BULLETIN of The Management of The Institute of COMBINATORICS and its APPLICATIONS

Editors-in-Chief:

Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Duluth, Minnesota, U.S.A.

ISSN: 2689-0674 (Online) ISSN: 1183-1278 (Print)

On local antimagic chromatic number of a corona product graph

Gee-Choon Lau and Moviri Nalliah*

Abstract. In this paper, we provide a correct proof for the lower bounds of the local antimagic chromatic number of the corona product of friendship and fan graphs with null graph respectively as in [On local antimagic vertex coloring of corona products related to friendship and fan graph, *Indon. J. Combin.*, 5(2) (2021) 110–121]. Consequently, we obtained a sharp lower bound that gives the exact local antimagic chromatic number of the corona product of friendship and null graph.

1 Introduction

Let G = (V, E) be a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by |V(G)| = p and |E(G)| = qrespectively. The *friendship graph* f_n $(n \ge 2)$ is a graph which consists of n triangles with a common vertex. The fan graph F_n $(n \ge 2)$ is obtained by joining a new vertex to every vertex of a path P_n . The corona product of two graphs G and H is the graph $G \circ H$ obtained by taking one copy of G along with |V(G)| copies of H, and join the *i*-th vertex of G to every vertex of the *i*-th copy of H, where $1 \le i \le |V(G)|$. For integers a < b, let $[a, b] = \{a, a + 1, \ldots, b\}$. For graph-theoretic terminology, we refer to Chartrand and Lesniak [4].

^{*}Corresponding author: nalliahklu@gmail.com

Key words and phrases: Local antimagic chromatic number, fan graph, friendship graph.

AMS (MOS) Subject Classifications: 05C78,05C15.

Hartsfield and Ringel [7] introduced the concept of antimagic labeling of a graph. For a graph G, let $f : E(G) \to \{1, 2, ..., q\}$ be a bijection. For each vertex $u \in V(G)$, the weight $w(u) = \sum_{e \in E(u)} f(e)$, where E(u) is the set of edges incident to u. If $w(u) \neq w(v)$ for any two distinct vertices uand $v \in V(G)$, then f is called an antimagic labeling of G. Hartsfield and Ringel conjectured that every connected graph with at least three vertices admits antimagic labeling [7]. Interested readers can refer to [5,6].

Arumugam et al. in [1], and independently, Bensmail et al. in [3], posed a new definition as a relaxation of the notion of antimagic labeling. They called a bijection $f: E \to \{1, 2, ..., |E|\}$ a *local antimagic labeling* of G if for any two adjacent vertices u and v in V(G), the condition $w(u) \neq w(v)$ holds. Based on this notion, Arumugam et al. then introduced a new graph coloring parameter. Let f be a local antimagic labeling of a connected graph G. The assignment of w(u) to u for each vertex $u \in V(G)$ induces naturally a proper vertex coloring of G which is called a *local antimagic vertex col*oring of G. The *local antimagic chromatic number*, denoted $\chi_{la}(G)$, is the minimum number of colors taken over all local antimagic colorings of G [1].

Arumugam et al. [2] obtained the local antimagic chromatic number for the graph $G \circ O_m$, where G is a path, cycle or complete graph and O_m is the null graph of order $m \ge 1$.

Theorem 1.1 (Arumugam et al. [2]). Let $m \ge 2$, then

$$\chi_{la}\left(C_3 \circ O_m\right) = 3m + 3,$$

except $\chi_{la}(C_3 \circ O_1) = 5.$

Theorem 1.2 (Arumugam et al. [2]). For $n \ge 2$, $\chi_{la}(K_n \circ K_1) = 2n - 1$.

