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A tale of two graphs

Gary Chartrand and Ping Zhang∗

Once upon a time – well, actually in 1988, an article by the British author
and mathematics educator David Wells [13] appeared in the journal The
Mathematical Intelligencer that asked the readers to evaluate 24 theorems
he listed for their beauty. Two years later, Wells [14] reported the outcome
of this survey. The theorem that came out on top was eπi+1 = 0, a theorem
by the famous Swiss mathematician Leonhard Euler (1707–1783) that gives
an amazing relationship among perhaps the five most important numbers
0, 1, π, e, i in all of mathematics. The theorem that came in second was
another theorem by Euler, often known as the Euler polyhedron formula
(which is actually an identity rather than a formula).

The Euler identity

For any polyhedron with V vertices, E edges, and F faces,

V − E + F = 2.

The Euler identity is illustrated in Figure 1 for the tetrahedron, cube, and
octahedron.

Euler reported this observation to the German mathematician Christian
Goldbach (1690–1764) in a letter dated November 14, 1750. (Goldbach
is famous for his conjecture that every even integer greater than 2 is the
sum of two primes.) This identity only appeared in print (using different
notation) two years later (in 1752) in two papers by Euler. In the first of
these two papers, Euler stated that he was unable to give a proof of the
identity. In the second paper, however, he presented a proof by dissecting
polyhedra into tetrahedra. While his proof was clever, it contained flaws.
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tetrahedron cube octahedron

V = 4, E = 6, F = 4 V = 8, E = 12, F = 6 V = 6, E = 12, F = 8
V−F+F=4−6+4=2 V−F+F=8−12+6=2 V−F+F=6−12+8=2

Figure 1: The tetrahedron, cube and octahedron

The first generally accepted complete proof of this identity was obtained
by the famous French mathematician Adrien-Marie Legendre (1752–1833),
who is one of 72 engineers, scientists, and mathematicians whose names are
engraved on the Eiffel Tower in Paris.

This identity not only holds for polyhedra, it holds for more general struc-
tures. It has a prominent place in the area of graph theory. A graph G is
planar if G can be drawn in the plane without any of its edges crossing.
For example, the graph G in Figure 2(a) can be drawn as in Figure 2(b) so
that none of its nine edges cross, and so G is planar.
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Figure 2: A planar graph

If G is a connected planar graph (that is, there is a path between every two
vertices of G) with n vertices, m edges, and r regions (including the exterior
region), then the Euler identity can be restated for connected planar graphs.

Theorem 1 (The Euler identity). If G is a connected planar graph with n
vertices, m edges, and r regions, then n−m+ r = 2.
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The three polyhedra in Figure 1 can be represented as the planar graphs
shown in Figure 3, where one face corresponds to the exterior region of the
graph.

graph of the tetrahedron graph of the cube graph of the octrahedron

Figure 3: The graphs of the tetrahedron, cube and octahedron

This is the story of two graphs, however, where both graphs entered math-
ematical history separately and with little fanfare but together turned out
to have great relevance in graph theory. These two graphs appeared during
attempts to solve two recreational problems, each of which occurred long
ago.

The famous German mathematician August Ferdinand Möbius (1790–1868)
is probably best known for the Möbius strip, an object that can be con-
structed from a rectangular piece of paper by twisting one end through
180 degrees and then gluing the two ends together. This object has only
one side. While described by Möbius in late 1858, it turns out that it had
already been constructed earlier by Johann Benedict Listing (1808–1882),
another German mathematician and doctoral student of the famous Carl
Friedrich Gauss (1777–1855), who was the first to use the term “topology”
in mathematics. Benjamin Gotthold Weiske (1783–1836), a literary scholar
and friend of Möbius, mentioned a certain problem to Möbius who stated
the problem in a geometry lecture he gave in 1840. Here is the problem.

The five princes problem

Long ago, there was a kingdom ruled by a king who had five sons. It was
the king’s wish that upon his death, this kingdom should be divided into
five regions, one region for each son, in such a way that each region would
have a boundary in common with each of the other four regions. Can this
be done?
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It is actually quite easy to almost solve this problem quickly. For example,
the kingdom might be divided into the five regions numbered 1, 2, 3, 4, 5,
as shown in Figure 4.

