BULIETIN of The

TISTHMIE of

GOWBNUMORLES and its

 IPPIGIIIONS
Editors-in-Chief:

Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Duluth, Minnesota, U.S.A.
ISSN: 2689-0674 [Online] ISSN: 1183-1278 [Print]

On local antimagic chromatic number of a corona product graph

Gee-Choon Lau and Moviri Nalliah*

Abstract

In this paper, we provide a correct proof for the lower bounds of the local antimagic chromatic number of the corona product of friendship and fan graphs with null graph respectively as in [On local antimagic vertex coloring of corona products related to friendship and fan graph, Indon. J. Combin., 5(2) (2021) 110-121]. Consequently, we obtained a sharp lower bound that gives the exact local antimagic chromatic number of the corona product of friendship and null graph.

1 Introduction

Let $G=(V, E)$ be a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by $|V(G)|=p$ and $|E(G)|=q$ respectively. The friendship graph $f_{n}(n \geq 2)$ is a graph which consists of n triangles with a common vertex. The fan graph $F_{n}(n \geq 2)$ is obtained by joining a new vertex to every vertex of a path P_{n}. The corona product of two graphs G and H is the graph $G \circ H$ obtained by taking one copy of G along with $|V(G)|$ copies of H, and join the i-th vertex of G to every vertex of the i-th copy of H, where $1 \leq i \leq|V(G)|$. For integers $a<b$, let $[a, b]=\{a, a+1, \ldots, b\}$. For graph-theoretic terminology, we refer to Chartrand and Lesniak [4].

[^0]Hartsfield and Ringel [7] introduced the concept of antimagic labeling of a graph. For a graph G, let $f: E(G) \rightarrow\{1,2, \ldots, q\}$ be a bijection. For each vertex $u \in V(G)$, the weight $w(u)=\sum_{e \in E(u)} f(e)$, where $E(u)$ is the set of edges incident to u. If $w(u) \neq w(v)$ for any two distinct vertices u and $v \in V(G)$, then f is called an antimagic labeling of G. Hartsfield and Ringel conjectured that every connected graph with at least three vertices admits antimagic labeling [7]. Interested readers can refer to $[5,6]$.

Arumugam et al. in [1], and independently, Bensmail et al. in [3], posed a new definition as a relaxation of the notion of antimagic labeling. They called a bijection $f: E \rightarrow\{1,2, \ldots,|E|\}$ a local antimagic labeling of G if for any two adjacent vertices u and v in $V(G)$, the condition $w(u) \neq w(v)$ holds. Based on this notion, Arumugam et al. then introduced a new graph coloring parameter. Let f be a local antimagic labeling of a connected graph G. The assignment of $w(u)$ to u for each vertex $u \in V(G)$ induces naturally a proper vertex coloring of G which is called a local antimagic vertex coloring of G. The local antimagic chromatic number, denoted $\chi_{l a}(G)$, is the minimum number of colors taken over all local antimagic colorings of G [1].

Arumugam et al. [2] obtained the local antimagic chromatic number for the graph $G \circ O_{m}$, where G is a path, cycle or complete graph and O_{m} is the null graph of order $m \geq 1$.

Theorem 1.1 (Arumugam et al. [2]). Let $m \geq 2$, then

$$
\chi_{l a}\left(C_{3} \circ O_{m}\right)=3 m+3,
$$

except $\chi_{l a}\left(C_{3} \circ O_{1}\right)=5$.
Theorem 1.2 (Arumugam et al. [2]). For $n \geq 2$, $\chi_{l a}\left(K_{n} \circ K_{1}\right)=2 n-1$.

