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Abstract

Let P, and K, respectively denote a path and a complete graph
on n vertices. In this paper, it is shown that the necessary conditions
are sufficient for the existence of uniformly resolvable decomposition
of K, into r parallel classes containing Ka-factors and s parallel
classes containing Pj-factors for any even k > 4 and r,s > 0.

1 Introduction

In this paper, the vertex set and edge set of graph G are denoted by V(G)
and E(G) respectively. Let P,, K,, and I,, respectively denote a path, a
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UNIFORMLY RESOLVABLE DECOMPOSITIONS

complete graph and an independent set on n vertices. Given a collection of
graphs H, an H-decomposition of a graph G is a set of subgraphs (blocks)
of G whose edge sets partition E(G), and each subgraph is isomorphic to
a graph from H. A parallel class of a graph G is a set of subgraphs whose
vertex sets partition V(G). A parallel class is called uniform if each blocks
of the parallel class is isomorphic to the same graph. An H-decomposition
of a graph G is called (uniformly) resolvable if the blocks can be partitioned
into (uniform) parallel classes. A resolvable H-decomposition of G is also
referred as H-factorization of G. We write G = H; ® Hy ® ... ® Hy,
if Hy,Hs,...,Hy are edge-disjoint subgraphs of G and E(G) = E(H;) U
E(Hy)U...UE(Hyg).

For two graphs G and H their wreath product G ® H has the vertex set
V(G) x V(H) and their edge set E(G ® H) = {((g,h), (gl,h/))’(g,g/) €
E(G)org = ¢ ,and (h,h) € E(H)}. An r-factor of G is an r-regular
spanning subgraph of G. A near I-factor of G is a l-regular subgraph
which contains all but one vertex of G. Let Ky, , be the complete bipartite
graph with bipartition (X,Y’), where X =Y = {0,1,...,k — 1}. The 1-
factor of distance ¢ consists of the edges {(i,i+¢) : 0 < i < k — 1}, where
the addition is taken modulo k.

Rees [16], obtained the necessary and sufficient conditions for the existence
of uniformly resolvable (K3, K3)-designs of order n. Horton [10], has proved
the existence of resolvable Py-designs of order n for k = 3 and Bermond et.al
[2], have proved it for k > 4. Many other results on uniformly resolvable
decomposition of K,, into distinct subgraphs have been obtained in [4, 3,
13, 17, 5, 8, 15, 11, 12]. Recently [6, 7] Mario Gionfriddo and Salvatore
Milici have investigated the existence of uniformly resolvable #-designs
with H = {P37P4} and {K27Pk} for k = 3,4.

e We denote the existence of uniformly resolvable decomposition of G
into r parallel classes consisting of Ks-factors and s parallel classes
consisting of Py-factors by (K2, Py)-URD(G;r, s).

e Let I1(n) (resp., Iz(n)) denote the set of possible pairs (r, s) for which
(Ko, Py)-URD(K,;r,s) exists when k is even (resp.,k is odd).

For all even k >4 and n =0 (mod k), if n =0 (mod k(k — 1)) we define

non = {1 By e o PS BT
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and if n =a (mod k(k — 1)), when 0 < a =0 (mod k) < k(k — 2), we
define

n—4%

Il(n){(nl(kl)x,gx):xO,l,...,(k—%}. (2)

For all odd k > 3 and n =0 (mod 2k), if n =0 (mod 2k(k — 1)) we define

Iz(n)z{((n—l)—Q(k—l)x,kx):x:O,l,...,n;(Qk(fI)l)} (3)
and if n =a (mod 2k(k—1)), when 0 <a=0 (mod k) < 2k(k —2), we
define

Ig(n){((n1)2(k1)x,kx):x0,1,...,2&__21)}. (4)

In this paper, we prove that the necessary conditions are sufficient for the
existence of (Ks, Py)-URD(Ky;r,s) for all even k > 4. Further, we give
necessary conditions for the existence of (Ka, P;)-URD(K,;r, s) for all odd
k> 3.

2 Preliminary results

In this section, we present some known results required to prove our main
results.

Theorem 2.1. ([1] Walecki’s Construction).

