
BULLETIN of The Volume 99
October 2023

INSTITUTE of
COMBINATORICS and its
APPLICATIONS
Editors-in-Chief:

Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Duluth, Minnesota, U.S.A. ISSN: 2689-0674 (Online)
ISSN: 1183-1278 (Print)



Safe-sweep number of graphs

Jesse Niyo and Aras Erzurumluoğlu∗

Abstract. This paper presents an alternative edge-sweeping model where
to account for unforeseen obstacles in a network, each cleaning device re-
quires two units of battery to activate and loses one battery after each
sweeping step. We study properties of this model and find bounds for the
minimum number of batteries required to sweep all edges. In particular,
we describe an algorithm that uses the minimum number of batteries when
the network is a tree.

1 Introduction

Pretend you are responsible for the maintenance of roads in a city. In
order to alleviate the workload, you put in place a network of battery-
powered robots and battery charging stations at intersections and cul-de-
sacs. These robots only need 1 battery to clean a road but you require
them to depart with 2 batteries to clean a road in case of unforeseeable
circumstances that would lengthen the travel time such as a large traffic
jam. These robots go from one station to another, cleaning the road as
they travel. If everything goes well, the robot leaves the additional battery
at their arrival destination (charging station). Otherwise, the robot that
encounters a hindrance uses the extra battery to finish cleaning the road
that it is on and safely arrives to the charging station (instead of being stuck
in the middle of the road) and alerts the city about the hindrance while
maintenance of other roads is paused. Suppose you have sufficiently many
robots at each station but overall a finite amount of batteries to supply
for every station in the network. Assuming that robots face no hindrance
before they complete the cleaning, what is the minimum total number of
batteries you need to clean every road in the city and where do you place
them?

∗Corresponding author: araserzurumluoglu@trentu.ca
Key words and phrases: graph cleaning, (optimal) pebbling number
AMS (MOS) Subject Classifications: 05C85, 05C57

BULLETIN OF THE ICA
Volume 99 (2023), 91–115

Received: 18 July 2022
Accepted: 27 February 2023

91



This current problem has elements in common with two well-studied graph
processes known as graph brushing and graph pebbling. The brushing
problem represents a decontamination scenario of the edges of a graph. In
the initial version introduced by McKeil [7], one starts with a graph where
all edges and vertices are initially dirty. Cleaning agents (“brushes”) travel
along incident dirty edges upon firing of the vertex, thereby cleaning the
edges and the vertex itself. More than one brush is allowed to traverse an
edge. The rule that allows a vertex to fire is that there are at least as many
brushes on it as the number of incident dirty edges. For other versions of
the brushing problem and more, see for example [2, 3, 8]. In the pebbling
problem, initially there are some number of pebbles on some of the vertices
of a graph, and these pebbles can be moved from a vertex to an adjacent
vertex at a cost – one of the pebbles is lost when moving two pebbles from
one vertex to an adjacent vertex. While graph pebbling is known to have
been studied before, it owes its popularity to Chang [1]. The original version
of the problem studies the minimum number n of pebbles needed so that
any initial configuration of n pebbles on the vertices of a graph G allows
for a series of pebbling moves to bring at least one pebble to any arbitrary
target vertex – this minimum number of pebbles is called the pebbling
number. This problem models a situation where any target vertex can be
allocated resources after a sequence of pebbling moves, even when the fixed
quantity of resources is initially distributed in a worst possible way. On
the other hand, the optimal pebbling number is the smallest number n of
pebbles needed so that there exists a distribution of n pebbles from which
any target vertex can be reached by a sequence of pebbling moves. A series
of papers by Hurlbert [4, 5, 6] surveys progress in graph pebbling, many of
the variations of the problem and their applications.

In the current problem, vertices have a non-negative integer value repre-
senting the number of batteries at that station, and an edge can be cleaned
only if one of the incident vertices has a value of at least 2. Then, the
value of that vertex decreases by 2, and we increase the value of the other
incident vertex by 1. An assignment of batteries to the vertices along with
the order in which edges are cleaned following the aforementioned rule will
be referred to as a “safe-sweeping” process B; and if B cleans all the edges
of the graph, then it is a complete safe-sweeping process. In this paper, for
certain types of graphs we find algorithms that use the minimum number
of batteries possible such that there exists a placement of those batteries
that allows for a complete safe-sweeping process. We also give some basic
bounds for graphs in general.

Safe-sweep number of graphs

92



2 Some preliminaries

Let G be a graph without loops where each vertex is assigned a non-negative
integer (number of “batteries”). A legal sweeping move of an edge e = {a, b}
reduces the number of batteries of one of the endpoints, say a, by 2 and
increases the number of batteries of b by 1, in which case we say that edge e
is swept from a to b. If the direction in which e is swept is irrelevant, then
we may simply say that edge e is swept. Consequently, a legal sweeping of
an edge e = {a, b} can occur only if a or b have at least 2 batteries. Clean
(swept) edges may be re-swept by the same rule.

We say B is a safe-sweeping process on a graph G if B describes an assign-
ment of batteries to the vertices of G along with an ordering in which edges
of G are swept by legal sweeping steps. If B sweeps all edges of G, then
it is a complete safe-sweeping process. The example in Figure 1 illustrates
a complete safe-sweeping process where at each step the vertex where the
sweeping is initiated has the number of batteries given in a circle and swept
edges are dashed.

1
v1

0
v2

2
v3

1

v4
2

v5

1
v1

0
v2

2
v3

2

v4 v5

0

2

v1

0
v2

2
v3

v4

0

v5

0

v1

0
v2

0 2

v3

v4

0 1

v5

v1

0
v2

0
v3

0

v4

0 2

v5

v1

0 1
v2 v3

0

v4

0

v5

0

Figure 1: An example of a complete safe-sweeping process.

Safe-sweep number of graphs

93



For a complete safe-sweeping process B of a graph G without loops, let
sB(G) denote the total number of batteries that were available on the ver-
tices of G when B was initiated. We will denote by exB(G) the total num-
ber of excess batteries left at vertices of G after all edges are swept, and by
multB(G) the total number of times clean edges are re-swept. Then, the
following is a simple observation.

Lemma 2.1. Let B be a complete safe-sweeping process of a non-empty
graph G without loops. Then, sB(G) = exB(G) + multB(G) + |E(G)|.

Proof. Each time an edge is swept, a battery is removed from the graph.
Note that |E(G)| and multB(G) account for all batteries that are removed
in edge-sweepings while exB(G) accounts for the leftover batteries when B
terminates. Hence sB(G) = exB(G) + multB(G) + |E(G)|.

