BULIETIN of The
 Volume 95 June 2022

 INSTITIUIE: Of

 INSTITIUIE: Of GOW:HWHORLES and its APPIBLIIONS

Editors-in-Chief:

Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Duluth, Minnesota, U.S.A.

ISSN: 2689-0674 [Online] ISSN: 1183-1278 [Print]

Distance- k locating-dominating sets in graphs

Cong X. Kang ${ }^{1}$ and Eunjeong $\mathrm{Yi}^{* 1}$
${ }^{1}$ Texas A\&M University at Galveston, Galveston, TX 77553, USA kangc@tamug.edu AND yie@tamug.edu

Abstract

Let G be a graph with vertex set V, and let k be a positive integer. A set $D \subseteq V$ is a distance- k dominating set of G if, for each vertex $u \in V-D$, there exists a vertex $w \in D$ such that $d(u, w) \leq k$, where $d(u, w)$ is the minimum number of edges linking u and w in G. Let $d_{k}(x, y)=$ $\min \{d(x, y), k+1\}$. A set $R \subseteq V$ is a distance- k resolving set of G if, for any pair of distinct $x, y \in V$, there exists a vertex $z \in R$ such that $d_{k}(x, z) \neq$ $d_{k}(y, z)$. The distance- k domination number $\gamma_{k}(G)$ (distance- k dimension $\operatorname{dim}_{k}(G)$, respectively) of G is the minimum cardinality of all distance- k dominating sets (distance- k resolving sets, respectively) of G. The distancek location-domination number, $\gamma_{L}^{k}(G)$, of G is the minimum cardinality of all sets $S \subseteq V$ such that S is both a distance- k dominating set and a distance- k resolving set of G. Note that $\gamma_{L}^{1}(G)$ is the well-known location-domination number introduced by Slater in 1988. For any connected graph G of order $n \geq 2$, we obtain the following sharp bounds: (1) $\gamma_{k}(G) \leq \operatorname{dim}_{k}(G)+1$; (2) $2 \leq \gamma_{k}(G)+\operatorname{dim}_{k}(G) \leq n$; (3) $1 \leq \max \left\{\gamma_{k}(G), \operatorname{dim}_{k}(G)\right\} \leq \gamma_{L}^{k}(G) \leq$ $\min \left\{\operatorname{dim}_{k}(G)+1, n-1\right\}$. We characterize G for which $\gamma_{L}^{k}(G) \in\{1,|V|-1\}$. We observe that $\frac{\operatorname{dim}_{k}(G)}{\gamma_{k}(G)}$ can be arbitrarily large. Moreover, for any tree T of order $n \geq 2$, we show that $\gamma_{L}^{k}(T) \leq n-e x(T)$, where $e x(T)$ denotes the number of exterior major vertices of T, and we characterize trees T achieving equality. We also examine the effect of edge deletion on the distance- k location-domination number of graphs.

[^0]Key words and phrases: domination number, metric dimension, locating-dominating set, distance- k locating-dominating set, (s, t)-locating-dominating set
AMS (MOS) Subject Classifications: 05C12, 05C69

1 Introduction

Let G be a finite, simple, undirected, and connected graph with vertex set $V(G)$ and edge set $E(G)$. Let k be a positive integer. For $x, y \in V(G)$, let $d(x, y)$ denote the length of a shortest path between x and y in G, and let $d_{k}(x, y)=\min \{d(x, y), k+1\}$. The diameter, $\operatorname{diam}(G)$, of a graph G is $\max \{d(x, y): x, y \in V(G)\}$. For $v \in V(G)$ and $S \subseteq V(G)$, let $d(v, S)=\min \{d(v, w): w \in S\}$. The open neighborhood of a vertex $v \in$ $V(G)$ is $N(v)=\{u \in V(G): u v \in E(G)\}$ and its closed neighborhood is $N[v]=N(v) \cup\{v\}$. More generally, for $v \in V(G)$, let $N^{k}[v]=\{u \in V(G)$: $d(u, v) \leq k\}$. The degree of a vertex $v \in V(G)$ is $|N(v)|$. For distinct $x, y \in V(G), x$ and y are called twin vertices if $N(x)-\{y\}=N(y)-\{x\}$ in G. A major vertex is a vertex of degree at least three, a leaf (also called an end-vertex) is a vertex of degree one, and a support vertex is a vertex that is adjacent to a leaf. A leaf ℓ is called a terminal vertex of a major vertex v if $d(\ell, v)<d(\ell, w)$ for every other major vertex w in G. The terminal degree, $\operatorname{ter}(v)$, of a major vertex v is the number of terminal vertices of v in G. A major vertex v is an exterior major vertex if it has positive terminal degree. We denote the number of exterior major vertices of G by $\operatorname{ex}(G)$ and the number of leaves of G by $\sigma(G)$. We denote by \bar{G} the complement of G, i.e., $V(\bar{G})=V(G)$ and $x y \in E(\bar{G})$ if and only if $x y \notin E(G)$ for any distinct vertices x and y in G. The join of two graphs G and H, denoted by $G+H$, is the graph obtained from the disjoint union of G and H by joining an edge between each vertex of G and each vertex of H. Let P_{n}, C_{n}, and K_{n} denote respectively the path, the cycle, and the complete graph on n vertices; let $K_{s, n-s}$ denote the complete bi-partite graph on n vertices with parts of sizes s and $n-s$. Let \mathbb{Z}^{+}be the set of positive integers and $k \in \mathbb{Z}^{+}$. For $\alpha \in \mathbb{Z}^{+}$, let $[\alpha]=\{1,2, \ldots, \alpha\}$.

A vertex subset $D \subseteq V(G)$ is a distance-k dominating set of G if, for each vertex $u \in V(G)-D$, there exists a vertex $w \in D$ such that $d(u, w) \leq k$. The distance- k domination number, $\gamma_{k}(G)$, of G is the minimum cardinality over all distance- k dominating sets of G. The concept of distance- k domination was introduced by Meir and Moon [20]. We note that $\gamma_{1}(G)$ is the well-known domination number of G, which is often denoted by $\gamma(G)$ in the literature. Applications of domination can be found in resource allocation on a network, determining efficient routes within a network, and designing secure systems for electrical grids, to name a few. It is known that determining the domination number of a general graph is an NP-hard problem (see [9]). For a survey on domination in graphs, see [14].

A vertex subset $R \subseteq V(G)$ is a resolving set of G if, for any pair of distinct vertices $x, y \in V(G)$, there exists a vertex $z \in R$ such that $d(x, z) \neq$ $d(y, z)$. The metric dimension, $\operatorname{dim}(G)$, of G is the minimum cardinality over all resolving sets of G. The concept of metric dimension was introduced independently by Slater [23] and by Harary and Melter [13]. A vertex subset $S \subseteq V(G)$ is a distance- k resolving set (also called a k-truncated resolving set) of G if, for any distinct vertices $x, y \in V(G)$, there exists a vertex $z \in S$ such that $d_{k}(x, z) \neq d_{k}(y, z)$. The distance- k dimension (also called the k-truncated dimension), $\operatorname{dim}_{k}(G)$, of G is the minimum cardinality over all distance- k resolving sets of G. The metric dimension of a metric space $\left(V, d_{k}\right)$ is studied in [2]. The distance- k dimension corresponds to the $(1, k+1)$-metric dimension in [5] and [6]. We note that $\operatorname{dim}_{1}(G)$ is also called the adjacency dimension, introduced in [16], and it is often denoted by $\operatorname{adim}(G)$ in the literature. For detailed results on $\operatorname{dim}_{k}(G)$, we refer to [8], which is a merger of [12] and [24], along with some additional results. For an ordered set $S=\left\{u_{1}, u_{2}, \ldots, u_{\alpha}\right\} \subseteq V(G)$ of distinct vertices, the distancek metric code of $v \in V(G)$ with respect to S, denoted by $\operatorname{code}_{S, k}(v)$, is the α-vector $\left(d_{k}\left(v, u_{1}\right), d_{k}\left(v, u_{2}\right), \ldots, d_{k}\left(v, u_{\alpha}\right)\right)$. We denote by $(\mathbf{k}+\mathbf{1})_{\alpha}$ the α-vector with $k+1$ on each entry. Applications of metric dimension can be found in robot navigation, network discovery and verification, and combinatorial optimization, to name a few. It is known that determining the metric dimension and the adjacency dimension of a general graph are NP-hard problems (see [19] and [7]). For a discussion on computational complexity of the distance- k dimension of graphs, see [6].

