BULLETIN OF THE Sume 95 INSTITUTE OF COMBINATORICS and its APPLICATIONS

Editors-in-Chief:

Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Duluth, Minnesota, U.S.A.

ISSN: 2689-0674 (Online) ISSN: 1183-1278 (Print)

Distance-k locating-dominating sets in graphs

Cong X. Kang¹ and Eunjeong YI^{*1}

¹TEXAS A&M UNIVERSITY AT GALVESTON, GALVESTON, TX 77553, USA kangc@tamug.edu AND yie@tamug.edu

Abstract. Let G be a graph with vertex set V, and let k be a positive integer. A set $D \subseteq V$ is a distance-k dominating set of G if, for each vertex $u \in V - D$, there exists a vertex $w \in D$ such that $d(u, w) \leq k$, where d(u, w)is the minimum number of edges linking u and w in G. Let $d_k(x, y) =$ $\min\{d(x,y), k+1\}$. A set $R \subseteq V$ is a distance-k resolving set of G if, for any pair of distinct $x, y \in V$, there exists a vertex $z \in R$ such that $d_k(x, z) \neq d_k(x, z)$ $d_k(y,z)$. The distance-k domination number $\gamma_k(G)$ (distance-k dimension $\dim_k(G)$, respectively) of G is the minimum cardinality of all distance-k dominating sets (distance-k resolving sets, respectively) of G. The distancek location-domination number, $\gamma_L^k(G)$, of G is the minimum cardinality of all sets $S \subseteq V$ such that S is both a distance-k dominating set and a distance-k resolving set of G. Note that $\gamma_L^1(G)$ is the well-known location-domination number introduced by Slater in 1988. For any connected graph G of order $n \ge 2$, we obtain the following sharp bounds: (1) $\gamma_k(G) \le \dim_k(G) + 1$; (2) $2 \leq \gamma_k(G) + \dim_k(G) \leq n$; (3) $1 \leq \max\{\gamma_k(G), \dim_k(G)\} \leq \gamma_L^k(G) \leq \min\{\dim_k(G)+1, n-1\}$. We characterize G for which $\gamma_L^k(G) \in \{1, |V|-1\}$. We observe that $\frac{\dim_k(G)}{\gamma_k(G)}$ can be arbitrarily large. Moreover, for any tree T of order $n \geq 2$, we show that $\gamma_L^k(T) \leq n - ex(T)$, where ex(T) denotes the number of exterior major vertices of T, and we characterize trees Tachieving equality. We also examine the effect of edge deletion on the distance-k location-domination number of graphs.

^{*}Corresponding author.

Key words and phrases: domination number, metric dimension, locating-dominating set, distance-k locating-dominating set, (s, t)-locating-dominating set

AMS (MOS) Subject Classifications: 05C12, 05C69

1 Introduction

Let G be a finite, simple, undirected, and connected graph with vertex set V(G) and edge set E(G). Let k be a positive integer. For $x, y \in V(G)$, let d(x, y) denote the length of a shortest path between x and y in G, and let $d_k(x, y) = \min\{d(x, y), k+1\}$. The diameter, diam(G), of a graph G is $\max\{d(x,y) : x, y \in V(G)\}$. For $v \in V(G)$ and $S \subseteq V(G)$, let $d(v, S) = \min\{d(v, w) : w \in S\}$. The open neighborhood of a vertex $v \in$ V(G) is $N(v) = \{u \in V(G) : uv \in E(G)\}$ and its closed neighborhood is $N[v] = N(v) \cup \{v\}$. More generally, for $v \in V(G)$, let $N^k[v] = \{u \in V(G) :$ $d(u,v) \leq k$. The degree of a vertex $v \in V(G)$ is |N(v)|. For distinct $x, y \in V(G), x$ and y are called twin vertices if $N(x) - \{y\} = N(y) - \{x\}$ in G. A major vertex is a vertex of degree at least three, a leaf (also called an end-vertex) is a vertex of degree one, and a support vertex is a vertex that is adjacent to a leaf. A leaf ℓ is called a *terminal vertex* of a major vertex v if $d(\ell, v) < d(\ell, w)$ for every other major vertex w in G. The terminal degree, ter(v), of a major vertex v is the number of terminal vertices of v in G. A major vertex v is an exterior major vertex if it has positive terminal degree. We denote the number of exterior major vertices of G by ex(G)and the number of leaves of G by $\sigma(G)$. We denote by \overline{G} the complement of G, i.e., $V(\overline{G}) = V(G)$ and $xy \in E(\overline{G})$ if and only if $xy \notin E(G)$ for any distinct vertices x and y in G. The *join* of two graphs G and H, denoted by G + H, is the graph obtained from the disjoint union of G and H by joining an edge between each vertex of G and each vertex of H. Let P_n, C_n , and K_n denote respectively the path, the cycle, and the complete graph on n vertices; let $K_{s,n-s}$ denote the complete bi-partite graph on n vertices with parts of sizes s and n-s. Let \mathbb{Z}^+ be the set of positive integers and $k \in \mathbb{Z}^+$. For $\alpha \in \mathbb{Z}^+$, let $[\alpha] = \{1, 2, \dots, \alpha\}$.

A vertex subset $D \subseteq V(G)$ is a distance-k dominating set of G if, for each vertex $u \in V(G) - D$, there exists a vertex $w \in D$ such that $d(u, w) \leq k$. The distance-k domination number, $\gamma_k(G)$, of G is the minimum cardinality over all distance-k dominating sets of G. The concept of distance-k domination was introduced by Meir and Moon [20]. We note that $\gamma_1(G)$ is the well-known domination number of G, which is often denoted by $\gamma(G)$ in the literature. Applications of domination can be found in resource allocation on a network, determining efficient routes within a network, and designing secure systems for electrical grids, to name a few. It is known that determining the domination number of a general graph is an NP-hard problem (see [9]). For a survey on domination in graphs, see [14].

A vertex subset $R \subseteq V(G)$ is a resolving set of G if, for any pair of distinct vertices $x, y \in V(G)$, there exists a vertex $z \in R$ such that $d(x, z) \neq d(x, z)$ d(y,z). The metric dimension, dim(G), of G is the minimum cardinality over all resolving sets of G. The concept of metric dimension was introduced independently by Slater [23] and by Harary and Melter [13]. A vertex subset $S \subseteq V(G)$ is a distance-k resolving set (also called a k-truncated resolving set) of G if, for any distinct vertices $x, y \in V(G)$, there exists a vertex $z \in S$ such that $d_k(x, z) \neq d_k(y, z)$. The distance-k dimension (also called the k-truncated dimension), $\dim_k(G)$, of G is the minimum cardinality over all distance-k resolving sets of G. The metric dimension of a metric space (V, d_k) is studied in [2]. The distance-k dimension corresponds to the (1, k+1)-metric dimension in [5] and [6]. We note that dim₁(G) is also called the adjacency dimension, introduced in [16], and it is often denoted by $\operatorname{adim}(G)$ in the literature. For detailed results on $\operatorname{dim}_k(G)$, we refer to [8], which is a merger of [12] and [24], along with some additional results. For an ordered set $S = \{u_1, u_2, \ldots, u_\alpha\} \subseteq V(G)$ of distinct vertices, the distancek metric code of $v \in V(G)$ with respect to S, denoted by $\operatorname{code}_{S,k}(v)$, is the α -vector $(d_k(v, u_1), d_k(v, u_2), \ldots, d_k(v, u_\alpha))$. We denote by $(\mathbf{k} + \mathbf{1})_{\alpha}$ the α -vector with k + 1 on each entry. Applications of metric dimension can be found in robot navigation, network discovery and verification, and combinatorial optimization, to name a few. It is known that determining the metric dimension and the adjacency dimension of a general graph are NP-hard problems (see [19] and [7]). For a discussion on computational complexity of the distance-k dimension of graphs, see [6].

