges resulting from $\delta^{(2)}$-coloring of $K_{m} \circ P_{n}$ is $\frac{(m-1)(m-2)}{2}+n-1+(m-1)\left\lfloor\frac{n}{2}\right\rfloor$.

Theorem 3.9. For $K_{m} \circ C_{n}$, when n is even, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring is,

$$
b_{k}\left(K_{m} \circ C_{n}\right)= \begin{cases}\frac{(m-k+1)(m-k)}{2}, & \text { if } k \geq 3 \\ \frac{m(m+n-3)+n+2}{2}, & \text { if } k=2\end{cases}
$$

Proof. For different values of k and when n is even, there are two different cases for a $\delta^{(k)}$-coloring of $K_{m} \circ C_{n}$. Since $\chi\left(K_{m} \circ P_{n}\right)=m, 2 \leq k \leq m-1$. Considering all the above mentioned facts, both the cases are separately addressed as follows.

Case 1: Let $k \geq 3$. The proof explained in Case 1 of Theorem 3.8 applies to this case as well, this is because, paths and even cycles are bipartite and can be properly colored with two colors by maintaining the constraints
of $\delta^{(k)}$-coloring, when $k \geq 3$. Thus, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of $K_{m} \circ P_{n}$ is $\frac{(m-k+1)(m-k)}{2}$.

Case 2: Let $k=2$. The proof of this case is similar to that of Case 2 of Theorem 3.8. The complete graph K_{m} will provide $\frac{(m-2)(m-1)}{2}$ monochromatic edges. The only difference is that, the cycle C_{n} which is adjacent to the vertex (only vertex) that is assigned the color c_{2} is given the color c_{1}, which yields n monochromatic edges in the cycle. All the remaining $m-1$ copies of C_{n} are assigned the color c_{1} and c_{2} alternatively, which results in $(m-1) \frac{n}{2}$ monochromatic edges between K_{m} and $(m-1)$ copies of C_{n}. Thus, the number of bad edges resulting from $\delta^{(2)}$-coloring of $K_{m} \circ C_{n}$ is $\frac{(m-2)(m-1)}{2}+(m-1) \frac{n}{2}+n=\frac{m(m+n-3)+n+2}{2}$, when n is even.

Theorem 3.10. For $K_{m} \circ C_{n}$, when n is odd, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring is,

$$
b_{k}\left(K_{m} \circ C_{n}\right) \leq \begin{cases}\frac{(m-k+1)(m-k)}{2}, & \text { if } k \geq 4, \\ \frac{(m-2)(m-1)+4}{2}, & \text { if } k=3, \\ \frac{m(m+n)+n-1}{2}, & \text { if } k=2 .\end{cases}
$$

Proof. Note that, $\chi\left(K_{m} \circ C_{n}\right)=m$ and hence the $\delta^{(k)}$-coloring of the same for the different values of k, where $2 \leq k \leq m-1$, are studied. There are three different cases for the same that are to be addressed separately as follows.

Case 1: Let $k \geq 4$. The minimum number of monochromatic edges obtained from $\delta^{(k)}$-coloring of $K_{m} \circ C_{n}$ is $\frac{(m-k+1)(m-k)}{2}$, when $k \geq 4$. The proof of this case is same as that of the proof explained in Case 1 of Theorem 3.8 and Theorem 3.9.

Case 2: Let $k=3$. The complete graph K_{m} will yield $\frac{(m-k+1)(m-k)}{2}=$ $\frac{(m-2)(m-3)}{2}$ monochromatic edges, when colored with three colors (see Theorem $2.7,[15])$. There are only two vertices in K_{m}, say v_{1} and v_{2}, that can be colored with the colors c_{2} and c_{3}. Rest of the vertices have to be given the color c_{1}, to meet the requirements of a $\delta^{(k)}$-coloring of graphs. Since C_{n} is an odd cycle, it will require at least three colors to color it properly. Although, the number of available colors is 3 these colors are used in the coloring of K_{m} and hence each $n-2$ copies of cycle corresponding to $n-k$ vertices of K_{n} that have the color c_{1} are colored with two colors c_{2} and c_{3} and this coloring will cause a minimum of one monochromatic edges in the cycle and between K_{m} and its corresponding C_{n}. Moreover, the vertex v_{1} of K_{m} is assigned the color c_{2} and hence the cycle corresponding to this
vertex is colored with two colors c_{1} and c_{3} leading to no monochromatic edge between them. However, there will be a monochromatic edge in C_{n} when colored with two colors (see Proposition 2.3, [15]). Similarly, in the case of the vertex v_{2} that is assigned the color c_{3}, its corresponding C_{n} will cause one monochromatic edge when colored with the colors c_{1} and c_{2}. Thus, the number of bad edges resulting from $\delta^{(3)}$-coloring of $K_{m} \circ C_{n}$ is $\frac{(m-2)(m-3)}{2}+2+(m-2)=\frac{(m-2)(m-1)+4}{2}$, when n is odd.

Case 3: Let $k=2$. As explained in Case 2 of Theorem 3.9, only one vertex, say v_{1}, of K_{m} is given the color c_{2} and the rest of the vertices are colored with the color c_{1}. This coloring will cause a situation where there are $\frac{(m-1)(m-2)}{2}$ monochromatic edges. Now, C_{n} corresponding to the vertex v_{1} is solely colored with c_{1} to meet the requirements of a $\delta^{(k)}$ _ coloring of graphs, and this coloring causes n monochromatic edges in this particular cycle. The remaining copies of C_{n} are colored with two colors c_{1} and c_{2}, leading to one monochromatic edge in each of the $m-1$ copies of C_{n} and $(m-1)\left\lceil\frac{n}{2}\right\rceil$ monochromatic edges between K_{m} and C_{n}. Thus, the $\delta^{(2)}$ coloring of $K_{m} \circ C_{n}$ is $\frac{(m-1)(m-2)}{2}+(m-1)+(m-1)\left\lceil\frac{n}{2}\right\rceil+n=\frac{m(m+n)+n-1}{2}$, when n is odd, as required

Theorem 3.11. For $K_{m} \circ K_{n}$, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring is given by,
$b_{k}\left(K_{m} \circ K_{n}\right)= \begin{cases}(m-k+1)\left(\frac{m-k}{2}+n-k+1\left(\frac{n-k+2}{2}\left(\frac{m}{m-k+1}\right)\right)\right), & \text { if } k \geq 3, \\ \frac{(n(n-3)+m)(m-1)+2 n}{2}, & \text { if } k=2 .\end{cases}$

Proof. Each of the copies of K_{n} corresponding to the each of the vertex assigned the color c_{1} in K_{m} will lead in $\frac{(n-k+1)(n-k)}{2}$ monochromatic edges and between them there will be $(m-k+1)(n-k+1)$ monochromatic edges (for a detailed explanation on the coloring pattern of $\delta^{(k)}$-coloring of complete graphs see Theorem 2.7, [15]). Now, $k-1$ copies of K_{n} corresponding to $k-1$ vertices that receive the color other than c_{1} in K_{m} can be colored with $k-1$ colors only (the color assigned to its corresponding vertex in K_{m}, cannot be used in coloring its corresponding K_{n}). This coloring will provide a situation where there are $(k-1) \frac{(n-k+1)(n-k)}{2}$ monochromatic edges between them. Thus, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of $K_{m} \circ K_{n}$ is $\frac{(m-k+1)(m-k)}{2}+(m-$ $k+1) \frac{(n-k+1)(n-k)}{2}+(m-k+1)(n-k+1)+(k-1) \frac{(n-k+1)(n-k)}{2}=$ $(m-k+1)\left(\frac{m-k}{2}+n-k+1\left(\frac{n-k+2}{2}\left(\frac{m}{m-k+1}\right)\right)\right)$, when $k \geq 3$.