Slater [22] introduced the notion of locating-dominating set and locationdomination number. A set $A \subseteq V(G)$ is a locating-dominating set of G if A is a dominating set of G and $N(x) \cap A \neq N(y) \cap A$ for distinct vertices $x, y \in$ $V(G)-A$. The location-domination number, $\gamma_{L}(G)$, of G is the minimum cardinality over all locating-dominating sets of G. The notion of locationdomination by Slater is a natural marriage of its two constituent notions, where a subset of vertices functions both to locate (via d_{1} metric) each node of a network and to dominate (supply or support) the entire network. Viewed in this light, the following is but a natural extension of the notion of Slater. For $(s, t) \in \mathbb{Z}^{+} \times \mathbb{Z}^{+}$, let $S \subseteq V(G)$ be a distance- s resolving set of G and a distance- t dominating set of G, which we call an (s, t)-locatingdominating set of G. Then the (s, t)-location-domination number of G, denoted by $\gamma_{L}^{(s, t)}(G)$, is defined to be the minimum cardinality of S as S varies over all (s, t)-locating-dominating sets of G. When $s=k=t$, we will abbreviate and simply speak of distance- k locating-dominating set and distance- k location-domination number, and we will simplify $\gamma_{L}^{(k, k)}(G)$ to $\gamma_{L}^{k}(G)$.

In this paper, we study the distance- k location-domination number of graphs. We examine the relationship among $\gamma_{k}(G), \operatorname{dim}_{k}(G)$ and $\gamma_{L}^{k}(G)$. Let G be a connected graph of order $n \geq 2$, and let $k \in \mathbb{Z}^{+}$. In Section 2, we show that $\gamma_{k}(G) \leq \operatorname{dim}_{k}(G)+1$ and that $\operatorname{dim}_{k}(G)-\gamma_{k}(G)$ can be arbitrarily large. We also show that $2 \leq \gamma_{k}(G)+\operatorname{dim}_{k}(G) \leq n$, and we characterize G satisfying $\gamma_{k}(G)+\operatorname{dim}_{k}(G)=2$. In Section 3, we show that $1 \leq \max \left\{\gamma_{k}(G), \operatorname{dim}_{k}(G)\right\} \leq \gamma_{L}^{k}(G) \leq \min \left\{\operatorname{dim}_{k}(G)+1, n-1\right\}$, where the bounds are sharp. We also characterize G satisfying $\gamma_{L}^{k}(G)$ equals 1 and $n-1$, respectively. Moreover, for a non-trivial tree T, we show that $\gamma_{L}^{k}(T) \leq n-e x(T)$ and we characterize trees T achieving equality. In Section 4, we determine $\gamma_{L}^{k}(G)$ when G is the Petersen graph, a complete multipartite graph, a cycle or a path. In Section 5 , we examine the effect of edge deletion on the distance- k location-domination number of graphs.

2 Relations between $\gamma_{k}(G)$ and $\operatorname{dim}_{k}(G)$

In this section, we examine the sum and difference between $\gamma_{k}(G)$ and $\operatorname{dim}_{k}(G)$. Let G be a non-trivial connected graph, and let $k \in \mathbb{Z}^{+}$. We show that $\gamma_{k}(G) \leq \operatorname{dim}_{k}(G)+1$, where the bound is sharp, and we observe that $\operatorname{dim}_{k}(G)-\gamma_{k}(G)$ can be arbitrarily large. We also show that $2 \leq \gamma_{k}(G)+$ $\operatorname{dim}_{k}(G) \leq|V(G)|$, and we characterize G satisfying $\gamma_{k}(G)+\operatorname{dim}_{k}(G)=2$. We begin with the following observation.

Observation 2.1. Let G be any connected graph, and let $s, s^{\prime}, t, t^{\prime}, k, k^{\prime} \in$ \mathbb{Z}^{+}. Then
(a) for $k>k^{\prime}, \gamma_{k}(G) \leq \gamma_{k^{\prime}}(G) \leq \gamma_{1}(G)$;
(b) $[2,5,6]$ for $k>k^{\prime}, \operatorname{dim}(G) \leq \operatorname{dim}_{k}(G) \leq \operatorname{dim}_{k^{\prime}}(G) \leq \operatorname{dim}_{1}(G)$;
(c) more generally, we have $\gamma_{L}^{(s, t)}(G) \geq \gamma_{L}^{\left(s^{\prime}, t^{\prime}\right)}(G)$ for $s \leq s^{\prime}$ and $t \leq$ t^{\prime}, since an (s, t)-locating-dominating set of G is an $\left(s^{\prime}, t^{\prime}\right)$-locatingdominating set of G.

For any minimum distance- k resolving set S of a connected graph G, we show that there is a vertex $v \in V(G)-S$ such that $S \cup\{v\}$ is a distance- k dominating set of G.

Proposition 2.2. For any non-trivial connected graph G and for any $k \in$ \mathbb{Z}^{+},

$$
\gamma_{k}(G) \leq \operatorname{dim}_{k}(G)+1
$$

Proof. Let S be any minimum distance- k resolving set of G. Then there exists at most one vertex, say w, in $V(G)-S$ such that $d(w, S)>k$; notice that $\operatorname{code}_{S, k}(w)=(\mathbf{k}+\mathbf{1})_{|S|}$. If $d(u, S) \leq k$ for each $u \in V(G)$, then S is a distance- k dominating set of G, and hence $\gamma_{k}(G) \leq|S|=\operatorname{dim}_{k}(G)$. If there exists a vertex $v \in V(G)$ such that $d(v, S)>k$, then $S \cup\{v\}$ forms a distance- k dominating set of G, and thus $\gamma_{k}(G) \leq|S|+1=\operatorname{dim}_{k}(G)+1$.

Next, we show the sharpness of the bound in Proposition 2.2.
Observation 2.3. Let G be a non-trivial connected graph.
(a) If there exists a vertex $v \in V(G)$ such that $N^{k}[v]=V(G)$, then $\{v\}$ is a distance-k dominating set of G and $\gamma_{k}(G)=1$.
(b) Suppose $\cup_{i=1}^{x}\left\{v_{i}\right\} \subseteq V(G)$ satisfies $N^{k}\left[v_{i}\right] \cap N^{k}\left[v_{j}\right]=\emptyset$ for $i \neq j$. Then any distance- k dominating set of G must contain a vertex of $N^{k}\left[v_{i}\right]$ for each $i \in[x]$. Thus $\gamma_{k}(G) \geq x$.

Remark 2.4. For each $k \in \mathbb{Z}^{+}$, there is a connected graph G with $\gamma_{k}(G)=$ $\operatorname{dim}_{k}(G)+1$.

Proof. Let G be a tree with $\operatorname{ex}(G)=x \geq 1$ such that $v_{1}, v_{2}, \ldots, v_{x}$ are the exterior major vertices of G with $\operatorname{ter}\left(v_{i}\right)=\alpha \geq 3$ for each $i \in[x]$, and let $v_{1}, v_{2}, \ldots, v_{x}$ form an induced path of order x in G. For each $i \in[x]$, let $\left\{\ell_{i, 1}, \ell_{i, 2}, \ldots, \ell_{i, \alpha}\right\}$ be the set of the terminal vertices of v_{i} in G such that $d\left(v_{i}, \ell_{i, j}\right)=k+1=1+d\left(v_{i}, \ell_{i, \alpha}\right)$ for each $j \in[\alpha-1]$. For each $i \in[x]$ and for each $j \in[\alpha-1]$, let $s_{i, j}$ be the neighbor of v_{i} lying on the $v_{i}-\ell_{i, j}$ path in G. See Fig. 1 when $k=3$.

First, note that $\gamma_{k}(G)=x \alpha$: (i) $\gamma_{k}(G) \leq x \alpha$ since $D=\cup_{i=1}^{x}\left\{\ell_{i, 1}, \ldots, \ell_{i, \alpha}\right\}$ forms a distance- k dominating set of G with $|D|=x \alpha$; (ii) $\gamma_{k}(G) \geq x \alpha$ by Observation 2.3(b) and the fact that $N^{k}\left[\ell_{i, j}\right] \cap N^{k}\left[\ell_{s, t}\right]=\emptyset$ for $(i, j) \neq$ (s, t). Second, note that $\operatorname{dim}_{k}(G)=x \alpha-1$: (i) $\operatorname{dim}_{k}(G) \leq x \alpha-1$ since $R=\left(\cup_{i=1}^{x}\left\{s_{i, 1}, s_{i, 2}, \ldots, s_{i, \alpha-1}\right\}\right) \cup\left(\cup_{i=1}^{x-1}\left\{\ell_{i, \alpha}\right\}\right)$ forms a distance- k resolving set of G with $|R|=x \alpha-1$; (ii) $\operatorname{dim}_{k}(G) \geq \gamma_{k}(G)-1=x \alpha-1$ by Proposition 2.2. Therefore, $\gamma_{k}(G)=x \alpha=\operatorname{dim}_{k}(G)+1$.

