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On local antimagic chromatic number of a

corona product graph

Gee-Choon Lau and Moviri Nalliah∗

Abstract. In this paper, we provide a correct proof for the lower bounds of
the local antimagic chromatic number of the corona product of friendship
and fan graphs with null graph respectively as in [On local antimagic vertex
coloring of corona products related to friendship and fan graph, Indon. J.
Combin., 5(2) (2021) 110–121]. Consequently, we obtained a sharp lower
bound that gives the exact local antimagic chromatic number of the corona
product of friendship and null graph.

1 Introduction

Let G = (V,E) be a finite, undirected graph with neither loops nor multiple
edges. The order and size of G are denoted by |V (G)| = p and |E(G)| = q
respectively. The friendship graph fn (n ≥ 2) is a graph which consists of
n triangles with a common vertex. The fan graph Fn (n ≥ 2) is obtained
by joining a new vertex to every vertex of a path Pn. The corona product
of two graphs G and H is the graph G ◦ H obtained by taking one copy
of G along with |V (G)| copies of H, and join the i-th vertex of G to every
vertex of the i-th copy of H, where 1 ≤ i ≤ |V (G)|. For integers a < b,
let [a, b] = {a, a + 1, . . . , b}. For graph-theoretic terminology, we refer to
Chartrand and Lesniak [4].
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Hartsfield and Ringel [7] introduced the concept of antimagic labeling of
a graph. For a graph G, let f : E(G) → {1, 2, ..., q} be a bijection. For
each vertex u ∈ V (G), the weight w(u) =

∑
e∈E(u) f(e), where E(u) is the

set of edges incident to u. If w(u) ̸= w(v) for any two distinct vertices u
and v ∈ V (G), then f is called an antimagic labeling of G. Hartsfield and
Ringel conjectured that every connected graph with at least three vertices
admits antimagic labeling [7]. Interested readers can refer to [5, 6].

Arumugam et al. in [1], and independently, Bensmail et al. in [3], posed
a new definition as a relaxation of the notion of antimagic labeling. They
called a bijection f : E → {1, 2, ..., |E|} a local antimagic labeling of G if for
any two adjacent vertices u and v in V (G), the condition w(u) ̸= w(v) holds.
Based on this notion, Arumugam et al. then introduced a new graph color-
ing parameter. Let f be a local antimagic labeling of a connected graph G.
The assignment of w(u) to u for each vertex u ∈ V (G) induces naturally
a proper vertex coloring of G which is called a local antimagic vertex col-
oring of G. The local antimagic chromatic number, denoted χla(G), is the
minimum number of colors taken over all local antimagic colorings of G [1].

Arumugam et al. [2] obtained the local antimagic chromatic number for the
graph G ◦ Om, where G is a path, cycle or complete graph and Om is the
null graph of order m ≥ 1.

Theorem 1.1 (Arumugam et al. [2]). Let m ≥ 2, then

χla (C3 ◦Om) = 3m+ 3,

except χla(C3 ◦O1) = 5.

Theorem 1.2 (Arumugam et al. [2]). For n ≥ 2, χla (Kn ◦K1) = 2n− 1.

In [8], the authors studied χla(fn ◦ Om) and χla(Fn ◦ Om) for n ≥ 2 and
m ≥ 1. We note that there are inconsistencies in the notations of fn and
Fn used. They proved that χla(fn ◦ Om) ≤ m(2n + 1) + 3 and χla(Fn) ≤
m(n + 1) + 3 by providing a correct local antimagic labeling respectively.
However, there are gaps in proving that χla(fn ◦Om) ≥ m(2n+1)+ 3 and
χla(Fn) ≥ m(n + 1) + 3. Motivated by this, we shall first provide correct
arguments to the proofs of the lower bounds. Consequently, we showed
that χla(fn ◦ Om) = m(2n + 1) + 2 for n ≥ 2,m = 1. Interested readers
may refer to [9–12] for local antimagic chromatic number of graphs with
pendant edges.

local antimagic chromatic number of a corona product graph

112



2 Lower bounds of χla(fn ◦ Om) and
χla(Fn ◦ Om)

Lemma 2.1. For n ≥ 2,m ≥ 1, χla(fn ◦ Om) ≥ m(2n + 1) + 3 except
χla(fn ◦O1) ≥ m(2n+ 1) + 2.

