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Abstract

A rokudoku-pair square is an order-6 sudoku Latin square for
both 2 × 3 and 3 × 2 tiling regions simultaneously. We count the
distinct rokudoku-pair squares as well as orbits under the action of a
suitable group. Our arguments employ group actions and list color-
ings of graphs. As an application we determine which rokudoku-pair
squares are based on groups.
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1 Introduction

We count rokudoku-pair squares, give a complete list of essentially different
rokudoku-pair squares, and use this list to classify group-based rokudoku-
pair squares. The computations employ group actions and list colorings of
graphs. We hope this work sheds light on the counting and construction of
sudoku-pair Latin squares.

A rokudoku-pair square is an order-6 Latin square that additionally has
no repetition of symbols in any 2 × 3 tiling region, nor in any 3 × 2 tiling
region when tiled in the natural way. An example is shown in Figure 1,
where the gridlines illustrate the subdivision into 2 × 3 and 3 × 2 tiling
regions. We let R denote the collection of rokudoku-pair squares.

2 5 1 3 0 4
4 3 0 5 2 1
0 1 2 4 5 3

3 4 5 2 1 0
1 2 4 0 3 5
5 0 3 1 4 2

Figure 1: A rokudoku-pair square

Given two rokudoku-pair squares, if one cannot be obtained from the other
from some combination of relabeling and reasonable physical symmetries
(described in Section 3), then the two squares are essentially different. In
terms of groups, two squares are essentially different if they lie in different
orbits under the action of a relabeling/symmetry group.

The counting of squares and essentially different squares has been per-
formed in other settings. Felgenhauer and Jarvis [9] counted the number
of distinct “classical” sudoku squares (order 9, with 3 × 3 regions). Jarvis
and Russell [12] then used Burnside’s orbit counting theorem to count the
essentially different classical sudoku squares. Similar results [13] have been
achieved for rokudoku squares (order 6, with no repetition in 2×3 regions):
Pettersen counts 28200960 distinct rokudoku squares, and, according to
Jarvis and Russell, there are 49 essentially different rokudoku squares.

One aim of this project is to deepen our knowledge of sudoku-pair Latin
squares. A sudoku-pair Latin square with parameters a, b ∈ Z+ is a Latin
square of order ab that additionally has no repetition simultaneously in
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a × b and b × a tiling regions. Much less is known about sudoku-pair
Latin squares than about sudoku squares. For instance, it is not known
whether sudoku-pair Latin squares exist for all parameters a, b, though the
existence question boils down to existence for relatively prime parameters
a, b (e.g., see [4]). The set R is the simplest possible “nontrivial” subset of
sudoku-pair Latin squares, so it is important to have a firm understanding
of R. Also, one possible method for constructing new sudoku-pair Latin
squares is to use (isotopisms of) Cayley tables for finite groups. Squares
constructed in this way are said to be based on groups. This method
is widely applicable for sudoku squares (e.g., [3]). As an application, we
show that some members of R are based on the symmetric group S3 (about
0.8%), but that none are based on Z6. Therefore, unlike the situation for
sudoku squares, not every group of order n with subgroup of order k will
induce a sudoku-pair Latin square with parameters n/k, k. More about
group-based sudoku-pair Latin squares is forthcoming in [5].

While the group based approach has widely been used to count squares of
various types, we combine this wealth of literature with list coloring tech-
niques on the graph structure underlying the rokudoku-pair Latin square
parameters. Hence in Section 2 we establish a list coloring scheme on
the rokudoku-pair Latin square graph along with some combinatorial tech-
niques related to the problem. Capitalizing on the counts in Section 2,
Section 3 proceeds to utilize Burnside’s Lemma to count the number of
essentially different rokudoku-pair squares. Finally, in Section 4, we will
determine precisely which orbit arises from a Cayley table of a group.

2 Counting rokudoku-pair squares

Theorem 2.1 |R| = 1393920

We sketch a proof of Theorem 2.1 that uses list colorings of graphs. We
begin with terminology. A central figure is an arranged collection of
symbols {0, 1, 2, 3, 4, 5} in a 6 × 6 (partially filled) array consisting of the
third and fourth rows and columns so that:

(i) no symbol appears more than once in any row, column, 2 × 3 tiling
region and 3× 2 tiling region of the array, and

(ii) each 3× 3 quadrant of the array has exactly three distinct symbols.
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We mention that items (i) and (ii) must be satisfied by the 6 × 6 array
formed from the middle two rows and columns in any legitimate rokudoku-
pair square, so central figures make a good starting point for constructing
rokudoku-pair squares.

An example of a central figure is given in Figure 2. Note that the three
distinct symbols lying in the upper-left 3×3 quadrant of this central figure
are 0, 1, 2. Also note that when attempting to fill the remaining locations
of the array, the only ambiguity in placing symbols involves 2 and 5, which
are precisely the symbols in the central 2× 2 subsquare.