Case 2: Let $k=2$. Coloring K_{m} with two colors will result in a scenario where there are $\frac{(m-k+1)(m-k)}{2}=\frac{(m-1)(m-2)}{2}$ monochromatic edges. All the corresponding copies of K_{n}, other than the one which is adjacent to the vertex assigned the color c_{2} of K_{m}, are colored with two colors, leading to $\frac{(m-k+1)(n-k+1)(n-k)}{2}=\frac{(m-1)(n-1)(n-2)}{2}$ monochromatic edges in the K_{m}. Between the vertices of K_{m} having the color c_{1}, that is, $m-1$ vertices of K_{m} and $m-1$ copies of K_{n} there are $(m-k+1)(n-k+1)=(m-$ 1) $(n-1)$ monochromatic edges. The complete graph K_{n} adjacent to the vertex colored with the color c_{2} of K_{m} should be given only the color c_{1} to maintain the requirements of a $\delta^{(k)}$-coloring of graphs, leading to $\frac{n(n-1)}{2}$ monochromatic edges. Thus, the number of bad edges resulting from $\delta^{(2)}$ coloring of $K_{m} \circ K_{n} \frac{(m-1)(m-2)}{2}+\frac{(m-1)(n-1)(n-2)}{2}+(m-1)(n-1)+\frac{n(n-1)}{2}=$ $\frac{(n(n-3)+m)(m-1)+2 n}{2}$.

$4 \quad \delta^{(k)}$-coloring of graph products

Recall that the direct product of G and H is the graph denoted by $G \times H$, whose vertex set is $V(G) \times V(H)$, and for which the vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent precisely if $g g^{\prime} \in E(G)$ and $h h^{\prime} \in E(H)$. Thus,
(i) $V(G \times H)=\{(g, h) \mid g \in V(G)$ and $h \in V(H)\}$,

$$
\begin{equation*}
E(G \times H)=\left\{(g, h)\left(g^{\prime}, h^{\prime}\right) \mid g g^{\prime} \in E(G) \text { and } h h^{\prime} \in E(G)\right\}(\text { see }[12,10]) \tag{ii}
\end{equation*}
$$

In a direct product of two graphs with m and n vertices respectively, there are a total of $m \times n$ vertices. Thus, there are m set each of n vertices or vice versa in the direct product. Throughout the discussion, we consider $n \geq m$ (note that, since direct product is a commutative product, all the results discussed below hold for $n<m$ as well) and that there are m set each of n vertices. The first set of n vertices is denoted as $g_{1} h_{j}$ where $1 \leq j \leq n$, the second set is denoted as $g_{2} h_{j}$ where $1 \leq j \leq n$ and so on the m-th set of n vertices is denoted as $g_{m} h_{j}$ where $1 \leq j \leq n$.

Other names for the direct product that appears in the literature are tensor product, Kronecker product, conjunction, cross product etc. If either of a graph G or H in the direct product is bipartite then their direct product $G \times H$ is bipartite and hence the following discussion does not consider the $\delta^{(k)}$-coloring of path graph and or even cycle and their various combinations. This paper solely focuses on cycle graph C_{n} for odd n and complete graph
K_{n}. Now, $\chi(G \times H)$ is less than or equal to $\min (\chi(G), \chi(H))$ and hence when $C_{m} \times C_{n}$ and $C_{m} \times K_{n}$ are considered, $\chi\left(C_{m} \times C_{n}\right)=3$ when both n and m are odd and $\chi\left(C_{m} \times K_{n}\right)=3$, when m is odd and hence for these two cases, a $\delta^{(2)}$-coloring of the same is considered. For $K_{m} \times K_{n}$, the value of k will be $2 \leq k \leq \min (m, n)-1$. The direct product is commutative and hence the concerned study focuses on either of the $\delta^{(k)}$-coloring of $G \times H$ or $H \times G$. The following are the results obtained from a $\delta^{(k)}$-coloring of direct product of cycle graph and complete graph with their possible combination.

Theorem 4.1. For $C_{m} \times C_{n}$ where m and n are odd and $m \leq n$, the minimum number of bad edges obtained from $\delta^{(2)}$-coloring is given by

$$
b_{2}\left(C_{m} \times C_{n}\right)=2 m
$$

Proof. For $C_{m} \times C_{n}$ where $n \geq m$, the chromatic number is 3 and it is a 4 regular graph. Hence, in this case the value of k can only be 2 . Now, it is clear from the definition of $\delta^{(k)}$-coloring that every color class other than C_{1} is an independent set. As we determine the minimum number of bad edges resulting from $\delta^{(k)}$-coloring, it is clear that a $\delta^{(2)}$-coloring of a graph is based on the independence number of the graph. The independence number of $G \times H$ is given as $\alpha(G \times H) \geq \max \{\alpha(G)|V(H)|, \alpha(H)|V(G)|\}$ (see [10]). Now, the independence number of direct product of odd cycles is already been discussed in [14] as $(n-1) \frac{m}{2}$. Now, the minimum number of bad edges obtained from $\delta^{(k)}$-coloring for an r-regular graph, with n vertices when $k=2$ and α is the independence number is discussed in [6], is $\frac{r(n-2 \alpha)}{2}$. Thus, in this case, the minimum number of bad edges obtained from $\delta^{(2)}$ coloring of $C_{m} \times C_{n}$ is given as $b_{2}\left(C_{m} \times C_{n}\right)=\frac{4\left(m n-2(n-1) \frac{m}{2}\right)}{2}=2 m$.

Theorem 4.2. For $C_{m} \times K_{n}$ where m and n are odd, the minimum number of bad edges obtained from $\delta^{(2)}$-coloring is given by

$$
b_{2}\left(C_{m} \times K_{n}\right)=n(n-1)
$$

Proof. We know that, $\chi\left(C_{m} \times K_{n}\right)=3$ and hence the only value that k can take in this case is 2 . As explained in Theorem 4.1, we first use the concept of independence number and provide an upper bound for the minimum number of bad edges obtained from $\delta^{(2)}$-coloring. We know that, the independence number of $G \times H$ is given as

$$
\alpha(G \times H) \geq \max \{\alpha(G)|V(H)|, \alpha(H)|V(G)|\}
$$

(see [10]). Thus, in this case we have,

$$
\alpha\left(C_{m} \times K_{n}\right) \geq \max \left\{\alpha\left(C_{m}\right)\left|V\left(K_{n}\right)\right|, \alpha\left(K_{n}\right)\left|V\left(C_{m}\right)\right|\right\}=\max \left\{n\left\lfloor\frac{m}{2}\right\rfloor, m\right\}
$$

Since we consider $m \leq n$, here we have,

$$
\alpha\left(C_{m} \times K_{n}\right) \geq n\left\lfloor\frac{m}{2}\right\rfloor .
$$

Now, the minimum number of bad edges resulting from $\delta^{(2)}$-coloring of a regular graph is $\frac{r(n-2 \alpha)}{2}($ see [6]). Thus, we have,

$$
b_{2}\left(C_{m} \times K_{n}\right) \geq \frac{r(n-2 \alpha)}{2} \geq \frac{2(n-1)\left(m n-2 n\left\lfloor\frac{m}{2}\lfloor)\right.\right.}{2} \geq n(n-1)
$$

Hence, the minimum number of bad edges resulting from a $\delta^{(2)}$-coloring of $C_{m} \times K_{n}$ is, $b_{2}\left(C_{m} \times K_{n}\right) \geq n(n-1)$.

Now, we prove that $b_{2}\left(C_{m} \times K_{n}\right)$ is exactly equal to $n(n-1)$ by providing a $\delta^{(2)}$-coloring that results in the same. Here, none of the $g_{1} h_{j}$ where $1 \leq j \leq n$ are adjacent to each other, all the $g_{1} h_{j}$ can be assigned a single color say c_{1}. Now, each $g_{1} h_{j}$ is adjacent to every $g_{2} h_{j}$ except for its corresponding vertex. Hence, the vertices $g_{2} h_{j}$ can be assigned the color c_{2} or c_{1}. However, our aim is to minimise the number of bad edges and so we use the color c_{2} to color $g_{2} h_{j}$. The next n set of vertices $g_{3} h_{j}$ can be colored with the color c_{1} and the other set $g_{4} h_{j}$ can be assigned the color c_{2}. Thus, we can alternatively color each n set with two colors c_{1} and c_{2} properly. Now, the last set of n vertices, $g_{m} h_{j}$ where $1 \leq j \leq n$, has to be assigned the color c_{1} to maintain the definition of $\delta^{(k)}$-coloring. Now, the only edges that lead to bad edges are the edges between the first set of vertices $\left(g_{1} h_{j}\right)$ and the m-th set of vertices $\left(g_{m} h_{j}\right)$. Each of the n vertices in the set $g_{1} h_{j}$ that are assigned the color c_{1} are adjacent to $n-1$ vertices of the set $g_{m} h_{j}$ given the color c_{1}, leading to a total of $n(n-1)$ bad edges. Thus, the minimum number of bad edges between the $C_{m} \times K_{n}$ resulting from $\delta^{(2)}$-coloring is $n(n-1)$.