In [8], the authors studied $\chi_{la}(f_n \circ O_m)$ and $\chi_{la}(F_n \circ O_m)$ for $n \geq 2$ and $m \geq 1$. We note that there are inconsistencies in the notations of f_n and F_n used. They proved that $\chi_{la}(f_n \circ O_m) \leq m(2n+1) + 3$ and $\chi_{la}(F_n) \leq m(n+1) + 3$ by providing a correct local antimagic labeling respectively. However, there are gaps in proving that $\chi_{la}(f_n \circ O_m) \geq m(2n+1) + 3$ and $\chi_{la}(F_n) \geq m(n+1) + 3$. Motivated by this, we shall first provide correct arguments to the proofs of the lower bounds. Consequently, we showed that $\chi_{la}(f_n \circ O_m) = m(2n+1) + 2$ for $n \geq 2, m = 1$. Interested readers may refer to [9–12] for local antimagic chromatic number of graphs with pendant edges.

$\begin{array}{ccc} 2 & ext{Lower bounds of } \chi_{la}(f_n \circ O_m) ext{ and } \ \chi_{la}(F_n \circ O_m) \end{array}$

Lemma 2.1. For $n \ge 2, m \ge 1$, $\chi_{la}(f_n \circ O_m) \ge m(2n+1) + 3$ except $\chi_{la}(f_n \circ O_1) \ge m(2n+1) + 2$.

Proof. Let $G = f_n \circ O_m$ with $V(G) = \{x, u_i, v_i, x_j, u_j^i, v_j^i | 1 \le i \le n, 1 \le j \le m\}$ and $E(G) = \{xx_j, xu_i, xv_i, u_iv_i, u_iu_j^i, v_iv_j^i | 1 \le i \le n, 1 \le j \le m\}$. Clearly, |E(G)| = q = m(2n+1) + 3n.

Suppose $f: E(G) \to [1,q]$ is a local antimagic labeling of G. Clearly, all the m(2n+1) pendant vertices must have distinct induced vertex colors that are at most q. Morever, $w(x) \ge 1+2+\cdots+(2n+m) = (2n+m)(2n+m+1)/2 = s$. Now, $2s - 2q = (2n + m + 1)^2 + (2n + m + 1) - 6n - 2m(2n + 1) = 4n^2 + m^2 + m + 1 > 0$. Thus, w(x) > q. Therefore, $\chi_{la}(G) \ge m(2n+1)+1$. Without loss of generality, we consider the following 3 cases.

- **Case 1.** $f(u_1v_1) = q$. In this case, $w(u_1) \neq w(v_1) \neq w(x) > q$ so that $\chi_{la}(G) \ge m(2n+1) + 3$.
- **Case 2.** $f(xu_1) = q$ or $f(u_1u_1^1) = q$. In this case, $w(u_1) \neq w(x) > q$ so that $\chi_{la}(G) \ge m(2n+1)+2$. Suppose equality holds. Clearly, for each $i \in [1, n]$, at most one of u_i, v_i has induced vertex color q. So, there are at most n vertices in $\{u_i, v_i\}$ with induced vertex color q. The sum of these n induced vertex colors is at least $1+2+\cdots+n(m+2) = n(m+2)[n(m+2)+1]$ and at most nq = n[3n+m(n+1)]. Since $n \ge 2$, it is easy to check that $n(m+2)[n(m+2)+1] n[3n+m(n+1)] = 2n^2(m+1) + n + \frac{1}{2}mn(mn+1) [3n^2 + mn(2n+1)] > 0$ if and only if m > 1. Consequently, $\chi_{la}(G) \ge m(n+1) + 2$ if m = 1, and $\chi_{la}(G) \ge m(n+1) + 3$ if $m \ge 2$.
- **Case 3.** $f(xx_1) = q$. In this case, $w(x_1) = q$ and $w(u_j^i), w(v_j^i), w(x_j) < q$ $(x_j \neq x_1)$ so that $\chi_{la}(G) \ge m(2n+1)+1$. Suppose $w(v_i) < w(u_i) \le q$ for $1 \le i \le n$, then $\sum_{i=1}^{n} [w(u_i) + w(v_i)]$ is at most n(2q-1) and at least $1 + 2 + \dots + n(2m+3) = n(2m+3)[n(2m+3)+1]/2$. Now,

$$n(2m+3)[n(2m+3)+1] - 2n(2q-1)$$

= $n(2m+3)[n(2m+3)+1] - 2n[2m(2n+1)+6n-1]$
= $4m^2n^2 + 4mn^2 - 2mn - 3n^2 + 5n > 0.$

Thus, we may assume $w(u_1) > q$. Since $w(u_1) \neq w(x)$, we have $\chi_{la}(G) \geq m(2n+1)+2$. Suppose equality holds. By an argument similar to that in Case 2, we have $\chi_{la}(G) \geq m(2n+1)+2$ if m = 1 and $\chi_{la}(G) \geq m(2n+1)+3$ if $m \geq 2$.