Slater [22] introduced the notion of locating-dominating set and locationdomination number. A set $A \subseteq V(G)$ is a locating-dominating set of G if A is a dominating set of G and $N(x) \cap A \neq N(y) \cap A$ for distinct vertices $x, y \in A$ V(G) - A. The location-domination number, $\gamma_L(G)$, of G is the minimum cardinality over all locating-dominating sets of G. The notion of locationdomination by Slater is a natural marriage of its two constituent notions, where a subset of vertices functions both to locate (via d_1 metric) each node of a network and to dominate (supply or support) the entire network. Viewed in this light, the following is but a natural extension of the notion of Slater. For $(s,t) \in \mathbb{Z}^+ \times \mathbb{Z}^+$, let $S \subseteq V(G)$ be a distance-s resolving set of G and a distance-t dominating set of G, which we call an (s, t)-locatingdominating set of G. Then the (s, t)-location-domination number of G, denoted by $\gamma_L^{(s,t)}(G)$, is defined to be the minimum cardinality of S as S varies over all (s,t)-locating-dominating sets of G. When s = k = t, we will abbreviate and simply speak of distance-k locating-dominating set and distance-k location-domination number, and we will simplify $\gamma_L^{(k,k)}(G)$ to $\gamma_L^k(G).$

In this paper, we study the distance-k location-domination number of graphs. We examine the relationship among $\gamma_k(G)$, $\dim_k(G)$ and $\gamma_L^k(G)$. Let G be a connected graph of order $n \geq 2$, and let $k \in \mathbb{Z}^+$. In Section 2, we show that $\gamma_k(G) \leq \dim_k(G) + 1$ and that $\dim_k(G) - \gamma_k(G)$ can be arbitrarily large. We also show that $2 \leq \gamma_k(G) + \dim_k(G) \leq n$, and we characterize G satisfying $\gamma_k(G) + \dim_k(G) = 2$. In Section 3, we show that $1 \leq \max\{\gamma_k(G), \dim_k(G)\} \leq \gamma_L^k(G) \leq \min\{\dim_k(G) + 1, n - 1\}$, where the bounds are sharp. We also characterize G satisfying $\gamma_L^k(G)$ equals 1 and n-1, respectively. Moreover, for a non-trivial tree T, we show that $\gamma_L^k(T) \leq n - ex(T)$ and we characterize trees T achieving equality. In Section 4, we determine $\gamma_L^k(G)$ when G is the Petersen graph, a complete multipartite graph, a cycle or a path. In Section 5, we examine the effect of edge deletion on the distance-k location-domination number of graphs.

2 Relations between $\gamma_k(G)$ and $\dim_k(G)$

In this section, we examine the sum and difference between $\gamma_k(G)$ and $\dim_k(G)$. Let G be a non-trivial connected graph, and let $k \in \mathbb{Z}^+$. We show that $\gamma_k(G) \leq \dim_k(G) + 1$, where the bound is sharp, and we observe that $\dim_k(G) - \gamma_k(G)$ can be arbitrarily large. We also show that $2 \leq \gamma_k(G) + \dim_k(G) \leq |V(G)|$, and we characterize G satisfying $\gamma_k(G) + \dim_k(G) = 2$. We begin with the following observation.

Observation 2.1. Let G be any connected graph, and let $s, s', t, t', k, k' \in \mathbb{Z}^+$. Then

- (a) for k > k', $\gamma_k(G) \le \gamma_{k'}(G) \le \gamma_1(G)$;
- (b) [2, 5, 6] for k > k', $\dim(G) \le \dim_k(G) \le \dim_{k'}(G) \le \dim_{1}(G)$;
- (c) more generally, we have $\gamma_L^{(s,t)}(G) \geq \gamma_L^{(s',t')}(G)$ for $s \leq s'$ and $t \leq t'$, since an (s,t)-locating-dominating set of G is an (s',t')-locating-dominating set of G.

For any minimum distance-k resolving set S of a connected graph G, we show that there is a vertex $v \in V(G) - S$ such that $S \cup \{v\}$ is a distance-k dominating set of G.

Proposition 2.2. For any non-trivial connected graph G and for any $k \in \mathbb{Z}^+$,

$$\gamma_k(G) \le \dim_k(G) + 1.$$

Proof. Let S be any minimum distance-k resolving set of G. Then there exists at most one vertex, say w, in V(G) - S such that d(w, S) > k; notice that $\operatorname{code}_{S,k}(w) = (\mathbf{k+1})_{|S|}$. If $d(u,S) \leq k$ for each $u \in V(G)$, then S is a distance-k dominating set of G, and hence $\gamma_k(G) \leq |S| = \dim_k(G)$. If there exists a vertex $v \in V(G)$ such that d(v,S) > k, then $S \cup \{v\}$ forms a distance-k dominating set of G, and thus $\gamma_k(G) \leq |S| + 1 = \dim_k(G) + 1$. \Box

Next, we show the sharpness of the bound in Proposition 2.2.

Observation 2.3. Let G be a non-trivial connected graph.

- (a) If there exists a vertex $v \in V(G)$ such that $N^k[v] = V(G)$, then $\{v\}$ is a distance-k dominating set of G and $\gamma_k(G) = 1$.
- (b) Suppose $\cup_{i=1}^{x} \{v_i\} \subseteq V(G)$ satisfies $N^k[v_i] \cap N^k[v_j] = \emptyset$ for $i \neq j$. Then any distance-k dominating set of G must contain a vertex of $N^k[v_i]$ for each $i \in [x]$. Thus $\gamma_k(G) \geq x$.

Remark 2.4. For each $k \in \mathbb{Z}^+$, there is a connected graph G with $\gamma_k(G) = \dim_k(G) + 1$.

Proof. Let G be a tree with $ex(G) = x \ge 1$ such that v_1, v_2, \ldots, v_x are the exterior major vertices of G with $ter(v_i) = \alpha \ge 3$ for each $i \in [x]$, and let v_1, v_2, \ldots, v_x form an induced path of order x in G. For each $i \in [x]$, let $\{\ell_{i,1}, \ell_{i,2}, \ldots, \ell_{i,\alpha}\}$ be the set of the terminal vertices of v_i in G such that $d(v_i, \ell_{i,j}) = k + 1 = 1 + d(v_i, \ell_{i,\alpha})$ for each $j \in [\alpha - 1]$. For each $i \in [x]$ and for each $j \in [\alpha - 1]$, let $s_{i,j}$ be the neighbor of v_i lying on the $v_i - \ell_{i,j}$ path in G. See Fig. 1 when k = 3.