Theorem 4.3. For $K_{m} \times K_{n}$ where m and n are odd and $n \geq m$, the minimum number of bad edges obtained from $\delta^{(k)}$-coloring is given by

$$
b_{k}\left(K_{m} \times K_{n}\right)=\frac{n(n-1)(m-k)(m-k+1)}{2}
$$

Proof. The chromatic number, $\chi\left(K_{m} \times K_{n}\right)=\min \{m, n\}$. Now, since we consider $n \geq m, \chi\left(K_{m} \times K_{n}\right)=m$ and hence k can be $2 \leq k \leq m-1$. In this case, there can be two possible $\delta^{(k)}$-colorings which are as explained below. In $K_{m} \times K_{n}$, every vertex is adjacent to every other vertex except its corresponding vertices. Thus, either every corresponding vertex, which is an independent set, can be assigned a single color or every n vertices in
a single set, which is an independent set, can be given a single color. Now, since $2 \leq k \leq m-1$, in the former case, $n-k+1$ independent set of m vertices will receive the color c_{1} and each m vertices assigned the color c_{1} is adjacent to $m-1$ vertices assigned the color c_{1}. Similarly, in the later case $m-k+1$ independent set of n vertices will receive the color c_{1} each n vertices assigned the color c_{1} is adjacent to $n-1$ vertices assigned the color c_{1}. Since there are $n-k+1$ and $m-k+1$ independent set colored only with the single color c_{1} and since every vertex is adjacent to every other vertex other than its corresponding vertex, both a $\delta^{(k)}$-colorings will lead to $\frac{m(m-1)(n-k)(n-k+1)}{2}$ and $\frac{n(n-1)(m-k)(m-k+1)}{2}$ bad edges respectively. Now, since $n \geq m$, the minimum number of bad edges obtained when both the $\delta^{(k)}$-colorings are compared is, $\frac{n(n-1)(m-k)(m-k+1)}{2}$ when $n>m$ and both are same when $n=m$. Thus, the minimum number of bad edges obtained from $\delta^{(k)}$-coloring of $K_{m} \times K_{n}$ when $n \geq m, \frac{n(n-1)(m-k)(m-k+1)}{2}$.

Theorem 4.4. For any graph G and H, the minimum number of bad edges obtained from $\delta^{(k)}$-coloring of direct product $G \times H$, is given by,

$$
b_{k}(G \times H) \leq \frac{n(n-1)(m-k)(m-k+1)}{2}
$$

Proof. Since the maximum number of edges on m and n vertices is the complete graph K_{m} and K_{n} respectively, it is clear that, the maximum number of edges a direct product of two graph G and H can have is $\mid E\left(K_{m} \times\right.$ $\left.K_{n}\right) \mid$. Now, it can be noted that, any direct product $G \times H$ is a subgraph of $K_{m} \times K_{n}$. Thus, it can be concluded that, $b_{k}(G \times H) \leq b_{k}\left(K_{m} \times K_{n}\right)$.

The corona product of G and H is the graph $G \circ H$ obtained by taking one copy of G, called the centre graph, $|V(G)|$ copies of H, called the outer graph, and making the i-th vertex of G adjacent to every vertex of the i-th copy of H, where $1 \leq i \leq|V(G)|$ (see [8]). The corona product is not commutative and hence all the possible combination of $\delta^{(k)}$-coloring of corona product of path graph, cycle graph and complete graphs are taken into consideration in this paper.

Theorem 4.5. For $P_{m} \circ P_{n}$, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring is given by

$$
b_{2}\left(P_{m} \circ P_{n}\right)=\min \left\{\left\lceil\frac{m}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor(n-1),\left\lceil\frac{m}{2}\right\rceil(n-1)+\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\right\},
$$

for any m and n.

Proof. The graph $P_{m} \circ P_{n}$ is 3-colorable and hence k can take only the value 2. There can be two possible $\delta^{(k)}$-coloring in this case as explained below. The first coloring is to color the path graph P_{m} with the vertices $v_{1}, v_{2}, \ldots, v_{m}$ with two colors c_{1} and c_{2} alternatively. This coloring will lead to $\left\lceil\frac{m}{2}\right\rceil$ independent vertices that are assigned the color c_{1} and $\left\lfloor\frac{m}{2}\right\rfloor$ independent vertices with the color c_{2}. Now, the P_{n} s corresponding to the vertices in P_{m} that are assigned the color c_{1}, can be alternatively assigned the color c_{1} and c_{2}. Again, similar to the coloring of P_{m}, if we start coloring the P_{n} with color c_{1}, there will be $\left\lceil\frac{n}{2}\right\rceil$ independent vertices assigned the color c_{1} and $\left\lfloor\frac{n}{2}\right\rfloor$ independent vertices that are assigned the color c_{2} and vice versa when started coloring it with the color c_{2}. The former will increase the number of bad edges due to the increase in the number of vertices that receive the color c_{1} and the later will decrease the same by 1 . Hence, we start coloring the P_{n} with the color c_{2} and then assign the next vertex the color c_{1} and so on. Now, there are $\left\lceil\frac{m}{2}\right\rceil$ vertices in P_{m} colored with color c_{1}, adjacent to the vertices of its corresponding path graph P_{n}, that have $\left\lfloor\frac{n}{2}\right\rfloor$ vertices assigned the color c_{1}. This lead to $\left\lceil\frac{m}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor$ bad edges between them. Now, the $P_{n} \mathrm{~s}$, corresponding to the $\left\lfloor\frac{m}{2}\right\rfloor$ vertices in P_{m} that receive the color c_{2}, should be assigned the color c_{1} to maintain the definition of $\delta^{(k)}$-coloring. Thus, there will not be any bad edge between P_{m} and P_{n} in this case. However, every edge in P_{n} will be a bad edge, leading to a total of $\left\lfloor\frac{m}{2}\right\rfloor(n-1)$ bad edges. Thus, the total number of bad edges resulting from this particular $\delta^{(k)}$-coloring is $\left\lceil\frac{m}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor(n-1)$.

In the second $\delta^{(k)}$-coloring, start coloring the vertices of P_{m} alternatively with the colors c_{2} and c_{1}. This will lead to $\left\lceil\frac{m}{2}\right\rceil$ independent vertices that are assigned the color c_{2} and $\left\lfloor\frac{m}{2}\right\rfloor$ independent vertices with the color c_{1}, which thereby leads in coloring $\left\lceil\frac{n}{2}\right\rceil P_{n}$'s solely with the color c_{1}, leading to $\left\lceil\frac{m}{2}\right\rceil(n-1)$ bad edges. Now, the remaining vertices of the corresponding $P_{n} \mathrm{~s}$, of the $\left\lfloor\frac{m}{2}\right\rfloor$ vertices of P_{m} that are assigned the color c_{1}, are assigned the color c_{2} and c_{1} alternatively leading to $\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor$ bad edges. Thus, the total number of bad edges resulting from this $\delta^{(k)}$-coloring $\left\lceil\frac{m}{2}\right\rceil(n-1)+\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor$. Now, when both the colorings are compared, the bad edges obtained from both is the same when m is even and is the $\min \left\{\left\lceil\frac{m}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor(n-1),\left\lceil\frac{m}{2}\right\rceil(n-1)+\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\right\}$ when m is odd.

Theorem 4.6. For $C_{m} \circ C_{n}$, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring is given by
$b_{k}\left(C_{m} \circ C_{n}\right)= \begin{cases}\min \left\{\frac{n(3 m-1)+4}{4}, \frac{m(n+2)}{2}\right\}, & \text { if } m \text { is odd, } n \text { is even and } k=2, \\ \min \left\{\frac{3 n(n+1)}{4}, \frac{m(n+3)+2 n}{2}\right\}, & \text { if } m \text { is even, } n \text { is odd and } k=2, \\ m, & \text { if } m, n \text { are both odd and } k=3, \\ \min \left\{\frac{3 m n}{4}, \frac{m(n+2)}{2}\right\}, & \text { if } m, n \text { are both even and } k=2 .\end{cases}$

Proof. The different cases for a $\delta^{(k)}$-coloring of $C_{m} \circ C_{n}$, for different parities of m and n and for different values of k are explained as below.