In [8], the authors studied $\chi_{l a}\left(f_{n} \circ O_{m}\right)$ and $\chi_{l a}\left(F_{n} \circ O_{m}\right)$ for $n \geq 2$ and $m \geq 1$. We note that there are inconsistencies in the notations of f_{n} and F_{n} used. They proved that $\chi_{l a}\left(f_{n} \circ O_{m}\right) \leq m(2 n+1)+3$ and $\chi_{l a}\left(F_{n}\right) \leq$ $m(n+1)+3$ by providing a correct local antimagic labeling respectively. However, there are gaps in proving that $\chi_{l a}\left(f_{n} \circ O_{m}\right) \geq m(2 n+1)+3$ and $\chi_{l a}\left(F_{n}\right) \geq m(n+1)+3$. Motivated by this, we shall first provide correct arguments to the proofs of the lower bounds. Consequently, we showed that $\chi_{l a}\left(f_{n} \circ O_{m}\right)=m(2 n+1)+2$ for $n \geq 2, m=1$. Interested readers may refer to [9-12] for local antimagic chromatic number of graphs with pendant edges.

2 Lower bounds of $\chi_{l a}\left(f_{n} \circ O_{m}\right)$ and $\chi_{l a}\left(F_{n} \circ O_{m}\right)$

Lemma 2.1. For $n \geq 2, m \geq 1$, $\chi_{l a}\left(f_{n} \circ O_{m}\right) \geq m(2 n+1)+3$ except $\chi_{l a}\left(f_{n} \circ O_{1}\right) \geq m(2 n+1)+2$.

Proof. Let $G=f_{n} \circ O_{m}$ with $V(G)=\left\{x, u_{i}, v_{i}, x_{j}, u_{j}^{i}, v_{j}^{i} \mid 1 \leq i \leq n, 1 \leq\right.$ $j \leq m\}$ and $E(G)=\left\{x x_{j}, x u_{i}, x v_{i}, u_{i} v_{i}, u_{i} u_{j}^{i}, v_{i} v_{j}^{i} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$. Clearly, $|E(G)|=q=m(2 n+1)+3 n$.

Suppose $f: E(G) \rightarrow[1, q]$ is a local antimagic labeling of G. Clearly, all the $m(2 n+1)$ pendant vertices must have distinct induced vertex colors that are at most q. Morever, $w(x) \geq 1+2+\cdots+(2 n+m)=(2 n+m)(2 n+m+1) / 2=$ s. Now, $2 s-2 q=(2 n+m+1)^{2}+(2 n+m+1)-6 n-2 m(2 n+1)=$ $4 n^{2}+m^{2}+m+1>0$. Thus, $w(x)>q$. Therefore, $\chi_{l a}(G) \geq m(2 n+1)+1$. Without loss of generality, we consider the following 3 cases.

Case 1. $f\left(u_{1} v_{1}\right)=q$. In this case, $w\left(u_{1}\right) \neq w\left(v_{1}\right) \neq w(x)>q$ so that $\chi_{l a}(G) \geq m(2 n+1)+3$.

Case 2. $f\left(x u_{1}\right)=q$ or $f\left(u_{1} u_{1}^{1}\right)=q$. In this case, $w\left(u_{1}\right) \neq w(x)>q$ so that $\chi_{l a}(G) \geq m(2 n+1)+2$. Suppose equality holds. Clearly, for each $i \in[1, n]$, at most one of u_{i}, v_{i} has induced vertex color q. So, there are at most n vertices in $\left\{u_{i}, v_{i}\right\}$ with induced vertex color q. The sum of these n induced vertex colors is at least $1+2+\cdots+n(m+2)=$ $n(m+2)[n(m+2)+1]$ and at most $n q=n[3 n+m(n+1)]$. Since $n \geq 2$, it is easy to check that $n(m+2)[n(m+2)+1]-n[3 n+m(n+1)]=$ $2 n^{2}(m+1)+n+\frac{1}{2} m n(m n+1)-\left[3 n^{2}+m n(2 n+1)\right]>0$ if and only if $m>1$. Consequently, $\chi_{l a}(G) \geq m(n+1)+2$ if $m=1$, and $\chi_{l a}(G) \geq m(n+1)+3$ if $m \geq 2$.

