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On local antimagic chromatic number of a
corona product graph

GEE-CHOON LAU AND MOVIRI NALLIAH*

Abstract. In this paper, we provide a correct proof for the lower bounds of
the local antimagic chromatic number of the corona product of friendship
and fan graphs with null graph respectively as in [On local antimagic vertex
coloring of corona products related to friendship and fan graph, Indon. J.
Combin., 5(2) (2021) 110-121]. Consequently, we obtained a sharp lower
bound that gives the exact local antimagic chromatic number of the corona
product of friendship and null graph.

1 Introduction

Let G = (V, E) be a finite, undirected graph with neither loops nor multiple
edges. The order and size of G are denoted by |V(G)| = p and |E(G)| = ¢
respectively. The friendship graph f, (n > 2) is a graph which consists of
n triangles with a common vertex. The fan graph F,, (n > 2) is obtained
by joining a new vertex to every vertex of a path P,. The corona product
of two graphs G and H is the graph G o H obtained by taking one copy
of G along with |V(G)| copies of H, and join the i-th vertex of G to every
vertex of the i-th copy of H, where 1 < i < |V(G)|. For integers a < b,
let [a,b] = {a,a+1,...,b}. For graph-theoretic terminology, we refer to
Chartrand and Lesniak [4].
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Hartsfield and Ringel [7] introduced the concept of antimagic labeling of
a graph. For a graph G, let f : E(G) — {1,2,...,q} be a bijection. For
each vertex u € V(G), the weight w(u) = }_.c p(,, f(€), where E(u) is the
set of edges incident to u. If w(u) # w(v) for any two distinct vertices u
and v € V(G), then f is called an antimagic labeling of G. Hartsfield and
Ringel conjectured that every connected graph with at least three vertices
admits antimagic labeling [7]. Interested readers can refer to [5,6].

Arumugam et al. in [1], and independently, Bensmail et al. in [3], posed
a new definition as a relaxation of the notion of antimagic labeling. They
called a bijection f : E — {1,2,...,|E|} a local antimagic labeling of G if for
any two adjacent vertices u and v in V/(G), the condition w(u) # w(v) holds.
Based on this notion, Arumugam et al. then introduced a new graph color-
ing parameter. Let f be a local antimagic labeling of a connected graph G.
The assignment of w(u) to u for each vertex u € V(G) induces naturally
a proper vertex coloring of G which is called a local antimagic vertex col-
oring of G. The local antimagic chromatic number, denoted x4 (G), is the
minimum number of colors taken over all local antimagic colorings of G [1].

Arumugam et al. [2] obtained the local antimagic chromatic number for the
graph G o O,,,, where G is a path, cycle or complete graph and O,, is the
null graph of order m > 1.

Theorem 1.1 (Arumugam et al. [2]). Let m > 2, then
Xla (CS o Om) = 3m + 3,

except x1a(C3 0 01) = 5.
Theorem 1.2 (Arumugam et al. [2]). Forn > 2, x4 (K, 0 K1) =2n — 1.

In [8], the authors studied xiq(fn © Om) and xia(Fp 0 Op,) for n > 2 and
m > 1. We note that there are inconsistencies in the notations of f, and
F,, used. They proved that xio(fn © Om) < m(2n+ 1) 4+ 3 and x4 (Fy) <
m(n + 1) + 3 by providing a correct local antimagic labeling respectively.
However, there are gaps in proving that x;q(fn 0 Op) > m(2n+1) 4+ 3 and
Xia(Frn) > m(n + 1) + 3. Motivated by this, we shall first provide correct
arguments to the proofs of the lower bounds. Consequently, we showed
that Xia(fn © Om) = m(2n+ 1) + 2 for n > 2,m = 1. Interested readers
may refer to [9-12] for local antimagic chromatic number of graphs with
pendant edges.
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2 Lower bounds of x;.(fn 0 O,,) and
Xla(Fn o Om)

Lemma 2.1. Forn > 2,m > 1, x1a(fn 0 Om) > m(2n + 1) + 3 except
Xia(fn©O1) > m(2n +1) + 2.