Based on Proposition 2.2 and Remark 2.4, we have the following
Question 2.5. Can we characterize graphs G satisfying

$$
\gamma_{k}(G)=\operatorname{dim}_{k}(G)+1 ?
$$

Figure 1: Graphs G with $\gamma_{3}(G)=\operatorname{dim}_{3}(G)+1$.

Question 2.6. Can we characterize graphs G satisfying

$$
\gamma_{k}(G)=\operatorname{dim}_{k}(G) ?
$$

Next, we show that $\frac{\operatorname{dim}_{k}(G)}{\gamma_{k}(G)}$ can be arbitrarily large; thus, $\operatorname{dim}_{k}(G)-\gamma_{k}(G)$ can be arbitrarily large. We recall the connected graphs G of order n for which $\operatorname{dim}_{k}(G) \in\{1, n-2, n-1\}$; here, we note that Theorem 2.7(a),(d) for the case $k=1$ is obtained in [16]. See Theorem 3.9 in [11] for a characterization of all graphs G having $\operatorname{dim}_{1}(G)=m$ for each $m \in \mathbb{Z}^{+}$.

Theorem 2.7. Let G be a connected graph of order $n \geq 2$, and let $k \in \mathbb{Z}^{+}$. Then $1 \leq \operatorname{dim}_{k}(G) \leq n-1$, and we have the following:
(a) $[5,24] \operatorname{dim}_{k}(G)=1$ if and only if $G \in \cup_{i=2}^{k+2}\left\{P_{i}\right\}$;
(b) $[8,12,24]$ for $n \geq 4, \operatorname{dim}_{1}(G)=n-2$ if and only if $G=P_{4}, G=K_{s, t}$ $(s, t \geq 1), G=K_{s}+\bar{K}_{t}(s \geq 1, t \geq 2)$, or $G=K_{s}+\left(K_{1} \cup K_{t}\right)$ ($s, t \geq 1$);
(c) $[8,12,24]$ for $k \geq 2$ and for $n \geq 4, \operatorname{dim}_{k}(G)=n-2$ if and only if $G=$ $K_{s, t}(s, t \geq 1), G=K_{s}+\bar{K}_{t}(s \geq 1, t \geq 2)$, or $G=K_{s}+\left(K_{1} \cup K_{t}\right)$ ($s, t \geq 1$);
(d) $[8,12,24] \operatorname{dim}_{k}(G)=n-1$ if and only if $G=K_{n}$.

Proposition 2.8. For a connected graph G and for $k \in \mathbb{Z}^{+}, \frac{\operatorname{dim}_{k}(G)}{\gamma_{k}(G)}$ can be arbitrarily large.

Proof. Let G be a connected graph of order $n \geq 4$. First, note that $\operatorname{dim}_{k}\left(K_{n}\right)=n-1$ by Theorem $2.7(\mathrm{~d})$ and $\gamma_{k}\left(K_{n}\right)=1$ by Observation 2.3(a); thus $\frac{\operatorname{dim}_{k}\left(K_{n}\right)}{\gamma_{k}\left(K_{n}\right)}=n-1 \rightarrow \infty$ as $n \rightarrow \infty$.

For another example, let G be the graph obtained from $K_{1, \alpha}$, where $\alpha \geq 3$, by subdividing each edge of $K_{1, \alpha}$ exactly $k-1$ times; let v be the central
vertex of degree α in G and let $\ell_{1}, \ell_{2}, \ldots, \ell_{\alpha}$ be the leaves of G such that $d\left(v, \ell_{i}\right)=k$ for each $i \in[\alpha]$. Let $N(v)=\left\{s_{1}, s_{2}, \ldots, s_{\alpha}\right\}$ such that s_{i} lies on the $v-\ell_{i}$ path in G, and let P^{i} denote the $s_{i}-\ell_{i}$ path, where $i \in[\alpha]$. Then $\gamma_{k}(G)=1$ since $\{v\}$ is a minimum distance- k dominating set of G by Observation 2.3(a). Note that $\operatorname{dim}_{k}(G)=\alpha-1$: (i) $\operatorname{dim}_{k}(G) \leq \alpha-1$ since $N(v)-\left\{s_{1}\right\}$ forms a distance- k resolving set of G; (ii) $\operatorname{dim}_{k}(G) \geq \alpha-1$ since $S \cap\left(V\left(P^{i}\right) \cup V\left(P^{j}\right)\right) \neq \emptyset$ for any distance- k resolving set S of G and for distinct $i, j \in[\alpha]$, as $S \cap\left(V\left(P^{i}\right) \cup V\left(P^{j}\right)\right)=\emptyset \operatorname{implies} \operatorname{code}_{S, k}\left(s_{i}\right)=$ $\operatorname{code}_{S, k}\left(s_{j}\right)$. So, $\frac{\operatorname{dim}_{k}(G)}{\gamma_{k}(G)}=\alpha-1 \rightarrow \infty$ as $\alpha \rightarrow \infty$.

Next, for any connected graph G of order $n \geq 2$ and for any $k \in \mathbb{Z}^{+}$, we show that $2 \leq \gamma_{k}(G)+\operatorname{dim}_{k}(G) \leq n$ and we characterize G with $\gamma_{k}(G)+$ $\operatorname{dim}_{k}(G)=2$. We recall the following results.

Lemma 2.9. [1] Let G be a connected graph. Then there exists a minimum dominating set for G which does not have any pair of twin vertices.

Theorem 2.10. [1] Let G be a connected graph of order $n \geq 2$. Then $\gamma(G)+\operatorname{dim}(G) \leq n$, and equality holds if and only if $G \in\left\{K_{n}, K_{s, n-s}\right\}$ for $2 \leq s \leq n-2$.

Proposition 2.11. Let G be any connected graph of order $n \geq 2$, and let $k \in \mathbb{Z}^{+}$. Then $2 \leq \gamma_{k}(G)+\operatorname{dim}_{k}(G) \leq n$, and $\gamma_{k}(G)+\operatorname{dim}_{k}(G)=2$ if and only $G \in \cup_{i=2}^{k+2}\left\{P_{i}\right\}$.

Proof. Let G be a connected graph of order $n \geq 2$, and let $k \in \mathbb{Z}^{+}$. Since $\gamma_{k}(G) \geq 1$ and $\operatorname{dim}_{k}(G) \geq 1$, we have $\gamma_{k}(G)+\operatorname{dim}_{k}(G) \geq 2$. Note that $\gamma_{k}(G)+\operatorname{dim}_{k}(G)=2$ if and only if $\gamma_{k}(G)=1=\operatorname{dim}_{k}(G)$ if and only if $G \in \cup_{i=2}^{k+2}\left\{P_{i}\right\}$ by Observation 2.3(a) and Theorem 2.7(a).

To prove $\gamma_{k}(G)+\operatorname{dim}_{k}(G) \leq n$, it suffices to show that $\gamma_{1}(G)+\operatorname{dim}_{1}(G) \leq n$ by Observation 2.1. The proof given for Theorem 2.10 in [1] actually shows $\gamma_{1}(G)+\operatorname{dim}_{1}(G) \leq n$. To see this, we can take a minimum dominating set D of G that contains no twin vertices by Lemma 2.9. Suppose $x, y \in D$ have the same neighbors in $V(G)-D$; this implies that neither x nor y has a neighbor in D, because if, say, y has a neighbor in D, then $D-\{y\}$ remains a dominating set, and thus x and y have the same neighbors in $V(G)$, contradicting the choice of D. Since no two vertices of D have the same neighborhood in $S=V(G)-D, S$ is a distance-1 resolving set of G, and we have $\gamma_{1}(G)+\operatorname{dim}_{1}(G) \leq|D|+|S|=n$.