First, note that $\gamma_k(G) = x\alpha$: (i) $\gamma_k(G) \leq x\alpha$ since $D = \bigcup_{i=1}^x \{\ell_{i,1}, \dots, \ell_{i,\alpha}\}$ forms a distance-k dominating set of G with $|D| = x\alpha$; (ii) $\gamma_k(G) \geq x\alpha$ by Observation 2.3(b) and the fact that $N^k[\ell_{i,j}] \cap N^k[\ell_{s,t}] = \emptyset$ for $(i, j) \neq (s, t)$. Second, note that $\dim_k(G) = x\alpha - 1$: (i) $\dim_k(G) \leq x\alpha - 1$ since $R = (\bigcup_{i=1}^x \{s_{i,1}, s_{i,2}, \dots, s_{i,\alpha-1}\}) \cup (\bigcup_{i=1}^{x-1} \{\ell_{i,\alpha}\})$ forms a distance-k resolving set of G with $|R| = x\alpha - 1$; (ii) $\dim_k(G) \geq \gamma_k(G) - 1 = x\alpha - 1$ by Proposition 2.2. Therefore, $\gamma_k(G) = x\alpha = \dim_k(G) + 1$.

Based on Proposition 2.2 and Remark 2.4, we have the following

Question 2.5. Can we characterize graphs G satisfying

$$\gamma_k(G) = \dim_k(G) + 1 ?$$

Figure 1: Graphs G with $\gamma_3(G) = \dim_3(G) + 1$.

Question 2.6. Can we characterize graphs G satisfying

$$\gamma_k(G) = \dim_k(G) ?$$

Next, we show that $\frac{\dim_k(G)}{\gamma_k(G)}$ can be arbitrarily large; thus, $\dim_k(G) - \gamma_k(G)$ can be arbitrarily large. We recall the connected graphs G of order n for which $\dim_k(G) \in \{1, n-2, n-1\}$; here, we note that Theorem 2.7(a),(d) for the case k = 1 is obtained in [16]. See Theorem 3.9 in [11] for a characterization of all graphs G having $\dim_1(G) = m$ for each $m \in \mathbb{Z}^+$.

Theorem 2.7. Let G be a connected graph of order $n \ge 2$, and let $k \in \mathbb{Z}^+$. Then $1 \le \dim_k(G) \le n-1$, and we have the following:

- (a) [5, 24] $\dim_k(G) = 1$ if and only if $G \in \bigcup_{i=2}^{k+2} \{P_i\}$;
- (b) [8, 12, 24] for $n \ge 4$, $\dim_1(G) = n-2$ if and only if $G = P_4$, $G = K_{s,t}$ ($s,t \ge 1$), $G = K_s + \overline{K}_t$ ($s \ge 1, t \ge 2$), or $G = K_s + (K_1 \cup K_t)$ ($s,t \ge 1$);
- (c) [8, 12, 24] for $k \ge 2$ and for $n \ge 4$, $\dim_k(G) = n-2$ if and only if $G = K_{s,t}$ $(s,t\ge 1)$, $G = K_s + \overline{K}_t$ $(s\ge 1,t\ge 2)$, or $G = K_s + (K_1 \cup K_t)$ $(s,t\ge 1)$;
- (d) [8, 12, 24] $\dim_k(G) = n 1$ if and only if $G = K_n$.

Proposition 2.8. For a connected graph G and for $k \in \mathbb{Z}^+$, $\frac{\dim_k(G)}{\gamma_k(G)}$ can be arbitrarily large.

Proof. Let G be a connected graph of order $n \ge 4$. First, note that $\dim_k(K_n) = n - 1$ by Theorem 2.7(d) and $\gamma_k(K_n) = 1$ by Observation 2.3(a); thus $\frac{\dim_k(K_n)}{\gamma_k(K_n)} = n - 1 \to \infty$ as $n \to \infty$.

For another example, let G be the graph obtained from $K_{1,\alpha}$, where $\alpha \geq 3$, by subdividing each edge of $K_{1,\alpha}$ exactly k-1 times; let v be the central

vertex of degree α in G and let $\ell_1, \ell_2, \ldots, \ell_\alpha$ be the leaves of G such that $d(v, \ell_i) = k$ for each $i \in [\alpha]$. Let $N(v) = \{s_1, s_2, \ldots, s_\alpha\}$ such that s_i lies on the $v - \ell_i$ path in G, and let P^i denote the $s_i - \ell_i$ path, where $i \in [\alpha]$. Then $\gamma_k(G) = 1$ since $\{v\}$ is a minimum distance-k dominating set of G by Observation 2.3(a). Note that $\dim_k(G) = \alpha - 1$: (i) $\dim_k(G) \leq \alpha - 1$ since $N(v) - \{s_1\}$ forms a distance-k resolving set of G; (ii) $\dim_k(G) \geq \alpha - 1$ since $S \cap (V(P^i) \cup V(P^j)) \neq \emptyset$ for any distance-k resolving set S of G and for distinct $i, j \in [\alpha]$, as $S \cap (V(P^i) \cup V(P^j)) = \emptyset$ implies $\operatorname{code}_{S,k}(s_i) = \operatorname{code}_{S,k}(s_j)$. So, $\frac{\dim_k(G)}{\gamma_k(G)} = \alpha - 1 \to \infty$ as $\alpha \to \infty$.

Next, for any connected graph G of order $n \ge 2$ and for any $k \in \mathbb{Z}^+$, we show that $2 \le \gamma_k(G) + \dim_k(G) \le n$ and we characterize G with $\gamma_k(G) + \dim_k(G) = 2$. We recall the following results.

Lemma 2.9. [1] Let G be a connected graph. Then there exists a minimum dominating set for G which does not have any pair of twin vertices.

Theorem 2.10. [1] Let G be a connected graph of order $n \ge 2$. Then $\gamma(G) + \dim(G) \le n$, and equality holds if and only if $G \in \{K_n, K_{s,n-s}\}$ for $2 \le s \le n-2$.

Proposition 2.11. Let G be any connected graph of order $n \ge 2$, and let $k \in \mathbb{Z}^+$. Then $2 \le \gamma_k(G) + \dim_k(G) \le n$, and $\gamma_k(G) + \dim_k(G) = 2$ if and only $G \in \bigcup_{i=2}^{k+2} \{P_i\}$.

Proof. Let G be a connected graph of order $n \ge 2$, and let $k \in \mathbb{Z}^+$. Since $\gamma_k(G) \ge 1$ and $\dim_k(G) \ge 1$, we have $\gamma_k(G) + \dim_k(G) \ge 2$. Note that $\gamma_k(G) + \dim_k(G) = 2$ if and only if $\gamma_k(G) = 1 = \dim_k(G)$ if and only if $G \in \bigcup_{i=2}^{k+2} \{P_i\}$ by Observation 2.3(a) and Theorem 2.7(a).