We define the safe-sweep number of a graph G without loops, denoted by
s(G), as s(G) = min{sB(G) : B is a complete safe-sweeping process of G}
and we say B is an optimal safe-sweeping process of G if s(G) = sB(G).

Let e be the last edge to be swept in a complete safe-sweeping process B of
a connected graph G without loops. This last sweeping step results in one
excess battery at one of the endpoints of e. Hence, by applying Lemma 2.1
to each connected component of G, we obtain the following simple bound.

Lemma 2.2. For any non-empty graph G without loops that has k con-
nected components, s(G) ⩾ |E(G)| + k.

For graphs with Eulerian properties, an optimal safe-sweeping process is
not difficult to find as highlighted in the next two results.

Theorem 2.3. Let G be a non-empty graph without loops that has an Euler
trail. Then, s(G) = |E(G)| + 1.

Proof. Let v and w be the only odd-degree vertices in G. Place deg(v)+3
2

batteries at v, deg(w)−1
2 batteries at w, and deg(z)

2 batteries at any vertex
z ̸= v, w.

This placement of batteries ensures the existence a complete safe-sweeping
process B along the Euler trail (that starts at v and finishes at w) since
each vertex will have at least 2 batteries every time it is visited along the

Safe-sweep number of graphs

94



Euler trail. Note that when this complete safe-sweeping process terminates,
exactly 1 battery will remain at w.

It is easy to see that B uses exactly |E(G)|+ 1 batteries; hence, by Lemma
2.2, we obtain

s(G) = |E(G)| + 1.

Corollary 2.4. Let G be a non-empty graph without loops that has an
Euler tour. Then, s(G) = |E(G)| + 1. Additionally, for any vertex v ∈
V (G), there exists a complete safe-sweeping process B with the following
two properties:

(1) sB(G) = s(G) = |E(G)| + 1, and

(2) the unique excess battery at the end of the safe-sweeping process is
located at v.

Before stating and proving a critical lemma next, we shall first introduce
some terminology.

Let u be an arbitrary vertex in a non-empty graph G without loops and
B be an arbitrary complete safe-sweeping process on G such that u has at
least one excess battery (that was not initially at u) when B terminates.
We will define a battery path of u in B as a vertex sequence of maximal
length (v1, v2, v3, . . . , vk = u)

(1) 2 or more batteries were initially placed in B at v1,

(2) vi is adjacent to vi+1 in G for each i ∈ {1, 2, . . . , k − 1}, and

(3) B sweeps the edges induced by the vertex sequence in the order
v1, v2, . . . , vk from vi to vi+1 for all i ∈ {1, 2, . . . , k − 1}. (Note that
these edge-sweepings do not necessarily happen at consecutive steps
in B.)

Battery paths give us a way to follow the sweepings of edges and movement
of batteries that result in some excess battery. For example, in Figure 1 the
only excess battery is located at v2 when B terminates. A battery path of
v2 is (v3, v5, v2), another one is (v5, v4, v1, v5, v2). More examples of battery
paths are found in Examples 2.5 and 2.7.

We say that an edge e = {v, w} is swept inwards to vertex v if 1 battery
was added to v when the sweeping of e was complete. Similarly, we say
that an edge e is swept outwards from vertex v if 2 batteries were removed

Safe-sweep number of graphs

95



from v when e was swept. We may use inB(v) and outB(v) to denote the
number of edge-sweepings inwards to v and outwards from v, respectively,
in a complete safe-sweeping process B. If no edges are re-swept in B, then
inB(v) and outB(v) simply refer to the number of distinct edges incident
with v that are swept inwards to v and outwards from v, respectively.
Sweeping inwards or outwards denotes the direction in which an edge is
swept with respect to a vertex v. Considering the direction in which a
given edge is swept with respect to a specified incident vertex proves to be
useful for the remainder of this paper. The following observation is helpful
for the reversibility theorem that we will prove next.

Observation: Let B be a complete safe-sweeping process on a graph G
without loops. Let EB = (e1, e2, . . . , et) be the ordering in which edges are
swept in B. Let v be a vertex of G that has at least one excess battery
(that was not initially at v) when B terminates. Consider a battery path
P of v in B, and let EB,P be an ordering of edge-sweepings associated to P
in B that is formed as follows:

Step 0: Include the first edge of P in EB,P .

Step 1: If EB,P currently allows for a legal sweeping of the next edge of
P , then add the next edge of P to EB,P . Keep adding edges of P to EB,P

until EB,P does not allow for a legal sweeping of the next edge of P .

Step 2: Let the last added edge of P be ej = {s, t}, which is swept from
s to t in B. (In this case, we will refer to t as the crossing vertex of
P .) Then, there must be some other battery path of v that contains t
such that the subpath P ′ of that battery path that stops at t consists
of unswept edges. Add edges of P ′ to EB,P in order until EB,P does not
allow for a legal sweeping of the next edge of P ′.

Step 3: If all edges of P ′ have been added to EB,P , we return to Step 1
and add the next edge of P to EB,P . Otherwise, we return to Step 2 and
apply it on P ′ and its crossing vertex.

The procedure stops when all edges of P are included in EB,P .
Then, B′ with the same battery placement and sweeping direction of edges
as in B also determines a complete safe-sweeping process on G if

(i) B′ respects the relative ordering of edge-sweepings in B of edges not
in EB,P , and

(ii) B′ respects the relative ordering of edge-sweepings in B of edges in
EB,P , or EB,P is a subsequence of EB′ .

Safe-sweep number of graphs

96



This observation is illustrated in the next example.

Example 2.5. In Figure 2, let e1 = {v1, v2}, e2 = {v2, v3}, e3 = {v3, v4},
e4 = {v4, v5}, e5 = {v, v4}, e6 = {v8, v9}, e7 = {v8, v10}, e8 = {v8, v11}, e9 =
{v8, v12}, e10 = {v6, v8}, e11 = {v7, v8}, e12 = {v6, v7}, e13 = {v, v6}, and
consider the complete safe-sweeping process B with the ordering of the
edge-sweepings given as EB = (e1, e2, . . . , e13). Note that v has an excess
battery (that was not initially at v) when B terminates. A battery path
of v is P = (v10, v8, v7, v6, v). Here, the edges of P are e7, e11, e12, e13 and
they are swept in that order in B.