Proof. Let G = fn ◦ Om with V (G) = {x, ui, vi, xj , u
i
j , v

i
j | 1 ≤ i ≤ n, 1 ≤

j ≤ m} and E(G) = {xxj , xui, xvi, uivi, uiu
i
j , viv

i
j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Clearly, |E(G)| = q = m(2n+ 1) + 3n.

Suppose f : E(G) → [1, q] is a local antimagic labeling of G. Clearly, all the
m(2n+1) pendant vertices must have distinct induced vertex colors that are
at most q. Morever, w(x) ≥ 1+2+· · ·+(2n+m) = (2n+m)(2n+m+1)/2 =
s. Now, 2s − 2q = (2n + m + 1)2 + (2n + m + 1) − 6n − 2m(2n + 1) =
4n2+m2+m+1 > 0. Thus, w(x) > q. Therefore, χla(G) ≥ m(2n+1)+1.
Without loss of generality, we consider the following 3 cases.

Case 1. f(u1v1) = q. In this case, w(u1) ̸= w(v1) ̸= w(x) > q so that
χla(G) ≥ m(2n+ 1) + 3.

Case 2. f(xu1) = q or f(u1u
1
1) = q. In this case, w(u1) ̸= w(x) > q so

that χla(G) ≥ m(2n+1)+2. Suppose equality holds. Clearly, for each
i ∈ [1, n], at most one of ui, vi has induced vertex color q. So, there
are at most n vertices in {ui, vi} with induced vertex color q. The
sum of these n induced vertex colors is at least 1+2+ · · ·+n(m+2) =
n(m+2)[n(m+2)+1] and at most nq = n[3n+m(n+1)]. Since n ≥ 2,
it is easy to check that n(m+ 2)[n(m+ 2) + 1]− n[3n+m(n+ 1)] =
2n2(m + 1) + n + 1

2mn(mn + 1) − [3n2 + mn(2n + 1)] > 0 if and
only if m > 1. Consequently, χla(G) ≥ m(n + 1) + 2 if m = 1, and
χla(G) ≥ m(n+ 1) + 3 if m ≥ 2.

Case 3. f(xx1) = q. In this case, w(x1) = q and w(ui
j), w(v

i
j), w(xj) < q

(xj ̸= x1) so that χla(G) ≥ m(2n+1)+1. Suppose w(vi) < w(ui) ≤ q
for 1 ≤ i ≤ n, then

∑n
i=1[w(ui) + w(vi)] is at most n(2q − 1) and at

least 1 + 2 + · · ·+ n(2m+ 3) = n(2m+ 3)[n(2m+ 3) + 1]/2. Now,

n(2m+ 3)[n(2m+ 3) + 1]− 2n(2q − 1)

= n(2m+ 3)[n(2m+ 3) + 1]− 2n[2m(2n+ 1) + 6n− 1]

= 4m2n2 + 4mn2 − 2mn− 3n2 + 5n > 0.

local antimagic chromatic number of a corona product graph

113



Thus, we may assume w(u1) > q. Since w(u1) ̸= w(x), we have χla(G) ≥
m(2n+ 1) + 2. Suppose equality holds. By an argument similar to that in
Case 2, we have χla(G) ≥ m(2n+1)+2 if m = 1 and χla(G) ≥ m(2n+1)+3
if m ≥ 2.

Note that F2 ◦Om = C3 ◦Om, we next consider Fn ◦Om, n ≥ 3,m ≥ 1.