1 3
0 4

0 1 2 5 3 4

3 4 5 2 0 1
3 0
4 1

Figure 2: Central figure

A central figure need not extend to a member ofR. For example, the central
figure shown in Figure 2 does not extend to a member of R. However, as
we mentioned above, a central figure determines possible values, sometimes
uniquely, in the remaining cells of the array. A corner figure is a 4 × 4
array consisting of the corner 2× 2 regions in the complement of a central
figure containing the possible values for extending the central figure to a
member of R. An example is given in Figure 3.

4 2, 5 1 3 2, 5 0
2, 5 3 0 4 1 2, 5
0 1 2 5 3 4

3 4 5 2 0 1
1 2, 5 3 0 4 2, 5

2, 5 0 4 1 2, 5 3

4 2, 5 2, 5 0
2, 5 3 1 2, 5

1 2, 5 4 2, 5
2, 5 0 2, 5 3

Figure 3: A central figure with possible corner region symbols (left) and
corresponding corner figure (right)

A choice of specific values for these undetermined entries yielding a mem-
ber of R is called a valid corner choice. Our count of R hinges upon
enumerating the valid corner choices for each central figure. For this pur-
pose it is convenient to write R = T2 ∪ T3 ∪ T4 where Ti is the collection of
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rokudoku-pair squares with exactly i distinct symbols in the central 2 × 2
subsquare. To count R we count each Ti separately. We let C denote the
set of central figures and let Ci denote the members of C with exactly i
distinct symbols in the central 2 × 2 subsquare. For example, the central
figure shown in Figure 2 is a member of C2. Generally speaking, counting
each Ti is done by counting, for each n, the members of Ci that can be com-
pleted to rokudoku-pair squares in n ways. As described below, this will be
accomplished via list colorings of graphs. Elementary counting arguments
give that

|C2| = 6!26 while |C3| = |C4| = 6!28, (1)

where the 6! counts the number of ways to place symbols in, say, the left-
central 2 × 3 region, and the powers of 2 count the number of ways to fill
the remaining locations in the central figure.

The problem of counting valid corner choices can be translated to a graph
coloring problem. In a corner figure, the collection of undetermined entries
forms a set of vertices, with an edge connecting a pair of vertices whenever
the corresponding entries lie in the same row, column, or 2 × 2 region.
We refer to this graph as the corner graph. In the list labeled corner
graph, each vertex in the corner graph will be labeled with the list of
possible values the undetermined entry could take on in the corner figure
to extend the central figure to a member of R. A list coloring of the list
labeled corner graph is a proper vertex coloring of the graph such that the
colors assigned to each vertex come from the list of colors available to that
vertex. List colorings were introduced by Erdős in [7] and a survey on list
colorings has been compiled by Woodall in [14]. The number of valid corner
choices for a particular corner figure is the number of list colorings of the
list labeled corner graph.

Figure 4: Corner graphs arising from members of C2
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Half of the central figures in C2 have corner graph as shown at left in Figure
4, while the other half have corner graph as shown at right in Figure 4. Let

us denote those halves by C(1)2 and C(2)2 , respectively. If each vertex in
Figure 4 is assigned two colors {a, b}, then the graph at left has no list
colorings because it contains a 5-cycle, while the graph at right has two list
colorings. Therefore, since |C2| = 26 · 6!,

|T2| = 0 · |C(1)2 |+ 2 · |C(2)2 | = 0 · 26 · 6!

2
+ 2 · 26 · 6!

2
= 26 · 6!. (2)

∗ ∗
∗ ∗

∗ ∗ a b ∗ ∗
∗ ∗ c a ∗ ∗

∗ ∗
∗ ∗

2, 4, 5 2, 5 1 3 0 2, 4
2, 4 3 0 5 2, 4 1
0 1 2 4 5 3

3 4 5 2 1 0
1 2, 5 4 0 3 2, 5

2, 5 0 3 1 2, 4 2, 4, 5

2, 4, 5 2, 5 0 2, 4
2, 4 3 2, 4 1

1 2, 5 3 2, 5
2, 5 0 2, 4 2, 4, 5

Figure 5: Central figures for T3 (showing the repeated symbol on the main
diagonal) together with an example and its corner figure

Next we sketch the count of T3. An example is given in Figure 5. We can

partition C3 into three sets C(1)3 , C(2)3 , and C(3)3 , where the central figures in
these sets have corner graphs as shown left to right in Figure 6, respectively.

Figure 6: Corner graphs arising from members of C3
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In the figure, three colors {a, b, c} are assigned to the pentagonal vertices,
while {a, b} is the list for the circular vertices, and {a, c} is the list for the
square vertices. Therefore, from left to right in Figure 6 the graphs have
three list colorings, two list colorings, and two list colorings, respectively.
This yields

|T3| = 3·|C(1)3 |+2·|C(2)3 |+2·|C(3)3 | = 3· 2
86!

4
+2· 2

86!

2
+2· 2

86!

4
= 9·26 ·6!. (3)

The left side of Figure 7 shows the list labeled corner graph of the leftmost
corner graph of Figure 6, corresponding to the example in Figure 5. To the
right are induced subgraphs of the list labeled corner graph. The induced
subgraph in the center of Figure 7 is the graph induced by the set of vertices
labeled with {2, 4} and the induced subgraph on the right side of the figure
is the graph induced by the set of vertices labeled with {2, 5}. Both induced
graphs have two possible list colorings. However, the list colorings which
color all vertices of degree one in both induced subgraphs with 2, is not
allowed in the coloring of the list labeled corner graph, as those vertices are
adjacent in the list labeled corner graph. Hence there are 2 · 2− 1 = 3 list
colorings of the list labeled corner graph.