Note that $F_2 \circ O_m = C_3 \circ O_m$, we next consider $F_n \circ O_m$, $n \ge 3, m \ge 1$.

Lemma 2.2. For $n \ge 3, m \ge 1, \chi_{la}(F_n \circ O_m) \ge m(n+1) + 3$.

Proof. Let $G = F_n \circ O_m$ with $V(G) = \{x, x_j, v_i, v_j^i \mid 1 \le i \le n, 1 \le j \le m\}$ and $E(G) = \{xx_j, xv_i, v_iv_j^i \mid 1 \le i \le n, 1 \le j \le m\} \cup \{v_iv_{i+1} \mid 1 \le i \le n-1\}.$ Clearly, |E(G)| = m(n+1) + 2n - 1 = q.

Let f be a local antimagic labeling of G that induces $\chi_{la}(G)$ distinct vertex colors. Clearly, all the m(n+1) pendant vertices must have distinct induced vertex colors that are at most q. Moreover, $w(x) \ge 1+2+\cdots+(m+n)(m+n+1)/2 = s$. Now $2s-2q = (m+n)(m+n+1)-2[m(n+1)+2n-1] = m^2 - m+n^2 - 3n+1 > 0$ for $n \ge 3$. Thus, w(x) > q and $\chi_{la}(G) \ge m(n+1)+1$. Without loss of generality, we consider the following cases.

- **Case 1.** $f(v_1v_2) = q$ or $f(v_2v_3) = q$ if $n \ge 4$. In this case, $w(x) \ne w(v_1) \ne w(v_2) > q$. Thus, $\chi_{la}(G) \ge m(n+1) + 3$.
- **Case 2.** $f(xv_1) = q$ (or $f(xv_2) = q$). In this case, $w(x) \neq w(v_1) > q$ (or $w(x) \neq w(v_2) > q$). Thus, $\chi_{la}(G) \ge m(n+1) + 2$. Suppose equality holds. Note that if $w(v_i) > q$ for $3 \le i \le n$, then $w(v_i) = w(v_1)$. Moreover, $w(v_i) \neq w(v_{i+1})$ for $1 \le i \le n-1$. Suppose there are $r \ge 1$ vertices in $\{v_i \mid 1 \le 1 \le n\}$ with induced vertex color larger than q, then there are $n-r \ge 1$ vertices in $\{v_i \mid 1 \le 1 \le n\}$ with induced vertex color larger to a total of (m+2)n-1-r(m+1) = (m+1)(n-r)+n-1 edges. Therefore, their edge labels sum under f is at most (n-r)q. However, the sum is at least $S = 1+2+\dots+[(m+1)(n-r)+n-1] = \frac{1}{2}[(m+1)(n-r)+n-1][(m+1)(n-r)+n]$. Note that $n-r \ge n/2$. Thus,

$$-r \ge -n/2$$
 and $2S - 2(n-r)q \ge \frac{n}{2} \left[\frac{m^2 n}{2} + \frac{n}{2} - 3 \right] > 0$

except for n = 3, m = 1. This contradicts $S \leq (n - r)q$ for all $(n, m) \neq (3, 1)$.