In contrast to Theorem 2.10, we note that if $G \in\left\{P_{4}, K_{n}, K_{s, n-s}\right\}$ with $2 \leq s \leq n-2$, then $\gamma_{1}(G)+\operatorname{dim}_{1}(G)=|V(G)|$. So, we have the following

Question 2.12. Can we characterize graphs G satisfying

$$
\gamma_{k}(G)+\operatorname{dim}_{k}(G)=|V(G)| ?
$$

3 Bounds on $\gamma_{L}^{k}(G)$

In this section, for any connected graph G of order $n \geq 2$ and for any $k \in$ \mathbb{Z}^{+}, we show that $1 \leq \max \left\{\gamma_{k}(G), \operatorname{dim}_{k}(G)\right\} \leq \gamma_{L}^{k}(G) \leq \min \left\{\operatorname{dim}_{k}(G)+\right.$ $1, n-1\}$; we characterize G satisfying $\gamma_{L}^{k}(G)=1$ and $\gamma_{L}^{k}(G)=n-1$, respectively. For any non-trivial tree T, we show that $\gamma_{L}^{k}(T) \leq|V(T)|-$ $e x(T)$ and we characterize trees T achieving equality.

Theorem 3.1. For any connected graph G of order $n \geq 2$ and for any $k \in \mathbb{Z}^{+}$,

$$
\max \left\{\gamma_{k}(G), \operatorname{dim}_{k}(G)\right\} \leq \gamma_{L}^{k}(G) \leq \min \left\{1+\operatorname{dim}_{k}(G), n-1\right\}
$$

Proof. Let G be a connected graph of order $n \geq 2$, and let $k \in \mathbb{Z}^{+}$. Since a minimum distance- k locating-dominating set of G is both a distance- k dominating set of G and a distance- k resolving set of G, we have $\gamma_{L}^{k}(G) \geq$ $\max \left\{\gamma_{k}(G), \operatorname{dim}_{k}(G)\right\}$.

Next, we show that $\gamma_{L}^{k}(G) \leq \min \left\{1+\operatorname{dim}_{k}(G), n-1\right\}$. Suppose S is a minimum distance- k resolving set of G; then at most one vertex in G has the distance- k metric code $(\mathbf{k}+\mathbf{1})_{|S|}$ with respect to S. If $\operatorname{code}_{S, k}(u) \neq$ $(\mathbf{k}+\mathbf{1})_{|S|}$ for each $u \in V(G)$, then S is a distance- k locating-dominating set of G. If $\operatorname{code}_{S, k}(w)=(\mathbf{k}+\mathbf{1})_{|S|}$ for some $w \in V(G)$, then $S \cup\{w\}$ forms a distance- k locating-dominating set of G. So, $\gamma_{L}^{k}(G) \leq|S|+1=\operatorname{dim}_{k}(G)+1$. Now, $\gamma_{L}^{k}(G) \leq n-1$ follows from the fact that any vertex subset $S^{\prime} \subseteq V(G)$ with $\left|S^{\prime}\right|=n-1$ is a distance- k locating-dominating set of G.

Theorems 2.7(d) and 3.1 imply that $\max \left\{\gamma_{k}\left(K_{n}\right), \operatorname{dim}_{k}\left(K_{n}\right)\right\}=\gamma_{L}^{k}\left(K_{n}\right)=$ $\min \left\{1+\operatorname{dim}_{k}\left(K_{n}\right), n-1\right\}$ for $n \geq 2$ and for $k \geq 1$. Since $\gamma_{k}(G) \geq 1$ and $\operatorname{dim}_{k}(G) \geq 1$, Theorem 3.1 implies the following.

Corollary 3.2. For any connected graph G of order $n \geq 2$ and for any $k \in \mathbb{Z}^{+}, 1 \leq \gamma_{L}^{k}(G) \leq n-1$.

Next, we characterize connected graphs G of order n satisfying $\gamma_{L}^{k}(G)=1$ and $\gamma_{L}^{k}(G)=n-1$, respectively, for all $k \in \mathbb{Z}^{+}$. We recall the following observation.

Observation 3.3. [8] Let x and y be distinct twin vertices of G, and let $k \in \mathbb{Z}^{+}$. Then, for any distance- k resolving set S_{k} of $G, S_{k} \cap\{x, y\} \neq \emptyset$.

Theorem 3.4. Let G be a connected graph of order $n \geq 2$, and let $k \in \mathbb{Z}^{+}$. Then
(a) $\gamma_{L}^{k}(G)=1$ if and only if $G \in \cup_{i=2}^{k+1}\left\{P_{i}\right\}$;
(b) $\gamma_{L}^{1}(G)=n-1$ if and only if $G \in\left\{K_{n}, K_{1, n-1}\right\}$;
(c) for $k \geq 2, \gamma_{L}^{k}(G)=n-1$ if and only if $G=K_{n}$.

Proof. Let G be a connected graph of order $n \geq 2$, and let $k \in \mathbb{Z}^{+}$.
(a) If $G \in \cup_{i=2}^{k+1}\left\{P_{i}\right\}$, then a leaf of G forms a distance- k locating-dominating set of G; thus, $\gamma_{L}^{k}(G)=1$. Now, suppose $\gamma_{L}^{k}(G)=1$; then $\gamma_{k}(G)=$ $1=\operatorname{dim}_{k}(G)$. By Theorem 2.7(a), $\operatorname{dim}_{k}(G)=1$ implies $G \in \cup_{i=2}^{k+2}\left\{P_{i}\right\}$, where any minimum distance- k resolving set consists of a leaf whereas a leaf of P_{k+2} fails to form a distance- k dominating set of P_{k+2} since $\operatorname{diam}\left(P_{k+2}\right)=k+1$. So, $\gamma_{L}^{k}(G)=1$ implies $G \in \cup_{i=2}^{k+1}\left\{P_{i}\right\}$.
(b) First, suppose $G \in\left\{K_{n}, K_{1, n-1}\right\}$. Note that $\gamma_{L}^{1}\left(K_{n}\right)=n-1$ by Theorems $2.7(\mathrm{~d})$ and 3.1. For $n \geq 3$, if v is the central vertex of $K_{1, n-1}$ and $N(v)=\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$, then $\operatorname{dim}_{1}\left(K_{1, n-1}\right)=n-2$ by Theorem 2.7(b) and $|S \cap N(v)|=n-2$ for any minimum distance-1 resolving set S of $K_{1, n-1}$ by Observation 3.3; without loss of generality, let $S^{\prime}=\left\{s_{1}, s_{2}, \ldots, s_{n-2}\right\}$ be a minimum distance-1 resolving set of $K_{1, n-1}$. Since $d\left(s_{n-1}, S^{\prime}\right)=2, S^{\prime}$ fails to be a distance-1 locating-dominating set of $K_{1, n-1}$; thus, $\gamma_{L}^{1}\left(K_{1, n-1}\right) \geq n-1$. By Theorem 3.1, $\gamma_{L}^{1}\left(K_{1, n-1}\right)=n-1$.