We form an ordering EB,P of edge-sweepings associated to P in B as follows:
Add e7 to EB,P . Currently EB,P does not allow for a legal sweeping of e11;
hence, v8 is a crossing vertex. Consider the battery path (v9, v8, v7, v6, v) of
v, where P ′ = (v9, v8) is a subpath that stops at v8 and consists of unswept
edges only. Add e6 to EB,P . Now we may sweep e11 and then e12 on P ;
so, add e11 and e12 to EB,P . Currently EB,P does not allow for a legal
sweeping of e13; hence, v6 is a crossing vertex. Consider the battery path
(v11, v8, v6, v) of v, where P ′ = (v11, v8, v6) is a subpath that stops at v6
and consists of unswept edges only. Add e8 to EB,P . Note that currently
EB,P does not allow for a legal sweeping of e10; hence, v8 is a crossing
vertex. Consider the battery path (v12, v8, v6, v) of v, where P ′ = (v12, v8)
is a subpath that stops at v8 and consists of unswept edges only. Add e9
to EB,P . Now we may sweep e10 and then e13 on P ; so, add e10 and e13 to
EB,P . All edges of P are included in EB,P ; so, the procedure stops resulting
in EB,P = (e7, e6, e11, e12, e8, e9, e10, e13).

Then, for example, B′ with the same battery placement and sweeping di-
rection of edges as in B, where

EB′ = (e1, e2, e7, e3, e6, e4, e11, e12, e8, e5, e9, e10, e13)

also determines a complete safe-sweeping process. Note that B′ respects
the relative ordering of edge-sweepings in B of edges not in EB,P and EB,P

is a subsequence of EB′ . Similarly,

EB′′ = (e1, e2, e6, e7, e3, e4, e8, e9, e10, e5, e11, e12, e13)

also determines a complete safe-sweeping process. Note that B′′ respects
the relative ordering of edge-sweepings in B of edges not in EB,P and it
respects the relative ordering of edge-sweepings in B of edges that are in
EB,P .

Lemma 2.6. (Correction Algorithm) Let G be a non-empty graph without
loops and B be an optimal complete safe-sweeping process of G. When B
terminates, no vertex in G has 2 or more excess batteries.

Safe-sweep number of graphs

97



v1
2

v2
1

v v6 v7
1

v3
1

v4

v5
2

v8

v9
2

v10
2

v11
2

v12
2

Figure 2: Examples of battery paths.

Proof. Let G be a non-empty graph without loops, B be an optimal com-
plete safe-sweeping process of G, and let v be a vertex in G that has 2
or more batteries after B terminates. We will show that the existence of
v contradicts the optimality of B. We shall do so by considering the two
cases as below.

Case 1: Suppose that at most one inwards edge-sweeping occurred at v
in B. Since v has two or more batteries when B terminates, it must be
that at least one of those batteries was initially placed at v in B. Then,
we can reduce the number of batteries initially placed at v in B by one,
and the resulting assignment of batteries can still sweep all edges of G in
the same way as in B. This contradicts the assumption that B is optimal.

Case 2: Suppose that at least two inwards edge-sweepings occurred at v
in B. Then (at least) two batteries were brought to v through edge-
sweepings when B terminated. Consider two battery paths of v in B,
say (x1, . . . , xj = v) and (y1, . . . , yk = v) chosen in such a way that each
battery path corresponds to the movement of a distinct battery in B
towards v. (Note that these battery paths are not necessarily disjoint.)

We alter the complete safe-sweeping process B to obtain a safe-sweeping
process B′ by initially placing 1 additional battery at v and removing 2
batteries from y1. We impose that B′ sweeps all edges in the same order and
direction as it was in B, except for those that are on the path (y1, . . . , yk =
v). This results in v having at least 2 batteries (because of the additional

Safe-sweep number of graphs

98



battery we placed at v), which now allows the path (y1, . . . , yk = v) to be
swept in the opposite order and direction than it was in B. Observe that
B′ is a complete safe-sweeping process of G with one fewer battery than in
B – a contradiction to the optimality of B.

The next example illustrates Case 2 of the Correction Algorithm.

Example 2.7. The graph in Figure 2 along with the initial placement of
batteries possesses a complete safe-sweeping process B that terminates leav-
ing two batteries at vertex v. For example, one can sweep the edges in the
following order: {v1, v2}, {v2, v3}, {v3, v4}, {v5, v4}, {v4, v}, {v9, v8}, {v10,
v8}, {v8, v7}, {v7, v6}, {v11, v8}, {v12, v8}, {v8, v6}, {v6, v}. The sweeping of
{v4, v} brings one battery (say, battery 1) to v and the sweeping of {v6, v}
brings another battery (say, battery 2) to v.

There are multiple choices for battery paths of v in B corresponding to
the two batteries. For example, a battery path of v in B correspond-
ing to battery 1 is (v1, v2, v3, v4, v) highlighted in red in Figure 2; an-
other one is (v5, v4, v). A battery path of v in B corresponding to bat-
tery 2 is (v10, v8, v7, v6, v) highlighted in blue in Figure 2; another one is
(v12, v8, v6, v).

To apply the Correction Algorithm, we may consider battery paths

(v1, v2, v3, v4, v)(for battery 1)

and

(v10, v8, v7, v6, v)(for battery 2)

of v in B. We form a new complete safe-sweeping process B′ from B as in
Figure 3. The order of edge-sweepings in B′ is {v1, v2}, {v2, v3}, {v3, v4},
{v5, v4}, {v4, v}, {v9, v8}, {v11, v8}, {v12, v8}, {v8, v6}, {v, v6}, {v6, v7},
{v7, v8}, {v8, v10} .

Lemma 2.8. Let G be a non-empty graph without loops. There is a com-
plete safe-sweeping process of G with s(G) batteries that does not re-sweep
any edges of G.

Proof. Let G be a non-empty graph without loops, and let B be an optimal
complete safe-sweeping process of G such that B sweeps some edge e =
{u, v} in G at least twice. Without loss of generality, assume that the last
sweeping of e occurs from u to v.

Safe-sweep number of graphs

99



v1
2

v2
1

v v6 v7
1

v3
1

v4

v5
2

v8

v9
2

v10
2

v11
2

v12
2

v1
2

v2
1

v
1

v6 v7
1

v3
1

v4

v5
2

v8

v9
2

v10
0

v11
2

v12
2

Figure 3: The direction in which edges are swept in B and B′.

Let B′ be a safe-sweeping process of G that sweeps edges of G in the same
direction and order as B up until B sweeps e for the last time. In order for
B to sweep e, u must currently have at least 2 batteries. In B′, instead of
sweeping e again, we shall place one battery at v and not sweep e. Since v
has now been compensated for the battery that it would have received from
sweeping e again in B, B′ can proceed sweeping the remaining edges in the
same direction and order as B. Observe that B′ is a complete safe-sweeping
process which uses one more battery than B.