5

1

2

3 4

Figure 4: Attempting to solve the five princes problem

In the attempted solution of the Five Princes Problem indicated in Figure 4,
every two of the five regions share a common boundary, except regions 3
and 5. So, we are close to a solution but not quite there. In order to give
a solution to the problem, we turn to mathematics and to graph theory.
Suppose, as the king asked, that the kingdom could be divided into five
regions in the desired manner. Then something else would have to be true.
Place a point in each region and join two points by a line or curve that
passes over the boundary these two regions have in common. This could
therefore be done without any two lines or curves crossing each other. Such
a point placement is shown in Figure 5 for the attempted solution of the
Five Princes Problem given in Figure 4.

1

1

3
4

5

2

3

4
5

2

Figure 5: Modeling the kingdom by a graph

If it is possible to divide the kingdom into five regions with this property,
then what we have just constructed is a planar graph with five vertices
where every two vertices are joined by an edge. If all has gone well, then
there are ten edges in all and no two edges cross. With the attempted
solution in Figure 5, there appears to be no way to join vertices 3 and 5
by an edge without two edges crossing. The graph of interest is shown in
Figure 6. This graph is commonly denoted by K5 and called the complete

tale of two graphs

33



graph of order 5. This graph has order 5 and size 10 (5 vertices and 10
edges). (The graph of the tetrahedron in Figure 3 is the complete graph K4

of order 4.) If the kingdom in the Five Princes Problem can be divided
into five regions as desired, then the graph K5 would have to be planar.
However, if the graph K5 were planar, it would have to satisfy the Euler
identity (Theorem 1). Since K5 has n = 5 vertices, m = 10 edges, and r
regions, it follows that n − m + r = 2 and so 5 − 10 + r = 2. Therefore,
r = 7. Let’s add the number of edges on the boundary of each region.
Since each edge lies on the boundary of two regions, every edge is counted
twice and this resulting sum is 2m = 20. However, there are at least
three edges on the boundary of each region and so the sum we obtain is
at least 3r = 21. Therefore, 2m ≥ 3r and so 20 ≥ 21, which, of course, is
impossible. Thus, K5 is nonplanar and the king’s wishes cannot be fulfilled.

1

2

34

5

Figure 6: The complete graph K5 of order 5

We now turn our attention to a second problem – and a second graph.

The three utilities problem

Once there were three houses under construction and each house required
connections to each of three utilities, namely, water, electricity and natural
gas. Each utility provider requires a direct line from the utility terminal to
each house without passing through another provider’s terminal or another
house along the way. Furthermore, all three utility providers need to bury
their lines at the same depth underground without any lines crossing. Can
this be done?
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While the origin of this problem is unknown, what is known is that this
problem dates back more than a century and evidently first appeared in
print in a 1913 article written by the British author and puzzle-maker
Henry Ernest Dudeney [4] for the Strand Magazine. Dudeney belonged to
a literary circle in England that included Sir Arthur Conan Doyle, creator of
the fictional detective Sherlock Holmes. Four years later (in 1917), Dudeney
stated in his book Amusements in Mathematics that this problem is as “old
as the hills”.

The three utilities problem is quite clearly a problem in graph theory. The
three houses A, B, C and the three utilities w, e, and g (for water, electricity
and natural gas, respectively) indicated in Figure 7 is essentially a graph.

?
?

A B C

w e g

Figure 7: The three utilities problem

This problem is then represented by the graph of Figure 8, denoted by
K3,3, called the complete bipartite graph of order 6 and size 9 whose six
vertices are divided into two sets {A, B, C} and {w, e, g} of three vertices
each where there is an edge between two vertices if and only if the vertices
belong to different sets.