Case 3. $f\left(x x_{1}\right)=q$. In this case, $w\left(x_{1}\right)=q$ and $w\left(u_{j}^{i}\right), w\left(v_{j}^{i}\right), w\left(x_{j}\right)<q$ $\left(x_{j} \neq x_{1}\right)$ so that $\chi_{l a}(G) \geq m(2 n+1)+1$. Suppose $w\left(v_{i}\right)<w\left(u_{i}\right) \leq q$ for $1 \leq i \leq n$, then $\sum_{i=1}^{n}\left[w\left(u_{i}\right)+w\left(v_{i}\right)\right]$ is at most $n(2 q-1)$ and at least $1+2+\cdots+n(2 m+3)=n(2 m+3)[n(2 m+3)+1] / 2$. Now,

$$
\begin{aligned}
& n(2 m+3)[n(2 m+3)+1]-2 n(2 q-1) \\
& \quad=n(2 m+3)[n(2 m+3)+1]-2 n[2 m(2 n+1)+6 n-1] \\
& \quad=4 m^{2} n^{2}+4 m n^{2}-2 m n-3 n^{2}+5 n>0 .
\end{aligned}
$$

Thus, we may assume $w\left(u_{1}\right)>q$. Since $w\left(u_{1}\right) \neq w(x)$, we have $\chi_{l a}(G) \geq$ $m(2 n+1)+2$. Suppose equality holds. By an argument similar to that in Case 2, we have $\chi_{l a}(G) \geq m(2 n+1)+2$ if $m=1$ and $\chi_{l a}(G) \geq m(2 n+1)+3$ if $m \geq 2$.

Note that $F_{2} \circ O_{m}=C_{3} \circ O_{m}$, we next consider $F_{n} \circ O_{m}, n \geq 3, m \geq 1$.
Lemma 2.2. For $n \geq 3, m \geq 1$, $\chi_{l a}\left(F_{n} \circ O_{m}\right) \geq m(n+1)+3$.

Proof. Let $G=F_{n} \circ O_{m}$ with $V(G)=\left\{x, x_{j}, v_{i}, v_{j}^{i} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and $E(G)=\left\{x x_{j}, x v_{i}, v_{i} v_{j}^{i} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\} \cup\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\}$. Clearly, $|E(G)|=m(n+1)+2 n-1=q$.

Let f be a local antimagic labeling of G that induces $\chi_{l a}(G)$ distinct vertex colors. Clearly, all the $m(n+1)$ pendant vertices must have distinct induced vertex colors that are at most q. Moreover, $w(x) \geq 1+2+\cdots+(m+n)(m+$ $n+1) / 2=s$. Now $2 s-2 q=(m+n)(m+n+1)-2[m(n+1)+2 n-1]=m^{2}-$ $m+n^{2}-3 n+1>0$ for $n \geq 3$. Thus, $w(x)>q$ and $\chi_{l a}(G) \geq m(n+1)+1$. Without loss of generality, we consider the following cases.

Case 1. $f\left(v_{1} v_{2}\right)=q$ or $f\left(v_{2} v_{3}\right)=q$ if $n \geq 4$. In this case, $w(x) \neq w\left(v_{1}\right) \neq$ $w\left(v_{2}\right)>q$. Thus, $\chi_{l a}(G) \geq m(n+1)+3$.