Since the batteries (at least 2) accumulated at u to sweep e for the last
time in B were not used in B′, when B′ terminates, u will have at least 2
excess batteries. Then, by the Correction Algorithm as was described in
the proof of Lemma 2.6, there exists a complete safe-sweeping process B′′ of

Safe-sweep number of graphs

100



G which uses one less battery than B′. Moreover, B′′ does not sweep e more
than B′ does because the Correction Algorithm only alters the number of
batteries for certain vertices or changes the direction in which edges are
swept. Hence, B′′ uses the same number of batteries as B and sweeps e
one less time than B does. We can repeat this procedure in B for all re-
sweepings of edges until we obtain a complete safe-sweeping process of G
which does not re-sweep any edges while still only using s(G) batteries.

For the remainder of this paper, in light of Lemma 2.8, we shall only con-
sider optimal complete safe-sweeping processes which do not re-sweep any
edges unless stated otherwise.

Lemma 2.9. (Reversibility) Let B be a complete safe-sweeping process on
a graph G without loops such that no edges are re-swept in B. Suppose
v ∈ V (G) has an excess battery (that was not initially at v) at the end
of process B. Consider a battery path P of v. Remove two batteries from
the first vertex of P and place two batteries at the last vertex of P . Then,
there is a complete safe-sweeping process B−1 on G with the new battery
assignment such that sB−1(G) = sB(G).

Proof. Let B, G and P be defined as above. Let EB = (e1, e2, . . . , et) be
the ordering of edge-sweepings in B. Let EB,P be an ordering of edge-
sweepings associated to P in B as defined in the observation preceding
Example 2.5. In light of the observation, without loss of generality we
may suppose that the edges in EB,P are esi , esi+1, . . . , et (so that all such
edges are located at the end of EB). Remove two batteries from the first
vertex of P , place two batteries at the last vertex of P and form E−1

B,P =
(e1, e2, . . . , esi−1, e

′
si , e

′
si+1, . . . , e

′
t−1, e

′
t) where e′si , . . . , e

′
t are the edges in

EB,P ordered in a way that edges not belonging to P preserve their relative
ordering in EB and occupy the positions immediately after esi−1 in E−1

B,P ,

while edges belonging to P are at the end of E−1
B,P and in a reverse order

(so, e′t is the first edge on P , e′t−1 is the second edge on P and so on).

Then, E−1
B,P determines a complete safe-sweeping process B−1 such that

sB−1(G) = sB(G) where the edges on P are swept in the reverse direction
as opposed to in B.

Proposition 2.10. Let G be a non-empty graph without loops, and let
e ∈ E(G). Then, s(G) ⩾ s(G− e).

Proof. Let G be a non-empty graph without loops and B be an optimal
complete safe-sweeping process of G. Without loss of generality, suppose

Safe-sweep number of graphs

101



that e = {u, v} is swept from u to v in B. Consider a safe-sweeping process
B′ of G − e which places an additional battery at v and sweeps edges in
the same direction and order as B for all edges other than e. Note that
v has been compensated for the battery it would have received in B from
the sweeping of e. Then, B′ is a complete safe-sweeping process of G − e
which uses s(G) + 1 batteries. Moreover, when B′ terminates, u has at
least 2 batteries (that were originally used to sweep e in B). Then, by the
Correction Algorithm B′ can be altered to use at least one less battery to
obtain a complete safe-sweeping process of G− e which uses at most s(G)
batteries.

Lemma 2.11. (Degree 2 Contraction) Let G be a non-empty graph and
v ∈ V (G) be a vertex of degree 2 that is adjacent to distinct vertices u ̸= v
and w ̸= v in G. Consider the graph G′ obtained from G by removing v
and adding an edge {u,w}. Then, s(G′) + 1 = s(G).

Proof. First, we will show that s(G′) + 1 ⩽ s(G). Let B be an optimal
complete safe-sweeping process of G. By Lemma 2.8, we may assume that
B does not re-sweep any edges of G. Note that B sweeps the two edges
incident with v in one of the following two ways.

(1) Unidirectionally, i.e., from u to v and then from v to w (or from w to
v and then from v to u), or

(2) Outwards only, i.e., from v to u and then from v to w.

Note that we do not need to consider the case where both edges incident
with v are swept inwards since that would result in v having two excess
batteries when B terminates, a contradiction to the optimality of B by
Lemma 2.6. Similarly, by the optimality of B, we do not need to consider
the case where one of the two edges incident with v is swept away from v
before the other edge is swept towards v.

Case 1: (Unidirectionally) Without loss of generality, suppose that the
sweepings of the edges incident with v are from u to v and then from v
to w. Since no edges of G are re-swept in B, there must be one battery
initially placed at v in B so that B can sweep from v to w.

Let B′ be a safe-sweeping process of G′ which follows the same battery
assignment and the same sweeping steps as in B for edges that G and G′

have in common until B sweeps the edge {v, w}; and when B sweeps the
edge {v, w} in G, B′ shall sweep the edge {u,w} from u to w. This allows
B′ to continue sweeping edges in the same direction and order as in B

Safe-sweep number of graphs

102



since the battery that w would have received from the sweeping of {v, w}
in B has been compensated in B′ by the battery received at w from the
sweeping of the edge {u,w}. Therefore, B′ is a complete safe-sweeping
process; and because v is not present in G′, B′ uses at most s(G) − 1
batteries. Hence, s(G′) + 1 ⩽ s(G).

Case 2: (Outwards only) Without loss of generality, suppose that the
edge {u, v} is swept in an earlier step than the edge {v, w} in B. Since no
edges of G are re-swept in B, there must be 4 or more batteries initially
placed at v in B so that B can sweep edges {u, v} and {v, w}.

Let B′ be a safe-sweeping process of G′ which has 3 more batteries initially
placed at w than in B, and follows the same battery assignment elsewhere
along with the same sweeping steps as in B for edges that G and G′ have
in common until B sweeps {u, v}. At the step when B sweeps {u, v}, B′

shall sweep the edge {u,w} from w to u. This adjustment ensures that
after this step, u and w have at least as many batteries in B′ as they
would in B after the sweeping of {u, v}. Note that this is true before
and after the sweeping of edge {v, w} in B. Therefore, B′ can continue
sweeping edges in the same direction and order as in B. Consequently, B′

is a complete safe-sweeping process; and because v is not present in G′,
B′ uses at most s(G) − 1 batteries. Hence, s(G′) + 1 ⩽ s(G).

Next, we will show that s(G) ⩽ s(G′) + 1. Let B′ be an optimal complete
safe-sweeping process of G′, and without loss of generality suppose that
edge e = {u,w} in G′ is swept from u to w in B′. Let B be a safe-sweeping
process of G which assigns the same number of batteries as B′ does to the
vertices that G and G′ have in common; additionally, B places 1 battery
at v. We impose that B follows the same edge-sweeping steps as in B′ with
the only difference that when B′ sweeps e in G′, B shall sweep the edges
incident with v in G unidirectionally from u to v and then from v to w.
Observe that B is a complete safe-sweeping process of G which uses exactly
1 more battery than B′; consequently, we have s(G) ⩽ s(G′) + 1.