Proof. Let G = f,, 0 O, with V(G) = {x,ui,vi,xj,u}v; [1<i<n1<
j<m}and E(G) = {a:xj,xui,xvi,uivi,uiuﬁ,vivé [1<i<n,1<j<m}.
Clearly, |[E(G)| =q=m(2n+ 1) + 3n.

Suppose f : E(G) — [1, 4] is a local antimagic labeling of G. Clearly, all the
m(2n+1) pendant vertices must have distinct induced vertex colors that are
at most ¢. Morever, w(z) > 142+ --+(2n+m) = (2n+m)(2n+m+1)/2 =
s. Now, 2s —2¢ = 2n+m+ 12+ 2n+m+ 1) — 6n —2m(2n + 1) =
4n?+m2+m+1 > 0. Thus, w(z) > q. Therefore, x;,(G) > m(2n+1)+1.
Without loss of generality, we consider the following 3 cases.

Case 1. f(ujv1) = ¢. In this case, w(uy) # w(v1) # w(x) > ¢ so that
Xia(G) > m(2n+1) 4 3.

Case 2. f(zu;) = q or f(ujul) = ¢. In this case, w(u;) # w(x) > g so
that x14(G) > m(2n+1)+2. Suppose equality holds. Clearly, for each
i € [1,n], at most one of u;,v; has induced vertex color g. So, there
are at most n vertices in {u;,v;} with induced vertex color q. The
sum of these n induced vertex colors is at least 1+2+---4+n(m+2) =
n(m+2)[n(m+2)+1] and at most ng = n[3n+m(n+1)]. Since n > 2,
it is easy to check that n(m +2)[n(m+2)+ 1] —n[3n+m(n+1)] =
2n?(m + 1) + n 4+ gmn(mn + 1) — [3n? + mn(2n + 1)] > 0 if and
only if m > 1. Consequently, x1.(G) > m(n+1)+2 if m = 1, and
Xia(G) > m(n+1)+3if m > 2.

Case 3. f(xx1) = ¢. In this case, w(z1) = ¢ and w(u}), w(v}), w(z;) < q
(xj # x1) so that x1,(G) > m(2n+1)+1. Suppose w(v;) < w(u;) < g
for 1 <4 <mn, then > 1" ;[w(u;) + w(v;)] is at most n(2g — 1) and at
least 1 +2+ - +n(2m + 3) = n(2m + 3)[n(2m + 3) + 1]/2. Now,

n(2m + 3)[n(2m + 3) + 1] — 2n(2¢ — 1)
=n(2m+ 3)[n(2m + 3) + 1] — 2n[2m(2n + 1) + 6n — 1]

= 4m2n? + 4mn? — 2mn — 3n% + 5n > 0.
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Thus, we may assume w(uy) > ¢. Since w(ui) # w(z), we have x;,(G) >
m(2n + 1) + 2. Suppose equality holds. By an argument similar to that in
Case 2, we have ;4 (G) > m(2n+1)+2if m = 1 and x;,(G) > m(2n+1)+3
if m > 2. O

Note that F5 o O,, = C3 0 O,,, we next consider F,, 0 O,,,n > 3,m > 1.

Lemma 2.2. Forn>3,m >1, x10(F,00,) >m(n+1)+3.

Proof. Let G = F,, 0 Oy, with V(G) = {x,xj,vi,vé [1<i<n,1<j<m}
and E(G) = {xacj,xvi,viv; [1<i<n,1<j<m}U{vv1|l<i<n-—1}
Clearly, |E(G)|=m(n+1)+2n—1=gq.

Let f be a local antimagic labeling of G that induces x;,(G) distinct vertex
colors. Clearly, all the m(n+1) pendant vertices must have distinct induced
vertex colors that are at most g. Moreover, w(z) > 142+ -+ (m+n)(m+
n+1)/2 = s. Now 25—2q = (m+n)(m+n+1)—2[m(n+1)+2n—1] = m?—
m+n?—3n+1> 0 for n > 3. Thus, w(z) > ¢ and x;a(G) > m(n+1)+ 1.
Without loss of generality, we consider the following cases.