Case 1: Let m be odd and n be even. The odd cycle C_{m} when colored with two colors c_{1} and c_{2} will lead to 1 bad edges (see [15]). Now, the C_{n} where n is even can be properly colored using two colors. However, since the $\left\lfloor\frac{m}{2}\right\rfloor$ vertices of C_{m} are assigned the color c_{2}, its corresponding C_{n} 's ($\left\lfloor\frac{m}{2}\right\rfloor C_{n}$'s) should be colored only with c_{1} to meet the requirements of $\delta^{(k)}$-coloring. This will lead to $\left\lfloor\frac{m}{2}\right\rfloor n$ bad edges. Also, the $\left\lceil\frac{m}{2}\right\rceil$ vertices of C_{m} that are assigned the color c_{1} adjacent to its corresponding C_{n} 's are assigned the color c_{1} and c_{2}, will lead to $\left\lceil\frac{m}{2}\right\rceil \frac{n}{2}$ bad edges. Thus, the total number of bad edges obtained from $\delta^{(k)}$-coloring of $C_{m} \circ C_{n}$ when m is odd and n is even $\left\lfloor\frac{m}{2}\right\rfloor n+\left\lceil\frac{m}{2}\right\rceil \frac{n}{2}+1=\frac{n(3 m-1)+4}{4}$. Now, another possible $\delta^{(k)}$-coloring for this case is that, the cycle C_{m} is colored with a single color c_{1}, leading to m bad edges and the $m C_{n}$'s are alternatively assigned the color c_{1} and c_{2}. This will lead to $\frac{m n}{2}$ bad edges between C_{m} and C_{n}. Thus, the total number of bad edges obtained from this $\delta^{(k)}$-coloring is $m+\frac{m n}{2}=\frac{m(n+2)}{2}$. Hence, the minimum total number of bad edges obtained from $\delta^{(k)}$-coloring of $C_{m} \circ C_{n}$ when m is odd and n is even is $\min \left\{\frac{n(3 m-1)+4}{4}, \frac{m(n+2)}{2}\right\}$.

Case 2: Let m be even and n be odd. Since m is even, coloring C_{m} with two colors c_{1} and c_{2} will lead to no bad edges in C_{m}. Now, the $\left\lceil\frac{n}{2}\right\rceil$ vertices of C_{n} are assigned the color c_{1} and $\left\lfloor\frac{n}{2}\right\rfloor$ vertices are assigned the color c_{2}, leading to one bad edge in each of $\frac{m}{2} C_{n}$'s and $\frac{m}{2}\left\lfloor\frac{n}{2}\right\rfloor$ between them. The remaining C_{n} 's that are adjacent to the vertices of C_{m} ($\left\lfloor\frac{m}{2}\right\rfloor$ vertices) which are assigned the color c_{2}, are solely colored with the color c_{1}, to meet the definition of $\delta^{(k)}$-coloring. This will lead to get $\left\lfloor\frac{m}{2}\right\rfloor n$ bad edges. Thus, the total number of bad edges resulting from this $\delta^{(k)}$-coloring is $\frac{m}{2}\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor n+\frac{m}{2}=\frac{3 n}{2}\left(\frac{n+1}{2}\right)$. Now, the second possible $\delta^{(k)}$-coloring for this case is same as that of second $\delta^{(k)}$-coloring explained in Case 1. This coloring will lead to all the edges in C_{m} to be bad (since all the m vertices are assigned the color c_{1}). However, since n is odd in this case, there will be 1 bad edge in each of the n copies of C_{n} and $m\left\lceil\frac{n}{2}\right\rceil$ bad edges between C_{n} and C_{m}. Thus, the total number of bad edges in this case is $\frac{m(n+3)+2 n}{2}$. Thus, the minimum number of bad edges resulting from a $\delta^{(k)}$-coloring of $C_{m} \circ C_{n}$ when m is even and n is odd is $\min \left\{\frac{3 n(n+1)}{4}, \frac{m(n+3)+2 n}{2}\right\}$.

Case 3: Let m and n be odd and $k=3$. The chromatic number of $C_{m} \circ C_{n}$ when m and n are odd is 4 and hence, we have $k=3$ and $k=2$. First we discuss a $\delta^{(3)}$-coloring of $C_{m} \circ C_{n}$. Since $k=3$, we maximise the use of the colors c_{2} and c_{3} and minimise the use of color c_{1} as much as possible. A $\delta^{(k)}$-coloring that exactly explains the same is as follows. Assign the
vertices of C_{m} alternatively with the colors c_{2} and c_{3} and the last vertex v_{m} is assigned the color c_{1}. This is a proper coloring of an odd cycle with $k=3$ colors. Now, each of the $m-1 C_{n}$'s corresponding to the vertices of the C_{m} assigned the color c_{2} and c_{3} can be given the colors c_{1} and c_{3}, and c_{1} and c_{2} respectively. This will lead to 1 bad edge in each of the $m-1$ C_{n} 's. Now, the corresponding C_{n} of the v_{m} th vertex of C_{m} that is assigned the color c_{1} can be properly colored with $k=3$ colors, leading to 1 bad edge between C_{m} and C_{n}. Thus, the total number of bad edges resulting from this $\delta^{(k)}$-coloring which minimises the use of color c_{1} is m.

Case 4: Let m and n be odd and $k=2$. In this case, we have two $\delta^{(k)}$-colorings as explained in the above cases. The first $\delta^{(k)}$-coloring is alternatively coloring odd C_{m} with $k=2$ colors leading to 1 bad edge in C_{m}. Now, the $C_{n} \mathrm{~s}$, corresponding to the $\left\lceil\frac{m}{2}\right\rceil$ vertices of C_{m} that are colored with c_{1} and $\left\lfloor\frac{m}{2}\right\rfloor$ vertices are assigned the color c_{2}, are assigned the color c_{1} and c_{2} alternatively. This will lead to have a total of $1+\left\lceil\frac{m}{2}\right\rceil+n\left\lfloor\frac{m}{2}\right\rfloor+\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil=$ $\frac{3 m(1+n)-n+7}{4}$ bad edges. The second $\delta^{(k)}$-coloring is same as the second $\delta^{(k)}$-coloring of Case 1. The C_{m} is exclusively colored with the color c_{1} and the corresponding $C_{n} \mathrm{~S}$ are assigned the color c_{1} and c_{2} (see [15] for a $\delta^{(k)}$-coloring of an odd cycle). This $\delta^{(k)}$-coloring will lead us to have $m+m+m\left\lceil\frac{n}{2}\right\rceil=\frac{m(n+5)}{2}$ bad edges. Thus, the $\min \left\{\frac{3 m(1+n)-n+7}{4}, \frac{m(n+5)}{2}\right\}$ is the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of $C_{m} \circ C_{n}$ when both m and n are odd and $k=2$.

Case 5: Let m and n be even and $k=2$. The $\chi\left(C_{m} \circ C_{n}\right)$ when both m and n are even is 3 . Hence, the only value that k can take in this case is 2 . We discuss two possible $\delta^{(k)}$-colorings for this case. In the first $\delta^{(k)}$-coloring, since m is even, the C_{m} can be properly colored with $k=2$ colors. Now, each of the C_{n} 's adjacent to the $\frac{m}{2}$ vertices of C_{m} assigned the color c_{1} are given the color c_{1} and c_{2} alternatively leading to $\frac{m n}{4}$ bad edges between them. Now, the $\frac{m}{2} C_{n}$'s that are adjacent to $\frac{m}{2}$ vertices of C_{m} assigned the color c_{2}, are solely colored with c_{1}, to maintain the definition of $\delta^{(k)}$ _ coloring. Thus, this leads to getting $\frac{m n}{2}$ bad edges. Hence, the total number of minimum bad edges obtained from this $\delta^{(k)}$-coloring is $\frac{3 m n}{4}$. Now, the second $\delta^{(k)}$-coloring is same as that of the second $\delta^{(k)}$-coloring explained in Case 1 and the number of bad edges obtained from this case is $\frac{m(n+2)}{2}$. Thus, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring of $C_{m} \circ C_{n}$ when both m and n are even and $k=2$ is $\min \left\{\frac{3 m n}{4}, \frac{m(n+2)}{2}\right\}$.

Theorem 4.7. For $P_{m} \circ C_{n}$, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring is given by

$$
b_{2}\left(P_{m} \circ C_{n}\right)= \begin{cases}\frac{3 m n}{4}, & \text { if } m \text { and } n \text { are even } \\ \frac{3 m n-n}{4}, & \text { if } m \text { is odd and } n \text { is even }, \\ \frac{3 m(n+1)}{4}, & \text { if } m \text { is even and } n \text { is odd, } \\ \frac{3(m+n m+1)-n}{4}, & \text { if } m \text { and } n \text { are odd. }\end{cases}
$$

Proof. The chromatic number of $P_{m} \circ C_{n}$ for any m and n is 3 . Thus, the only value k can take in this case is 2 . Now, for different parities of m and n, different $\delta^{(k)}$-colorings and the number of bad edges obtained from the same is as explained below.