1. For all odd n > 3, the graph K,, has a Hamilton cycle decomposition.

2. For all even n > 4, the graph K, — I has a Hamilton cycle decom-
n—4

position with prescribed cycles {C,o(C),0%(C),...,0 2 (C)}. where
o= (0)(12...n—1) is a permutation, C = (01...n—1) is a Hamilton

cycle and I = {(0 "), (z’m—i)’l <i< 5 - 1} is a 1-factor of K,,.

’ 2

Theorem 2.2. [14, 9]

1. There exist a 1-factorization (resp., a near 1-factorization) of K, if
and only if n is even (resp., n is odd).
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2. Every reqular bipartite graph is 1-factorable.

Theorem 2.3. [18] For all even k, the graph K, has a Py-factorization if
and only if n =k (mod k(k — 1)).

Lemma 2.1. [18, 19] If k is even, then the graph Ky, can be decomposed
into one 1-factor and ng—factors.

3 Necessary conditions

In this section, we give necessary conditions for the existence of
(Ka, Py)-URD(K,;r,s)
for all £ > 3.

Lemma 3.1. For all even k > 4, if (Ko, Py)-URD(K,;r,s) exists, then
n=0 (mod k) and (r,s) € I1(n).

Proof. The condition n = 0 (mod k) is trivial. Let D be an arbitrary
(Ka, P)-URD(K,;r,s). By resolvability, we have

n . n _n(n—1)
T3 —&-sz(k -1 = —
Hence
rk+2s(k—1) =k(n—1) (5)

Now (5) gives
rk=k(n—1) (mod 2(k—1))and 2s(k—1)=k(n—1) (mod k) (6)

If k is even, then (6) implies the following:

Now letting s = £z, Equation (5) gives r = (n — 1) — (k — 1)z. Since r
and s cannot be negative, and x is an integer, the value of  must be in the
range for I1(n). (See Equations 1 and 2.) O

Lemma 3.2. For all odd k > 3, if (K2, Py)-URD(Ky,;r,s) exists, then
n =0 (mod 2k) and (r,s) € Iz(n).

Proof. The condition n = 0 (mod 2k) is trivial. Let D be an arbitrary
(K3, Py)-URD(K,;r,s). By resolvability, we have

n(n—1)

rg+sﬁ(k_1): >

k
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T ‘ S ‘ n
(k—2) (mod (k—1)) | 0 0 (mod k(k —1))
0 (mod (k — 1)) 0 (mod ’%) k (mod k(k —1))
1 (mod (k —1)) 0 (mod ) 2k (mod k(k — 1))

(k—3) (mod (k—1)) | 0 (mod ) | (k—2)k (mod k(k — 1))

Table 1: For even k

Hence
rk+2s(k—1)=k(n—1) (7)

Now (7) gives
rk=k(n—1) (mod 2(k—1)) and 2s(k—1)=k(n—1) (mod k) (8)

If k is odd, then (8) implies the following:

r \ s \ n
(2k — 3) (mod 2(k —1)) | 0 (mod k) 0 (mod 2k(k — 1))
1 (mod 2(k — 1)) 0 (mod k) 2k (mod 2k(k — 1))
0

3 (mod 2(k — 1)) (mod k) 4k (mod 2k(k — 1))

(2 —5) (mod 2(k — 1)) | 0 (mod k) | 2k(k —2) (mod 2k(k — 1))

Now letting s = kx, Equation (7) gives r = (n — 1) — 2(k — 1)x. Since r
and s cannot be negative, and x is an integer, the value of £ must be in the
range for I3(n). (See Equations 3 and 4.) O

4 Base construction

We present some definitions and results which are required to prove our
main result.
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Definition 4.1. For each Hamilton cycle h; of K;, we define N; to be the
graph with vertex set V(N;) = V(K| x I};) and edge set E(N;), where

V(K)={z:0<z<l-1},
V(i) ={j:1<j <k} and
E(N;) ={((z,5), (v, 5 + 1)) : (z,y) € E(hs), 1 <j <k}

(Addition taken modulo k ,i.e., 1,2,...,k). See Figure 1.