Case 1. f(viva) = qor f(vaus) = ¢ if n > 4. In this case, w(z) # w(vy) #
w(vy) > q. Thus, x14(G) > m(n+1) + 3.

Case 2. f(zv1) = q (or f(zve2) = ¢q). In this case, w(z) # w(v1) > ¢ (or
w(z) # wvy) > q). Thus, x14(G) > m(n + 1) + 2. Suppose equality
holds. Note that if w(v;) > ¢ for 3 < i < n, then w(v;) = w(vy).
Moreover, w(v;) # w(vi41) for 1 <4 < n — 1. Suppose there are
r > 1 vertices in {v;|1 < 1 < n} with induced vertex color larger
than ¢, then there are n —r > 1 vertices in {v;|1 < 1 < n} with
induced vertex color at most q. These n — r vertices are incident
toatotal of (m+2n—1—r(m+1) = m+1)n—-r)+n-1
edges. Therefore, their edge labels sum under f is at most (n — r)q.
However, the sum is at least S = 1+2+---+[(m+1)(n—r)+n—1] =
2[(m+1)(n—r)+n—1][(m+1)(n—r)+n]. Note that n—r >n/2.
Thus,

nmn n
21 2 2

—r>—-n/2 and 252(nr)q2+3]>0

except for n = 3,m = 1. This contradicts S < (n — r)q for all

(n,m) # (3,1).
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The second inequality is obtained as follows:
25 -2(n—r)g=[(m+1)(n—7r) +n}2 —[(m—+1)(n—r)+n]
—2(n—r)m(n+1)+ 2n]
=(m+12(n -7+ 2n—1)(m+1)(n—7r)
+n? —n—2(n—r7)(mn+m+2n)

—~

n—r)m*n—r)+2mn—r)—=3m—n—r—1]+n?>—n

3n 9

Z(nfr)[m2(n—r)+2m(nfr)73m77—1]+n —-n
nl, , n 3n 9

>0 2m)(2) — 3m — 22 1 -

> 2_(m + m)(2) 3m 5 ]+n n
n[m?n  3n

> L P

=322 9 +2n }
)

:g m2n+g—3] > 0 except when (n,m) = (3,1)

Now, consider G = F3 0 Oy that has ¢ = 9. If G admits a local
antimagic labeling that induces 6 distinct vertex colors, then w(vy) =
w(vs) < 9. Since vy and vz are incident to 6 different edges, their total
label sum is at least 21 so that w(vy) = w(vs) > 11, a contradiction.
Therefore, x1,(G) > m(n + 1) + 3.

Case 3. f(v1v1) = ¢ (or f(vav}) = q). In this case, w(vy) # w(z) > ¢
(or w(ve) # w(x) > q). Thus, x1.(G) > m(n + 1) + 2. Suppose
equality holds. By an argument similar to Case 2, we have the same
contradiction. O

3 Xla(.fn o 01)

In [8], the authors obtained local antimagic labelings that correctly show
that X0 (frn 0 Om) <m(2n+ 1)+ 3 and x1q(F, 0 Op) <m(n+1)+3. By
Lemma 2.1, we shall next show that ;. (fn 0 O1) = 2n + 3.

Theorem 3.1. Forn > 2, x1o(fn0O1) =2n+ 3.

Proof. Let G = f, o O with V(G) and E(G) as defined in the proof of
Lemma 2.1. Suffice to define a bijection f : E(G) — [1,5n+ 1] that induces
2n + 3 distinct induced vertex colors. We shall use labeling matrices to
describe the labeling of all the edges of f,, 0 O;.
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Suppose n is odd. We first define f(zz1) = bn+1. We now arrange integers
in [2n + 1,5n] as a 3 x n matrix as follows:

(1) In row 1, assign 4n + (i + 1)/2 to column 4 if : = 1,3,5..., n; assign
On+1)/24+1i/2if i = 2,4,6,...,n — 1. We have used integers in
[4n + 1,5n].