Lemma 2.2. For n ≥ 3,m ≥ 1, χla(Fn ◦Om) ≥ m(n+ 1) + 3.

Proof. Let G = Fn ◦Om with V (G) = {x, xj , vi, v
i
j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

and E(G) = {xxj , xvi, viv
i
j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}∪{vivi+1 | 1 ≤ i ≤ n−1}.

Clearly, |E(G)| = m(n+ 1) + 2n− 1 = q.

Let f be a local antimagic labeling of G that induces χla(G) distinct vertex
colors. Clearly, all them(n+1) pendant vertices must have distinct induced
vertex colors that are at most q. Moreover, w(x) ≥ 1+2+ · · ·+(m+n)(m+
n+1)/2 = s. Now 2s−2q = (m+n)(m+n+1)−2[m(n+1)+2n−1] = m2−
m+n2− 3n+1 > 0 for n ≥ 3. Thus, w(x) > q and χla(G) ≥ m(n+1)+1.
Without loss of generality, we consider the following cases.

Case 1. f(v1v2) = q or f(v2v3) = q if n ≥ 4. In this case, w(x) ̸= w(v1) ̸=
w(v2) > q. Thus, χla(G) ≥ m(n+ 1) + 3.

Case 2. f(xv1) = q (or f(xv2) = q). In this case, w(x) ̸= w(v1) > q (or
w(x) ̸= w(v2) > q). Thus, χla(G) ≥ m(n+ 1) + 2. Suppose equality
holds. Note that if w(vi) > q for 3 ≤ i ≤ n, then w(vi) = w(v1).
Moreover, w(vi) ̸= w(vi+1) for 1 ≤ i ≤ n − 1. Suppose there are
r ≥ 1 vertices in {vi | 1 ≤ 1 ≤ n} with induced vertex color larger
than q, then there are n − r ≥ 1 vertices in {vi | 1 ≤ 1 ≤ n} with
induced vertex color at most q. These n − r vertices are incident
to a total of (m + 2)n − 1 − r(m + 1) = (m + 1)(n − r) + n − 1
edges. Therefore, their edge labels sum under f is at most (n − r)q.
However, the sum is at least S = 1+2+ · · ·+[(m+1)(n−r)+n−1] =
1
2 [(m+1)(n− r)+n− 1][(m+1)(n− r)+n]. Note that n− r ≥ n/2.
Thus,

−r ≥ −n/2 and 2S − 2(n− r)q ≥ n

2

[
m2n

2
+

n

2
− 3

]
> 0

except for n = 3,m = 1. This contradicts S ≤ (n − r)q for all
(n,m) ̸= (3, 1).
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The second inequality is obtained as follows:

2S − 2(n− r)q = [(m+ 1)(n− r) + n]
2 − [(m+ 1)(n− r) + n]

− 2(n− r)[m(n+ 1) + 2n]

= (m+ 1)2(n− r)2 + (2n− 1)(m+ 1)(n− r)

+ n2 − n− 2(n− r)(mn+m+ 2n)

= (n− r)[m2(n− r) + 2m(n− r)− 3m− n− r − 1] + n2 − n

≥ (n− r)[m2(n− r) + 2m(n− r)− 3m− 3n

2
− 1] + n2 − n

≥ n

2

[
(m2 + 2m)(

n

2
)− 3m− 3n

2
− 1

]
+ n2 − n

≥ n

2

[
m2n

2
− 3n

2
− 1 + 2n− 2

]

=
n

2

[
m2n

2
+

n

2
− 3

]
> 0 except when (n,m) = (3, 1)

Now, consider G = F3 ◦ O1 that has q = 9. If G admits a local
antimagic labeling that induces 6 distinct vertex colors, then w(v1) =
w(v3) ≤ 9. Since v1 and v3 are incident to 6 different edges, their total
label sum is at least 21 so that w(v1) = w(v3) ≥ 11, a contradiction.
Therefore, χla(G) ≥ m(n+ 1) + 3.