We have shown s(G′) + 1 ⩽ s(G) and s(G) ⩽ s(G′) + 1; hence

s(G) = s(G′) + 1.

Lemma 2.11 implies that the presence of each vertex of degree 2 in a
graph (other than possibly those on components that are loops or multiple
edges) increases the safe-sweep number of the associated graph by exactly
1. Therefore, to find s(G) of a given graph G, we may apply Lemma 2.11
until we obtain a graph G′ which has no vertices of degree 2 (other than

Safe-sweep number of graphs

103



possibly those on components that are loops or multiple edges), and study
s(G′) instead.

3 Main results

In this section, we present our main result (Theorem 3.4) which determines
the safe-sweep number of trees, along with an algorithm for finding an
optimal complete safe-sweeping process for any given tree. Before we state
and prove our main result, first we determine the safe-sweep number of
stars.

Theorem 3.1. Let K1,k be the star with k ⩾ 1 edges. Then, s(K1,k) =⌈
4k
3

⌉
.

Proof. Let B be an optimal complete safe-sweeping process of K1,k. By
Lemma 2.8, we may assume that B does not re-sweep edges. Note that all
edges in K1,k are pendant edges. In B, we will denote by outB(K1,k) the
number of edges in K1,k that are swept outwards from the central vertex.
Similarly, we will denote by inB(K1,k) the number of edges in K1,k that are
swept inwards to the central vertex.

Each time B sweeps an edge e of K1,k outwards, the number of batteries
at the central vertex goes down by 2, while 1 battery is added to the cor-
responding leaf incident with e. Since B does not re-sweep edges, such a
battery never moves again in B, and it contributes 1 to exB(K1,k). There-
fore, by Lemma 2.1,

sB(K1,k) ⩾ |E(K1,k)| + outB(K1,k) = k + outB(K1,k). (I)

Note that outB(K1,k) = k−inB(K1,k). By substituting this identity into (I),
we obtain

sB(K1,k) ⩾ 2k − inB(K1,k). (II)

Observe that any edge e of K1,k to be swept inwards requires two batteries
to be initially placed in B at the leaf incident with e. Therefore,

sB(K1,k) ⩾ 2 · inB(K1,k). (III)

From (II) and (III), we obtain

s(K1,k) = sB(K1,k) ⩾ max{2k − inB(K1,k), 2 · inB(K1,k)}. (IV)

Safe-sweep number of graphs

104



Routine computations reveal that the minimum value of the lower bound

in ((IV)) is obtained when inB(K1,k) =
⌊
2k
3

⌋
, yielding the minimum value

⌈
4k
3

⌉
. Hence, we obtain

s(K1,k) ⩾
⌈4k

3

⌉
. (V)

In the remainder of the proof, for each positive integer k, we describe a

complete safe-sweeping process B of K1,k that uses exactly
⌈
4k
3

⌉
batteries.

This is done in three parts, by considering k ≡ 0 (mod 3), k ≡ 1 (mod 3)
and k ≡ 2 (mod 3) in turn.

k ≡ 0 (mod 3): Consider three edges of K1,k. Choose two of them to be
swept inwards. This allows the last edge to be swept outwards with no
additional battery. Four batteries are used to sweep three edges. Thus, B
requires 4k

3 batteries in total, which is equal to
⌈
4k
3

⌉
since k ≡ 0 (mod 3).

k ≡ 1 (mod 3): All but one edge of K1,k may be bundled into triples and
swept accordingly as was described in the previous case. We may sweep
the remaining edge outwards by placing two batteries initially in B at the

corresponding leaf. Therefore, B requires 4(k−1)
3 + 2 batteries, which is

equal to
⌈
4k
3

⌉
, since k ≡ 1 (mod 3).

k ≡ 2 (mod 3): All but two edges of K1,k may be bundled into triples and
swept accordingly as was described in the first case. To sweep the remaining
two edges, we may initially place in B one battery at the central vertex and
two batteries at the leaf incident with one of these two edges. Sweep the
edge with two batteries at the corresponding leaf inwards (towards the
central vertex). Now the central vertex has two batteries which allows B
to sweep the other edge outwards. Note that B uses 4(k−2)

3 + 3 batteries,

which is equal to
⌈
4k
3

⌉
, since k ≡ 2 (mod 3).

For all k ⩾ 1 we have described a complete safe-sweeping process of K1,k

that uses exactly
⌈
4k
3

⌉
batteries, thereby finishing the proof.

A tree is said to be starlike if it has exactly one vertex of degree greater
than 2. Theorem 3.1 can be further generalized to starlike trees.

Safe-sweep number of graphs

105



Corollary 3.2. Suppose that a starlike tree S has p vertices of degree 2.

Then, s(S) =
⌈
4m
3

⌉
+ p where m is the degree of the only vertex in S with

degree greater than 2.

Proof. By repeatedly applying Lemma 2.11 to S until all p vertices of degree
2 disappear, we obtain a star with m edges. Then, by Lemma 2.11 we have

s(S) = s(K1,m) + p, which is equal to
⌈
4m
3

⌉
+ p by Theorem 3.1.

Observation (⋆): Let B be a complete safe-sweeping process on a graph
G without loops such that no edges are re-swept in B. For any v ∈ V (G),
if v has no batteries at both the beginning and end of process B, then
deg(v) ≡ 0 (mod 3).

Proof of Observation: Let B and G be as described above, and suppose
that v ∈ V (G) has no batteries at both the beginning and end of process B.
Since v has no batteries at the beginning of B, inB(v) ⩾ 2·outB(v). Suppose
that inB(v) > 2 · outB(v). Then, v will have batteries remaining at the end
of process B, which is a contradiction. Therefore, inB(v) = 2 · outB(v).
Consequently, since no edges are re-swept in B, deg(v) ≡ 0 (mod 3). □

The next theorem is the key result towards determining the safe-sweep
number of trees.

Theorem 3.3. Let G be a graph without loops. Suppose that there is
u ∈ V (G) such that degG(u) = 1. Let G′ = G − u and w be the unique
neighbour of u in G. Then,

s(G) =

{
s(G′) + 1 if degG′(w) ̸≡ 0 (mod 3)

s(G′) + 2 if degG′(w) ≡ 0 (mod 3).