Second, suppose $\gamma_{L}^{1}(G)=n-1$. By Theorem 3.1, $\operatorname{dim}_{1}(G) \in\{n-2, n-1\}$. To see this, if $\operatorname{dim}_{1}(G) \leq n-3$, then $\gamma_{L}^{1}(G) \leq \operatorname{dim}_{1}(G)+1 \leq n-2$ by Theorem 3.1. If $\operatorname{dim}_{1}(G)=n-1$, then $G=K_{n}$ by Theorem 2.7(d). If $\operatorname{dim}_{1}(G)=n-2$, then $G=P_{4}, G=K_{s, t}$ with $s, t \geq 1, G=K_{s}+\bar{K}_{t}$ with $s \geq 1, t \geq 2$, or $G=K_{s}+\left(K_{1} \cup K_{t}\right)$ with $s, t \geq 1$ by Theorem $2.7(\mathrm{~b})$. We note the following: (i) $\gamma_{L}^{1}\left(P_{4}\right)=2$ since the two leaves of P_{4} form a minimum distance-1 locating-dominating set of P_{4}; (ii) $\gamma_{L}^{1}\left(K_{1, t}\right)=\gamma_{L}^{1}\left(K_{1}+\right.$ $\left.\bar{K}_{t}\right)=t$ as shown above; (iii) for $s, t \geq 2, \gamma_{L}^{1}\left(K_{s, t}\right)=s+t-2=\gamma_{L}^{1}\left(K_{s}+\bar{K}_{t}\right)$ since all but one vertex from each of the two partite sets form a minimum distance-1 locating-dominating set of $K_{s, t} ;$ (iv) $K_{1}+\left(K_{1} \cup K_{1}\right)=K_{1,2}$ and
$\gamma_{L}^{1}\left(K_{1,2}\right)=2$ as shown above; (v) for $t \geq 2, \gamma_{L}^{1}\left(K_{1}+\left(K_{1} \cup K_{t}\right)\right)=t$ since all but one vertex of the K_{t} and the leaf of $K_{1}+\left(K_{1} \cup K_{t}\right)$ form a minimum distance-1 locating-dominating set of $K_{1}+\left(K_{1} \cup K_{t}\right)$; (vi) for $s \geq 2$ and $t \geq 1, \gamma_{L}^{1}\left(K_{s}+\left(K_{1} \cup K_{t}\right)\right)=s+t-1$ since all but one vertex of the K_{s} and all vertices of the K_{t} form a minimum distance-1 locating-dominating set of $K_{s}+\left(K_{1} \cup K_{t}\right)$. So, $\gamma_{L}^{1}(G)=n-1$ implies $G=K_{n}$ or $G=K_{1, n-1}$.
(c) Let $k \geq 2$. Note that $\gamma_{L}^{k}\left(K_{n}\right)=n-1$ by Theorems 2.7(d) and 3.1. So, suppose $\gamma_{L}^{k}(G)=n-1$. Then $\operatorname{dim}_{k}(G) \in\{n-1, n-2\}$ by Theorem 3.1. If $\operatorname{dim}_{k}(G)=n-1$, then $G=K_{n}$ by Theorem $2.7(\mathrm{~d})$. If $\operatorname{dim}_{k}(G)=n-2$ for $n \geq 4$, then, by Theorem 2.7(c), $G=K_{s, t}$ with $s, t \geq 1, G=K_{s}+\bar{K}_{t}$ with $s \geq 1, t \geq 2$, or $G=K_{s}+\left(K_{1} \cup K_{t}\right)$ with $s, t \geq 1$; then $\operatorname{diam}(G)=2$ and any minimum distance- k resolving set of G is also a distance- k dominating set of G. So, $\operatorname{dim}_{k}(G)=n-2$ implies $\gamma_{L}^{k}(G)=n-2$ for $k \geq 2$.

Question 3.5. Can we characterize graphs G of order n such that

$$
\gamma_{L}^{k}(G)=\beta
$$

where $\beta \in\{2,3, \ldots, n-2\}$?

Next, we examine the relation between $\gamma_{L}^{k}(G)$ and other parameters in Theorem 3.1.

Proposition 3.6. Let G be a non-trivial connected graph, and let $k \in \mathbb{Z}^{+}$. Then
(a) $\gamma_{L}^{k}(G)-\operatorname{dim}_{k}(G) \in\{0,1\}$;
(b) $\gamma_{L}^{k}(G)-\gamma_{k}(G)$ can be arbitrarily large;
(c) $(|V(G)|-1)-\gamma_{L}^{k}(G)$ can be arbitrarily large.

Proof. Let $k \in \mathbb{Z}^{+}$. For (a), $0 \leq \gamma_{L}^{k}(G)-\operatorname{dim}_{k}(G) \leq 1$ by Theorem 3.1.
For (b) and (c), let G be a tree obtained from the path $v_{1}, v_{2}, \ldots, v_{x}(x \geq 2)$ by adding leaves $\ell_{i, 1}, \ell_{i, 2}, \ldots, \ell_{i, \alpha}(\alpha \geq 3)$ to each vertex v_{i}, where $i \in[x]$; notice that $|V(G)|=x(\alpha+1)$. Since $\cup_{i=1}^{x}\left\{v_{i}\right\}$ is a distance- k dominating set of $G, \gamma_{k}(G) \leq x$. Note that $\gamma_{L}^{k}(G) \geq x(\alpha-1)$ by Observation 3.3 since any distinct vertices in $\left\{\ell_{i, 1}, \ell_{i, 2}, \ldots, \ell_{i, \alpha}\right\}$ are twin vertices in G. Also, note that $\gamma_{L}^{k}(G) \leq x \alpha$ since $V(G)-\cup_{i=1}^{x}\left\{\ell_{i, \alpha}\right\}$ is a distance- k locatingdominating set of G. So, $\gamma_{L}^{k}(G)-\gamma_{k}(G) \geq x(\alpha-1)-x=x(\alpha-2) \rightarrow \infty$ as $x \rightarrow \infty$ or $\alpha \rightarrow \infty$, and $|V(G)|-1-\gamma_{L}^{k}(G) \geq x(\alpha+1)-1-x \alpha=x-1 \rightarrow \infty$ as $x \rightarrow \infty$.

In view of Theorem 3.1 and Proposition 3.6(b), we have the following
Question 3.7. Can we characterize graphs G such that $\gamma_{L}^{k}(G)=\gamma_{k}(G)$?

Next, for a graph G with $\gamma_{L}^{k}(G)=\beta$, we determine the upper bound of $|V(G)|$.

Theorem 3.8. [8, 12] If $\operatorname{dim}_{k}(G)=\beta$, then $|V(G)| \leq\left(\left\lfloor\frac{2(k+1)}{3}\right\rfloor+1\right)^{\beta}+$ $\beta \sum_{i=1}^{\left\lceil\frac{k+1}{3}\right\rceil}(2 i-1)^{\beta-1}$ and the bound is sharp.

By Theorem 3.1, $\gamma_{L}^{k}(G)=\beta$ implies $\operatorname{dim}_{k}(G) \leq \beta$. Theorem 3.8 is sharp, and a graph G attaining the maximum order must contain a vertex $\omega \in$ $V(G)$ with $\operatorname{code}_{S, k}(\omega)=(\mathbf{k}+\mathbf{1})_{|S|}$ for any minimum distance- k resolving set S of G. The deletion of ω from G leaves intact distance relations and code vectors; thus, we have the following sharp bound.

Corollary 3.9. If $\gamma_{L}^{k}(G)=\beta$, then $|V(G)| \leq\left(\left\lfloor\frac{2(k+1)}{3}\right\rfloor+1\right)^{\beta}-1+$ $\beta \sum_{i=1}^{\left\lceil\frac{k+1}{3}\right\rceil}(2 i-1)^{\beta-1}$.

Remark 3.10. The proof for Theorem 3.8 in [8, 12] uses a method similar to the one in [15]. For a construction of graphs G with $\operatorname{dim}_{1}(G)=\beta$ of maximum order $\beta+2^{\beta}$, we refer to [11]. For a construction of graphs G with $\operatorname{dim}_{2}(G)=\beta$ and of order $\beta+3^{\beta}$, we refer to [8, 12]; this construction is similar to the one provided in [10].

Next, for any non-trivial tree T and for $k \in \mathbb{Z}^{+}$, we show that $\gamma_{L}^{k}(T) \leq$ $n-e x(T)$ and we characterize trees T achieving equality.

Proposition 3.11. For any tree T of order $n \geq 2$ and for any $k \in \mathbb{Z}^{+}$, $\gamma_{L}^{k}(T) \leq n-e x(T)$.

Proof. Let T be a tree of order $n \geq 2$ and let $k \in \mathbb{Z}^{+}$. If $e x(T) \in\{0,1\}$, then $\gamma_{L}^{k}(T) \leq n-1 \leq n-e x(T)$ by Theorem 3.1. So, suppose $e x(T)=x \geq 2$; let $v_{1}, v_{2}, \ldots, v_{x}$ be the exterior major vertices of T. For each $i \in[x]$, let $\left\{\ell_{i, 1}, \ell_{i, 2}, \ldots, \ell_{i, \sigma_{i}}\right\}$ be the set of terminal vertices of v_{i} in T with $\operatorname{ter}\left(v_{i}\right)=$ $\sigma_{i} \geq 1$. Since $S=V(T)-\cup_{i=1}^{x}\left\{\ell_{i, 1}\right\}$ is a distance- k locating-dominating set of T with $|S|=n-x=n-e x(T), \gamma_{L}^{k}(T) \leq n-e x(T)$.

Next, we characterize non-trivial trees T satisfying $\gamma_{L}^{k}(T)=|V(T)|-e x(T)$. We recall some terminology. An exterior degree-two vertex is a vertex of degree two that lies on a path from a terminal vertex to its major vertex, and an interior degree-two vertex is a vertex of degree two such that the shortest path to any terminal vertex includes a major vertex.

Theorem 3.12. Let T be any tree of order $n \geq 2$ and let $k \in \mathbb{Z}^{+}$. Then $\gamma_{L}^{k}(T)=n-e x(T)$ if and only if $k=1$, $e x(T) \geq 1$, and $e x(T)+\sigma(T)=n$.