Case 1: Let m and n be even. In this particular case, coloring P_{m} alternatively with c_{1} and c_{2} or vice versa will lead to same number of bad edges in the graph and hence we color the P_{m} alternatively with c_{1} and c_{2}. This will lead to no bad edges in P_{m}. However, the vertices, of the corresponding C_{n} of the vertices that are assigned the color c_{1} in P_{m}, are assigned the color c_{1} and c_{2} alternatively and the remaining C_{n} 's are assigned exclusively assigned the color c_{1} to maintain the requirements of $\delta^{(k)}$-coloring. Thus, there are a total of $\frac{m}{2} \frac{n}{2}+\frac{m}{2} n=\frac{3 m n}{4}$ bad edges resulting from a $\delta^{(k)}$-coloring of $P_{m} \circ C_{n}$ when both m and n are even.

Case 2: Let m be odd and n is even. As explained in Theorem 4.5, there can be two possible $\delta^{(k)}$-colorings for this case. The first coloring is when the P_{m} is alternatively colored with the colors c_{1} and c_{2} and the second one the vertices of P_{m} is assigned the colors c_{2} and c_{1} alternatively. The former will create $\left\lceil\frac{m}{2}\right\rceil \frac{n}{2}+\left\lfloor\frac{m}{2}\right\rfloor n=\frac{n(3 m-1)}{4}$ bad edges in the graph and the later creates $\left\lceil\frac{m}{2}\right\rceil n+\left\lfloor\frac{m}{2}\right\rfloor \frac{n}{2}=\frac{n(3 m+1)}{4}$ bad edges. Thus, when the two $\delta^{(k)}$-colorings are compared the minimum bad edges obtained from a $\delta^{(k)}$-coloring of $P_{m} \circ C_{n}$ when m is odd and n is even is $\frac{n(3 m-1)}{4}$.

Case 3: Let m be even and n be odd. Since m is even, coloring the vertices of P_{m} alternatively with c_{1} and c_{2} or c_{2} and c_{1}, will lead to same number of bad edges in $P_{m} \circ C_{n}$. Thus, we alternatively color the P_{m} with the colors c_{1} and c_{2}. Now, the corresponding $C_{n} \mathrm{~s}$ of each of the vertices in P_{m} that have received the color c_{1} are alternatively assigned the color c_{1} and c_{2}. This will generate 1 bad edge in each of the C_{n} since n is odd and $\frac{m}{2}\left\lceil\frac{n}{2}\right\rceil$ of bad edges between them. Now, the $\frac{m}{2}$ vertices of P_{m} that receive the color c_{2}, its corresponding C_{n} is solely given the color c_{1} to maintain the requirements of $\delta^{(k)}$-coloring. This will lead to $\frac{n m}{2}$ bad edges between
them. Thus, the total number of bad edges in $P_{m} \circ C_{n}$ when m is even and n is odd is $\frac{m}{2}\left\lceil\frac{n}{2}\right\rceil+\frac{n m}{2}+\frac{m}{2}=\frac{3 m(n+1)}{4}$.

Case 4: Let m and n be odd. As explained in Theorem 4.5, since m is odd there can be two possible $\delta^{(k)}$-colorings, one where the vertices of P_{m} are assigned the color c_{1} and c_{2} alternatively and the other vice versa. The former will lead to $\left\lceil\frac{m}{2}\right\rceil$ bad edges in the respective cycles C_{n} that are colored with two colors and $\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil$ bad edges between P_{m} and C_{n} whose $\left\lceil\frac{m}{2}\right\rceil$ vertices are assigned the color c_{1} and $\left\lceil\frac{n}{2}\right\rceil$ vertices are given the color c_{1} respectively. Now, there are n bad edges in $\left\lfloor\frac{m}{2}\right\rfloor C_{n}$ s that are corresponding to $\left\lfloor\frac{m}{2}\right\rfloor$ vertices of P_{m} that are assigned the color c_{2}, leading to $\left\lfloor\frac{m}{2}\right\rfloor n$ bad edges. Thus, the total minimum number of bad edges resulting from this $\delta^{(k)}$-coloring when m and n are odd is $\left.\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil+\right\rfloor \frac{m}{2}\lfloor n=$ $\frac{3(m+m n+1)-n}{4}$ in $P_{m} \circ C_{n}$. Now, the later will lead to $\left\lfloor\frac{m}{2}\right\rfloor$ bad edges in the respective cycles that are colored with two colors and $\left\lfloor\frac{m}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$ bad edges between P_{m} and C_{n} whose $\left\lfloor\frac{m}{2}\right\rfloor$ vertices are assigned the color c_{1} and $\left\lceil\frac{n}{2}\right\rceil$ vertices are given the color c_{1} respectively. Between the $\left\lceil\frac{m}{2}\right\rceil$ vertices of P_{m} that are assigned the color c_{2} and its corresponding C_{n} 's that are only colored with c_{1}, there are $\left\lceil\frac{m}{2}\right\rceil n$ bad edges. Thus, there are a total of $\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil n=\frac{3(m+m n-1)+n}{4}$ bad edges resulting from this coloring. Now, when both the $\delta^{(k)}$-colorings are compared, the minimum number of bad edges resulting from the $\delta^{(k)}$-coloring of $P_{m} \circ C_{n}$ when both m and n are odd is $\frac{3(m+m n+1)-n}{4}$.

Theorem 4.8. For $P_{m} \circ K_{n}$, the minimum number of bad edges obtained from the $\delta^{(k)}$-coloring where $1 \leq k \leq \chi\left(P_{m} \circ K_{n}\right)-1$ is given by

$$
b_{k}\left(P_{m} \circ K_{n}\right)=\frac{m(n-k+2)(n-k+1)}{2}
$$

for all m and n.

Proof. The minimum number of colors required to color $P_{m} \circ K_{n}$ is $n+1$, hence, in this case the k can take the values from 2 to n. Now, color the vertices of the path graph alternatively with the colors c_{1} and c_{2}. Now, there are $\left\lceil\frac{m}{2}\right\rceil$ vertices that receive the color c_{1} and $\left\lfloor\frac{m}{2}\right\rfloor$ vertices that are assigned the color c_{2} in P_{m}. Now, each of the K_{n} 's corresponding to each of the $\left\lceil\frac{m}{2}\right\rceil$ vertices that receive the color c_{1} will lead to $\left\lceil\frac{m}{2}\right\rceil \frac{(n-k+1)(n-k)}{2}$ bad edges (see [15], for the $\delta^{(k)}$-coloring of K_{n}) and $\left\lceil\frac{m}{2}\right\rceil(n-k+1)$ bad edges between them. For the remaining $\left\lfloor\frac{m}{2}\right\rfloor K_{n}$'s corresponding to the vertices that are assigned the color c_{2} in P_{m}, there are $\frac{(n-k+2)(n-k+1)}{2}$ bad edges. This is because, the color c_{2} cannot be used to color the K_{n} 's in this case
to maintain the definition of $\delta^{(k)}$-coloring. Also, there will not be any bad edge between them. Thus, the total number of bad edges obtained from this $\delta^{(k)}$-coloring for $P_{m} \circ K_{n}$ for any m and n is $\left\lceil\frac{m}{2}\right\rceil \frac{(n-k+1)(n-k)}{2}+\left\lceil\frac{m}{2}\right\rceil(n-k+$ $1)+\left\lfloor\frac{m}{2}\right\rfloor \frac{(n-k+2)(n-k+1)}{2}=(n-k+1)\left(\left\lceil\frac{m}{2}\right\rceil \frac{(n-k)}{2}+\left\lfloor\frac{m}{2}\right\rfloor \frac{(n-k+2)}{2}+1\right)$. In other words, we can say that, in $P_{m} \circ K_{n}$ each vertex of P_{m} is adjacent to every vertex of K_{n} and hence there are m number of disjoint K_{n+1}. We know that the minimum number of bad edges obtained from K_{n} is $\frac{(n-k+1)(n-k)}{2}$ (see[15]). Thus, in this case each K_{n+1} will have $\frac{(n-k+2)(n-k+1)}{2}$ bad edges. Thus, the total number of bad edges obtained from a $\delta^{(k)}$-coloring of $P_{m} \circ K_{n}$ is $\frac{m(n-k+2)(n-k+1}{2}$.