The second inequality is obtained as follows:

$$\begin{split} 2S-2(n-r)q &= \left[(m+1)(n-r)+n\right]^2 - \left[(m+1)(n-r)+n\right] \\ &\quad -2(n-r)[m(n+1)+2n] \\ &= (m+1)^2(n-r)^2 + (2n-1)(m+1)(n-r) \\ &\quad +n^2 - n - 2(n-r)(mn+m+2n) \\ &= (n-r)[m^2(n-r)+2m(n-r)-3m-n-r-1]+n^2 - n \\ &\geq (n-r)[m^2(n-r)+2m(n-r)-3m-\frac{3n}{2}-1]+n^2 - n \\ &\geq \frac{n}{2} \left[(m^2+2m)(\frac{n}{2})-3m-\frac{3n}{2}-1\right]+n^2 - n \\ &\geq \frac{n}{2} \left[\frac{m^2n}{2}-\frac{3n}{2}-1+2n-2\right] \\ &= \frac{n}{2} \left[\frac{m^2n}{2}+\frac{n}{2}-3\right] > 0 \text{ except when } (n,m) = (3,1) \end{split}$$

Now, consider $G = F_3 \circ O_1$ that has q = 9. If G admits a local antimagic labeling that induces 6 distinct vertex colors, then $w(v_1) = w(v_3) \leq 9$. Since v_1 and v_3 are incident to 6 different edges, their total label sum is at least 21 so that $w(v_1) = w(v_3) \geq 11$, a contradiction. Therefore, $\chi_{la}(G) \geq m(n+1) + 3$.

Case 3. $f(v_1v_1^1) = q$ (or $f(v_2v_1^2) = q$). In this case, $w(v_1) \neq w(x) > q$ (or $w(v_2) \neq w(x) > q$). Thus, $\chi_{la}(G) \ge m(n+1) + 2$. Suppose equality holds. By an argument similar to Case 2, we have the same contradiction.

$3 \quad \chi_{la}(f_n \circ O_1)$

In [8], the authors obtained local antimagic labelings that correctly show that $\chi_{la}(f_n \circ O_m) \leq m(2n+1) + 3$ and $\chi_{la}(F_n \circ O_m) \leq m(n+1) + 3$. By Lemma 2.1, we shall next show that $\chi_{la}(f_n \circ O_1) = 2n + 3$.

Theorem 3.1. For $n \ge 2$, $\chi_{la}(f_n \circ O_1) = 2n + 3$.

Proof. Let $G = f_n \circ O_1$ with V(G) and E(G) as defined in the proof of Lemma 2.1. Suffice to define a bijection $f : E(G) \to [1, 5n+1]$ that induces 2n + 3 distinct induced vertex colors. We shall use labeling matrices to describe the labeling of all the edges of $f_n \circ O_1$.

Suppose n is odd. We first define $f(xx_1) = 5n+1$. We now arrange integers in [2n+1, 5n] as a $3 \times n$ matrix as follows:

- (1) In row 1, assign 4n + (i+1)/2 to column *i* if i = 1, 3, 5..., n; assign (9n+1)/2 + i/2 if i = 2, 4, 6, ..., n-1. We have used integers in [4n+1, 5n].
- (2) In row 2, assign (7n+1)/2 + (i-1)/2 to column *i* if i = 1, 3, 5..., n; assign 3n + i/2 if i = 2, 4, 6, ..., n 1. We have used integers in [3n+1, 4n].
- (3) In row 3, assign 3n+1-i to column $1 \le i \le n$. We have used integers in [2n+1, 3n].

The resulting matrix is given in Table 1.

4n + 1	$\frac{9n+3}{2}$	4n+2	$\frac{9n+5}{2}$	 5n - 1	$\frac{9n-1}{2}$	5n	$\frac{9n+1}{2}$
$\frac{7n+1}{2}$	3n + 1	$\frac{7n+3}{2}$	3n + 2	 $\frac{7n-3}{2}$	4n - 1	$\frac{7n-1}{2}$	4n
3n	3n - 1	3n-2	3n - 3	 2n + 4	2n+3	2n + 2	2n + 1

Table 1: Assignment of integers in [2n+2, 5n+1]

We next arrange integers in [1, 3n] as a $3 \times n$ matrix as follows:

- (1) In row 1, assign 3n+1-i to column $1 \le i \le n$. We have used integers in [2n+1, 3n].
- (2) In row 2, assign (3n+1)/2 + (i-1)/2 to column *i* if i = 1, 3, 5, ..., n; assign n + i/2 to column *i* if i = 2, 4, 6, ..., n 1. We have used integers in [n + 1, 2n].
- (3) In row 3, assign (i + 1)/2 to column *i* if $i = 1, 3, 5, \ldots, n$; assign (n + 1)/2 + i/2 to column *i* if $i = 2, 4, 6, \ldots, n 1$. We have used integers in [1, n].