To prove $\gamma_k(G) + \dim_k(G) \leq n$, it suffices to show that $\gamma_1(G) + \dim_1(G) \leq n$ by Observation 2.1. The proof given for Theorem 2.10 in [1] actually shows $\gamma_1(G) + \dim_1(G) \leq n$. To see this, we can take a minimum dominating set D of G that contains no twin vertices by Lemma 2.9. Suppose $x, y \in D$ have the same neighbors in V(G) - D; this implies that neither x nor yhas a neighbor in D, because if, say, y has a neighbor in D, then $D - \{y\}$ remains a dominating set, and thus x and y have the same neighbors in V(G), contradicting the choice of D. Since no two vertices of D have the same neighborhood in S = V(G) - D, S is a distance-1 resolving set of G, and we have $\gamma_1(G) + \dim_1(G) \leq |D| + |S| = n$. \Box In contrast to Theorem 2.10, we note that if $G \in \{P_4, K_n, K_{s,n-s}\}$ with $2 \leq s \leq n-2$, then $\gamma_1(G) + \dim_1(G) = |V(G)|$. So, we have the following

Question 2.12. Can we characterize graphs G satisfying

$$\gamma_k(G) + \dim_k(G) = |V(G)|?$$

3 Bounds on $\gamma_L^k(G)$

In this section, for any connected graph G of order $n \geq 2$ and for any $k \in \mathbb{Z}^+$, we show that $1 \leq \max\{\gamma_k(G), \dim_k(G)\} \leq \gamma_L^k(G) \leq \min\{\dim_k(G) + 1, n-1\}$; we characterize G satisfying $\gamma_L^k(G) = 1$ and $\gamma_L^k(G) = n-1$, respectively. For any non-trivial tree T, we show that $\gamma_L^k(T) \leq |V(T)| - ex(T)$ and we characterize trees T achieving equality.

Theorem 3.1. For any connected graph G of order $n \ge 2$ and for any $k \in \mathbb{Z}^+$,

 $\max\{\gamma_k(G), \dim_k(G)\} \le \gamma_L^k(G) \le \min\{1 + \dim_k(G), n-1\}.$

Proof. Let G be a connected graph of order $n \geq 2$, and let $k \in \mathbb{Z}^+$. Since a minimum distance-k locating-dominating set of G is both a distance-k dominating set of G and a distance-k resolving set of G, we have $\gamma_L^k(G) \geq \max\{\gamma_k(G), \dim_k(G)\}$.

Next, we show that $\gamma_L^k(G) \leq \min\{1 + \dim_k(G), n-1\}$. Suppose S is a minimum distance-k resolving set of G; then at most one vertex in G has the distance-k metric code $(\mathbf{k+1})_{|S|}$ with respect to S. If $\operatorname{code}_{S,k}(u) \neq (\mathbf{k+1})_{|S|}$ for each $u \in V(G)$, then S is a distance-k locating-dominating set of G. If $\operatorname{code}_{S,k}(w) = (\mathbf{k+1})_{|S|}$ for some $w \in V(G)$, then $S \cup \{w\}$ forms a distance-k locating-dominating set of G. So, $\gamma_L^k(G) \leq |S|+1 = \dim_k(G)+1$. Now, $\gamma_L^k(G) \leq n-1$ follows from the fact that any vertex subset $S' \subseteq V(G)$ with |S'| = n-1 is a distance-k locating-dominating set of G.

Theorems 2.7(d) and 3.1 imply that $\max\{\gamma_k(K_n), \dim_k(K_n)\} = \gamma_L^k(K_n) = \min\{1 + \dim_k(K_n), n-1\}$ for $n \ge 2$ and for $k \ge 1$. Since $\gamma_k(G) \ge 1$ and $\dim_k(G) \ge 1$, Theorem 3.1 implies the following.

Corollary 3.2. For any connected graph G of order $n \ge 2$ and for any $k \in \mathbb{Z}^+$, $1 \le \gamma_L^k(G) \le n-1$.

Next, we characterize connected graphs G of order n satisfying $\gamma_L^k(G) = 1$ and $\gamma_L^k(G) = n - 1$, respectively, for all $k \in \mathbb{Z}^+$. We recall the following observation.

Observation 3.3. [8] Let x and y be distinct twin vertices of G, and let $k \in \mathbb{Z}^+$. Then, for any distance-k resolving set S_k of G, $S_k \cap \{x, y\} \neq \emptyset$.

Theorem 3.4. Let G be a connected graph of order $n \ge 2$, and let $k \in \mathbb{Z}^+$. Then

(a) $\gamma_L^k(G) = 1$ if and only if $G \in \bigcup_{i=2}^{k+1} \{P_i\}$; (b) $\gamma_L^1(G) = n - 1$ if and only if $G \in \{K_n, K_{1,n-1}\}$; (c) for $k \ge 2$, $\gamma_L^k(G) = n - 1$ if and only if $G = K_n$.

Proof. Let G be a connected graph of order $n \ge 2$, and let $k \in \mathbb{Z}^+$.

(a) If $G \in \bigcup_{i=2}^{k+1} \{P_i\}$, then a leaf of G forms a distance-k locating-dominating set of G; thus, $\gamma_L^k(G) = 1$. Now, suppose $\gamma_L^k(G) = 1$; then $\gamma_k(G) = 1 = \dim_k(G)$. By Theorem 2.7(a), $\dim_k(G) = 1$ implies $G \in \bigcup_{i=2}^{k+2} \{P_i\}$, where any minimum distance-k resolving set consists of a leaf whereas a leaf of P_{k+2} fails to form a distance-k dominating set of P_{k+2} since $\dim(P_{k+2}) = k + 1$. So, $\gamma_L^k(G) = 1$ implies $G \in \bigcup_{i=2}^{k+1} \{P_i\}$.

(b) First, suppose $G \in \{K_n, K_{1,n-1}\}$. Note that $\gamma_L^1(K_n) = n-1$ by Theorems 2.7(d) and 3.1. For $n \geq 3$, if v is the central vertex of $K_{1,n-1}$ and $N(v) = \{s_1, s_2, \ldots, s_{n-1}\}$, then $\dim_1(K_{1,n-1}) = n-2$ by Theorem 2.7(b) and $|S \cap N(v)| = n-2$ for any minimum distance-1 resolving set S of $K_{1,n-1}$ by Observation 3.3; without loss of generality, let $S' = \{s_1, s_2, \ldots, s_{n-2}\}$ be a minimum distance-1 resolving set of $K_{1,n-1}$. Since $d(s_{n-1}, S') = 2$, S' fails to be a distance-1 locating-dominating set of $K_{1,n-1}$; thus, $\gamma_L^1(K_{1,n-1}) \geq n-1$. By Theorem 3.1, $\gamma_L^1(K_{1,n-1}) = n-1$.

Second, suppose $\gamma_L^1(G) = n - 1$. By Theorem 3.1, $\dim_1(G) \in \{n-2, n-1\}$. To see this, if $\dim_1(G) \leq n-3$, then $\gamma_L^1(G) \leq \dim_1(G) + 1 \leq n-2$ by Theorem 3.1. If $\dim_1(G) = n - 1$, then $G = K_n$ by Theorem 2.7(d). If $\dim_1(G) = n - 2$, then $G = P_4$, $G = K_{s,t}$ with $s, t \geq 1$, $G = K_s + \overline{K}_t$ with $s \geq 1, t \geq 2$, or $G = K_s + (K_1 \cup K_t)$ with $s, t \geq 1$ by Theorem 2.7(b). We note the following: (i) $\gamma_L^1(P_4) = 2$ since the two leaves of P_4 form a minimum distance-1 locating-dominating set of P_4 ; (ii) $\gamma_L^1(K_{1,t}) = \gamma_L^1(K_1 + \overline{K}_t) = t$ as shown above; (iii) for $s, t \geq 2$, $\gamma_L^1(K_{s,t}) = s + t - 2 = \gamma_L^1(K_s + \overline{K}_t)$ since all but one vertex from each of the two partite sets form a minimum distance-1 locating-dominating set of $K_{s,t}$; (iv) $K_1 + (K_1 \cup K_1) = K_{1,2}$ and
$$\begin{split} \gamma_L^1(K_{1,2}) &= 2 \text{ as shown above; } (\mathbf{v}) \text{ for } t \geq 2, \ \gamma_L^1(K_1 + (K_1 \cup K_t)) = t \text{ since} \\ \text{all but one vertex of the } K_t \text{ and the leaf of } K_1 + (K_1 \cup K_t) \text{ form a minimum} \\ \text{distance-1 locating-dominating set of } K_1 + (K_1 \cup K_t); \text{ (vi) for } s \geq 2 \text{ and} \\ t \geq 1, \ \gamma_L^1(K_s + (K_1 \cup K_t)) = s + t - 1 \text{ since all but one vertex of the } K_s \\ \text{and all vertices of the } K_t \text{ form a minimum distance-1 locating-dominating} \\ \text{set of } K_s + (K_1 \cup K_t). \text{ So, } \ \gamma_L^1(G) = n - 1 \text{ implies } G = K_n \text{ or } G = K_{1,n-1}. \end{split}$$