Theorem 4.9. For $C_{m} \circ P_{n}$, the minimum number of bad edges obtained from the $\delta^{(k)}$-coloring is given by

$$
b_{2}\left(C_{m} \circ P_{n}\right)= \begin{cases}\frac{3 m(n-1)}{4}, & \text { if } m \text { is even and for any } n, \\ \frac{(3 m-1)(n-1)+4}{4}, & \text { if } m \text { is odd and for any } n\end{cases}
$$

Proof. The minimum colors required in coloring $C_{m} \circ P_{n}$ is 3 and so the only value that k can take is 2 . The following are the two cases discussed for $C_{m} \circ P_{n}$ when $k=2$ for different parities of m when n is either even or odd.

Case 1: Let m be even. Now, every even cycle can be properly colored with two colors with $\frac{m}{2}$ possibility for each color, leading to no bad edge in the even cycle C_{m}. Now, the $P_{n} \mathrm{~s}$, corresponding to $\frac{m}{2}$ vertices of C_{m} that are assigned the color c_{1}, can be alternatively assigned the color c_{2} and c_{1} respectively, leading to a total of $\frac{m}{2}\left\lfloor\frac{n}{2}\right\rfloor \mathrm{bad}$ edges between them (Note that, if the P_{n} s are alternatively colored with the colors c_{1} and c_{2} respectively, there will be $\left\lceil\frac{n}{2}\right\rceil$ vertices that receive the color c_{1}, leading to $\left\lceil\frac{n}{2}\right\rceil$ bad edges between the C_{m} and P_{n}). Now, the remaining $P_{n} \mathrm{~s}$, adjacent to the vertices of C_{m} which are assigned the color c_{2}, should be exclusively colored with the color c_{1} to maintain the definition of $\delta^{(k)}$-coloring. This will lead to $\frac{m}{2}(n-1)$ bad edges. Thus, the minimum total number of bad edges resulting from $\delta^{(k)}$-coloring of $C_{m} \circ P_{n}$ when m is even and for any n is $\frac{m}{2}\left\lfloor\frac{n}{2}\right\rfloor+\frac{m}{2}(n-1)=\frac{3 m(n-1)}{4}$.

Case 2: Consider m to be odd. We know that, $\delta^{(k)}$-coloring of an odd cycle with $k=2$ available colors will lead to 1 bad edge in the cycle, with $\left\lceil\frac{m}{2}\right\rceil$ vertices receiving the color c_{1} and $\left\lfloor\frac{m}{2}\right\rfloor$ vertices the color c_{2}. Now, as explained in the above case, the P_{n} s that are adjacent to the vertices that are assigned the color c_{1} will lead to a total of $\left\lceil\frac{m}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor \mathrm{bad}$ edges
and the P_{n} s adjacent to the vertices that are colored with c_{2} will lead to $\left\lfloor\frac{m}{2}\right\rfloor(n-1)$ bad edges. Thus, the minimum total number of bad edges obtained from $\delta^{(k)}$-coloring of $C_{m} \circ P_{n}$ when m is odd and for any n is $1+\left\lceil\frac{m}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor(n-1)=\frac{(3 m-1)(n-1)+4}{4}$.

Theorem 4.10. For $C_{m} \circ K_{n}$, the minimum number of bad edges obtained from the $\delta^{(k)}$-coloring where $1 \leq k \leq \chi\left(C_{m} \circ K_{n}\right)-1$ is given by

$$
b_{k}\left(C_{m} \circ K_{n}\right)= \begin{cases}\frac{m(n-k+1)(n-k+2)}{2}, & \text { if } m \text { is even and for all } n \\ \frac{m(n-k+1)(n-k+2)+2}{2}, & \text { if } m \text { is odd and for all } n\end{cases}
$$

Proof. The chromatic number of $C_{m} \circ K_{m}$, for any parity of m and n, is $n+1$. In this case, the k will be $2 \leq k \leq n$. For the different parities of m, there are two cases that are addressed separately as follows.

Case 1: Let m be even. Now, the minimum number of colors required to color an even cycle is 2 . Hence, for any value of k, C_{m} will lead to no bad edges. Now, as explained in Theorem 4.9, every K_{n} adjacent to the $\frac{m}{2}$ vertices receiving the color c_{1}, can be colored with k colors leading to a total of $\frac{m}{2} \frac{(n-k+1)(n-k)}{2}$ bad edges in the K_{n} s. Also, there are $\frac{m}{2}(n-$ $k+1$) bad edges between these K_{n} and C_{m}. Now, the remaining K_{n}, adjacent to the $\frac{m}{2}$ vertices that are colored with a color other than c_{1}, say c_{2}, cannot be assigned with the color c_{2} to meet the definition of $\delta^{(k)}$ coloring. Thus, these K_{n} s are colored with only $k-1$ colors, leading to a total of $\frac{m}{2} \frac{(n-k+2)(n-k+1)}{2}$ bad edges. Hence, the total number of bad edges resulting from $\delta^{(k)}$-coloring of $C_{m} \circ K_{n}$ when m is even and for any n is $\frac{m}{2} \frac{(n-k+1)(n-k)}{2}+\frac{m}{2}(n-k+1)+\frac{m}{2} \frac{(n-k+2)(n-k+1)}{2}=\frac{m(n-k+1)(n-k+2)}{2}$.

Case 2: Let m be odd. The minimum colors required to color an odd cycle is 3 . Now, the values of k is $2 \leq k \leq n$. When $k \geq 3$, the C_{m} will lead to no bad edges. However, when $k=2$, there will be an edge in C_{m} which is bad. A common $\delta^{(k)}$-coloring for both the cases is discussed as follows. Color the C_{m} with only 2 colors say c_{1} and c_{2}. This will lead to 1 bad edge in C_{m} (see [15]). Now, the remaining $K_{n} \mathrm{~s}$, as explained in Theorem 4.9 and Case 1 of the current theorem, will lead to $\left\lceil\frac{m}{2}\right\rceil \frac{(n-k+1)(n-k)}{2}$ and $\left\lfloor\frac{m}{2}\right\rfloor \frac{(n-k+2)(n-k-1)}{2}$ bad edges in K_{n} s that are adjacent to the vertices that are colored with the colors c_{1} and c_{2} respectively in C_{m}. Now, between the vertices of C_{m} s and K_{n} 's that receive the color c_{1}, there are $\left\lceil\frac{m}{2}\right\rceil(n-k+1)$ bad edges. Thus, the total number of bad edges resulting from $\delta^{(k)}$-coloring of $C_{m} \circ K_{n}$ when m is odd and for any n is $1+\left\lceil\frac{m}{2}\right\rceil \frac{(n-k+1)(n-k)}{2}+\left\lfloor\frac{m}{2}\right\rfloor \frac{(n-k+2)(n-k-1)}{2}+$ $\left\lceil\frac{m}{2}\right\rceil(n-k+1)=\frac{m(n-k+1)(n-k+2)+2}{2}$. Now, when $k \geq 3$, the odd cycle
can be properly colored with $k=3$ colors leading to no bad edge in the C_{m}. However, there will be a total of $\left\lceil\frac{m}{2}\right\rceil$ of vertices that receive the color other than the color c_{1} and $\left\lfloor\frac{m}{2}\right\rfloor$ vertices that receive the color c_{1}. Now, this will lead to $\left\lceil\frac{m}{2}\right\rceil \frac{(n-k+2)(n-k+1)}{2}$ and $\left\lfloor\frac{m}{2}\right\rfloor \frac{(n-k+1)(n-k)}{2}$ bad edges between C_{m} and K_{n}. Now, when both the colorings are compared, the number of bad edges leading from either of the above mentioned $\delta^{(k)}$-coloring is the same.

Theorem 4.11. For $K_{m} \circ P_{n}$, the minimum number of bad edges obtained from the $\delta^{(k)}$-coloring for any m and n is given by

$$
b_{k}\left(K_{m} \circ P_{n}\right)= \begin{cases}\frac{(m-k+1)(m-k)}{2}, & \text { if } k \geq 3 \\ \frac{(m-1)(m-2)}{2}+(n-1)+(m-1)\left\lfloor\frac{n}{2}\right\rfloor, & \text { if } k=2\end{cases}
$$

Proof. The chromatic number of $K_{m} \circ P_{n}$ is m. Thus, the available colors in this case is $2 \leq k \leq m-1$. There are two cases for two different values of k which are as explained below.

