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Abstract

In this note, I discuss the following problem: What is the expected
number of throws of a die until a 6 appears, given that no odd throws
occur?

1 The problem and two solutions

Peter Winkler gave an entertaining talk at the 52nd Southeastern Interna-
tional Conference on Combinatorics, Graph Theory & Computing in March
2021. The title of his talk was “Probability in Your Head”. He discussed
how to find clever solutions to a variety of puzzling probability problems,
including the following die problem that is attributed to Elchanan Mossel:
what is the expected number of throws of a die until a 6 appears, given
that no odd throws occur? Peter Winkler provides an elegant solution to
this problem in his recent book [1].

To solve the problem, we want to compute a conditional expectation, where
we only consider a certain subset of sequences of numbers obtained by
throwing a fair die. The intuitively obvious answer to this question is 3,
since it seems plausible that the problem is equivalent to throwing a 3-sided
die (having faces 2, 4 and 6) until a 6 is thrown. However, this answer is
not correct; the correct answer turns out to be 3/2.
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This die problem has received a considerable amount of attention in the
last few years, and it is addressed in various blogs, including the following:

• https://gilkalai.wordpress.com/ (Sept. 7, 2017)

• https://mindyourdecisions.com (Oct. 8, 2017)

• https://www.untrammeledmind.com (Dec. 7, 2017).

We encourage the reader to look at the extensive discussion about this
problem in these blogs.

My first objective in this note is to write down a straightforward math-
ematical derivation of the correct answer. (This argument can be found,
in various guises, in some of the aforementioned blogs.) This approach is
not as elegant or ingenious as some of the other approaches. However, it
is straightforward and relatively simple and it only requires basic notions
of expectation and conditional expectation. It does require computing the
sums of two infinite series, however.

My second objective is to give a more elegant proof that does not require
summing infinite series.

In both approaches, I am using standard notation and formulas for random
variables and their expectation. I think this is helpful in avoiding possible
mathematical errors.

1.1 First Solution

Consider the set S of all infinite sequences of throws of a fair die. For i ≥ 1,
let Gi consist of all the sequences in which the first i− 1 throws of the die
are 2 or 4, and the ith throw is 6. That is, there are no odd throws of
the die (among the first i throws), and the first throw of a 6 is on the ith
throw. Let G = ∪∞i=1Gi. The sequences in G are defined to be good and the
sequences in B = S \ G are bad.

Suppose we consider a random sequence in s ∈ S. Define a random variable
X that takes on non-negative integral values as follows:

X =

{
i if s ∈ Gi
0 if s ∈ S \ G.
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Thus X records the position of the first 6 whenever a sequence is good.

For all i ≥ 1, it is clear that

Pr[X = i] =

(
1

3

)i−1(
1

6

)
.

The expected value (among all possible sequences in S, good or bad) of the
first throw of a 6 in a good sequence is

E[X] =

∞∑

i=1

iPr[X = i]

=

∞∑

i=1

i

(
1

3

)i−1(
1

6

)

=

(
1

6

) ∞∑

i=1

i

(
1

3

)i−1

=

(
1

6

)(
1

1− 1
3

)2

=
3

8
.

Note that the above sum is an arithmetic-geometric series.

However, we want to find the conditional expectation, conditioned on the
sequence being good. The probability that a sequence is good is

Pr[X > 0] =

∞∑

i=1

Pr[X = i]

=

∞∑

i=1

(
1

3

)i−1(
1

6

)

=

(
1

6

)(
1

1− 1
3

)

=
1

4
.

Note that this sum is just a geometric series.

The conditional expectation is therefore

E[X]

Pr[X > 0]
=

3
8
1
4

=
3

2
.
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It might be of interest to explain how the above analysis would actually
relate to a sequence of tosses of a die. Suppose we consider n random
sequences. We can terminate a sequence as soon as a 1, 3, 5 or 6 is thrown.
In the first three cases, the sequence is bad; while a throw of 6 yields a
good sequence. We proved that the probability of a good sequence is 1/4.
Thus, on average, 3n/4 of the n sequences will be bad and n/4 sequences
will be good.

We also showed that E[X] = 3/8. This is saying that the total length of all
the good sequences is, on average, 3n/8. Finally, the desired conditional
expectation is obtained by dividing the total length of the good sequences
by the number of good sequences, obtaining 3/2.

1.2 Second Solution

The above derivation was fairly straightforward, but it is also worthwhile
to consider shorter, more elegant ways to derive the same result.

We showed above that the probability that a random sequence is good is
1/4 by summing a geometric series. However, there is a simpler way to
prove this. We observed that we can terminate a sequence of throws as
soon as one of 1, 3, 5 or 6 is thrown. Since 1, 3 and 5 correspond to bad
sequences, it is obvious that a bad sequence is three times more likely than
a good sequence. Thus, the probability of a bad sequence is 3/4 and the
probability of a good sequence is 1/4.

We can also observe that the probability of obtaining a 6 on the first throw
is 1/6; these are the sequences in G1. Let s denote a random sequence; then
Pr[s ∈ G1] = 1

6 . We also know that Pr[s ∈ B] = 3
4 . It therefore follows that

Pr[s ∈ G \ G1] = 1− 1

6
− 3

4
=

1

12
.

We can now compute the conditional probabilities of s being in G1 or in
G \ G1, given that s is a good sequence:

Pr[s ∈ G1 | s ∈ G] =
2

3

Pr[s ∈ G \ G1 | s ∈ G] =
1

3
.

Finally, we compute E = E[X | s ∈ G] by making use of this conditional
probability distribution. Let A denote the event that s ∈ G1 and let B
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denote the event that s ∈ G \ G1. Clearly, E[X | A] = 1. It is also not
hard to see that E[X | B] = 1 + E, because a sequence in G \ G1 can be
decomposed as a 2 or 4, followed by a random sequence in G. Thus we have

E =
2

3
× 1 +

1

3
× (1 + E)

= 1 +
E

3
,

from which it follows that E = 3/2.

2 Discussion

Probability puzzles can be tricky to solve, and the answers can often seem
counterintuitive. In the case of problems involving expected values, I think
it is helpful to define appropriate random variables to clarify exactly what
it is that we want to compute. Of course this does not preclude using clever
arguments to avoid the use of mathematical formulas.

Adrián Pastine suggested that various generalizations of the problem could
be considered:

• What happens if, instead of throwing a 6-sided die, we throw an n-
sided one?

• What happens if, instead of forbidding odd throws, we forbid throws
from a set of values of size k? (And how does the result compare to
throwing a k-sided die where no throws are forbidden?)

• What happens if, instead of stopping when a 6 appears, we stop when
any value from a set of size r appears?

These could be fun puzzles for an interested reader to contemplate.
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