The resulting matrix is given in Table 2.

3n	3n - 1	3n - 2	3n - 3	 2n + 4	2n+3	2n+2	2n + 1
$\frac{3n+1}{2}$	n+1	$\frac{3n+3}{2}$	n+2	 $\frac{3n-3}{2}$	2n - 1	$\frac{3n-1}{2}$	2n
1	$\frac{n+3}{2}$	2	$\frac{n+5}{2}$	 n-1	$\frac{n-1}{2}$	n	$\frac{n+1}{2}$

Table 2: Assignment of integers in [2n+2, 5n+1]

For $1 \leq k \leq 3$, $1 \leq i \leq n$, let $a_{k,i}$ be the (k,i)-entry of Table 1, and $b_{k,i}$ be the (k,i)-entry of Table 2. Note that $b_{1,i} = a_{3,i}$. Define $f(u_i u_1^i) = a_{1,i}$, $f(xu_i) = a_{2,i}$, $f(u_iv_i) = a_{3,i}$, $f(xv_i) = b_{2,i}$ and $f(v_iv_1^i) = b_{3,i}$. It is obvious that f is a bijective function.

Now, column sum of each column of Table 1 is (21n+3)/2. Thus, $w(u_i) = (21n+3)/2$ and $w(u_1^i) \in [4n+1,5n]$ for $1 \le i \le n$. Similarly, the column sum of each column of Table 2 is (9n+3)/2. Thus, $w(v_i) = (9n+3)/2$ and $w(v_1^i) \in [1,n]$ for $1 \le i \le n$. Moreover, $w(x) = (n+1) + \cdots + (2n) + (3n+1) + \cdots + 4n + (5n+1) = (n+1)(5n+1)$. Clearly, $w(x) \ne w(u_1^i) \ne w(u_1) \ne w(v_1^i) \ne w(x_1) = 5n+1$ for $1 \le i \le n$. Note that $4n+1 \le w(v_i) = (9n+3)/2 \le 5n+1$ is odd for $n \ge 3$. Therefore, f is a local antimagic labeling that induces 2n+3 distinct vertex colors. Consequently, $\chi_{la}(f_n \circ O_1) = 2n+3$ for odd $n \ge 3$.

We now consider even $n \ge 2$. Figures 1 and 2 show that $\chi_{la}(f_2 \circ O_1) = 7$ and $\chi_{la}(f_4 \circ O_1) = 11$.

Figure 1: $\chi_{la}(f_2 \circ O_1) = 7$ with induced vertex colors in $\{7, 5, 9, 10, 11, 20, 28\}$

Figure 2: $\chi_{la}(f_4 \circ O_1) = 11$ with induced vertex colors in $\{5, 6, 7, 9, 10, 16, 17, 18, 21, 46, 85\}$

Consider $n \ge 6$. We first define $f(xx_1) = 3n + 3$, $f(u_nv_n) = 1$, $f(u_nu_1^n) = 2n + 2$, $f(xu_n) = 2n$, $f(v_nv_1^n) = 2n + 3$ and $f(xv_n) = 2n + 1$. We now have $w(x_1) = 3n + 3$, $w(u_n) = 4n + 3$, $w(u_1^n) = 2n + 2$, $w(v_n) = 4n + 5$ and $w(v_1^n) = 2n + 3$. We now consider the remaining integers in $[2, 2n - 1] \cup [2n + 4, 3n + 2] \cup [3n + 4, 5n + 1]$.