Proof. Let T be a tree of order $n \geq 2$ and let $k \in \mathbb{Z}^{+}$. If $e x(T)=x \geq 1$, let $v_{1}, v_{2}, \ldots, v_{x}$ be the exterior major vertices of T, and let $\left\{\ell_{i, 1}, \ell_{i, 2}, \ldots, \ell_{i, \sigma_{i}}\right\}$ be the set of terminal vertices of v_{i} with $\operatorname{ter}\left(v_{i}\right)=\sigma_{i} \geq 1$ in T for each $i \in[x]$.
(\Leftarrow) Let $k=1, \operatorname{ex}(T)=x \geq 1$, and $\operatorname{ex}(T)+\sigma(T)=n$; notice that T is a caterpillar. Let S be an arbitrary minimum distance-1 locating-dominating set of T. By Observation 3.3, $\left|S \cap\left\{\ell_{i, 1}, \ell_{i, 2}, \ldots, \ell_{i, \sigma_{i}}\right\}\right| \geq \sigma_{i}-1$. Thus, up to a relabeling of vertices of T, we may assume that $S \supseteq V(T)-\cup_{i=1}^{x}\left\{v_{i}, \ell_{i, 1}\right\}$. Since $N\left[\ell_{i, 1}\right] \cap N\left[\ell_{j, 1}\right]=\emptyset$ for $i \neq j$, a vertex in $\left\{v_{i}, \ell_{i, 1}\right\}$ (for each $i \in[x]$) must also belong to S by Observation 2.3(b). So, $\gamma_{L}^{1}(T) \geq n-e x(T)$. Since $\gamma_{L}^{1}(T) \leq n-e x(T)$ by Proposition 3.11, $\gamma_{L}^{1}(T)=n-e x(T)$.
(\Rightarrow) Let $\gamma_{L}^{k}(T)=n-e x(T)$. If $\operatorname{ex}(T)=0$, then $\gamma_{L}^{k}(T)<n-e x(T)$ by Theorem 3.1. So, let $\operatorname{ex}(T)=x \geq 1$. We will show that T has no major vertex of terminal degree zero and no degree-two vertex; i.e., each vertex in T is either an exterior major vertex or a leaf.

If T contains either an interior degree-two vertex w or a major vertex w^{\prime} with $\operatorname{ter}\left(w^{\prime}\right)=0$, then $A=V(T)-\left(\{u\} \cup\left(\cup_{i=1}^{x}\left\{\ell_{i, 1}\right\}\right)\right)$, where $u \in\left\{w, w^{\prime}\right\}$, forms a distance- k locating-dominating set of T; thus $\gamma_{L}^{k}(T) \leq n-(x+1)<$ $n-e x(T)$. Now, suppose T contains an exterior degree-two vertex, say z. By relabeling the vertices of T if necessary, we may assume that z lies on the $v_{i}-\ell_{i, 1}$ path in T for some $i \in[x]$. If $\operatorname{ter}\left(v_{i}\right) \geq 2$, then $B=V(T)-\left(\{z\} \cup\left(\cup_{j=1}^{x}\left\{\ell_{j, \sigma_{j}}\right\}\right)\right)$ forms a distance- k locating-dominating set of T. If $\operatorname{ter}\left(v_{i}\right)=1$, then $C=V(T)-\left(\left\{v_{i}\right\} \cup\left(\cup_{j=1}^{x}\left\{\ell_{j, 1}\right\}\right)\right)$ forms a distance- k locating-dominating set of T. (It is easy to see that the sets A, B, and C are distance-1 locating-dominating; then apply Observation 2.1(c) for $k \geq 1$.) In each case, $\gamma_{L}^{k}(T) \leq n-(x+1)<n-e x(T)$.

So, each vertex in T is either an exterior major vertex or a leaf; thus $e x(T)+\sigma(T)=n$. Now, if $k \geq 2$, then $R=V(T)-\left(\left\{v_{1}\right\} \cup\left(\cup_{i=1}^{x}\left\{\ell_{i, 1}\right\}\right)\right)$ forms a distance- k locating-dominating set of T, and hence $\gamma_{L}^{k}(T) \leq|R|=$ $n-e x(T)-1<n-e x(T)$. Thus, $k=1$.

$4 \quad \gamma_{L}^{k}(G)$ of some classes of graphs

In this section, for any $k \in \mathbb{Z}^{+}$, we determine $\gamma_{L}^{k}(G)$ when G is the Petersen graph, a complete multipartite graph, a cycle or a path. We begin with the following observations.

Observation 4.1. [5, 6, 8, 12] Let G be a connected graph with $\operatorname{diam}(G)=$ $d \geq 2$, and let $k \in \mathbb{Z}^{+}$. If $k \geq d-1$, then $\operatorname{dim}_{k}(G)=\operatorname{dim}(G)$.

Observation 4.2. Let G be any connected graph, and let $k, k^{\prime} \in \mathbb{Z}^{+}$. Then
(a) for $k>k^{\prime}, \gamma_{L}^{k}(G) \leq \gamma_{L}^{k^{\prime}}(G) \leq \gamma_{L}^{1}(G)$;
(b) if $k \geq \operatorname{diam}(G)$, then $\gamma_{L}^{k}(G)=\operatorname{dim}_{k}(G)$.

Next, we determine $\gamma_{L}^{k}(\mathcal{P})$ for the Petersen graph \mathcal{P}.
Example 4.3. Let \mathcal{P} be the Petersen graph with the the following presentation: two disjoint copies of C_{5} are given by $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{1}$ and $w_{1}, w_{3}, w_{5}, w_{2}, w_{4}, w_{1}$, respectively, and the remaining edges are $u_{i} w_{i}$ for each $i \in[5]$. Then, for $k \in \mathbb{Z}^{+}$,

$$
\gamma_{L}^{k}(\mathcal{P})= \begin{cases}\operatorname{dim}_{k}(\mathcal{P})+1=4 & \text { if } k=1 \\ \operatorname{dim}_{k}(\mathcal{P})=3 & \text { if } k \geq 2\end{cases}
$$

To see this, note that $\operatorname{dim}(\mathcal{P})=3$ (see [17]) and $\operatorname{diam}(\mathcal{P})=2$. For any $k \geq$ 2 , $\gamma_{L}^{k}(\mathcal{P})=\operatorname{dim}_{k}(\mathcal{P})=\operatorname{dim}(\mathcal{P})=3$ by Observations 4.1 and 4.2(b). Next, we show that $\gamma_{L}^{1}(\mathcal{P})=4$. For any minimum distance- 1 resolving set S of \mathcal{P}, we may assume $u_{1} \in S$ since \mathcal{P} is vertex-transitive. It was shown in [18] that there are six such S containing u_{1} (i.e., $\left\{u_{1}, w_{2}, w_{3}\right\},\left\{u_{1}, u_{4}, w_{2}\right\}$, $\left\{u_{1}, w_{4}, w_{5}\right\},\left\{u_{1}, u_{3}, w_{5}\right\},\left\{u_{1}, u_{4}, w_{3}\right\}$ and $\left.\left\{u_{1}, u_{3}, w_{4}\right\}\right)$. Since none of those six sets S containing u_{1} form a distance- 1 dominating set of \mathcal{P}, $\gamma_{L}^{1}(\mathcal{P}) \geq \operatorname{dim}_{1}(\mathcal{P})+1=4$. Since $\left\{u_{1}, u_{4}, w_{2}, w_{3}\right\}$ is a distance- 1 locatingdominating set of $\mathcal{P}, \gamma_{L}^{1}(\mathcal{P}) \leq 4$; thus, $\gamma_{L}^{1}(\mathcal{P})=\operatorname{dim}_{1}(\mathcal{P})+1=4$.