-
o« [ ] o
’
\ RN L . !
R '
A 1N .
1 v 1
\ . \ X 1
L. I 1 h
4 \
vy, v/ ! 1
e N ie Ve
Yy 15,2 ¢ A 1,71
A \ '\ ’ 1
LY 1

1
1 ‘\'z S
1 1 AY ~ A}

) ’,’\ 1] [ A PN
. A\ Y I A
¢ ° ° 'Y
(b) N2

(a) Np

Figure 1: The graph N;,7 =1, 2.
) = V(N;) and the edge set

Definition 4.2. Let M be a graph with V(
E(N;), whenl is odd

LIl

JI
-l

-t

E(M) =
E(N;)JF, whenl is even

i=1

where F' is a 1-factor of M (which correspond to the 1-factor of K) (see
Figure 2) as follows: F = {((O,a), (La+1)),((,a),(l—ia+ D)[0<a<

k-1, 1<i<t -1}
Remark. Clearly the graph M defined in Definition 4.2 has an N-decompo-

sition, N; = N.
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S
N 7

1
A

(a) When ¢ is odd (b) When / is even

Figure 2: The graph M

Definition 4.3. Let (r1,s1) and (re,s3) be two pairs of non-negative
integers. Then we define (r1,s1) + (ra,82) = (r1 + ra,81 + 82) . Usu-
ally positive integers are denoted as Zy. If A = {(r1,s1)| r1,81 € Z1};
B = {(rq,s2)| 72,82 € Zi} and h € Z, then A+ B = {(r1,51) +
(ro,82)|(r1,51) € A, (r2,82) € B} and hx A denotes the set of all pairs of
non-negative integers which can be obtained by adding any h elements of A
together (repetitions of elements of A are allowed).

Now, let us define the following subgraphs in M for our convenience as
follows:

£ k-1
k
P:UNingandQ:UNi:(k—l)N
=1

i=1

Lemma 4.1. For all even k > 4, there exists a (Ko, Py)-URD(N;r, s) with
(Ta 5) - (2a 0)

Proof. For any i, 0 < i < %, we define subsets of V(IN) as follows:
Xi={(z,20) 0<2<l-1}), Xs ={(z,2i+1)|0< 2 <1-1}, Y] =
{(2,2i + 1) 0 <2 <1—1} and Y§ = {(x,2i +2)| 0 < o <[ — 1}, where
the addition is taken modulo k. Then the edges between the vertex sets
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X1 and X} will form one 1-factor in N. Similarly the sets Yy and Y3 will
form one more 1-factor in N. Hence, we obtain the required resolvable
decomposition. O

Lemma 4.2. For all even k > 4, there exists a (Kz, Py)-URD(P;r,s) with
each (r,s) € {(1, %), (k,0)}.

Proof. We prove in two cases.

Case 1. (1, %).

We first construct one Pj-factor from each N;, 1 < j < as follows:
For any fixed j, 1 < j < g, we define the subsets of V(N;) as X/ =
{(z.2-1)0<z<l-1}and Y/ ={(2,2(j —1)+1)|0<z <I-1},
where the addition is taken modulo k. Now keep the edges between the
subsets X7 and Y7 for future purpose. The remaining graph will form
one Pjy-factor in N;. By repeating the process for each N;, we obtain
& Py-factors in P. Now the edges between the sets X7 and Y7 from each
N; together gives one 1-factor in P. Therefore, we get the required uniform
resolvable decomposition.

k
2

Case 2. (k,0).
Each N;, 1 <5< g can be decomposed into two 1-factors, by Lemma 4.1.
Hence, we obtain the required resolvable decomposition of P. O

Lemma 4.3. For all even k > 4, there exists a (Ka, Py)-URD(Q; 1, s) with
each (r,s) € {(2(k — 1),0), (k —1,%),(0,k)}.

Proof. We prove in three cases.

Case 1. (2(k — 1),0).
Clearly the graph @ = (k — 1)N has a 2(k — 1) 1-factors, by Lemma 4.1.

Case 2. (k—1,%).
Take @ = (k—1)N = (52)N + ()N = X + Y. By Lemmas 4.1 and 4.2,
the graphs X and Y have (k—2) 1-factors and one 1-factor and % Py-factors

respectively. Hence, we obtain (k — 1) 1-factors and g Py-factors in Q.

Case 3. (0, k).