Case 1: Consider the case where $k \geq 3$. Now, it is known that, the minimum number of bad edges resulting from $\delta^{(k)}$-coloring of K_{n} is $\frac{(n-k+1)(n-k)}{2}$ (see [15]). Since the graph $K_{m} \circ P_{n}$ has a complete graph K_{m} as its induced subgraph, the minimum number of bad edges that $K_{m} \circ P_{n}$ will have is at least that of the $b_{k}\left(K_{m}\right)$. Now, we prove that, in this case, it is exactly $b_{k}\left(K_{m}\right)$. The minimum number of bad edges obtained from the $\delta^{(k)}$-coloring of K_{m} is $\frac{(m-k+1)(m-k)}{2}$. Now, since $k \geq 3$, the path graph P_{n} can be properly colored with any two colors other than the color assigned to its corresponding vertex of K_{m}. Thus, the minimum number of bad edges obtained from the $\delta^{(k)}$-coloring of $K_{m} \circ P_{n}$ is $\frac{(m-k+1)(m-k)}{2}$. A $\delta^{(k)}$ _ coloring of that explains the same is discussed as follows. Let $v_{1}, v_{2}, \ldots, v_{m}$ and $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of K_{m} and P_{n} respectively. Color the vertices $v_{1}, v_{2}, \ldots, v_{k}$ of the K_{m} with the colors $c_{1}, c_{2}, \ldots, c_{k}$. This is a proper coloring with k different colors. Now, the remaining vertices are assigned the color c_{1} to maintain the requirements of $\delta^{(k)}$-coloring. Now, each of the P_{n} adjacent to each of its corresponding vertices of K_{m} are assigned the color other than the corresponding vertex. The P_{n}, adjacent to its corresponding vertex v_{1} which is assigned the color c_{1}, can be properly colored with the two colors say c_{2} and c_{3}. Similarly, the P_{n}, adjacent to the vertex v_{2} that is assigned the color c_{2}, can be properly colored with two colors say c_{1} and c_{3}. Thus, every $m P_{n}$'s can be properly colored like wise. Hence, the minimum number of bad edges obtained from $\delta^{(k)}$-coloring of $K_{m} \circ P_{n}$ is $\frac{(m-k+1)(m-k)}{2} \forall m$ and n.

Case 2: Let $k=2$. Now, coloring K_{m} with $k=2$ colors will lead to $\frac{(m-k+1)(m-k)}{2}=\frac{(m-1)(m-2)}{2}$ bad edges. This is because, only one vertex say the vertex v_{1} can be assigned the color c_{2} and all the remaining vertices must be assigned with color c_{1}, to maintain the conditions of $\delta^{(k)}$-coloring. Now, the P_{n} which is adjacent to the vertex v_{1} should be colored with the color c_{1}, to meet the requirements of $\delta^{(k)}$-coloring. This will lead to $n-1$ bad edges in that particular P_{n}. The remaining $m-1 P_{n}$'s, adjacent to the its corresponding vertices of K_{m} assigned the color c_{1}, can be alternatively colored with the colors c_{2} and c_{1} respectively (and not c_{1} and c_{2} respectively, as it will maximise the use of the color c_{1} and maximise the number of bad edges between them). Thus, this will lead to $(m-1)\left\lfloor\frac{n}{2}\right\rfloor$ bad edges between them. Thus, there are a total of $\frac{(m-1)(m-2)}{2}+n-1+(m-1)\left\lfloor\frac{n}{2}\right\rfloor$ bad edges obtained from the $\delta^{(k)}$-coloring of $K_{m} \circ P_{n}$, when $k=2$ and $\forall m$ and n.

Theorem 4.12. For $K_{m} \circ C_{n}$ for any m and n is even, the minimum number of bad edges obtained from the $\delta^{(k)}$-coloring is given by

$$
b_{k}\left(K_{m} \circ C_{n}\right)= \begin{cases}\frac{(m-k+1)(m-k)}{2}, & \text { if } k \geq 3 \\ \frac{m(m+n-3)+n+2}{2}, & \text { if } k=2\end{cases}
$$

Proof. There are two different cases for a $\delta^{(k)}$-coloring of $K_{m} \circ C_{n}$ for different values of k and when n is even. Since $\chi\left(K_{m} \circ P_{n}\right)=m$, the values of k will lie between 1 and m. Considering all the above mentioned facts, both the cases are separately addressed as follows.

Case 1: Let $k \geq 3$. The proof explained in Case 1 of Theorem 4.11 applies to this case as well since both paths and even cycles are bipartite and can be properly colored with two colors by maintaining the constraints of $\delta^{(k)}$ coloring when $k \geq 3$. Thus, in this case the minimum number of bad edges resulting from $\delta^{(k)}$-coloring of $K_{m} \circ P_{n}$ is $\frac{(m-k+1)(m-k)}{2}$.

Case 2: Let $k=2$. The proof for this case is similar to that of Case 2 of Theorem 4.11. The K_{m} will lead to $\frac{(m-2)(m-1)}{2}$ bad edges. Now, the only difference is that, the C_{n} that is adjacent to the vertex (only vertex) that is assigned the color c_{2} is given the color c_{1}, leading to n bad edges in the cycle. All the remaining $m-1 C_{n}$'s are assigned the color c_{1} and c_{2} alternatively leading to $(m-1) \frac{n}{2}$ bad edges between K_{m} and $(m-1) C_{n}$'s. Thus, the minimum total number of bad edges resulting from $\delta^{(k)}$-coloring of $K_{m} \circ C_{n}$ when n is even and $k=2$ is $\frac{(m-2)(m-1)}{2}+(m-1) \frac{n}{2}+n=\frac{m(m+n-3)+n+2}{2}$.

Theorem 4.13. For $K_{m} \circ C_{n}$ for any m and n is odd, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring is given by

$$
b_{k}\left(K_{m} \circ C_{n}\right)= \begin{cases}\frac{(m-k+1)(m-k)}{2}, & \text { if } k \geq 4 \\ \frac{(m-2)(m-1)+4}{2}, & \text { if } k=3 \\ \frac{m(m+n)+n-1}{2}, & \text { if } k=2\end{cases}
$$

Proof. The chromatic number of $K_{m} \circ C_{n}$ when n is odd is m and hence we discuss a $\delta^{(k)}$-coloring of the same for the different values of k where $2 \leq k \leq m-1$. There are three different cases for the same that are addressed separately as follows.

Case 1: Let $k \geq 4$. The minimum number of bad edges obtained from $\delta^{(k)}$-coloring of $K_{m} \circ C_{n}$ when $k \geq 4$ is $\frac{(m-k+1)(m-k)}{2}$. The proof for this case is same as that of the proof explained in Case 1 of Theorems 4.11 and 4.12.

Case 2: Let $k=3$. The K_{m} when colored with $k=3$ colors will lead to $\frac{(m-k+1)(m-k)}{2}=\frac{(m-2)(m-3)}{2}$ bad edges (see [15]). Now, there are only two vertices in K_{m} say v_{1} and v_{2} that can be colored with the colors c_{2} and c_{3}. Rest of all the vertices have to be colored with the color c_{1}, to meet the requirements of a $\delta^{(k)}$-coloring. Now, since C_{n} is an odd cycle, it will require at least 3 colors to color it properly. Although, the number of available colors is 3 , since these colors are used in the coloring of K_{m}, each cycle will lead a minimum of bad edges in the cycle or between the K_{m} and its corresponding C_{n}. Here, the vertex v_{1} of K_{m} is assigned the color c_{2} and hence the cycle is colored with two colors c_{1} and c_{3} leading to no bad edge between them. However, there will be a bad edge in C_{n} when colored with two colors (see [15]). Similarly, in the case of the vertex v_{2} that is assigned the color c_{3}, its corresponding C_{n} will lead to 1 bad edge when colored with the colors c_{1} and c_{2}. The remaining $(m-2) C_{n}$'s will lead to one bad edge between the vertices of K_{m} and its corresponding C_{n}. Thus, the total number of bad edges obtained from $\delta^{(k)}$-coloring of $K_{m} \circ C_{n}$ when n is odd is $\frac{(m-2)(m-3)}{2}+2+(m-2)=\frac{(m-2)(m-1)+4}{2}$. Case 3: Let $k=2$. As explained in Case 2 of Theorem 4.12, only one vertex say v_{1} of the K_{m} is given the color c_{2}, rest all are colored with the color c_{1}. This will lead to $\frac{(m-1)(m-2)}{2}$ bad edges. Now, C_{n} corresponding to the vertex v_{1} is solely colored with c_{1}, to meets the requirements of $\delta^{(k)}$-coloring, and this leads in n bad edges in this particular cycle. The remaining $C_{n} \mathrm{~s}$ are colored with two colors c_{1} and c_{2}, leading to 1 bad edge in each of the $m-1 C_{n}$ s and $(m-1)\left\lceil\frac{n}{2}\right\rceil$ bad edges between the K_{m} and C_{n}. Thus, the total number of
bad edges resulting from $\delta^{(k)}$-coloring of $K_{m} \circ C_{n}$ when n is odd and $k=2$ is $\frac{(m-1)(m-2)}{2}+(m-1)+(m-1)\left\lceil\frac{n}{2}\right\rceil+n=\frac{m(m+n)+n-1}{2}$.