(c) Let $k \geq 2$. Note that $\gamma_L^k(K_n) = n - 1$ by Theorems 2.7(d) and 3.1. So, suppose $\gamma_L^k(G) = n - 1$. Then $\dim_k(G) \in \{n - 1, n - 2\}$ by Theorem 3.1. If $\dim_k(G) = n - 1$, then $G = K_n$ by Theorem 2.7(d). If $\dim_k(G) = n - 2$ for $n \geq 4$, then, by Theorem 2.7(c), $G = K_{s,t}$ with $s, t \geq 1$, $G = K_s + \overline{K}_t$ with $s \geq 1, t \geq 2$, or $G = K_s + (K_1 \cup K_t)$ with $s, t \geq 1$; then $\dim(G) = 2$ and any minimum distance-k resolving set of G is also a distance-k dominating set of G. So, $\dim_k(G) = n - 2$ implies $\gamma_L^k(G) = n - 2$ for $k \geq 2$.

Question 3.5. Can we characterize graphs G of order n such that

$$\gamma_L^k(G) = \beta,$$

where $\beta \in \{2, 3, \dots, n-2\}$?

Next, we examine the relation between $\gamma_L^k(G)$ and other parameters in Theorem 3.1.

Proposition 3.6. Let G be a non-trivial connected graph, and let $k \in \mathbb{Z}^+$. Then

(a) $\gamma_L^k(G) - \dim_k(G) \in \{0, 1\};$ (b) $\gamma_L^k(G) - \gamma_k(G)$ can be arbitrarily large; (c) $(|V(G)| - 1) - \gamma_L^k(G)$ can be arbitrarily large.

Proof. Let $k \in \mathbb{Z}^+$. For (a), $0 \le \gamma_L^k(G) - \dim_k(G) \le 1$ by Theorem 3.1.

For (b) and (c), let G be a tree obtained from the path v_1, v_2, \ldots, v_x $(x \ge 2)$ by adding leaves $\ell_{i,1}, \ell_{i,2}, \ldots, \ell_{i,\alpha}$ $(\alpha \ge 3)$ to each vertex v_i , where $i \in [x]$; notice that $|V(G)| = x(\alpha + 1)$. Since $\cup_{i=1}^x \{v_i\}$ is a distance-k dominating set of G, $\gamma_k(G) \le x$. Note that $\gamma_L^k(G) \ge x(\alpha - 1)$ by Observation 3.3 since any distinct vertices in $\{\ell_{i,1}, \ell_{i,2}, \ldots, \ell_{i,\alpha}\}$ are twin vertices in G. Also, note that $\gamma_L^k(G) \le x\alpha$ since $V(G) - \bigcup_{i=1}^x \{\ell_{i,\alpha}\}$ is a distance-k locating-dominating set of G. So, $\gamma_L^k(G) - \gamma_k(G) \ge x(\alpha - 1) - x = x(\alpha - 2) \to \infty$ as $x \to \infty$ or $\alpha \to \infty$, and $|V(G)| - 1 - \gamma_L^k(G) \ge x(\alpha + 1) - 1 - x\alpha = x - 1 \to \infty$ as $x \to \infty$.

In view of Theorem 3.1 and Proposition 3.6(b), we have the following

Question 3.7. Can we characterize graphs G such that $\gamma_L^k(G) = \gamma_k(G)$?

Next, for a graph G with $\gamma_L^k(G) = \beta$, we determine the upper bound of |V(G)|.

Theorem 3.8. [8, 12] If $\dim_k(G) = \beta$, then $|V(G)| \le (\lfloor \frac{2(k+1)}{3} \rfloor + 1)^{\beta} + \beta \sum_{i=1}^{\lfloor \frac{k+1}{3} \rfloor} (2i-1)^{\beta-1}$ and the bound is sharp.

By Theorem 3.1, $\gamma_L^k(G) = \beta$ implies $\dim_k(G) \leq \beta$. Theorem 3.8 is sharp, and a graph G attaining the maximum order must contain a vertex $\omega \in V(G)$ with $\operatorname{code}_{S,k}(\omega) = (\mathbf{k+1})_{|S|}$ for any minimum distance-k resolving set S of G. The deletion of ω from G leaves intact distance relations and code vectors; thus, we have the following sharp bound.

Corollary 3.9. If $\gamma_L^k(G) = \beta$, then $|V(G)| \leq (\lfloor \frac{2(k+1)}{3} \rfloor + 1)^{\beta} - 1 + \beta \sum_{i=1}^{\lfloor \frac{k+1}{3} \rfloor} (2i-1)^{\beta-1}$.

Remark 3.10. The proof for Theorem 3.8 in [8, 12] uses a method similar to the one in [15]. For a construction of graphs G with $\dim_1(G) = \beta$ of maximum order $\beta + 2^{\beta}$, we refer to [11]. For a construction of graphs G with $\dim_2(G) = \beta$ and of order $\beta + 3^{\beta}$, we refer to [8, 12]; this construction is similar to the one provided in [10].

Next, for any non-trivial tree T and for $k \in \mathbb{Z}^+$, we show that $\gamma_L^k(T) \leq n - ex(T)$ and we characterize trees T achieving equality.

Proposition 3.11. For any tree T of order $n \ge 2$ and for any $k \in \mathbb{Z}^+$, $\gamma_L^k(T) \le n - ex(T)$.

Proof. Let T be a tree of order $n \geq 2$ and let $k \in \mathbb{Z}^+$. If $ex(T) \in \{0, 1\}$, then $\gamma_L^k(T) \leq n-1 \leq n-ex(T)$ by Theorem 3.1. So, suppose $ex(T) = x \geq 2$; let v_1, v_2, \ldots, v_x be the exterior major vertices of T. For each $i \in [x]$, let $\{\ell_{i,1}, \ell_{i,2}, \ldots, \ell_{i,\sigma_i}\}$ be the set of terminal vertices of v_i in T with $ter(v_i) = \sigma_i \geq 1$. Since $S = V(T) - \bigcup_{i=1}^x \{\ell_{i,1}\}$ is a distance-k locating-dominating set of T with $|S| = n - x = n - ex(T), \gamma_L^k(T) \leq n - ex(T)$.

Next, we characterize non-trivial trees T satisfying $\gamma_L^k(T) = |V(T)| - ex(T)$. We recall some terminology. An *exterior degree-two vertex* is a vertex of degree two that lies on a path from a terminal vertex to its major vertex, and an *interior degree-two vertex* is a vertex of degree two such that the shortest path to any terminal vertex includes a major vertex.