We first construct one Pj-factor from each N;, 1 < j < k —1 as follows:
For any fixed j, 1 < j < k — 1, we define the subsets of V(N;) as X7 =
{(z,j—1)0<z<l-1}and Y/ = {(2,7)|0 <2z <1 —1}. Now keep the
edges between the subsets X7 and Y7 for future purpose. The remaining
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graph will form one Pj-factor in N;. By repeating the process for each N,
we obtain (k — 1) Pj-factors in Q. Now the edges between the sets X7 and
Y7 from each N; which were kept aside together gives one Pj-factor in Q.
Therefore, we get the required resolvable decomposition. O

The order (number of vertices) of the graph M (defined in Definition 4.2)
be denoted as ©. For all even k& > 4 and ©® = 0 (mod k), if © = 0
(mod k(k — 1)), we define

f<@>{(ll<k1>x,§x):xo,1,...,W} ()

and if © =a (mod k(k—1)), when 0 < a=0 (mod k) < k(k —2), we
define

H@){Gl(kULSQ:xOJw”%;:%}. (10)

Lemma 4.4. For all even k > 4, if (Ko, Py)-URD(M;r,s) exists, then
© =0 (mod k) and (r,s) € I(©).

Proof. The condition ® = 0 (mod k) is trivial and hence © = ki, | € Z,..
Let D be an arbitrary (K, P;)-URD(M;r,s). By resolvability, we have

kl kl B kl(l-1)
r§+s?(k—1) =—5
Hence
rk+2s(k—1)=k(l-1) (11)

Letting s = 5z, Equation (11) gives r = (I — 1) — (k — 1)z Since r and s
cannot be negative, and x is an integer, the value of x must be in the range
for 1(©). (See Equations 9 and 10.) O

Lemma 4.5. For any © =0 (mod 4), there exists (Ko, Py)-URD(M;r, s).

Proof. Let © =0 (mod 4), we have a © = a (mod 12) with a = 0,4,8. We
prove in three cases.

Case 1. For © =0 (mod 12), we have a © = 122 = 4(3z), where z > 1.

Subcase 1. If x is odd, then the graph

)NUN:(ii%QUN

v - (31:71)N:<3x—3
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Hence, by Lemmas 4.1 and 4.3, we get the required URDs.

Subcase 2. If z is even, then the graph

M 3xr—6

(3&0—2

)NUF:( )NUQNUF:(%_Q)QUPUF.

Hence, by Lemmas 4.2 and 4.3 along with F', we get the required URDs.

Case 2. For © =4 (mod 12), we have a © = 122 + 4 = 4(3x + 1), where
x> 0.
Subcase 1. If = is odd, then the graph

3r—1 3r—3 rz—1

M = ( )NuF:( )NuNuF:( )QUNUF.
Hence, by Lemmas 4.1 and 4.3 along with F', we get the required URDs.
Subcase 2. If = is even, then the graph
3z T
= (G-
2 2 @
Hence, by Lemma 4.3, we get the required URDs.

Case 3. For © = 8 (mod 12), we have a © = 122 + 8 = 4(3x + 2), where
x > 0.

Subcase 1. If = is odd, then the graph
wo= (Fg)v = (B )ruan = (g )eun

Hence, by Lemmas 4.2 and 4.3, we get the required URDs.

Subcase 2. If x is even, then the graph

M = (Sﬁ)Nqu (E>QUF.
2 2
Hence, by Lemma 4.3 along with F', we get the required URDs. O

Lemma 4.6. For even k > 6 and © =0 (mod k), (Kz, Py)-URD(M;r,s)
exists.

Proof. Let © =0 (mod k), we have a © = a (mod k(k—1)) with0 <a =0
(mod k) < k(k — 2). We prove in six cases.
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Case 1. For © =0 (mod k(k—1)), we have a © = k(k— 1)z, where x > 1.

Subcase 1. If = is odd, then the graph

M:<(k—1)x—1)N _ ((k—l)a:—(k;—Q)—l)NU(E)N

2 ] ( 2

k—2
) Qu(=5)w.
Hence, by Lemmas 4.1 and 4.3, we get the required URDs.

2

Subcase 2. If = is even, then the graph

M:(W)NUF - (W)NU(/{—ﬁNUF
- (g)QUPuNUF.