Theorem 4.14. For $K_{m} \circ K_{n}$ for any m and n, the minimum number of bad edges obtained from a $\delta^{(k)}$-coloring is given by
$b_{k}\left(K_{m} \circ K_{n}\right)= \begin{cases}(m-k+1)\left(\frac{m-k}{2}+n-k+1\left(\frac{n-k+2}{2}\left(\frac{m}{m-k+1}\right)\right)\right), & \text { if } k \geq 3, \\ \frac{(n(n-3)+m)(m-1)+2 n}{2}, & \text { if } k=2 .\end{cases}$

Proof. We know that, the minimum number of bad edges in K_{m} resulting from $\delta^{(k)}$-coloring when the available colors are k, is $\frac{(m-k+1)(m-k)}{2}$. Each of the K_{n} 's corresponding to the each of the vertex assigned the color c_{1} in K_{m} will lead to $\frac{(n-k+1)(n-k)}{2}$ bad edges and between them there will be $(m-k+1)(n-k+1)$ bad edges (for a detailed explanation on the coloring pattern of $\delta^{(k)}$-coloring of complete graphs see $\left.[15,4]\right)$. Now, the K_{n} 's corresponding to the vertices that receive the color other than c_{1} in K_{m}, i.e. the $k-1$ vertices, can be colored with $k-1$ colors only (the color assigned to its corresponding vertex in K_{m}, cannot be used in coloring its corresponding $\left.K_{n}\right)$. Thus, this will lead to $(k-1) \frac{(n-k+1)(n-k)}{2} \mathrm{bad}$ edges between them. Thus, the total number of bad edges resulting from $\delta^{(k)}$-coloring of $K_{m} \circ K_{n}$ when $k \geq 3$ is $\frac{(m-k+1)(m-k)}{2}+(m-k+1) \frac{(n-k+1)(n-k)}{2}+(m-k+1)(n-k+$ $1)+(k-1) \frac{(n-k+1)(n-k)}{2}=(m-k+1)\left(\frac{m-k}{2}+n-k+1\left(\frac{n-k+2}{2}\left(\frac{m}{m-k+1}\right)\right)\right)$. Case 2: Let $k=2$. Coloring K_{m} with $k=2$ colors will lead to $\frac{(m-k+1)(m-k)}{2}=$ $\frac{(m-1)(m-2)}{2}$ bad edges. Now, all the corresponding $K_{n} \mathrm{~s}$, other than the one which is adjacent to the vertex assigned the color c_{2} of K_{m}, are colored with $k=2$ colors, leading to $\frac{(m-k+1)(n-k+1)(n-k)}{2}=\frac{(m-1)(n-1)(n-2)}{2}$ bad edges in the K_{m}. Now, between the vertices of K_{m} that are assigned the color c_{1} i.e. $m-k+1=m-1$ vertices of K_{m} and $m-k+1=m-1 K_{n}$ s there are $(m-k+1)(n-k+1)=(m-1)(n-1)$ bad edges. Now, the K_{n} adjacent to the vertex colored with the color c_{2} of K_{m} should be given only the color c_{1} to maintain the requirements of $\delta^{(k)}$-coloring, leading to $\frac{n(n-1)}{2}$ bad edges. Thus, the total number of bad edges resulting from $\delta^{(k)}$-coloring of $K_{m} \circ K_{n}$ when $k=2$ is $\frac{(m-1)(m-2)}{2}+\frac{(m-1)(n-1)(n-2)}{2}+(m-1)(n-1)+\frac{n(n-1)}{2}=$ $\frac{(n(n-3)+m)(m-1)+2 n}{2}$.

5 Conclusion

This paper focuses on a $\delta^{(k)}$-coloring of certain graph products viz. direct product of two graphs and corona product of two graphs. The graph classes
that are discussed here are path P_{n}, cycle C_{n} and complete graph K_{n} with their different combinations depending on the commutative property of the products discussed. a $\delta^{(k)}$-coloring of different products can also be investigated. We have only relaxed one color class to have adjacency between the elements in it. However, permitting few more color classes to be non independent set to minimise the bad edges resulting from it can be a ground for further research. A comparative study on the number of bad edges obtained when one color class and more than one color are relaxed can also be a study of great research.

References

[1] J.A. Bondy and U.S.R. Murty, Graph theory, Springer, New York, 2008.
[2] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph classes: A survey, SIAM, Philadelphia, 1999.
[3] G. Chartrand and P. Zhang, Chromatic graph theory, Chapman and Hall/CRC press, 2008.
[4] M.T. Ellumkalayil and S. Naduvath, On $\delta^{(k)}$-colouring of powers of paths and cycles, Theory Appl. Graphs 8 (2021), Art. 3, 15 pp.
[5] M.T. Ellumkalayil and S. Naduvath, A note on $\delta^{(k)}$-colouring of the Cartesian product of some graph, Commun. Comb. Optim. 7 (2022), 113-120.
[6] M.T. Ellumkalayil and S. Naduvath, On $\delta^{(k)}$-coloring of generalized Petersen graphs, Discrete Math. Algorithms Appl. 14 (2022), Paper No. 2150096, 7 pp.
[7] M.T. Ellumkalayil and S. Naduvath On $\delta^{(k)}$-coloring of powers of helm and closed helm graphs, Discrete Math. Algorithms Appl. 14 (2022), Paper No. 2150116, 19 pp.
[8] R. Frucht and F. Harary, On the corona of two graphs, Aeq. Math. 4 (1970), 322-325.
[9] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 5 (1998), Dynamic Survey 6, 43 pp.
[10] R. Hammack, W. Imrich, and S. Klavžar, Handbook of product graphs, CRC Press, 2011.
[11] F. Harary, Graph theory and theoretical physics, Acad. Press, 1967.
[12] W. Imrich and S. Klavžar, Product graphs: Structure and recognition, Wiley, 2000.
[13] T.R. Jensen and B. Toft, Graph coloring problems, John Wiley \& Sons, 2011.
[14] P.K. Jha and S. Klavžar, Independence in direct-product graphs, Ars Combin. 50 (1998), 53-64.
[15] J. Kok and N.K. Sudev $\delta^{(k)}$-colouring of cycle-related graphs, $A d v$. Stud. Contemp. Math. (Kyungshang) 32 (2022), 113 - 120.
[Ed. note: https://jangjeonopen.or.kr/ASCM/
open_access_view.php?year=2022\&volume=32\&number=1]
[16] M. Kubale, M. Kubale, Harmonious coloring of graphs, in Graph colorings, Amer. Math. Soc., Providence, RI (2004), 95-104.
[17] E.G. Mphako-Banda, An introduction to the k-defect polynomials, Quaest. Math. 42 (2019), 207-216.
[18] J. Kok and E.G. Mphako-Banda, Chromatic completion number, J. Math. Comput. Sci. 10 (2020), 2971-2983.
[19] D.B. West, Introduction to graph theory, Prentice Hall Upper Saddle River, 2001.

Merlin Thomas Ellumkalayil
Department of Mathematics, CHRIST (Deemed to be University), Bangalore-560029, Karnataka, INDIA
ellumkalayil.thomas@res.christuniversity.in
Sudev Naduvath
Department of Mathematics, CHRISt (Deemed to be University), Bangalore-560029, Karnataka, INDIA
sudev.nk@christuniversity.in

[^0]: *Corresponding author: sudev.nk@christuniversity.in
 Key words and phrases: Improper coloring, near proper coloring, $\delta^{(k)}$-coloring, bad edges.
 AMS (MOS) Subject Classifications: 05C15