Case 2. $f\left(x v_{1}\right)=q$ (or $f\left(x v_{2}\right)=q$). In this case, $w(x) \neq w\left(v_{1}\right)>q$ (or $\left.w(x) \neq w\left(v_{2}\right)>q\right)$. Thus, $\chi_{l a}(G) \geq m(n+1)+2$. Suppose equality holds. Note that if $w\left(v_{i}\right)>q$ for $3 \leq i \leq n$, then $w\left(v_{i}\right)=w\left(v_{1}\right)$. Moreover, $w\left(v_{i}\right) \neq w\left(v_{i+1}\right)$ for $1 \leq i \leq n-1$. Suppose there are $r \geq 1$ vertices in $\left\{v_{i} \mid 1 \leq 1 \leq n\right\}$ with induced vertex color larger than q, then there are $n-r \geq 1$ vertices in $\left\{v_{i} \mid 1 \leq 1 \leq n\right\}$ with induced vertex color at most q. These $n-r$ vertices are incident to a total of $(m+2) n-1-r(m+1)=(m+1)(n-r)+n-1$ edges. Therefore, their edge labels sum under f is at most $(n-r) q$. However, the sum is at least $S=1+2+\cdots+[(m+1)(n-r)+n-1]=$ $\frac{1}{2}[(m+1)(n-r)+n-1][(m+1)(n-r)+n]$. Note that $n-r \geq n / 2$. Thus,

$$
-r \geq-n / 2 \quad \text { and } \quad 2 S-2(n-r) q \geq \frac{n}{2}\left[\frac{m^{2} n}{2}+\frac{n}{2}-3\right]>0
$$

except for $n=3, m=1$. This contradicts $S \leq(n-r) q$ for all $(n, m) \neq(3,1)$.

The second inequality is obtained as follows:

$$
\begin{aligned}
2 S-2(n-r) q=[(m+1)(n-r)+n]^{2} & -[(m+1)(n-r)+n] \\
& -2(n-r)[m(n+1)+2 n] \\
& =(m+1)^{2}(n-r)^{2}+(2 n-1)(m+1)(n-r) \\
& +n^{2}-n-2(n-r)(m n+m+2 n) \\
& =(n-r)\left[m^{2}(n-r)+2 m(n-r)-3 m-n-r-1\right]+n^{2}-n \\
\geq & (n-r)\left[m^{2}(n-r)+2 m(n-r)-3 m-\frac{3 n}{2}-1\right]+n^{2}-n \\
\geq & \frac{n}{2}\left[\left(m^{2}+2 m\right)\left(\frac{n}{2}\right)-3 m-\frac{3 n}{2}-1\right]+n^{2}-n \\
\geq & \frac{n}{2}\left[\frac{m^{2} n}{2}-\frac{3 n}{2}-1+2 n-2\right] \\
& =\frac{n}{2}\left[\frac{m^{2} n}{2}+\frac{n}{2}-3\right]>0 \text { except when }(n, m)=(3,1)
\end{aligned}
$$

Now, consider $G=F_{3} \circ O_{1}$ that has $q=9$. If G admits a local antimagic labeling that induces 6 distinct vertex colors, then $w\left(v_{1}\right)=$ $w\left(v_{3}\right) \leq 9$. Since v_{1} and v_{3} are incident to 6 different edges, their total label sum is at least 21 so that $w\left(v_{1}\right)=w\left(v_{3}\right) \geq 11$, a contradiction. Therefore, $\chi_{l a}(G) \geq m(n+1)+3$.
Case 3. $f\left(v_{1} v_{1}^{1}\right)=q$ (or $f\left(v_{2} v_{1}^{2}\right)=q$). In this case, $w\left(v_{1}\right) \neq w(x)>q$ (or $w\left(v_{2}\right) \neq w(x)>q$). Thus, $\chi_{l a}(G) \geq m(n+1)+2$. Suppose equality holds. By an argument similar to Case 2, we have the same contradiction.

$3 \chi_{l a}\left(f_{n} \circ O_{1}\right)$

In [8], the authors obtained local antimagic labelings that correctly show that $\chi_{l a}\left(f_{n} \circ O_{m}\right) \leq m(2 n+1)+3$ and $\chi_{l a}\left(F_{n} \circ O_{m}\right) \leq m(n+1)+3$. By Lemma 2.1, we shall next show that $\chi_{l a}\left(f_{n} \circ O_{1}\right)=2 n+3$.
Theorem 3.1. For $n \geq 2$, $\chi_{l a}\left(f_{n} \circ O_{1}\right)=2 n+3$.