Proof. Let G be a graph without loops. Suppose that there is u ∈ V (G)
such that degG(u) = 1, and let w be the unique neighbour of u in G. Let
G′ = G − u. Consider an optimal complete safe-sweeping process B on G
that does not re-sweep edges. Since degG(u) = 1, either u initially has 2
batteries (edge {u,w} is swept from u to w) or has 1 battery at the end of
the process (edge {u,w} is swept from w to u).

In the former case, move a battery from u to w and delete u along with the
battery remaining at it to create B′ where apart from the sweeping of the

Safe-sweep number of graphs

106



edge {u,w}, the sweeping ordering is the same as in B. Clearly B′ forms an
optimal complete safe-sweeping process on G′ that uses s(G)− 1 batteries.

In the latter case, delete u from G and form B′ from B by placing the same
amount of batteries on the remaining vertices and sweeping in the same
ordering. Then, B′ is a complete safe-sweeping process on G′ that uses
s(G) batteries. Note that B′ leaves w with 2 batteries at the end of the
process. By Lemma 2.6, B′ is not optimal. Thus, s(G′) < s(G). So, in
either case s(G′) ⩽ s(G) − 1.

In the case that degG′(w) ≡ 0 (mod 3), we can further reduce the bound to
s(G′) ⩽ s(G) − 2. To see this, suppose that degG′(w) ≡ 0 (mod 3). Then,
degG(w) ̸≡ 0 (mod 3), and by Observation (⋆) we know that w either has
at least 1 battery initially or has 1 battery at the end of process B in G.

Case 1: Suppose there is a battery at w at the end of B. If {u,w} is
swept from u to w in B, then u initially had 2 batteries. Thus (u,w)
is a battery path of w in G. By Lemma 2.9, we can move 2 batteries
from u to w and obtain a complete safe-sweeping process for G with the
same number of batteries where the edge {u,w} is swept from w to u.
We may suppose that {u,w} is the last edge to be swept in this new
process. We can then delete u and remove 2 batteries from w to obtain a
complete safe-sweeping process in G′ that uses two fewer batteries than
B. Otherwise, suppose that {u,w} is swept from w to u in B. Let B′ be
the complete safe-sweeping process in G′ that has the same ordering of
edge-sweepings as in B (apart from the sweeping of {u,w}). Without loss
of generality, we may suppose that {u,w} is the last edge that B sweeps
in G; hence, at the end of B′ there are at least 3 batteries at w. If w
had 2 or more batteries at the beginning of B′, then delete 2 batteries
from w. Otherwise, consider a battery path P for w in B′ along with an
ordering of edge-sweepings EB′,P associated to P in B′ (as defined in the
observation preceding Example 2.5). We may suppose that the edges in
EB′,P are swept at the end of process B′. (Note that before any of these
edges are swept in B′, there are at least 2 batteries at w.) By Lemma
2.9, we may reverse the directions and the ordering of the edge-sweepings
induced by P and form E−1

B′,P accordingly; move 2 batteries from the first
vertex of P to w, and then delete 2 batteries from w to obtain a complete
safe-sweeping process on G′ that uses 2 fewer batteries than B.

Case 2: Now suppose that there is a battery at w at the beginning of B.
We may assume that there are no batteries remaining at w at the end
of B (because this situation is handled in Case 1). Since degG′(w) ≡ 0
(mod 3), we have degG(w) ≡ 1 (mod 3). Consequently, in G, inB(w) ⩽

Safe-sweep number of graphs

107



2 · outB(w) − 2 and there are at least 2 batteries at w initially in B. If
{u,w} is swept from w to u, then delete u and remove 2 batteries from
w. It is then easy to see that G′ admits a complete safe-sweeping process
that uses 2 fewer batteries than B. Otherwise, suppose that {u,w} is
swept from u to w, then there are 2 batteries at u initially. Delete u
along with the 2 batteries it has, and add 1 battery to w to form B′ on
G′ where all edge-sweepings follow the same ordering as in B (apart from
the sweeping of {u,w}). Consider an edge e incident with w in G′ that is
swept away from w in B′. Consider a battery path P in B′ (or a maximal
subpath P of a battery path) such that P begins at w and contains e.
By the observation preceding Example 2.5, we may suppose that edges
in EB′,P are swept at the beginning of process B′. Remove 3 batteries
from w, add 2 batteries to the last vertex of P . Then, applying Lemma
2.9 results in a complete safe-sweeping process that uses 2 fewer batteries
than B does, where the directions and the ordering of the edge-sweepings
induced by P are reversed.

For the other direction, let B′ be an optimal complete safe-sweeping process
on G′ that does not re-sweep edges. Observe that one of three situations
occurs: w has 1 battery at the end of the process; w begins the process
with at least 1 battery; or w begins and ends with no batteries. In the
first situation, we may use the same initial distribution of batteries on G
as G′, except that we add 1 additional battery to w. The ordering of edge-
sweepings may remain the same for G as G′, except that the edge {u,w}
is swept in G at the end (from w to u). Thus, there is a complete safe-
sweeping process for G that uses s(G′)+1 batteries. In the second situation,
we may use the same initial distribution of batteries on G as G′, except that
we move 1 battery from w to u, and add 1 additional battery to u. The
ordering of edge-sweepings may remain the same for G as G′, except that
the edge {u,w} is swept in G at the beginning (from u to w). Thus, there is
a complete safe-sweeping process for G that uses s(G′) + 1 batteries. Note
that by Observation (⋆), if degG′(w) ̸≡ 0 (mod 3) then the third situation
does not occur and the above arguments force s(G) = s(G′) + 1. However,
if degG′(w) ≡ 0 (mod 3), then in the third situation we may use the same
initial distribution of batteries on G as G′, except that we add 2 batteries
to u. The ordering of edge-sweepings may remain the same for G as G′,
except that the edge {u,w} is swept in G at the beginning (from u to w).
Thus, there is a complete safe-sweeping process for G that uses s(G′) + 2
batteries; and coupled with an earlier argument, we obtain s(G) = s(G′)+2
when degG′(w) ≡ 0 (mod 3).

Safe-sweep number of graphs

108



Theorem 3.4. Let T be a non-empty tree. Then,

s(T ) = |E(T )| +
∑

v∈V (T )

⌊degT (v) − 1

3

⌋
+ 1.

Proof. First, note that the result coincides with Theorem 3.1 if T is a

star. Suppose that s(T ′) = |E(T ′)| +
∑

v∈V (T ′)

⌊
degT ′ (v)−1

3

⌋
+ 1 for all

trees T ′ with k ⩾ 1 edges. Consider a tree T with k + 1 edges. Let u
be a leaf in T and w be its unique neighbour. Then by Theorem 3.3,

s(T ) = |E(T − u)| +
∑

v∈V (T−u)

⌊
degT−u(v)−1

3

⌋
+ 1 + 1 if degT−u(w) ̸≡ 0

(mod 3), and s(T ) = |E(T − u)| +
∑

v∈V (T−u)

⌊
degT−u(v)−1

3

⌋
+ 1 + 2 if

degT−u(w) ≡ 0 (mod 3).