Case 3. f(v1v
1
1) = q (or f(v2v

2
1) = q). In this case, w(v1) ̸= w(x) > q

(or w(v2) ̸= w(x) > q). Thus, χla(G) ≥ m(n + 1) + 2. Suppose
equality holds. By an argument similar to Case 2, we have the same
contradiction.

3 χla(fn ◦ O1)

In [8], the authors obtained local antimagic labelings that correctly show
that χla(fn ◦Om) ≤ m(2n+ 1) + 3 and χla(Fn ◦Om) ≤ m(n+ 1) + 3. By
Lemma 2.1, we shall next show that χla(fn ◦O1) = 2n+ 3.

Theorem 3.1. For n ≥ 2, χla(fn ◦O1) = 2n+ 3.

Proof. Let G = fn ◦ O1 with V (G) and E(G) as defined in the proof of
Lemma 2.1. Suffice to define a bijection f : E(G) → [1, 5n+1] that induces
2n + 3 distinct induced vertex colors. We shall use labeling matrices to
describe the labeling of all the edges of fn ◦O1.
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Suppose n is odd. We first define f(xx1) = 5n+1. We now arrange integers
in [2n+ 1, 5n] as a 3× n matrix as follows:

(1) In row 1, assign 4n+ (i+ 1)/2 to column i if i = 1, 3, 5 . . . , n; assign
(9n + 1)/2 + i/2 if i = 2, 4, 6, . . . , n − 1. We have used integers in
[4n+ 1, 5n].

(2) In row 2, assign (7n+1)/2+ (i− 1)/2 to column i if i = 1, 3, 5 . . . , n;
assign 3n + i/2 if i = 2, 4, 6, . . . , n − 1. We have used integers in
[3n+ 1, 4n].

(3) In row 3, assign 3n+1−i to column 1 ≤ i ≤ n. We have used integers
in [2n+ 1, 3n].

The resulting matrix is given in Table 1.

Table 1: Assignment of integers in [2n+ 2, 5n+ 1]

4n+ 1 9n+3
2 4n+ 2 9n+5

2 · · · 5n− 1 9n−1
2 5n 9n+1

2

7n+1
2 3n+ 1 7n+3

2 3n+ 2 · · · 7n−3
2 4n− 1 7n−1

2 4n

3n 3n− 1 3n− 2 3n− 3 · · · 2n+ 4 2n+ 3 2n+ 2 2n+ 1

We next arrange integers in [1, 3n] as a 3× n matrix as follows:

(1) In row 1, assign 3n+1−i to column 1 ≤ i ≤ n. We have used integers
in [2n+ 1, 3n].

(2) In row 2, assign (3n+1)/2+ (i− 1)/2 to column i if i = 1, 3, 5, . . . , n;
assign n + i/2 to column i if i = 2, 4, 6, . . . , n − 1. We have used
integers in [n+ 1, 2n].

(3) In row 3, assign (i + 1)/2 to column i if i = 1, 3, 5, . . . , n; assign
(n + 1)/2 + i/2 to column i if i = 2, 4, 6, . . . , n − 1. We have used
integers in [1, n].

The resulting matrix is given in Table 2.

Table 2: Assignment of integers in [2n+ 2, 5n+ 1]

3n 3n− 1 3n− 2 3n− 3 · · · 2n+ 4 2n+ 3 2n+ 2 2n+ 1

3n+1
2 n+ 1 3n+3

2 n+ 2 · · · 3n−3
2 2n− 1 3n−1

2 2n

1 n+3
2 2 n+5

2 · · · n− 1 n−1
2 n n+1

2
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For 1 ≤ k ≤ 3, 1 ≤ i ≤ n, let ak,i be the (k, i)-entry of Table 1, and bk,i
be the (k, i)-entry of Table 2. Note that b1,i = a3,i. Define f(uiu

i
1) = a1,i,

f(xui) = a2,i, f(uivi) = a3,i, f(xvi) = b2,i and f(viv
i
1) = b3,i. It is obvious

that f is a bijective function.