Proof. Let $G=f_{n} \circ O_{1}$ with $V(G)$ and $E(G)$ as defined in the proof of Lemma 2.1. Suffice to define a bijection $f: E(G) \rightarrow[1,5 n+1]$ that induces $2 n+3$ distinct induced vertex colors. We shall use labeling matrices to describe the labeling of all the edges of $f_{n} \circ O_{1}$.

Suppose n is odd. We first define $f\left(x x_{1}\right)=5 n+1$. We now arrange integers in $[2 n+1,5 n]$ as a $3 \times n$ matrix as follows:
(1) In row 1 , assign $4 n+(i+1) / 2$ to column i if $i=1,3,5 \ldots, n$; assign $(9 n+1) / 2+i / 2$ if $i=2,4,6, \ldots, n-1$. We have used integers in $[4 n+1,5 n]$.
(2) In row 2 , assign $(7 n+1) / 2+(i-1) / 2$ to column i if $i=1,3,5 \ldots, n$; assign $3 n+i / 2$ if $i=2,4,6, \ldots, n-1$. We have used integers in $[3 n+1,4 n]$.
(3) In row 3 , assign $3 n+1-i$ to column $1 \leq i \leq n$. We have used integers in $[2 n+1,3 n]$.

The resulting matrix is given in Table 1.

Table 1: Assignment of integers in $[2 n+2,5 n+1]$

$4 n+1$	$\frac{9 n+3}{2}$	$4 n+2$	$\frac{9 n+5}{2}$	\cdots	$5 n-1$	$\frac{9 n-1}{2}$	$5 n$	$\frac{9 n+1}{2}$
$\frac{7 n+1}{2}$	$3 n+1$	$\frac{7 n+3}{2}$	$3 n+2$	\cdots	$\frac{7 n-3}{2}$	$4 n-1$	$\frac{7 n-1}{2}$	$4 n$
$3 n$	$3 n-1$	$3 n-2$	$3 n-3$	\cdots	$2 n+4$	$2 n+3$	$2 n+2$	$2 n+1$

We next arrange integers in $[1,3 n]$ as a $3 \times n$ matrix as follows:
(1) In row 1 , assign $3 n+1-i$ to column $1 \leq i \leq n$. We have used integers in $[2 n+1,3 n]$.
(2) In row 2 , assign $(3 n+1) / 2+(i-1) / 2$ to column i if $i=1,3,5, \ldots, n$; assign $n+i / 2$ to column i if $i=2,4,6, \ldots, n-1$. We have used integers in $[n+1,2 n]$.
(3) In row 3 , assign $(i+1) / 2$ to column i if $i=1,3,5, \ldots, n$; assign $(n+1) / 2+i / 2$ to column i if $i=2,4,6, \ldots, n-1$. We have used integers in $[1, n]$.

The resulting matrix is given in Table 2.

Table 2: Assignment of integers in $[2 n+2,5 n+1]$

$3 n$	$3 n-1$	$3 n-2$	$3 n-3$	\cdots	$2 n+4$	$2 n+3$	$2 n+2$	$2 n+1$
$\frac{3 n+1}{2}$	$n+1$	$\frac{3 n+3}{2}$	$n+2$	\cdots	$\frac{3 n-3}{2}$	$2 n-1$	$\frac{3 n-1}{2}$	$2 n$
1	$\frac{n+3}{2}$	2	$\frac{n+5}{2}$	\cdots	$n-1$	$\frac{n-1}{2}$	n	$\frac{n+1}{2}$

For $1 \leq k \leq 3,1 \leq i \leq n$, let $a_{k, i}$ be the (k, i)-entry of Table 1 , and $b_{k, i}$ be the (k, i)-entry of Table 2 . Note that $b_{1, i}=a_{3, i}$. Define $f\left(u_{i} u_{1}^{i}\right)=a_{1, i}$, $f\left(x u_{i}\right)=a_{2, i}, f\left(u_{i} v_{i}\right)=a_{3, i}, f\left(x v_{i}\right)=b_{2, i}$ and $f\left(v_{i} v_{1}^{i}\right)=b_{3, i}$. It is obvious that f is a bijective function.