We now arrange integers in $[2n+4, 3n+2] \cup [3n+4, 5n+1]$ as a $3 \times (n-1)$ matrix as follows:

- (1) In row 1, assign 4n + 3 + (i 1)/2 to column *i* if i = 1, 3, 5..., n 1; assign 9n/2 + 2 + i/2 if i = 2, 4, 6, ..., n - 2. We have used integers in [4n + 3, 5n + 1].
- (2) In row 2, assign 7n/2+3+(i-1)/2 to column *i* if i = 1, 3, 5..., n-1; assign 3n+3+i/2 if i = 2, 4, 6, ..., n-2. We have used integers in [3n+4, 4n+2].
- (3) In row 3, assign 3n + 3 i to column $1 \le i \le n 1$. We have used integers in [2n + 4, 3n + 2].

The resulting matrix is given in Table 3.

Table 3:	Assignment	of integers in	[2n+4, 3n+2]	$] \cup [3n]$	[+4, 5n+1]

4n + 3	$\frac{9n}{2} + 3$	4n + 4	$\frac{9n}{2} + 4$	 5n	$\frac{9n}{2} + 1$	5n + 1	$\frac{9n}{2} + 2$
$\frac{7n}{2} + 3$	3n+4	$\frac{7n}{2} + 4$	3n + 5	 $\frac{7n}{2} + 1$	4n + 1	$\frac{7n}{2} + 2$	4n+2
3n+2	3n+1	3n	3n - 1	 2n + 7	2n+6	2n + 5	2n+4

We next arrange integers in $[2, 2n - 1] \cup [2n + 4, 3n + 2]$ as a $3 \times n$ matrix as follows:

- (1) In row 1, assign 3n + 3 i to column $1 \le i \le n 1$. We have used integers in [2n + 4, 3n + 2].
- (2) In row 2, assign 3n/2 + (i-1)/2 to column *i* if i = 1, 3, 5, ..., n-1; assign n + i/2 to column *i* if i = 2, 4, 6, ..., n-2. We have used integers in [n+1, 2n-1].
- (3) In row 3, assign (i+3)/2 to column *i* if $i = 1, 3, 5, \ldots, n-1$; assign n/2+1+i/2 to column *i* if $i = 2, 4, 6, \ldots, n-2$. We have used integers in [2, n].

The resulting matrix is given in Table 4.

3n+2	3n+1	3n	3n - 1	 2n + 7	2n + 6	2n + 5	2n+4
$\frac{3n}{2}$	n+1	$\frac{3n}{2} + 1$	n+2	 $\frac{3n}{2} - 2$	2n - 2	$\frac{3n}{2} - 1$	2n - 1
2	$\frac{n}{2}+2$	3	$\frac{n}{2} + 3$	 n-1	$\frac{n}{2}$	n	$\frac{n}{2} + 1$

Table 4: Assignment of integers in $[2, 2n - 1] \cup [2n + 4, 3n + 2]$

For $1 \leq k \leq 3$, $1 \leq i \leq n-1$, let $c_{k,i}$ be the (k,i)-entry of Table 3, and $d_{k,i}$ be the (k,i)-entry of Table 4. Note that $d_{1,i} = c_{3,i}$. Define $f(u_i u_1^i) = c_{1,i}$, $f(xu_i) = c_{2,i}$, $f(u_i v_i) = c_{3,i}$, $f(xv_i) = d_{2,i}$ and $f(v_i v_1^i) = d_{3,i}$. It is obvious that f is a bijective function.