Theorem 3.12. Let T be any tree of order $n \ge 2$ and let $k \in \mathbb{Z}^+$. Then $\gamma_L^k(T) = n - ex(T)$ if and only if k = 1, $ex(T) \ge 1$, and $ex(T) + \sigma(T) = n$.

Proof. Let T be a tree of order $n \ge 2$ and let $k \in \mathbb{Z}^+$. If $ex(T) = x \ge 1$, let v_1, v_2, \ldots, v_x be the exterior major vertices of T, and let $\{\ell_{i,1}, \ell_{i,2}, \ldots, \ell_{i,\sigma_i}\}$ be the set of terminal vertices of v_i with $ter(v_i) = \sigma_i \ge 1$ in T for each $i \in [x]$.

(⇐) Let k = 1, $ex(T) = x \ge 1$, and $ex(T) + \sigma(T) = n$; notice that T is a caterpillar. Let S be an arbitrary minimum distance-1 locating-dominating set of T. By Observation 3.3, $|S \cap \{\ell_{i,1}, \ell_{i,2}, \ldots, \ell_{i,\sigma_i}\}| \ge \sigma_i - 1$. Thus, up to a relabeling of vertices of T, we may assume that $S \supseteq V(T) - \bigcup_{i=1}^{x} \{v_i, \ell_{i,1}\}$. Since $N[\ell_{i,1}] \cap N[\ell_{j,1}] = \emptyset$ for $i \ne j$, a vertex in $\{v_i, \ell_{i,1}\}$ (for each $i \in [x]$) must also belong to S by Observation 2.3(b). So, $\gamma_L^1(T) \ge n - ex(T)$. Since $\gamma_L^1(T) \le n - ex(T)$ by Proposition 3.11, $\gamma_L^1(T) = n - ex(T)$.

 (\Rightarrow) Let $\gamma_L^k(T) = n - ex(T)$. If ex(T) = 0, then $\gamma_L^k(T) < n - ex(T)$ by Theorem 3.1. So, let $ex(T) = x \ge 1$. We will show that T has no major vertex of terminal degree zero and no degree-two vertex; i.e., each vertex in T is either an exterior major vertex or a leaf.

If T contains either an interior degree-two vertex w or a major vertex w' with ter(w') = 0, then $A = V(T) - (\{u\} \cup (\bigcup_{i=1}^{x} \{\ell_{i,1}\}))$, where $u \in \{w, w'\}$, forms a distance-k locating-dominating set of T; thus $\gamma_L^k(T) \leq n - (x+1) < n - ex(T)$. Now, suppose T contains an exterior degree-two vertex, say z. By relabeling the vertices of T if necessary, we may assume that z lies on the $v_i - \ell_{i,1}$ path in T for some $i \in [x]$. If $ter(v_i) \geq 2$, then $B = V(T) - (\{z\} \cup (\bigcup_{j=1}^{x} \{\ell_{j,\sigma_j}\}))$ forms a distance-k locating-dominating set of T. If $ter(v_i) = 1$, then $C = V(T) - (\{v_i\} \cup (\bigcup_{j=1}^{x} \{\ell_{j,1}\}))$ forms a distance-k locating-dominating set of T. (It is easy to see that the sets A, B, and C are distance-1 locating-dominating; then apply Observation 2.1(c) for $k \geq 1$.) In each case, $\gamma_L^k(T) \leq n - (x+1) < n - ex(T)$.

So, each vertex in T is either an exterior major vertex or a leaf; thus $ex(T) + \sigma(T) = n$. Now, if $k \ge 2$, then $R = V(T) - (\{v_1\} \cup (\cup_{i=1}^{x} \{\ell_{i,1}\}))$ forms a distance-k locating-dominating set of T, and hence $\gamma_L^k(T) \le |R| = n - ex(T) - 1 < n - ex(T)$. Thus, k = 1.

4 $\gamma_L^k(G)$ of some classes of graphs

In this section, for any $k \in \mathbb{Z}^+$, we determine $\gamma_L^k(G)$ when G is the Petersen graph, a complete multipartite graph, a cycle or a path. We begin with the following observations.

Observation 4.1. [5, 6, 8, 12] Let G be a connected graph with diam $(G) = d \ge 2$, and let $k \in \mathbb{Z}^+$. If $k \ge d-1$, then dim_k $(G) = \dim(G)$.

Observation 4.2. Let G be any connected graph, and let $k, k' \in \mathbb{Z}^+$. Then

(a) for
$$k > k', \ \gamma_L^k(G) \le \gamma_L^{k'}(G) \le \gamma_L^1(G);$$

(b) if $k \ge \operatorname{diam}(G)$, then $\gamma_L^k(G) = \operatorname{dim}_k(G)$.

Next, we determine $\gamma_L^k(\mathcal{P})$ for the Petersen graph \mathcal{P} .

Example 4.3. Let \mathcal{P} be the Petersen graph with the the following presentation: two disjoint copies of C_5 are given by $u_1, u_2, u_3, u_4, u_5, u_1$ and $w_1, w_3, w_5, w_2, w_4, w_1$, respectively, and the remaining edges are $u_i w_i$ for each $i \in [5]$. Then, for $k \in \mathbb{Z}^+$,

$$\gamma_L^k(\mathcal{P}) = \begin{cases} \dim_k(\mathcal{P}) + 1 = 4 & \text{if } k = 1, \\ \dim_k(\mathcal{P}) = 3 & \text{if } k \ge 2. \end{cases}$$

To see this, note that $\dim(\mathcal{P}) = 3$ (see [17]) and $\dim(\mathcal{P}) = 2$. For any $k \geq 2$, $\gamma_L^k(\mathcal{P}) = \dim_k(\mathcal{P}) = \dim(\mathcal{P}) = 3$ by Observations 4.1 and 4.2(b). Next, we show that $\gamma_L^1(\mathcal{P}) = 4$. For any minimum distance-1 resolving set S of \mathcal{P} , we may assume $u_1 \in S$ since \mathcal{P} is vertex-transitive. It was shown in [18] that there are six such S containing u_1 (i.e., $\{u_1, w_2, w_3\}$, $\{u_1, u_4, w_2\}$, $\{u_1, w_4, w_5\}$, $\{u_1, u_3, w_5\}$, $\{u_1, u_4, w_3\}$ and $\{u_1, u_3, w_4\}$). Since none of those six sets S containing u_1 form a distance-1 dominating set of \mathcal{P} , $\gamma_L^1(\mathcal{P}) \geq \dim_1(\mathcal{P}) + 1 = 4$. Since $\{u_1, u_4, w_2, w_3\}$ is a distance-1 locating-dominating set of \mathcal{P} , $\gamma_L^1(\mathcal{P}) \leq 4$; thus, $\gamma_L^1(\mathcal{P}) = \dim_1(\mathcal{P}) + 1 = 4$.

Next, we determine $\gamma_L^k(G)$ when G is a complete multipartite graph.