Note that |E(T )| = |E(T − u)| + 1. Also, if degT−u(w) ̸≡ 0 (mod 3), then

∑

v∈V (T )

⌊degT (v) − 1

3

⌋
=

∑

v∈V (T−u)

⌊degT−u(v) − 1

3

⌋
;

and if degT−u(w) ≡ 0 (mod 3), then

∑

v∈V (T )

⌊degT (v) − 1

3

⌋
=

∑

v∈V (T−u)

⌊degT−u(v) − 1

3

⌋
+ 1.

Hence, in either case we obtain

s(T ) = |E(T )| +
∑

v∈V (T )

⌊degT (v) − 1

3

⌋
+ 1.

Optimal complete safe-sweeping algorithm for trees

While Theorem 3.4 completely determines the safe-sweep number for trees
and along with Theorem 3.3 implicitly describes a procedure for finding an
optimal complete safe-sweeping process for trees, it is worthwhile to present
an algorithm that does so explicitly. This is accomplished next.

By Lemma 2.11, we may suppose that there are no vertices of degree 2 in
T . (Note that contracting degree 2 vertices in a tree does not create loops
or multiple edges.) So, suppose that T has at least three edges. Now choose
an arbitrary vertex of T to be the root of a rooted tree representation of

Safe-sweep number of graphs

109



T , and give it label 0.1. Arrange the children of the root in such a way as
to have a longest root-leaf path lie on the right-most branch of the rooted
tree. From left to right, vertices on lower levels will have the same label
prefix as their parent vertex but with an additional number at the end that
increments. For example, the child vertices of the root will have labels 0.11,
0.12, 0.13, and so on. If a vertex has more than 10 child vertices, change
the radix to a larger base in order to accommodate for it. See Figure 4.

0.1

0.12

0.11

0.1130.1120.111

0.13

0.131

0.132

0.1321 0.1322

Figure 4: Labelling the vertices of T .

Let A be the following algorithm. Consider the unswept edge e incident
with the leaf with the lowest label, say v, which is adjacent to a vertex u. If
u already has 2 batteries and v does not, sweep e from u to v. Otherwise,
place enough batteries (0, 1 or 2) on v to be able to sweep e from v to u.
When all of the pendant edges incident with u are swept, u is considered a
leaf. Repeat the process until all edges have been swept. This safe-sweeping
process has a few key properties, which we are listing below as Observation
1, Observation 2 and Observation 3.

Observation 1: Let v be the internal vertex with largest label, and suppose
deg(v) = k + 1. Then, the last k + 1 edges swept by A induce a star with
centre v.

Proof of Observation 1: The result is immediate if T is a star; so, let T be
a tree that is not a star.

Safe-sweep number of graphs

110



Suppose there exists a path of length at least 2 from v down to a lower
level of the rooted tree. The next vertex on that path after v would be an
internal vertex with a larger label than v, contradicting v being the internal
vertex with largest label. Therefore, the edges incident with v induce a
star where exactly k edges, labelled e1, e2, . . . , ek, are incident with leaves
v1, v2, . . . , vk respectively. Since v is the internal vertex with largest label,
one of vi (1 ⩽ i ⩽ k) has the largest label in T . Without loss of generality,
assume the labels of v1, v2, . . . , vk are in ascending order. Label the unique
non-leaf vertex adjacent to v as vertex u, and let edge e = {u, v}.

Let T ′ be the graph induced by the unswept edges of T at any step in the
algorithm A. At each step of A, the lowest labelled leaf in T ′ is removed
from T ′. Therefore, T ′ is never disconnected; it is a tree.

Suppose there exists an edge that is not incident with v such that A sweeps
it after edge ei for some i, 1 ⩽ i ⩽ k. Let e′ be the first such edge swept by
A. The internal vertex incident with e′ has a smaller label than v, and the
leaf in T ′ incident with e′ has a smaller label than vi. This contradicts the
assumption that e′ would be swept after ei for some i, 1 ⩽ i ⩽ k. Hence,
it must be the case that the last k edges swept by A are the edges incident
with v and a leaf.

Now consider the step where e is swept. Either u or v must be a leaf in
T ′ at this point. If v is a leaf, then A must have swept e1, . . . , ek before
sweeping e, contradicting our result that the edges incident to a leaf and v
are swept last. So, u is a leaf in T ′ (and v is not). Then, e is the last edge
A sweeps before sweeping e1, . . . , ek, because otherwise sweeping e would
disconnect T ′.

We conclude that all k + 1 edges incident with v are collectively the last
edges A sweeps and they form a star.

Observation 2: Let v be the internal vertex in T with the largest label.
Then, the last edge swept by A is e = {v, x} where x is the leaf with the
largest label in T , and it is swept towards x.

Proof of Observation 2: By Observation 1, the star induced by the edges
incident with v are the last edges swept by A. Consequently, e = {v, x} is
the last edge swept. When all the other edges are swept, v becomes a leaf
in T ′. Since x does not receive batteries from prior edge-sweepings in A
and v has smaller label than x, A will sweep e from v towards x.

Safe-sweep number of graphs

111



Observation 3: Let v be the internal vertex in T with the largest label,
and u be the vertex with the smallest label adjacent to v. Then, A sweeps
e = {u, v} from u towards v.

Proof of Observation 3: From Observation 1, e = {u, v} is the first edge
incident with v that is swept. Since v is not a leaf at the step when e is
swept and no other edges incident with v have been swept, v currently does
not have 2 or more batteries. Therefore, A will sweep e from u to v.

We shall now proceed by induction on the number of edges of T to show

that A uses only |E(T )|+∑
v∈V (T )

⌊
deg(v)−1

3

⌋
+1 batteries. We will denote

by sA(T ) the number of batteries used in the algorithm A until all edges
of T are swept.

Suppose that A produces a complete safe-sweeping process using exactly

|E(T )|+∑
v∈V (T )

⌊
deg(v)−1

3

⌋
+ 1 batteries for any tree T with m ⩾ 3 edges.

Consider a tree T with m+1 edges. Let x be the leaf with the largest label
and v be the internal vertex adjacent to x. Suppose v has degree k+ 1. By
Observation 2, {v, x} will be the last edge swept by A.

T − x is a tree with m edges. Suppose w is the leaf with the largest label
in T − x. By the induction hypothesis,

sA(T − x) = |E(T − x)| +
∑

v∈V (T−x)

⌊degT−x(v) − 1

3

⌋
+ 1

= |E(T )| +
∑

v∈V (T−x)

⌊degT−x(v) − 1

3

⌋
.