Hence, by Lemmas 4.1 to 4.3 along with F', we get the required URDs.

Case 2. For © = k (mod k(k — 1)), we have a © = k(k — 1)z + k =
k((k— 1)z +1), where z > 0.

Subcase 1. If x is odd, then the graph

= (=Rt - (E=Ble=b =ty (2t

(5 hau (e

Hence, by Lemmas 4.1 and 4.3 along with F', we get the required URDs.

Subcase 2. If z is even, then the graph

= (B0 (3)e

Hence, by Lemma 4.3, we get the required URDs.

Case 3. For © = 2k (mod k(k — 1)), we have a © = k(k — 1)z + 2k =
k((k — 1)z +2), where z > 0.

Subcase 1. If x is odd, then the graph

M:((k—12)a:+1)N _ <(k_1)x2+1_k)NU(§)N

(55 )aur
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Hence, by Lemmas 4.2 and 4.3, we get the required URDs.

Subcase 2. If z is even, then the graph

M = (M)NUF: (g)QUF.

2
Hence, by Lemma 4.3 along with F', we get the required URDs.

Case 4. For © = 3k (mod k(k — 1)), we have a © = k(k — 1)z + 3k =
k((k — 1)z + 3), where z > 0.

Subcase 1. If x is odd, then the graph

= (U v = (Db (B
= (xgl)QuPuF.

Hence, by Lemmas 4.2 and 4.3 along with F', we get the required URDs.

Subcase 2. If x is even, then the graph

e T (= = M
- (o

Hence, by Lemmas 4.1 and 4.3, we get the required URD:s.

Case 5. For © = a (mod k(k — 1)) with 3k < a =0 (mod k) < k(k — 2),
we have a © = k(k — 1)y + a = k(k — 1)y + kx = k((k — 1)y + ), where
y>0and 4 <x <k-—3.

Subcase 1. Let £ = 2z + 2, where 1 < z < k’—;ﬁ and even y > 0, then the
graph

(k—1ly+ax—2
2

NUF

(@)NUZ«NUF

(%)QUZNUF.

((kj— 1;y—|—2z)

M:( )NUF -

Hence, by Lemmas 4.1 and 4.3 along with F', we get the required URDs.
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Subcase 2. Let x = 224+ 2, where 1 < z < % and odd y > 1, then the
graph

(k-Dy+z-1  (k=Dy+22+1
Mo (F=)y = ()Y
- (B (o
- (“Douru:w
(%)

Hence, by Lemmas 4.1 to 4.3, we get the required URDs.

Subcase 3. Let x = 2z + 3, where 1 < z < % and odd y > 1, then the
graph

M= ((k—l)yQ+xf2>NuF: ((kfl)y2+2z+l>NuF
_ <—(k_ 1)y2_k+l)NU<§)NUZNUF

-1
- (yT)QUPUzNUF.
Hence, by Lemmas 4.1 to 4.3 along with F', we get the required URDs.

Subcase 4. Let £ = 2z + 3, where 1 < z < 76 and even y > 0, then the
graph

M:(Uf_l)y%_l)]v _ ((k—l)y2+2z+2>N
- (@)Nu(zﬂw
(%)QU(erl)N.

Hence, by Lemmas 4.1 and 4.3, we get the required URDs.

Case 6. For © = k(k — 2) (mod k(k — 1)), we have a © = k(k — 1)z +
k(k —2) =k((k— 1)z + (k- 2)), where z > 0.

Subcase 1. If = is odd, then the graph

kH)Nu(k—z)N

M:((k—l)z+k73)N _ ((x—l);

L et

(5 )avru ()
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Hence, by Lemmas 4.1 to 4.3, we get the required URDs.

Subcase 2. If z is even, then the graph

e (BB o (S0 (S

(3)eu (F5)wur

Hence, by Lemmas 4.1 and 4.3 along with F, we get the required URDs. [

Theorem 4.1. For all even k > 4, if (K, P,)-URD(M;r,s) if and only
if © =0 (mod k) and (r,s) € 1(©).

Proof. Follows from Lemmas 4.4 to 4.6. O

5 Sufficient conditions

In this section, we prove that the necessary conditions are sufficient for the
existence of uniformly resolvable decomposition of K, into r parallel classes
containing Ks-factors and s parallel classes containing Py-factors for any
even k >4 and r,s > 0.