Proposition 4.4. [21] For $m \ge 2$, let $G = K_{a_1,a_2,...,a_m}$ be a complete mpartite graph of order $n = \sum_{i=1}^{m} a_i \ge 3$. Let s be the number of partite sets of G consisting of exactly one element. Then

$$\dim(G) = \begin{cases} n-m & \text{if } s = 0, \\ n-m+s-1 & \text{if } s \neq 0. \end{cases}$$

Proposition 4.5. For $m \ge 2$, let $G = K_{a_1,a_2,...,a_m}$ be a complete m-partite graph of order $n = \sum_{i=1}^{m} a_i \ge 3$. For $k \in \mathbb{Z}^+$,

$$\gamma_L^k(G) = \begin{cases} \dim_k(G) + 1 = n - 1 & \text{if } k = 1 \text{ and } G = K_{1,n-1}, \\ \dim_k(G) & \text{otherwise.} \end{cases}$$

Proof. Let $G = K_{a_1,a_2,...,a_m}$ be a complete *m*-partite graph of order $n = \sum_{i=1}^m a_i \geq 3$, where $m \geq 2$, and let $k \in \mathbb{Z}^+$. Note that diam $(G) \in \{1, 2\}$, where diam(G) = 1 if and only if $G = K_n$ and $\gamma_L^k(K_n) = \dim_k(K_n) = n-1$, for any $k \geq 1$, by Theorems 2.7(d) and 3.1. If diam(G) = 2 and $k \geq 2$, then $\gamma_L^k(G) = \dim_k(G) = \dim(G)$ by Observations 4.1 and 4.2(b). So, suppose diam(G) = 2 and k = 1. Let *s* be the number of partite sets of *G* consisting of exactly one element. If s = 0, then any minimum distance-1 resolving set of *G* is also a distance-1 dominating set of *G*; thus, $\gamma_L^1(G) = \dim_1(G)$. If s = 1 with m = 2, then $G = K_{1,n-1}$ and $\gamma_L^1(K_{1,n-1}) = n-1 = \dim_1(K_{1,n-1})+1$ by Theorems 2.7(b) and 3.4(b). If either s = 1 with $m \geq 3$ or $s \geq 2$, then any minimum distance-1 resolving set of *G* is also a distance-1 dominating set of *G*.

Next, we determine $\gamma_L^k(G)$ when G is a cycle or a path.

Theorem 4.6. [8, 12] Let $k \in \mathbb{Z}^+$. Then

- (a) $\dim_k(P_n) = 1$ for $2 \le n \le k+2$;
- (b) $\dim_k(C_n) = 2$ for $3 \le n \le 3k+3$, and $\dim_k(P_n) = 2$ for $k+3 \le n \le 3k+3$;
- (c) for $n \ge 3k + 4$, the formula for $\dim_k(C_n) = \dim_k(P_n)$ is as follows:

$$\begin{cases} \lfloor \frac{2n+3k-1}{3k+2} \rfloor & \text{if } n \equiv 0, 1, \dots, k+2 \pmod{(3k+2)}, \\ \lfloor \frac{2n+4k-1}{3k+2} \rfloor & \text{if } n \equiv k+3, \dots, \lceil \frac{3k+5}{2} \rceil - 1 \pmod{(3k+2)}, \\ \lfloor \frac{2n+3k-1}{3k+2} \rfloor & \text{if } n \equiv \lceil \frac{3k+5}{2} \rceil, \dots, 3k+1 \pmod{(3k+2)}. \end{cases}$$

Proposition 4.7. Let $G = P_n$ for $n \ge 2$ or $G = C_n$ for $n \ge 3$. For any $k \in \mathbb{Z}^+$, the formula for $\gamma_L^k(G)$ is as follows:

$$\dim_k(G) + 1 \quad if \ G \in \{P_n, C_n\} \ and \ n \equiv 1 \pmod{(3k+2)},$$

or
$$G = P_n \ and \ n \equiv k+2 \pmod{(3k+2)},$$

or
$$G = C_n, n \ge 3k+4 \ and \ n \equiv k+2 \pmod{(3k+2)},$$

$$\dim_k(G) \qquad otherwise.$$

Proof. Let $G = P_n$ for $n \ge 2$ or $G = C_n$ for $n \ge 3$. Let $k \in \mathbb{Z}^+$.

If $2 \leq n \leq k+1$, then $\gamma_L^k(P_n) = \dim_k(P_n) = 1$ by Theorems 3.4(a) and 4.6(a). If n = k+2, then $\gamma_L^k(P_{k+2}) = \dim_k(P_{k+2}) + 1 = 2$ by Theorems 3.1, 3.4(a) and 4.6(a). If $k+3 \leq n \leq 3k+2$ and P_n is obtained from C_n , given by $u_0, u_1, \ldots, u_{n-1}, u_0$, by deleting the edge $u_k u_{k+1}$, then $\{u_0, u_\alpha\}$, where $\alpha = \min\{2k+1, n-1\}$, forms a distance-k locating-dominating set of P_n , and thus $\gamma_L^k(P_n) = \dim_k(P_n) = 2$ by Theorems 3.1 and 4.6(b). If $3 \leq n \leq 3k+2$ and C_n is given by $u_0, u_1, \ldots, u_{n-1}, u_0$, then $\{u_0, u_\alpha\}$, where $\alpha = \min\{2k+1, n-1\}$, forms a distance-k locating-dominating set of C_n , and thus $\gamma_L^k(C_n) = \dim_k(C_n) = 2$ Theorems 3.1 and 4.6(b). If n = 3k+3, then, for any minimum distance-k resolving set R of $G \in \{P_{3k+3}, C_{3k+3}\}$, there is a vertex w in G with $\operatorname{code}_{R,k}(w) = (k+1, k+1)$; thus, $\gamma_L^k(G) = \dim_k(G) + 1 = 3$ by Theorem 3.1.

Now, suppose $n \ge 3k+4$, and let $G \in \{P_n, C_n\}$; then $\dim_k(G) \ge 3$. Let S be any minimum distance-k resolving set of G. First, suppose that |S| is odd. If $n \not\equiv k+2 \pmod{3k+2}$, then there exists a minimum distance-k resolving set S_0 of G such that S_0 is also a distance-k dominating set of G (see [8, 12]); thus, $\gamma_L^k(G) = \dim_k(G)$. If $n \equiv k+2 \pmod{3k+2}$, then there exists a vertex w in G with $\operatorname{code}_{R,k}(w) = (\mathbf{k+1})_{|R|}$ for any minimum distance-kresolving set R of G (see [8, 12]); thus, $\gamma_L^k(G) = \dim_k(G) + 1$. Second, suppose |S| is even. If $n \not\equiv 1 \pmod{3k+2}$, then there exists a minimum distance-k resolving set S_1 of G such that S_1 is also a distance-k dominating set of G (see [8, 12]); thus, $\gamma_L^k(G) = \dim_k(G)$. If $n \equiv 1 \pmod{3k+2}$, then there exists a vertex w in G with $\operatorname{code}_{S,k}(w) = (\mathbf{k+1})_{|S|}$ for any minimum distance-k resolving set S of G (see [8, 12]); thus, $\gamma_L^k(G) = \dim_k(G) + 1$. \Box

Based on the proof of Theorem 3.1, we note that $\gamma_L^k(G) = \dim_k(G) + 1$ if and only if, for every minimum distance-k resolving set S of G, there exists a vertex $w \in V(G) - S$ with d(w, S) > k. In other words, if there exists a minimum distance-k resolving set S' of G such that $d(v, S') \leq k$ for each $v \in V(G)$, then $\gamma_L^k(G) = \dim_k(G)$.

Question 4.8. Since $\dim_k(G) \leq \gamma_L^k(G) \leq \dim_k(G)+1$, can we characterize G for which each of the two (end) inequalities is an equality?