By Observation 3, the first edge incident with v in T to be swept will be
swept towards v. In what follows, we may consider that edge to have been
swept and hence bringing one battery to v.

By Observation 1, the last k edges swept in T − x form a star at v. It will
suffice to consider the congruence classes of k modulo 3 to see by how much
sA(T ) differs from sA(T − x). Note that for every 2 edges that A sweeps
towards v, the next pendant edge incident with v is swept from v.

Case 1: Suppose k ≡ 0 (mod 3). There will be zero batteries left at v
after the sweeping of all pendant edges incident with v in T −x. Hence in

Safe-sweep number of graphs

112



T , A will place 2 batteries at v to sweep the edge incident with x. Thus,

sA(T ) = sA(T − x) + 2

= |E(T − x)| +
∑

v∈V (T−x)

⌊degT−x(v) − 1

3

⌋
+ 1 + 2

= |E(T )| +
∑

v∈V (T−x)

⌊degT−x(v) − 1

3

⌋
+ 2.

Observe that
⌊
k
3

⌋
− 1 =

⌊
k−1
3

⌋
, when k ≡ 0 (mod 3); so,

∑

v∈V (T−x)

⌊degT−x(v) − 1

3

⌋
=

∑

v∈V (T )

⌊degT (v) − 1

3

⌋
− 1,

giving us sA(T ) = |E(T )| +
∑

v∈V (T )

⌊
degT (v)−1

3

⌋
+ 1 as desired.

Case 2: Suppose k ≡ 1 (mod 3). In T − x, A places 2 batteries at v in
order to sweep the edge incident with w (from v to w). In T , since v is
also adjacent with x, those batteries are instead placed at w and the edge
is swept towards v. This means A will only have to place 1 battery at v
to sweep the last edge from v to x. Thus,

sA(T ) = sA(T − x) + 1

= |E(T − x)| +
∑

v∈V (T−x)

⌊degT−x(v) − 1

3

⌋
+ 1 + 1

= |E(T )| +
∑

v∈V (T−x)

⌊degT−x(v) − 1

3

⌋
+ 1.

Observe that
⌊
k
3

⌋
=

⌊
k−1
3

⌋
, when k ≡ 1 (mod 3); so,

∑

v∈V (T−x)

⌊degT−x(v) − 1

3

⌋
=

∑

v∈V (T )

⌊degT (v) − 1

3

⌋
,

giving us sA(T ) = |E(T )| +
∑

v∈V (T )

⌊
degT (v)−1

3

⌋
+ 1 as desired.

Case 3: Suppose k ≡ 2 (mod 3). In T−x, A places 1 battery at v to sweep
from v towards w since at that step v has already received a battery from
an earlier edge-sweeping. In T , since v is also adjacent to x, A places
2 batteries at w and sweeps from w towards v. The edge {v, x} is then

Safe-sweep number of graphs

113



swept at no additional cost from v to x since v already received 2 batteries
from earlier edge-sweepings. Thus,

sA(T ) = sA(T − x) + 1

= |E(T − x)| +
∑

v∈V (T−x)

⌊degT−x(v) − 1

3

⌋
+ 1 + 1

= |E(T )| +
∑

v∈V (T−x)

⌊degT−x(v) − 1

3

⌋
+ 1.

Observe that
⌊
k
3

⌋
=

⌊
k−1
3

⌋
when k ≡ 2 (mod 3); so,

∑

v∈V (T−x)

⌊degT−x(v) − 1

3

⌋
=

∑

v∈V (T )

⌊degT (v) − 1

3

⌋
,

giving us sA(T ) = |E(T )| +
∑

v∈V (T )

⌊
degT (v)−1

3

⌋
+ 1 as desired.

We finish with a simple result where we utilize edge-decompositions to
obtain an upper bound on s(G) for any simple graph G. First we need the
following well-known theorem, a proof of which can be found for example
on page 29 of [9].

Theorem 3.5. A connected graph with 2k odd vertices admits an edge-
decomposition into k edge-disjoint trails.

Theorem 3.6. Let G be a graph with 2k (k ⩾ 1) vertices of odd degree.
Then, s(G) ⩽ |E(G)| + k.

Proof. Let G be a graph with 2k vertices of odd degree. By Theorem 3.5,
G can be decomposed into k edge-disjoint trails W1, . . . ,Wk. For each i
(1 ⩽ i ⩽ k), place 2 batteries at one of the two end-vertices of Wi and 1
battery at each interior vertex of Wi; and sweep edges along Wi starting
at the vertex that received 2 batteries. Doing so produces a complete safe-
sweeping process of G with |E(G)| + k batteries.

Note that this bound is clearly not tight. For example, it implies that
s(K1,5) ⩽ 8; however, s(K1,5) = 7 by Theorem 3.1.

Safe-sweep number of graphs

114



Acknowledgements

The authors would like to thank the anonymous referee for their careful
review of the paper and for their comments that significantly shortened
and improved the proof of the main result. We truly appreciate their time.

References

[1] F.R.K. Chung, Pebbling in Hypercubes, SIAM J. Discrete Math. 2(4)
(1989), 467–472.

[2] S. Gaspers, M.-E. Messinger, R. J. Nowakowski and P. Pra lat, Clean
the graph before you draw it!, Inform. Process. Lett. 109(10) (2009),
463–467.

[3] S. Gaspers, M.-E. Messinger, R.J. Nowakowski and P. Pra lat, Paral-
lel cleaning of a network with brushes, Discrete Appl. Math. 158(5)
(2010), 467–478.

[4] G. Hurlbert, A survey of graph pebbling, Congr. Numer. 139 (1999),
41–64.

[5] G. Hurlbert, Recent progress in graph pebbling, Graph Theory Notes
N. Y. 49 (2005), 25–37.

[6] G. Hurlbert, General graph pebbling, Discrete Appl. Math. 161(9)
(2013), 1221-1231.

[7] S. McKeil, Chip firing cleaning processes, Master’s thesis, Dalhousie
University 2007.

[8] M.-E. Messinger, R.J. Nowakowski and P. Pra lat, Cleaning a network
with brushes, Theoret. Comput. Sci. 399(3) (2008), 191–205.

[9] O. Ore, Graphs and their uses, Mathematical Association of America
2nd edition, 1990.

Jesse Niyo
Trent University, Peterborough, ON, Canada
jesseniyo@trentu.ca

Aras Erzurumluoğlu
Trent University, Peterborough, ON, Canada
araserzurumluoglu@trentu.ca

Safe-sweep number of graphs

115