Next, we determine $\gamma_{L}^{k}(G)$ when G is a complete multipartite graph.
Proposition 4.4. [21] For $m \geq 2$, let $G=K_{a_{1}, a_{2}, \ldots, a_{m}}$ be a complete m partite graph of order $n=\sum_{i=1}^{m} a_{i} \geq 3$. Let s be the number of partite sets of G consisting of exactly one element. Then

$$
\operatorname{dim}(G)= \begin{cases}n-m & \text { if } s=0 \\ n-m+s-1 & \text { if } s \neq 0\end{cases}
$$

Proposition 4.5. For $m \geq 2$, let $G=K_{a_{1}, a_{2}, \ldots, a_{m}}$ be a complete m-partite graph of order $n=\sum_{i=1}^{m} a_{i} \geq 3$. For $k \in \mathbb{Z}^{+}$,

$$
\gamma_{L}^{k}(G)= \begin{cases}\operatorname{dim}_{k}(G)+1=n-1 & \text { if } k=1 \text { and } G=K_{1, n-1} \\ \operatorname{dim}_{k}(G) & \text { otherwise }\end{cases}
$$

Proof. Let $G=K_{a_{1}, a_{2}, \ldots, a_{m}}$ be a complete m-partite graph of order $n=$ $\sum_{i=1}^{m} a_{i} \geq 3$, where $m \geq 2$, and let $k \in \mathbb{Z}^{+}$. Note that $\operatorname{diam}(G) \in\{1,2\}$, where $\operatorname{diam}(G)=1$ if and only if $G=K_{n}$ and $\gamma_{L}^{k}\left(K_{n}\right)=\operatorname{dim}_{k}\left(K_{n}\right)=n-1$, for any $k \geq 1$, by Theorems $2.7(\mathrm{~d})$ and 3.1. If $\operatorname{diam}(G)=2$ and $k \geq 2$, then $\gamma_{L}^{k}(G)=\operatorname{dim}_{k}(G)=\operatorname{dim}(G)$ by Observations 4.1 and $4.2(\mathrm{~b})$. So, suppose $\operatorname{diam}(G)=2$ and $k=1$. Let s be the number of partite sets of G consisting of exactly one element. If $s=0$, then any minimum distance- 1 resolving set of G is also a distance- 1 dominating set of G; thus, $\gamma_{L}^{1}(G)=\operatorname{dim}_{1}(G)$. If $s=$ 1 with $m=2$, then $G=K_{1, n-1}$ and $\gamma_{L}^{1}\left(K_{1, n-1}\right)=n-1=\operatorname{dim}_{1}\left(K_{1, n-1}\right)+1$ by Theorems $2.7(\mathrm{~b})$ and $3.4(\mathrm{~b})$. If either $s=1$ with $m \geq 3$ or $s \geq 2$, then any minimum distance-1 resolving set of G is also a distance- 1 dominating set of G, and hence $\gamma_{L}^{1}(G)=\operatorname{dim}_{1}(G)$.

Next, we determine $\gamma_{L}^{k}(G)$ when G is a cycle or a path.
Theorem 4.6. $[8,12]$ Let $k \in \mathbb{Z}^{+}$. Then
(a) $\operatorname{dim}_{k}\left(P_{n}\right)=1$ for $2 \leq n \leq k+2$;
(b) $\operatorname{dim}_{k}\left(C_{n}\right)=2$ for $3 \leq n \leq 3 k+3$, and $\operatorname{dim}_{k}\left(P_{n}\right)=2$ for $k+3 \leq n \leq$ $3 k+3 ;$
(c) for $n \geq 3 k+4$, the formula for $\operatorname{dim}_{k}\left(C_{n}\right)=\operatorname{dim}_{k}\left(P_{n}\right)$ is as follows:

$$
\begin{cases}\left\lfloor\frac{2 n+3 k-1}{3 k+2}\right\rfloor & \text { if } n \equiv 0,1, \ldots, k+2(\bmod (3 k+2)), \\ \left\lfloor\frac{2 n+4 k-1}{3 k+2}\right\rfloor & \text { if } n \equiv k+3, \ldots,\left\lceil\frac{3 k+5}{2}\right\rceil-1(\bmod (3 k+2)), \\ \left\lfloor\frac{2 n+3 k-1}{3 k+2}\right\rfloor & \text { if } n \equiv\left\lceil\frac{3 k+5}{2}\right\rceil, \ldots, 3 k+1(\bmod (3 k+2)) .\end{cases}
$$

Proposition 4.7. Let $G=P_{n}$ for $n \geq 2$ or $G=C_{n}$ for $n \geq 3$. For any $k \in \mathbb{Z}^{+}$, the formula for $\gamma_{L}^{k}(G)$ is as follows:
$\begin{cases}\operatorname{dim}_{k}(G)+1 & \text { if } G \in\left\{P_{n}, C_{n}\right\} \text { and } n \equiv 1(\bmod (3 k+2)), \\ & \text { or } G=P_{n} \text { and } n \equiv k+2(\bmod (3 k+2)), \\ \operatorname{dim}_{k}(G) & \text { or } G=C_{n}, n \geq 3 k+4 \text { and } n \equiv k+2(\bmod (3 k+2)), \\ \text { otherwise. }\end{cases}$

Proof. Let $G=P_{n}$ for $n \geq 2$ or $G=C_{n}$ for $n \geq 3$. Let $k \in \mathbb{Z}^{+}$.
If $2 \leq n \leq k+1$, then $\gamma_{L}^{k}\left(P_{n}\right)=\operatorname{dim}_{k}\left(P_{n}\right)=1$ by Theorems 3.4(a) and 4.6(a). If $n=k+2$, then $\gamma_{L}^{k}\left(P_{k+2}\right)=\operatorname{dim}_{k}\left(P_{k+2}\right)+1=2$ by Theorems 3.1, 3.4(a) and 4.6(a). If $k+3 \leq n \leq 3 k+2$ and P_{n} is obtained from C_{n}, given by $u_{0}, u_{1}, \ldots, u_{n-1}, u_{0}$, by deleting the edge $u_{k} u_{k+1}$, then $\left\{u_{0}, u_{\alpha}\right\}$, where $\alpha=\min \{2 k+1, n-1\}$, forms a distance- k locating-dominating set of P_{n}, and thus $\gamma_{L}^{k}\left(P_{n}\right)=\operatorname{dim}_{k}\left(P_{n}\right)=2$ by Theorems 3.1 and $4.6(\mathrm{~b})$. If $3 \leq n \leq 3 k+2$ and C_{n} is given by $u_{0}, u_{1}, \ldots, u_{n-1}, u_{0}$, then $\left\{u_{0}, u_{\alpha}\right\}$, where $\alpha=\min \{2 k+1, n-1\}$, forms a distance- k locating-dominating set of C_{n}, and thus $\gamma_{L}^{k}\left(C_{n}\right)=\operatorname{dim}_{k}\left(C_{n}\right)=2$ Theorems 3.1 and $4.6(\mathrm{~b})$. If $n=3 k+3$, then, for any minimum distance- k resolving set R of $G \in\left\{P_{3 k+3}, C_{3 k+3}\right\}$, there is a vertex w in G with $\operatorname{code}_{R, k}(w)=(k+1, k+1)$; thus, $\gamma_{L}^{k}(G)=$ $\operatorname{dim}_{k}(G)+1=3$ by Theorem 3.1.

Now, suppose $n \geq 3 k+4$, and let $G \in\left\{P_{n}, C_{n}\right\}$; then $\operatorname{dim}_{k}(G) \geq 3$. Let S be any minimum distance- k resolving set of G. First, suppose that $|S|$ is odd. If $n \not \equiv k+2(\bmod 3 k+2)$, then there exists a minimum distance- k resolving set S_{0} of G such that S_{0} is also a distance- k dominating set of G (see $[8,12]$); thus, $\gamma_{L}^{k}(G)=\operatorname{dim}_{k}(G)$. If $n \equiv k+2(\bmod 3 k+2)$, then there exists a vertex w in G with $\operatorname{code}_{R, k}(w)=(\mathbf{k}+\mathbf{1})_{|R|}$ for any minimum distance- k resolving set R of G (see $[8,12]$); thus, $\gamma_{L}^{k}(G)=\operatorname{dim}_{k}(G)+1$. Second, suppose $|S|$ is even. If $n \not \equiv 1(\bmod 3 k+2)$, then there exists a minimum distance- k resolving set S_{1} of G such that S_{1} is also a distance- k dominating set of $G($ see $[8,12])$; thus, $\gamma_{L}^{k}(G)=\operatorname{dim}_{k}(G)$. If $n \equiv 1(\bmod 3 k+2)$, then there exists a vertex w in G with $\operatorname{code}_{S, k}(w)=(\mathbf{k}+\mathbf{1})_{|S|}$ for any minimum distance- k resolving set S of G (see $[8,12]$); thus, $\gamma_{L}^{k}(G)=\operatorname{dim}_{k}(G)+1$.

Based on the proof of Theorem 3.1, we note that $\gamma_{L}^{k}(G)=\operatorname{dim}_{k}(G)+1$ if and only if, for every minimum distance- k resolving set S of G, there exists a vertex $w \in V(G)-S$ with $d(w, S)>k$. In other words, if there exists a minimum distance- k resolving set S^{\prime} of G such that $d\left(v, S^{\prime}\right) \leq k$ for each $v \in V(G)$, then $\gamma_{L}^{k}(G)=\operatorname{dim}_{k}(G)$.