(2) In row 2, assign (Tn+1)/24 (i —1)/2 to column ¢ if i = 1,3,5...,n;
assign 3n + /2 if i = 2,4,6,...,n — 1. We have used integers in
[3n + 1, 4n].

(3) Inrow 3, assign 3n+1—i to column 1 < ¢ < n. We have used integers
in 2n +1,3n].

The resulting matrix is given in Table 1.

Table 1: Assignment of integers in [2n + 2,5n + 1]

dn +1 971;—3 4n + 2 9n2+5 B —1 9n2—1 5n 97L2+1
7n2+1 3n+1 7n2+3 3n+2]-.. 7n;3 an —1 7n;1 an
3n |[In—-1|3n—-2|3n—-3|---|2n+4|2n+3 |2n+2 |2n+1

We next arrange integers in [1,3n] as a 3 x n matrix as follows:

(1) Inrow 1, assign 3n+1—i to column 1 < ¢ < n. We have used integers
in 2n +1,3n].

(2) Inrow 2, assign (3n+1)/2+(i—1)/2 to column 7 if i = 1,3,5,...,n;
assign n + /2 to column i if ¢ = 2,4,6,...,n — 1. We have used
integers in [n + 1, 2n].

(3) In row 3, assign (i + 1)/2 to column 4 if ¢ = 1,3,5,...,n; assign
(n+1)/2+4/2 to column ¢ if i = 2,4,6,...,n — 1. We have used
integers in [1,n].

The resulting matrix is given in Table 2.

Table 2: Assignment of integers in [2n + 2, 5n + 1]

n [3n—1|3n—-2(3n—-3|---|2n+4|(2n+3|2n+2|2n+1
3TL2+1 n+1 3n2+3 n+2 3'(7.2—3 2n_ 1 377.2—1 2n
R R
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For 1 <k <3,1<1i<mn,let ag; be the (k,7)-entry of Table 1, and by ;
be the (k,i)-entry of Table 2. Note that by ; = a3 ;. Define f(uul) = ay,
f(zw;) = azy, fluv;) = agi, flav;) = be,; and f(v;v}) = b ;. It is obvious
that f is a bijective function.

Now, column sum of each column of Table 1 is (21n 4+ 3)/2. Thus, w(u;) =
(21n +3)/2 and w(u}) € [4n + 1,5n] for 1 < i < n. Similarly, the column
sum of each column of Table 2 is (9n + 3)/2. Thus, w(v;) = (In + 3)/2
and w(vi) € [1,n] for 1 < i < n. Moreover, w(z) = (n + 1) + -+ +
@2n)+ Bn+1)+---+4n+ (5n+1) = (n+ 1)(5bn + 1). Clearly, w(z) #
w(ul) # wlu;) # wi) # w(x) = 5n+1 for 1 < i < n. Note that
dn+1 < w(v;) = (In+3)/2 < 5n+ 1 is odd for n > 3. Therefore,
f is a local antimagic labeling that induces 2n + 3 distinct vertex colors.
Consequently, x1q(fn © O1) =2n+ 3 for odd n > 3.

We now consider even n > 2. Figures 1 and 2 show that x;o(fo0O1) =7
and xia(f4001) = 11.

Figure 2: x;4(f4001)=11 with induced vertex colors in {5,6,7,9, 10, 16, 17,
18,21, 46,85}
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Consider n > 6. We first define f(zz1) = 3n+ 3, f(upvn) =1, fluyul) =
2n+2, f(zuy) = 2n, f(v,o]) = 2n+3 and f(zv,) = 2n+ 1. We now have
w(z1) = 3n+ 3, w(u,) = 4n + 3, wuy) = 2n + 2, w(v,) = 4n+ 5 and
w(v]) = 2n + 3. We now consider the remaining integers in [2,2n — 1] U
[2n +4,3n+ 2] U [3n +4,5n + 1].