As with the attempted solution of the Five Princes Problem involving the
graph K5, the Three Utilities Problem asks whether the graph K3,3 is
planar. We nearly have a solution to the Three Utilities Problem with
the graph K3,3 in Figure 8, where only the utility line (edge) joining the
vertices A and g is missing. However, there appears to be no way to add this
edge without two edges crossing. Suppose that the graph K3,3 is planar.
It too would have to satisfy the Euler identity. Since K3,3 has n = 6
vertices, m = 9 edges, and r regions, we must have n −m + r = 2 and so
6 − 9 + r = 2. Therefore, r = 5. In this situation, it is impossible to have
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A B C

w e g

Figure 8: The graph modeling the three utilities problem

a triangular region in any drawing of K3,3 in the plane and so there must
be at least four edges on the boundary of each region. We now proceed
as we did with K5 and add the number of edges on the boundary of each
region over all r regions. Because each edge lies on the boundary of two
regions, every edge is counted twice in the sum and the resulting sum is
2m. On the other hand, since there are at least four edges on the boundary
of each of these r regions, the sum we obtain must be at least 4r and so
2m ≥ 4r. However, m = 9 and r = 5; so 2m = 18 ≥ 20 = 4r, which
is impossible. Thus, the desired connection between the three houses and
the three utilities is impossible, which also means that the graph K3,3 is
nonplanar.

What we have now seen is that the two graphs K5 and K3,3 are both
nonplanar. These graphs are shown in Figure 9 and drawn in their typical
manner.
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Figure 9: The two nonplanar graphs K5 and K3,3

tale of two graphs

36



The graphs K5 and K3,3 are not only nonplanar, it is clear that any graph
containing either of these two graphs as a subgraph is also nonplanar. Fur-
thermore, there are graphs similar to K5 and K3,3 that are also nonplanar,
such as the graphs in Figure 10. A graph G is a subdivision of K5 or K3,3

if G is either K5 or K3,3 or can be obtained from one of these graphs by
inserting vertices of degree 2 into one or more edges of the graph. Thus,
the graphs in Figure 10 are subdivisions of K5 and K3,3.
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Figure 10: Subdivisions of K5 and K3,3

Quite clearly then, a graph G is not only nonplanar if it contains K5 or K3,3

as a subgraph but it is nonplanar if it were to contain a subdivision of either
of these two graphs. This, however, brings up a natural question. If a graph
is nonplanar, must it contain a subdivision of K5 or K3,3? It was thought
that the answer to this question is yes and later it was shown that this is
indeed the case. The first published proof of this fact was given in 1930 by
the Polish topologist Kazimierz Kuratowski (1896–1980), thereby resulting
in the following theorem.

Theorem 2 (Kuratowski’s theorem). A graph is planar if and only if it
contains no subgraph that is a subdivision of K5 or K3,3.

This theorem was first announced in 1929 and the title of Kuratowski’s
paper is “Sur le problème des courbes gauches en topologie” whose English
translation is “On the problem of skew curves in topology”. This title
suggests, quite correctly, that the setting of Kuratowski’s theorem was in
topology, not graph theory. Nonplanar graphs were sometimes called skew
graphs at that time. The publication date of Kuratowski’s paper was critical
to having the theorem credited to him, for, as it turned out, later in 1930
the two American mathematicians Orrin Frink and Paul Althaus Smith
submitted a paper containing a proof of this result as well, but withdrew it
after they learned that Kuratowski’s paper had preceded theirs, although
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just barely. Frink and Smith [5] did publish a one-sentence announcement of
what they had done in the Bulletin of the American Mathematical Society
with the title Irreducible non-planar graphs. As the title indicates, the
setting for their proof was graph theory.

It is believed by some that a proof of this theorem may have been discov-
ered prior to Kuratowski’s proof by the Russian topologist Lev Semenovich
Pontryagin in his unpublished notes. However, since this possible proof
by Pontryagin did not satisfy the established mathematical practice of ap-
pearing in print in an accepted refereed journal, the theorem is credited to
Kuratowski [10] and to him alone. A more detailed discussion of this story
is given in [8].