Lemma 5.1. For all even k > 4 and n =0 (mod k), there erists

(K27Pk)_URD(M;r7 S).

Proof. Asn=0 (mod k), let n =kl, l € Z.

Case 1. [ is odd. For I = 1, there exists a required uniform resolv-
able decomposition, by Theorems 2.2 and 2.3. For | > 3, let V(Ky;) =
Ulm;lo Ay, where A, = {(x,kx+1i) : 0 <i<k—1 and the addition is taken
modulo k}. We obtain a new graph A from Ky, by identifying each A, with
a single vertex a, and joint a, and a, if there exists a complete bipartite
graph Kja,|,a,| between A, and A, in Ky;. Then the new graph A = Kj.
By Theorem 2.2, the graph K; has [ near 1-factors say F,, 0 <z <[—1
with the missing vertex x. Corresponding to each F, with a missing vertex
z of K;, we have a (Z_Tl)Kk,k in Kj; and corresponding to A, in Ky, we
have a K|4,) = K. By Theorem 2.2, the graphs Ky, K have k, (k — 1)
1-factors, respectively and by Lemma 2.1, the graph K}, ;, has a one 1-factor
and g Py-factors. Also by Theorem 2.3, the graph K}, has a g Py-factors.
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First we use (k— 1) 1-factors corresponding to each F, from each Kj j and
K, to get (r,s) = (k—1,0). Finally, we are left with a 1-factor in each K j,
and k isolated vertices in each K. Similarly when we use % Py-factors we
get (r,s) = (0, %) By repeating this process for all [ near 1-factors of K,

we obtain (r,s) € I % {(k -1,0), (07 %)} and a new graph M (defined in

Definition 4.2) in which there is only one 1-factor between each pair of A,
and A, in K. By Theorem 4.1, the graph M has a (K, Py)-URD(r, s)
with (r,s) € I(0). Therefore, it is easy to see that

Li(n) Clx {(k: ~1,0), (o, g)} +I(0).

Case 2. [ is even. For | = 2, we have Ky, = K @ 2Kj,. Applying
Theorems 2.2 and 2.3 and Lemma 2.1, it is easy to obtain {(k, 0), <1, g)}Jr

{(k ~1,0), (0, g)} D I,(2k). For [ > 4, we have

K=K ®I) el Ky
= (FhbeFR & - &F_5)®l) el K
=(FoeL)e(Riel)e & Foe)®l K
By Theorem 2.2, K; has a (I — 1) 1-factors say F,, 0 <x <1—2. Each F,
of K; will gives rise to %Kk,k in Kj;. By Theorem 2.2 and Lemma 2.1, the
graph K},  has a k 1-factors, and a 1-factor and g P-factors respectively.

First we use (k — 1) 1-factors corresponding to each F, from each Kj j to
get (r,s) = (k— 1,0). Similarly we use & Pj-factors to get (r,s) = (0, %).
Finally, we are left with a 1-factor in each K} ;. Repeating this process for
all (I—1) 1-factors of K, we obtain (r,s) € (l—l)*{(k—l, 0), (O, %) } and a
new graph M (defined in Definition 4.2) which is a subgraph of K;® I;,. By
Theorems 2.2 and 2.3, the graph K, has a (k—1) 1-factor and & Py-factors.

Hence [K), has a (Ks, Py)-URD(r,s) with (r,s) € {(k ~1,0), (075)}.
Therefore, it is easy to see that

L) C(1—1)# {(kf 1,0), (og)} +1(O) + {(kf 1,0), (og)}

6 Main result

Lemmas 3.1 and 5.1 together give our main result.
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Theorem 6.1. For all even k > 4, there exists a (Kz, Py)-URD(K,;r,s)
if and only if n =0 (mod k) and (r,s) € I;(n).

Remark. In this paper, we completely solved the existence of a uniformly
resolvable decomposition of K, into r classes containing only copies of
Ks-factors and s classes containing only copies of Pg-factors when £ is
even. Further we proved that the necessary conditions for odd k. Finding
sufficient conditions for odd k is still open.
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