Now, column sum of each column of Table 1 is $(21 n+3) / 2$. Thus, $w\left(u_{i}\right)=$ $(21 n+3) / 2$ and $w\left(u_{1}^{i}\right) \in[4 n+1,5 n]$ for $1 \leq i \leq n$. Similarly, the column sum of each column of Table 2 is $(9 n+3) / 2$. Thus, $w\left(v_{i}\right)=(9 n+3) / 2$ and $w\left(v_{1}^{i}\right) \in[1, n]$ for $1 \leq i \leq n$. Moreover, $w(x)=(n+1)+\cdots+$ $(2 n)+(3 n+1)+\cdots+4 n+(5 n+1)=(n+1)(5 n+1)$. Clearly, $w(x) \neq$ $w\left(u_{1}^{i}\right) \neq w\left(u_{i}\right) \neq w\left(v_{1}^{i}\right) \neq w\left(x_{1}\right)=5 n+1$ for $1 \leq i \leq n$. Note that $4 n+1 \leq w\left(v_{i}\right)=(9 n+3) / 2 \leq 5 n+1$ is odd for $n \geq 3$. Therefore, f is a local antimagic labeling that induces $2 n+3$ distinct vertex colors. Consequently, $\chi_{l a}\left(f_{n} \circ O_{1}\right)=2 n+3$ for odd $n \geq 3$.

We now consider even $n \geq 2$. Figures 1 and 2 show that $\chi_{l a}\left(f_{2} \circ O_{1}\right)=7$ and $\chi_{l a}\left(f_{4} \circ O_{1}\right)=11$.

Figure 1: $\chi_{l a}\left(f_{2} \circ O_{1}\right)=7$ with induced vertex colors in $\{7,5,9,10,11,20,28\}$

Figure 2: $\chi_{l a}\left(f_{4} \circ O_{1}\right)=11$ with induced vertex colors in $\{5,6,7,9,10,16,17$, $18,21,46,85\}$

Consider $n \geq 6$. We first define $f\left(x x_{1}\right)=3 n+3, f\left(u_{n} v_{n}\right)=1, f\left(u_{n} u_{1}^{n}\right)=$ $2 n+2, f\left(x u_{n}\right)=2 n, f\left(v_{n} v_{1}^{n}\right)=2 n+3$ and $f\left(x v_{n}\right)=2 n+1$. We now have $w\left(x_{1}\right)=3 n+3, w\left(u_{n}\right)=4 n+3, w\left(u_{1}^{n}\right)=2 n+2, w\left(v_{n}\right)=4 n+5$ and $w\left(v_{1}^{n}\right)=2 n+3$. We now consider the remaining integers in $[2,2 n-1] \cup$ $[2 n+4,3 n+2] \cup[3 n+4,5 n+1]$.
We now arrange integers in $[2 n+4,3 n+2] \cup[3 n+4,5 n+1]$ as a $3 \times(n-1)$ matrix as follows:
(1) In row 1 , assign $4 n+3+(i-1) / 2$ to column i if $i=1,3,5 \ldots, n-1$; assign $9 n / 2+2+i / 2$ if $i=2,4,6, \ldots, n-2$. We have used integers in $[4 n+3,5 n+1]$.
(2) In row 2 , assign $7 n / 2+3+(i-1) / 2$ to column i if $i=1,3,5 \ldots, n-1$; assign $3 n+3+i / 2$ if $i=2,4,6, \ldots, n-2$. We have used integers in $[3 n+4,4 n+2]$.
(3) In row 3 , assign $3 n+3-i$ to column $1 \leq i \leq n-1$. We have used integers in $[2 n+4,3 n+2]$.

The resulting matrix is given in Table 3.