For a period of time, the only published proof of this famous theorem
in graph theory was one expressed in topology rather than graph theory.
This changed in the early 1950s, however. The Danish mathematician
Gabriel Andrew Dirac (1925–1984) visited the University of Toronto during
the academic year 1952–53. In 1952, Dirac had published a paper giving
the first sufficient condition for a graph to be Hamiltonian, namely if the
degree of every vertex of a graph is at least half of its order, then G has a
Hamiltonian cycle. Dirac had a famous stepfather Paul Dirac. He and his
contemporary Albert Einstein are considered two of the most prominent
physicists of all time. In fact, Paul Dirac was a recipient of the 1933 Nobel
Prize in physics. The same year, 1952–53, that Dirac was in Toronto, a
graduate student in geometry from Pennsylvania State University went to
the University of Toronto as a post-graduate fellow to complete work on his
doctoral dissertation. His advisor, the famous geometer H. S. M. Coxeter,
was a faculty member there. This student was Seymour ‘Sy’ Schuster (1926–
2020), who had difficulty finding a place to live when he went to Toronto.
While there, seeking housing, Schuster met Dirac and after explaining his
plight, Dirac offered Schuster the opportunity to stay at his residence until
Schuster could find suitable housing. Dirac and Schuster, both in their 20s,
discussed mathematics together and the idea occurred of constructing a
proof of Kuratowski’s theorem of a strictly graph theoretic nature. This is,
in fact, what occurred and their published proof [3] appeared in 1954.

Only a few years after the publication of Kuratowski’s proof, another event
occurred involving the two graphs K5 and K3,3.

If two adjacent vertices u and v in a graph G are identified, then the edge
uv is said to be contracted. For the graph G of Figure 11, the graph
G′ is obtained by contracting the edge uv in G while G′′ is obtained by
contracting the edge wy in G′.
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Figure 11: Contracting an edge

A graphH is called a minor of a graph G if eitherH is isomorphic to G or is
isomorphic to a graph obtained from G by a succession of edge contractions,
edge deletions, and vertex deletions in any order. An immediate observation
is the following.

Theorem 3. If a graph G is a subdivision of a graph H, then H is a minor
of G.

From this theorem, the following corollary results.

Theorem 4. If G is a nonplanar graph, then K5 or K3,3 is a minor of G.

The German mathematician Klaus Wagner (1910–2000) received his Ph.D.
in 1936 from Universität zu Köln (University of Cologne). That year, 1936,
a book was published that is often considered the first textbook on graph
theory [9]. A much lesser known book on graph theory [11] was published
ten years earlier, however, by the French mathematician André Sainte-
Laguë. This 1926 book has been referred to as the zeroth book on graph
theory by Martin Golumbic [6]. The author of the 1936 book was Dénes
König (1884–1944), a Hungarian mathematician who was responsible for
many of his students becoming interested in graph theory, including Paul
Erdős, one of the best known mathematicians of the 20th century. Math-
ematician Paul Erdős and physicist Albert Einstein met only once and
discussed neither mathematics nor physics, but religion. One year later, in
1937, Wagner [12] was successful in showing that the converse of Theorem 4
was true as well, thereby giving a new characterization of planar graphs.

Theorem 5 (Wagner’s theorem). A graph G is planar if and only if neither
K5 nor K3,3 is a minor of G.
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Perhaps the best known graph in all of graph theory is the Petersen graph,
named for the Danish mathematician Julius Petersen (1839–1910). This cu-
bic graph (every vertex has degree 3) has a variety of interesting properties
and has shown to be a counterexample to many conjectures (see [1, 2, 7]).
This graph is shown in Figure 12.
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Figure 12: The Petersen graph

One property of the Petersen graph is that it’s nonplanar. This graph con-
tains a subgraph that is a subdivision of K3,3, as shown in Figure 13. While
the Petersen graph does not contain a subdivision of K5 as a subgraph, the
graph K5 is a minor of the Petersen graph, which is obtained by contracting
each of the five edges uivi, i = 1, 2, . . . , 5. This once again shows that the
Petersen graph is nonplanar. In fact, every cubic graph having K5 as a
minor must contain a subdivision of K3,3.
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Figure 13: A subdivision of K3,3 in the Petersen graph

It has been said that the notation K5 and K3,3 used for these two graphs as
well as all complete graphs and all complete bipartite graphs was chosen as
these were the initials of Kazimierz Kuratowski. As we look back at what
we’ve just seen, we now have the solution to another problem.
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For which nonplanar graphs is the sum of their order and size
minimum?

This minimum sum is 15 and there are two solutions to this problem. One
solution is K5. The other is K3,3.
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