Now, column sum of each column of Table 3 is 21n/2 + 8. Thus, $w(u_i) = 21n/2 + 8$ and $w(u_1^i) \in [4n + 3, 5n + 1]$ for $1 \le i \le n - 1$. Similarly, the column sum of each column of Table 4 is 9n/2 + 4. Thus, $w(v_i) = 9n/2 + 4$ and $w(v_1^i) \in [2, n]$ for $1 \le i \le n - 1$. Moreover, $w(x) = [2n + (2n + 1) + (3n + 3)] + (3n + 4) + \dots + (4n + 2) + (n + 1) + \dots + (2n - 1) = (7n + 4) + (n - 1)(5n + 3) = 5n^2 + 5n + 1$. Clearly, for $1 \le i \le n - 1$, $w(x) \ne w(u_1^i) \ne w(u_i) \ne w(v_1^i) \ne w(u_1^1) \ne w(v_1^1) \ne w(x_1)$. Note that $4n + 3 \le w(u_n) = 4n + 3 \ne w(v_n) = 4n + 5 \le 5n + 1$ for even $n \ge 6$. Therefore, f is a local antimagic labeling that induces 2n + 3 distinct vertex colors. Consequently, $\chi_{la}(f_n \circ O_1) = 2n + 3$ for even $n \ge 6$.

Example 3.1. Figures 3 and 4 below give the labelings of $f_3 \circ O_1$ and $f_6 \circ O_1$ according to the proof in Theorem 3.1.

Figure 3: $\chi_{la}(f_3 \circ O_1) = 9$ with induced vertex colors in $[1,3] \cup [13,16] \cup \{33,64\}$

Figure 4: $\chi_{la}(f_6 \circ O_1) = 15$ with induced vertex colors in $[1, 6] \cup [27, 31] \cup \{21, 71, 211\}$

References

- S. Arumugam, K. Premalatha, M. Bača and A. Semaničová-Feňovčíková, Local Antimagic Vertex Coloring of a Graph, Graphs Combin., 33 (2017),275–285.
- [2] S. Arumugam, Y.-C. Lee, K. Premalatha, T.-M. Wang, On Local Antimagic Vertex Coloring for Corona Products of Graphs, https://arxiv.org/pdf/1808.04956.pdf
- [3] J. Bensmail, M. Senhaji and K. Szabo Lyngsie, On a combination of the 1-2-3 conjecture and the antimagic labelling conjecture, *Discrete Math. Theor. Comput.Sci.*, **19(1)** (2017), No. 21.

- [4] G. Chartrand and L. Lesniak, *Graphs & Digraphs (fourth edition)*, Chapman and Hall/CRC, 2005.
- [5] T. Eccles, Graphs of large linear size are antimagic, J. Graph Theory, 81(3) (2016), 236–261.
- [6] J. A. Gallian, A dynamic survey of graph labeling, *Electron. J. Com*bin., (2019), DS6.
- [7] N. Hartsfield and G. Ringel, *Pearls in graph theory*, Academic Press, (1994).
- [8] Z.R. Himami and D.R. Silaban, On local antimagic vertex coloring of corona products related to friendship and fan graph, *Indon. J. Combin.*, 5(2) (2021), 110–121.
- [9] G.-C. Lau, H.-K. Ng and W.-C. Shiu, Affirmative Solutions On Local Antimagic Chromatic Number, Graphs Combins, 36(5) (2020), 1337– 1354.
- [10] G.-C Lau, W.-C. Shiu and H.-K. Ng, On local antimagic chromatic number of graphs with cut-vertices, Iran. J. Maths. Sci. Inform., (2022), to appear.
- [11] G.-C Lau, W.-C. Shiu, and H.-K. Ng, On number of pendants in local antimagic chromatic numbers, J. Discrete Math. Sci. Cryptogr., (2021).
 DOI: 10.1080/09720529.2021.1920190.
- G.-C Lau, W.-C. Shiu, and C.-X. Soo, On local antimagic chromatic number of spider graphs, J. Discrete Math. Sci. Cryptogr., (2022).
 DOI : 10.1080/09720529.2021.1892270.

GEE-CHOON LAU COLLEGE OF COMPUTING, INFORMATICS & MEDIA, UNIVERSITI TEKNOLOGI MARA (SEGAMAT CAMPUS), 85000, JOHOR, MALAYSIA. geeclau@yahoo.com

MOVIRI NALLIAH SCHOOL OF ADVANCED SCIENCES, DEPARTMENT OF MATHEMATICS, VELLORE INSTITUTE OF TECHNOLOGY, VELLORE-632 014, INDIA. nalliahklu@gmail.com