Table 3: Assignment of integers in $[2 n+4,3 n+2] \cup[3 n+4,5 n+1]$

$4 n+3$	$\frac{9 n}{2}+3$	$4 n+4$	$\frac{9 n}{2}+4$	\cdots	$5 n$	$\frac{9 n}{2}+1$	$5 n+1$	$\frac{9 n}{2}+2$
$\frac{7 n}{2}+3$	$3 n+4$	$\frac{7 n}{2}+4$	$3 n+5$	\cdots	$\frac{7 n}{2}+1$	$4 n+1$	$\frac{7 n}{2}+2$	$4 n+2$
$3 n+2$	$3 n+1$	$3 n$	$3 n-1$	\cdots	$2 n+7$	$2 n+6$	$2 n+5$	$2 n+4$

We next arrange integers in $[2,2 n-1] \cup[2 n+4,3 n+2]$ as a $3 \times n$ matrix as follows:
(1) In row 1 , assign $3 n+3-i$ to column $1 \leq i \leq n-1$. We have used integers in $[2 n+4,3 n+2]$.
(2) In row 2 , assign $3 n / 2+(i-1) / 2$ to column i if $i=1,3,5, \ldots, n-1$; assign $n+i / 2$ to column i if $i=2,4,6, \ldots, n-2$. We have used integers in $[n+1,2 n-1]$.
(3) In row 3 , assign $(i+3) / 2$ to column i if $i=1,3,5, \ldots, n-1$; assign $n / 2+1+i / 2$ to column i if $i=2,4,6, \ldots, n-2$. We have used integers in $[2, n]$.

The resulting matrix is given in Table 4.

Table 4: Assignment of integers in $[2,2 n-1] \cup[2 n+4,3 n+2]$

$3 n+2$	$3 n+1$	$3 n$	$3 n-1$	\cdots	$2 n+7$	$2 n+6$	$2 n+5$	$2 n+4$
$\frac{3 n}{2}$	$n+1$	$\frac{3 n}{2}+1$	$n+2$	\cdots	$\frac{3 n}{2}-2$	$2 n-2$	$\frac{3 n}{2}-1$	$2 n-1$
2	$\frac{n}{2}+2$	3	$\frac{n}{2}+3$	\cdots	$n-1$	$\frac{n}{2}$	n	$\frac{n}{2}+1$

For $1 \leq k \leq 3,1 \leq i \leq n-1$, let $c_{k, i}$ be the (k, i)-entry of Table 3 , and $d_{k, i}$ be the (k, i)-entry of Table 4 . Note that $d_{1, i}=c_{3, i}$. Define $f\left(u_{i} u_{1}^{i}\right)=c_{1, i}$, $f\left(x u_{i}\right)=c_{2, i}, f\left(u_{i} v_{i}\right)=c_{3, i}, f\left(x v_{i}\right)=d_{2, i}$ and $f\left(v_{i} v_{1}^{i}\right)=d_{3, i}$. It is obvious that f is a bijective function.

Now, column sum of each column of Table 3 is $21 n / 2+8$. Thus, $w\left(u_{i}\right)=$ $21 n / 2+8$ and $w\left(u_{1}^{i}\right) \in[4 n+3,5 n+1]$ for $1 \leq i \leq n-1$. Similarly, the column sum of each column of Table 4 is $9 n / 2+4$. Thus, $w\left(v_{i}\right)=9 n / 2+4$ and $w\left(v_{1}^{i}\right) \in[2, n]$ for $1 \leq i \leq n-1$. Moreover, $w(x)=[2 n+(2 n+$ $1)+(3 n+3)]+(3 n+4)+\cdots+(4 n+2)+(n+1)+\cdots+(2 n-1)=$ $(7 n+4)+(n-1)(5 n+3)=5 n^{2}+5 n+1$. Clearly, for $1 \leq i \leq n-1$, $w(x) \neq w\left(u_{1}^{i}\right) \neq w\left(u_{i}\right) \neq w\left(v_{1}^{i}\right) \neq w\left(u_{1}^{1}\right) \neq w\left(v_{1}^{1}\right) \neq w\left(x_{1}\right)$. Note that $4 n+3 \leq w\left(u_{n}\right)=4 n+3 \neq w\left(v_{n}\right)=4 n+5 \leq 5 n+1$ for even $n \geq 6$. Therefore, f is a local antimagic labeling that induces $2 n+3$ distinct vertex colors. Consequently, $\chi_{l a}\left(f_{n} \circ O_{1}\right)=2 n+3$ for even $n \geq 6$.