Now, column sum of each column of Table 1 is (21n+3)/2. Thus, w(ui) =
(21n + 3)/2 and w(ui

1) ∈ [4n + 1, 5n] for 1 ≤ i ≤ n. Similarly, the column
sum of each column of Table 2 is (9n + 3)/2. Thus, w(vi) = (9n + 3)/2
and w(vi1) ∈ [1, n] for 1 ≤ i ≤ n. Moreover, w(x) = (n + 1) + · · · +
(2n) + (3n + 1) + · · · + 4n + (5n + 1) = (n + 1)(5n + 1). Clearly, w(x) ̸=
w(ui

1) ̸= w(ui) ̸= w(vi1) ̸= w(x1) = 5n + 1 for 1 ≤ i ≤ n. Note that
4n + 1 ≤ w(vi) = (9n + 3)/2 ≤ 5n + 1 is odd for n ≥ 3. Therefore,
f is a local antimagic labeling that induces 2n + 3 distinct vertex colors.
Consequently, χla(fn ◦O1) = 2n+ 3 for odd n ≥ 3.

We now consider even n ≥ 2. Figures 1 and 2 show that χla(f2 ◦ O1) = 7
and χla(f4 ◦O1) = 11.

11 10

7 5

9

3 2
6 8

1 4

u1

v1

u2

v2

x

Figure 1: χla(f2◦O1)=7 with induced vertex colors in {7, 5, 9, 10, 11, 20, 28}

21 6

17

5

167

18

9

10
12 2

14

1

193

20

4

13

15

11

8

u1 v1

u2

v2

u3v3

u4

v4

x

Figure 2: χla(f4◦O1)=11 with induced vertex colors in {5, 6, 7, 9, 10, 16, 17,
18, 21, 46, 85}
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Consider n ≥ 6. We first define f(xx1) = 3n+ 3, f(unvn) = 1, f(unu
n
1 ) =

2n+2, f(xun) = 2n, f(vnv
n
1 ) = 2n+3 and f(xvn) = 2n+1. We now have

w(x1) = 3n + 3, w(un) = 4n + 3, w(un
1 ) = 2n + 2, w(vn) = 4n + 5 and

w(vn1 ) = 2n + 3. We now consider the remaining integers in [2, 2n − 1] ∪
[2n+ 4, 3n+ 2] ∪ [3n+ 4, 5n+ 1].
We now arrange integers in [2n+4, 3n+2]∪ [3n+4, 5n+1] as a 3× (n−1)
matrix as follows:

(1) In row 1, assign 4n+ 3+ (i− 1)/2 to column i if i = 1, 3, 5 . . . , n− 1;
assign 9n/2 + 2 + i/2 if i = 2, 4, 6, . . . , n − 2. We have used integers
in [4n+ 3, 5n+ 1].

(2) In row 2, assign 7n/2+3+(i−1)/2 to column i if i = 1, 3, 5 . . . , n−1;
assign 3n+ 3 + i/2 if i = 2, 4, 6, . . . , n− 2. We have used integers in
[3n+ 4, 4n+ 2].

(3) In row 3, assign 3n + 3 − i to column 1 ≤ i ≤ n − 1. We have used
integers in [2n+ 4, 3n+ 2].

The resulting matrix is given in Table 3.

Table 3: Assignment of integers in [2n+ 4, 3n+ 2] ∪ [3n+ 4, 5n+ 1]

4n+ 3 9n
2 + 3 4n+ 4 9n

2 + 4 · · · 5n 9n
2 + 1 5n+ 1 9n

2 + 2

7n
2 + 3 3n+ 4 7n

2 + 4 3n+ 5 · · · 7n
2 + 1 4n+ 1 7n

2 + 2 4n+ 2

3n+ 2 3n+ 1 3n 3n− 1 · · · 2n+ 7 2n+ 6 2n+ 5 2n+ 4

We next arrange integers in [2, 2n− 1] ∪ [2n+ 4, 3n+ 2] as a 3× n matrix
as follows:

(1) In row 1, assign 3n + 3 − i to column 1 ≤ i ≤ n − 1. We have used
integers in [2n+ 4, 3n+ 2].