We now arrange integers in [2n+4,3n+2]U[3n+4,5n+1] asa3x (n—1)
matrix as follows:

(1) In row 1, assign 4n+3+ (i —1)/2 to column ¢ if i = 1,3,5...,n —1;
assign 9n/2 +2+i/2 if i = 2,4,6,...,n — 2. We have used integers
in [4n + 3,5n + 1].

(2) Inrow 2, assign "n/24+3+(i—1)/2 to column iifi =1,3,5...,n—1;
assign 3n +3+i/2if i = 2,4,6,...,n — 2. We have used integers in
[B3n +4,4n + 2].

(3) In row 3, assign 3n 4+ 3 — i to column 1 < i < n — 1. We have used
integers in [2n + 4, 3n + 2].

The resulting matrix is given in Table 3.

Table 3: Assignment of integers in [2n 4+ 4,3n + 2] U [3n + 4, 5n + 1]

An+3 | B +3[4n+4 | L +4|--| bn | L +1|n+1 P +2
T3 |3n+4| 44|30 +5 | | 1 |4n+ 1| T2 4n+2
3n+2|3n+1 3n n—1|---|[2n4+7|2n+6 |2n+5|2n+4

We next arrange integers in [2,2n — 1] U [2n 4+ 4,3n + 2] as a 3 X n matrix
as follows:

(1) In row 1, assign 3n + 3 — 4 to column 1 < i < n — 1. We have used
integers in [2n + 4, 3n + 2].

(2) In row 2, assign 3n/2+ (i —1)/2 to column ¢ if § =1,3,5,...,n — 1;
assign n + /2 to column ¢ if i = 2,4,6,...,n — 2. We have used
integers in [n 4 1,2n — 1].

(3) In row 3, assign (i 4+ 3)/2 to column i if : = 1,3,5,...,n — 1; assign
n/24+1+i/2 to column i ifi = 2,4,6,...,n—2. We have used integers
in [2,n].

The resulting matrix is given in Table 4.
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Table 4: Assignment of integers in [2,2n — 1] U [2n + 4, 3n + 2]

3n+2|3n+1 3n n—1|---|2n+7|2n+6 |2n+5|2n+4
ol p+1 |2yl n+2 |22 2m—2(32 1 ]2n-1
2 5+2 3 g+3 || n—1 5 n g +1

For 1 <k <3,1<i<n-—1,let cx; be the (k,i)-entry of Table 3, and dy, ;
be the (k,i)-entry of Table 4. Note that d; ; = c3;. Define f(u;ul) = ¢y,
f(zw;) = cay, fluvy) = ez, f(xv;) = doy and f(vvl) = ds ;. It is obvious
that f is a bijective function.

Now, column sum of each column of Table 3 is 21n/2 + 8. Thus, w(u;) =
21n/2 + 8 and w(ut) € [4n + 3,5n + 1] for 1 < i < n — 1. Similarly, the
column sum of each column of Table 4 is 9n/2+4. Thus, w(v;) = 9In/2+4
and w(vi) € [2,n] for 1 < i < n — 1. Moreover, w(z) = [2n + (2n +
D+Bn+3)])+GBn+4)+-+An+2)+(n+1)+---+2n—-1) =
(Tn+4) + (n — 1)(5n + 3) = 5n? + 5n + 1. Clearly, for 1 < i < n —1,
w(z) # w(ul) # ) £ w(e]) # w(ul) £ wel) £ w(z). Note that
dn+ 3 < wlu,) = 4n+ 3 # w(v,) = 4n+5 < bn + 1 for even n > 6.
Therefore, f is a local antimagic labeling that induces 2n+ 3 distinct vertex
colors. Consequently, xiq(fn 0 O1) = 2n + 3 for even n > 6. O

Example 3.1. Figures 3 and 4 below give the labelings of f3 0 O; and
f6 0 O1 according to the proof in Theorem 3.1.

Figure 3: xia(f3 0 O1) = 9 with induced vertex colors in [1,3] U [13,16] U
(33,64}
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Figure 4: xi4(fs 0 O1) = 15 with induced vertex colors in [1,6] U [27,31] U
{21,71,211}
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