5 The effect of edge deletion on $\gamma_L^k(G)$

In this section, we examine the effect of edge deletion on the distance-k location-domination number of graphs. Throughout the section, let both G and G - e, where $e \in E(G)$, be connected graphs. For the effect of edge deletion on the metric dimension of graphs, we refer to [4]. We recall how the distance-k dimension of a graph changes upon deletion of an edge.

Theorem 5.1. Let G be a connected graph with $e \in E(G)$, and let $k \in \mathbb{Z}^+$. Then

- (a) $[11, 3] \dim_1(G) 1 \le \dim_1(G e) \le \dim_1(G) + 1;$
- (b) [8, 12] $\dim_2(G e) \le \dim_2(G) + 1;$
- (c) [8, 12] for $k \ge 3$, $\dim_k(G e) \le \dim_k(G) + 2$;
- (d) [8, 12] for $k \ge 2$, $\dim_k(G) \dim_k(G-e)$ can be arbitrarily large.

Theorem 5.2. Let G be a connected graph with $e \in E(G)$, and let $k \in \mathbb{Z}^+$. Then

 $\begin{array}{ll} (a) \ \gamma_L^1(G) - 2 \leq \gamma_L^1(G - e) \leq \gamma_L^1(G) + 2; \\ (b) \ \gamma_L^2(G - e) \leq \gamma_L^2(G) + 2; \\ (c) \ for \ k \geq 3, \ \gamma_L^k(G - e) \leq \gamma_L^k(G) + 3. \end{array}$

Proof. Let $k \in \mathbb{Z}^+$. By Theorem 3.1, we have $\dim_k(G) \leq \gamma_L^k(G) \leq \dim_k(G) + 1$ and $\dim_k(G-e) \leq \gamma_L^k(G-e) \leq \dim_k(G-e) + 1$.

For (a), note that $\gamma_L^1(G-e) - \gamma_L^1(G) \ge \dim_1(G-e) - (\dim_1(G)+1) \ge -2$ and $\gamma_L^1(G) - \gamma_L^1(G-e) \ge \dim_1(G) - (\dim_1(G-e)+1) \ge -2$ by Theorem 5.1(a); thus, $\gamma_L^1(G) - 2 \le \gamma_L^1(G-e) \le \gamma_L^1(G) + 2$.

For (b), note that $\gamma_L^2(G) - \gamma_L^2(G-e) \ge \dim_2(G) - (\dim_2(G-e)+1) \ge -2$ by Theorem 5.1(b); thus $\gamma_L^2(G-e) \le \gamma_L^2(G)+2$.

For (c), for any $k \geq 3$, we have $\gamma_L^k(G) - \gamma_L^k(G-e) \geq \dim_k(G) - (\dim_k(G-e) + 1) \geq -3$ by Theorem 5.1(c); thus $\gamma_L^k(G-e) \leq \gamma_L^k(G) + 3$. \Box

Theorem 5.3. For any integer $k \ge 2$, $\gamma_L^k(G) - \gamma_L^k(G-e)$ can be arbitrarily large.

Figure 2: [8] Graphs G such that $\dim_k(G) - \dim_k(G-e)$ can be arbitrarily large, where $k \ge 2$ and $a \ge 3$.

Proof. Let G be the graph in Fig. 2 with $a \ge 3$. It was shown in [8, 12] that, for any $k \ge 2$, $\dim_k(G) = 2a$ and $\dim_k(G - e) = a + 1$. For $k \ge 2$, $\gamma_L^k(G) \ge \dim_k(G) = 2a$ and $\gamma_L^k(G - e) \le \dim_k(G - e) + 1 = a + 2$ by Theorem 3.1; thus, $\gamma_L^k(G) - \gamma_L^k(G - e) \ge 2a - (a + 2) = a - 2 \to \infty$ as $a \to \infty$.

Acknowledgements

We sincerely thank the anonymous referees for their careful reading, the correction of an error, and helpful comments which improved the paper.

References

- B. Bagheri Gh., M. Jannesari and B. Omoomi, Relations between metric dimension and domination number of graphs, arXiv:1112.2326v1 (2011) https://arxiv.org/abs/1112.2326
- [2] A.F. Beardon and J.A. Rodríguez-Velázquez, On the k-metric dimension of metric spaces, Ars Math. Contemp., 16 (2019), 25–38.
- [3] S. Bermudo, J.M. Rodríguez, J.A. Rodríguez-Velázquez and J.M. Sigarreta, The adjacency dimension of graphs, Ars Math. Contemp. (2022), https://doi.org/10.26493/1855-3974.2496.07a.

- [4] L. Eroh, P. Feit, C.X. Kang and E. Yi, The effect of vertex or edge deletion on the metric dimension of graphs, J. Comb., 6(4) (2015), 433–444.
- [5] A. Estrada-Moreno, On the (k, t)-metric dimension of a graph, Ph.D. dissertation, Universitat Rovira i Virgili, 2016.
- [6] A. Estrada-Moreno, I.G. Yero and J.A. Rodríguez-Velázquez, On the (k,t)-metric dimension of graphs, Comput. J., 64(5) (2021), 707–720.
- [7] H. Fernau and J.A. Rodríguez-Velázquez, On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results, *Discrete Appl. Math.*, 236 (2018), 183–202.
- [8] R.M. Frongillo, J. Geneson, M.E. Lladser, R.C. Tillquist and E. Yi, Truncated metric dimension for finite graphs, submitted (2021)
- [9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.
- [10] J. Geneson, Metric dimension and pattern avoidance in graphs, Discrete Appl. Math., 284 (2020), 1–7.
- [11] J. Geneson and E. Yi, Broadcast dimension of graphs, arXiv:2005.07311v1 (2020) https://arxiv.org/abs/2005.07311
- [12] J. Geneson and E. Yi, The distance-k dimension of graphs, arXiv:2106.08303v2 (2021) https://arxiv.org/abs/2106.08303
- [13] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191–195.
- [14] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [15] C. Hernando, M. Mora, I.M. Pelayo, C. Seara and D.R. Wood, Extremal graph theory for metric dimension and diameter, *Electron. J. Combin.*, **17** (2010), #R30. https://doi.org/10.37236/302
- [16] M. Jannesari and B. Omoomi, The metric dimension of the lexicographic product of graphs, Discrete Math., 312 (2012), 3349–3356.
- [17] I. Javaid, M.T. Rahim and K. Ali, Families of regular graphs with constant metric dimension, Util. Math., 75 (2008), 21–33.

- [18] C.X. Kang, S. Klavžar, I.G. Yero and E.Yi, Maker-Breaker resolving game, Bull. Malays. Math. Sci. Soc., 44 (2021), 2081–2099.
- [19] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217–229.
- [20] A. Meir and J.W. Moon, Relations between packing and covering number of a tree, *Pacific J. Math.*, 61 (1975), 225–233.
- [21] S.W. Saputro, E.T. Baskoro, A.N.M. Salman and D. Suprijanto, The metric dimension of a complete *n*-partite graph and its Cartesian product with a path, *J. Combin. Math. Combin. Comput.*, **71** (2009), 283– 293.
- [22] P.J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci., 22 (1988), 445–455.
- [23] P.J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549–559.
- [24] R.C. Tillquist, R.M. Frongillo and M.E. Lladser, Truncated metric dimension for finite graphs, arXiv:2106.14314v1 (2021) https: //arxiv.org/abs/2106.14314