(2) In row 2, assign 3n/2 + (i− 1)/2 to column i if i = 1, 3, 5, . . . , n− 1;
assign n + i/2 to column i if i = 2, 4, 6, . . . , n − 2. We have used
integers in [n+ 1, 2n− 1].

(3) In row 3, assign (i + 3)/2 to column i if i = 1, 3, 5, . . . , n − 1; assign
n/2+1+i/2 to column i if i = 2, 4, 6, . . . , n−2. We have used integers
in [2, n].

The resulting matrix is given in Table 4.
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Table 4: Assignment of integers in [2, 2n− 1] ∪ [2n+ 4, 3n+ 2]

3n+ 2 3n+ 1 3n 3n− 1 · · · 2n+ 7 2n+ 6 2n+ 5 2n+ 4

3n
2 n+ 1 3n

2 + 1 n+ 2 · · · 3n
2 − 2 2n− 2 3n

2 − 1 2n− 1

2 n
2 + 2 3 n

2 + 3 · · · n− 1 n
2 n n

2 + 1

For 1 ≤ k ≤ 3, 1 ≤ i ≤ n− 1, let ck,i be the (k, i)-entry of Table 3, and dk,i
be the (k, i)-entry of Table 4. Note that d1,i = c3,i. Define f(uiu

i
1) = c1,i,

f(xui) = c2,i, f(uivi) = c3,i, f(xvi) = d2,i and f(viv
i
1) = d3,i. It is obvious

that f is a bijective function.

Now, column sum of each column of Table 3 is 21n/2 + 8. Thus, w(ui) =
21n/2 + 8 and w(ui

1) ∈ [4n + 3, 5n + 1] for 1 ≤ i ≤ n − 1. Similarly, the
column sum of each column of Table 4 is 9n/2+4. Thus, w(vi) = 9n/2+4
and w(vi1) ∈ [2, n] for 1 ≤ i ≤ n − 1. Moreover, w(x) = [2n + (2n +
1) + (3n + 3)] + (3n + 4) + · · · + (4n + 2) + (n + 1) + · · · + (2n − 1) =
(7n + 4) + (n − 1)(5n + 3) = 5n2 + 5n + 1. Clearly, for 1 ≤ i ≤ n − 1,
w(x) ̸= w(ui

1) ̸= w(ui) ̸= w(vi1) ̸= w(u1
1) ̸= w(v11) ̸= w(x1). Note that

4n + 3 ≤ w(un) = 4n + 3 ̸= w(vn) = 4n + 5 ≤ 5n + 1 for even n ≥ 6.
Therefore, f is a local antimagic labeling that induces 2n+3 distinct vertex
colors. Consequently, χla(fn ◦O1) = 2n+ 3 for even n ≥ 6.

Example 3.1. Figures 3 and 4 below give the labelings of f3 ◦ O1 and
f6 ◦O1 according to the proof in Theorem 3.1.

13 1

15

314

2

16

11 5

10

412

6

9

87

u1 v1

u2

v2u3

v3

x

Figure 3: χla(f3 ◦ O1) = 9 with induced vertex colors in [1, 3] ∪ [13, 16] ∪
{33, 64}
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238

26
11

12
13

20

19

18

17

16

1

27 2

30

5

28

3

316

29

4

14

15
u1 v1

u2

v2

u3

v3

u4v4

u5

v5

u6

v6

x

Figure 4: χla(f6 ◦ O1) = 15 with induced vertex colors in [1, 6] ∪ [27, 31] ∪
{21, 71, 211}
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