Example 3.1. Figures 3 and 4 below give the labelings of $f_{3} \circ O_{1}$ and $f_{6} \circ O_{1}$ according to the proof in Theorem 3.1.

Figure 3: $\chi_{l a}\left(f_{3} \circ O_{1}\right)=9$ with induced vertex colors in $[1,3] \cup[13,16] \cup$ $\{33,64\}$

Figure 4: $\chi_{l a}\left(f_{6} \circ O_{1}\right)=15$ with induced vertex colors in $[1,6] \cup[27,31] \cup$ $\{21,71,211\}$

References

[1] S. Arumugam, K. Premalatha, M. Bača and A. Se-maničová-Feňovčíková, Local Antimagic Vertex Coloring of a Graph, Graphs Combin., 33 (2017),275-285.
[2] S. Arumugam, Y.-C. Lee, K. Premalatha, T.-M. Wang, On Local Antimagic Vertex Coloring for Corona Products of Graphs, https://arxiv.org/pdf/1808.04956.pdf
[3] J. Bensmail, M. Senhaji and K. Szabo Lyngsie, On a combination of the 1-2-3 conjecture and the antimagic labelling conjecture, Discrete Math. Theor. Comput.Sci., 19(1) (2017), No. 21.
[4] G. Chartrand and L. Lesniak, Graphs \& Digraphs (fourth edition), Chapman and Hall/CRC, 2005.
[5] T. Eccles, Graphs of large linear size are antimagic, J. Graph Theory, 81(3) (2016), 236-261.
[6] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., (2019), DS6.
[7] N. Hartsfield and G. Ringel, Pearls in graph theory, Academic Press, (1994).
[8] Z.R. Himami and D.R. Silaban, On local antimagic vertex coloring of corona products related to friendship and fan graph, Indon. J. Combin., 5(2) (2021), 110-121.
[9] G.-C. Lau, H.-K. Ng and W.-C. Shiu, Affirmative Solutions On Local Antimagic Chromatic Number, Graphs Combins, 36(5) (2020), 13371354.
[10] G.-C Lau, W.-C. Shiu and H.-K. Ng, On local antimagic chromatic number of graphs with cut-vertices, Iran. J. Maths. Sci. Inform., (2022), to appear.
[11] G.-C Lau, W.-C. Shiu, and H.-K. Ng, On number of pendants in local antimagic chromatic numbers, J. Discrete Math. Sci. Cryptogr., (2021).

DOI: 10.1080/09720529.2021.1920190.
[12] G.-C Lau, W.-C. Shiu, and C.-X. Soo, On local antimagic chromatic number of spider graphs, J. Discrete Math. Sci. Cryptogr., (2022). DOI : 10.1080/09720529.2021.1892270.

Gee-Choon Lau
College of computing, informatics \& media, Universiti Teknologi MARA (Segamat Campus), 85000, Johor, Malaysia.
geeclau@yahoo.com
Moviri Nalliah
School of Advanced Sciences, Department of Mathematics, Vellore Institute of Technology, Vellore-632 014, India.
nalliahklu@gmail.com

[^0]: *Corresponding author: nalliahklu@gmail.com
 Key words and phrases: Local antimagic chromatic number, fan graph, friendship graph.
 AMS (MOS) Subject Classifications: 05C78,05C15.