Question 4.8. Since $\operatorname{dim}_{k}(G) \leq \gamma_{L}^{k}(G) \leq \operatorname{dim}_{k}(G)+1$, can we characterize G for which each of the two (end) inequalities is an equality?

5 The effect of edge deletion on $\gamma_{L}^{k}(G)$

In this section, we examine the effect of edge deletion on the distance- k location-domination number of graphs. Throughout the section, let both G and $G-e$, where $e \in E(G)$, be connected graphs. For the effect of edge deletion on the metric dimension of graphs, we refer to [4]. We recall how the distance- k dimension of a graph changes upon deletion of an edge.

Theorem 5.1. Let G be a connected graph with $e \in E(G)$, and let $k \in \mathbb{Z}^{+}$. Then
(a) $[11,3] \operatorname{dim}_{1}(G)-1 \leq \operatorname{dim}_{1}(G-e) \leq \operatorname{dim}_{1}(G)+1$;
(b) $[8,12] \operatorname{dim}_{2}(G-e) \leq \operatorname{dim}_{2}(G)+1$;
(c) $[8,12]$ for $k \geq 3, \operatorname{dim}_{k}(G-e) \leq \operatorname{dim}_{k}(G)+2$;
(d) $[8,12]$ for $k \geq 2, \operatorname{dim}_{k}(G)-\operatorname{dim}_{k}(G-e)$ can be arbitrarily large.

Theorem 5.2. Let G be a connected graph with $e \in E(G)$, and let $k \in \mathbb{Z}^{+}$. Then
(a) $\gamma_{L}^{1}(G)-2 \leq \gamma_{L}^{1}(G-e) \leq \gamma_{L}^{1}(G)+2$;
(b) $\gamma_{L}^{2}(G-e) \leq \gamma_{L}^{2}(G)+2$;
(c) for $k \geq 3, \gamma_{L}^{k}(G-e) \leq \gamma_{L}^{k}(G)+3$.

Proof. Let $k \in \mathbb{Z}^{+}$. By Theorem 3.1, we have $\operatorname{dim}_{k}(G) \leq \gamma_{L}^{k}(G) \leq$ $\operatorname{dim}_{k}(G)+1$ and $\operatorname{dim}_{k}(G-e) \leq \gamma_{L}^{k}(G-e) \leq \operatorname{dim}_{k}(G-e)+1$.

For (a), note that $\gamma_{L}^{1}(G-e)-\gamma_{L}^{1}(G) \geq \operatorname{dim}_{1}(G-e)-\left(\operatorname{dim}_{1}(G)+1\right) \geq-2$ and $\gamma_{L}^{1}(G)-\gamma_{L}^{1}(G-e) \geq \operatorname{dim}_{1}(G)-\left(\operatorname{dim}_{1}(G-e)+1\right) \geq-2$ by Theorem $5.1(\mathrm{a})$; thus, $\gamma_{L}^{1}(G)-2 \leq \gamma_{L}^{1}(G-e) \leq \gamma_{L}^{1}(G)+2$.

For (b), note that $\gamma_{L}^{2}(G)-\gamma_{L}^{2}(G-e) \geq \operatorname{dim}_{2}(G)-\left(\operatorname{dim}_{2}(G-e)+1\right) \geq-2$ by Theorem 5.1(b); thus $\gamma_{L}^{2}(G-e) \leq \gamma_{L}^{2}(G)+2$.

For (c), for any $k \geq 3$, we have $\gamma_{L}^{k}(G)-\gamma_{L}^{k}(G-e) \geq \operatorname{dim}_{k}(G)-\left(\operatorname{dim}_{k}(G-\right.$ $e)+1) \geq-3$ by Theorem $5.1(\mathrm{c})$; thus $\gamma_{L}^{k}(G-e) \leq \gamma_{L}^{k}(G)+3$.

Theorem 5.3. For any integer $k \geq 2, \gamma_{L}^{k}(G)-\gamma_{L}^{k}(G-e)$ can be arbitrarily large.

Figure 2: [8] Graphs G such that $\operatorname{dim}_{k}(G)-\operatorname{dim}_{k}(G-e)$ can be arbitrarily large, where $k \geq 2$ and $a \geq 3$.

Proof. Let G be the graph in Fig. 2 with $a \geq 3$. It was shown in [8, 12] that, for any $k \geq 2, \operatorname{dim}_{k}(G)=2 a$ and $\operatorname{dim}_{k}(G-e)=a+1$. For $k \geq 2$, $\gamma_{L}^{k}(G) \geq \operatorname{dim}_{k}(\bar{G})=2 a$ and $\gamma_{L}^{k}(G-e) \leq \operatorname{dim}_{k}(G-e)+1=a+2$ by Theorem 3.1; thus, $\gamma_{L}^{k}(G)-\gamma_{L}^{k}(G-e) \geq 2 a-(a+2)=a-2 \rightarrow \infty$ as $a \rightarrow \infty$.

Acknowledgements

We sincerely thank the anonymous referees for their careful reading, the correction of an error, and helpful comments which improved the paper.

References

[1] B. Bagheri Gh., M. Jannesari and B. Omoomi, Relations between metric dimension and domination number of graphs, arXiv:1112.2326v1 (2011) https://arxiv.org/abs/1112.2326
[2] A.F. Beardon and J.A. Rodríguez-Velázquez, On the k-metric dimension of metric spaces, Ars Math. Contemp., 16 (2019), 25-38.
[3] S. Bermudo, J.M. Rodríguez, J.A. Rodríguez-Velázquez and J.M. Sigarreta, The adjacency dimension of graphs, Ars Math. Contemp. (2022), https://doi.org/10.26493/1855-3974.2496.07a.
[4] L. Eroh, P. Feit, C.X. Kang and E. Yi, The effect of vertex or edge deletion on the metric dimension of graphs, J. Comb., 6(4) (2015), 433-444.
[5] A. Estrada-Moreno, On the ($k, t)$-metric dimension of a graph, Ph.D. dissertation, Universitat Rovira i Virgili, 2016.
[6] A. Estrada-Moreno, I.G. Yero and J.A. Rodríguez-Velázquez, On the (k, t)-metric dimension of graphs, Comput. J., 64(5) (2021), 707-720.
[7] H. Fernau and J.A. Rodríguez-Velázquez, On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results, Discrete Appl. Math., 236 (2018), 183-202.
[8] R.M. Frongillo, J. Geneson, M.E. Lladser, R.C. Tillquist and E. Yi, Truncated metric dimension for finite graphs, submitted (2021)
[9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.
[10] J. Geneson, Metric dimension and pattern avoidance in graphs, Discrete Appl. Math., 284 (2020), 1-7.
[11] J. Geneson and E. Yi, Broadcast dimension of graphs, arXiv:2005.07311v1 (2020) https://arxiv.org/abs/2005.07311
[12] J. Geneson and E. Yi, The distance- k dimension of graphs, arXiv:2106.08303v2 (2021) https://arxiv.org/abs/2106.08303
[13] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191-195.
[14] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[15] C. Hernando, M. Mora, I.M. Pelayo, C. Seara and D.R. Wood, Extremal graph theory for metric dimension and diameter, Electron. J. Combin., 17 (2010), \#R30.
https://doi.org/10.37236/302
[16] M. Jannesari and B. Omoomi, The metric dimension of the lexicographic product of graphs, Discrete Math., 312 (2012), 3349-3356.
[17] I. Javaid, M.T. Rahim and K. Ali, Families of regular graphs with constant metric dimension, Util. Math., 75 (2008), 21-33.
[18] C.X. Kang, S. Klavžar, I.G. Yero and E.Yi, Maker-Breaker resolving game, Bull. Malays. Math. Sci. Soc., 44 (2021), 2081-2099.
[19] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217-229.
[20] A. Meir and J.W. Moon, Relations between packing and covering number of a tree, Pacific J. Math., 61 (1975), 225-233.
[21] S.W. Saputro, E.T. Baskoro, A.N.M. Salman and D. Suprijanto, The metric dimension of a complete n-partite graph and its Cartesian product with a path, J. Combin. Math. Combin. Comput., 71 (2009), 283293.
[22] P.J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci., 22 (1988), 445-455.
[23] P.J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549-559.
[24] R.C. Tillquist, R.M. Frongillo and M.E. Lladser, Truncated metric dimension for finite graphs, arXiv:2106.14314v1 (2021) https: //arxiv.org/abs/2106.14314

[^0]: * Corresponding author.