{2, 5}

{2, 4}

{2, 4}

{2, 4}

{2, 5}

{2, 5}

{2, 4}

{2, 5}

{2, 4, 5}

{2, 4, 5}

{2, 4}

{2, 4}

{2, 4}

{2, 4}

{2, 5}

{2, 5}

{2, 5}

{2, 5}

Figure 7: Example of corner graph corresponding to corner figure in Figure
5, and its subgraphs induced by the labelings {2, 4} and {2, 5}, respectively

Finally, we sketch the count for T4. An example of a C4 central figure,
together with its corner figure and corner graph, are given in Figure 8.

Each corner figure arising from a member of C4 will have two undetermined
pairs of symbols and one undetermined triple of symbols in each corner.
Therefore, corresponding corner graphs will have twelve vertices: Eight
have color lists of size two, and four have color lists of size three. It turns
out that each corner graph Γ arising from a member of C4 is determined,
up to isomorphism, by the induced subgraph Γ̂ whose four vertices corre-
spond to the four undetermined triples in the corner figure. There are six
isomorphism classes of Γ̂ (representatives shown in Figure 9), and hence
there are six classes of corner graph Γ. The corner graph shown at right in
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2, 5 2, 3, 5 0 4 2, 3 1
4 2, 3 1 5 0, 2, 3 0, 3
0 1 2 3 4 5

3 4 5 0 1 2
2, 5 0, 2, 5 4 1 0, 3, 5 0, 3
1 0, 5 3 2 0, 5 4

{0, 5} {0, 5}

{2, 5}
{0, 2, 5} {0, 3, 5}

{0, 3}

{2, 3}
{0, 2, 3}

{0, 3}

{2, 5}
{2, 3, 5}

{2, 3}

Figure 8: A member of C4 together with corner figure and list labeled corner
graph

Figure 8 lies in the class determined by the graph Γ̂ shown second in the
second row of Figure 9.

Figure 9: Subgraphs induced by undetermined triples, with color lists sup-
pressed

We can partition C4 into six sets C(1)4 , . . . , C(6)4 , where C(j)4 is the collection of
central figures that have corner graphs associated to the induced subgraph
shown j-th from the left in Figure 9. The number of list colorings for corner

graphs arising from C(1)4 , . . . , C(6)4 is 2, 4, 5, 6, 6, 7, respectively. Therefore,

|T4| = 2 · |C(1)4 |+ 4 · |C(2)4 |+ 5 · |C(3)4 |+ 6 · |C(4)4 |+ 6 · |C(5)4 |+ 7 · |C(6)4 |

= 2 · 28 · 6!

16
+ 4 · 28 · 6!

4
+ 5 · 28 · 6!

4
+ 6 · 28 · 6!

8
+ 6 · 28 · 6!

4
+ 7 · 28 · 6!

16

= 81 · 24 · 6!.

(4)
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From Equations (2), (3), and (4), we have

|R| = 26 · 6! + 9 · 26 · 6! + 81 · 24 · 6! = 1393920, (5)

yielding the result of Theorem 2.1.

Finally, we note that R can be counted manually without appealing to list
colorings. However, there are advantages to the list coloring approach: The
stratification of T4 into six classes is more transparent, and the process of
counting valid corner choices can be simplified by counting the list colorings
of certain smaller subgraphs. An example of one of the more difficult list
labeled corner graph reductions follows in Figure 10.

{0, 5} {0, 5}

{2, 5} {0, 3}

{2, 3} {0, 3}

{2, 5}

Figure 10: Reduced graph of list labeled corner graph in Figure 8

In Figure 10, we show a subgraph of the list labeled corner graph in Figure
8 to more easily determine the possible list colorings for the corner graph.
We reduce the graph by removing all edges between vertices which have
disjoint lists of possible colors. Since the colors between these vertices are
disjoint, a choice to color one vertex will have no effect on the choice to
color the other, regardless of the edge, so those edges are unnecessary. In
our example, this means we can remove the edges between {2, 3} and {0, 5}
and between {2, 5} and {0, 3}. We also can remove one vertex from each
pair of vertices which both share the same list of possible colors, and which
are nonadjacent. In our example, this means we remove one of the vertices
with possible colors {2, 3}. The vertices with possible colors {2, 3} must
always be colored the same in any list coloring for the following reason. The
vertex with possible colors {2, 3, 5} is adjacent to both vertices with possible
colors {2, 3} and is also adjacent to the vertex with possible colors {2, 5}.
The vertex with possible colors {2, 5} is also adjacent to both vertices with
possible colors {2, 3}. This means that if the vertices with possible colors
{2, 3} are colored with different colors, one must be labeled a 2, and hence
the vertex with list {2, 5} must be labeled a 5. However, this means that
the vertex with list {2, 3, 5} has no possible color as its neighbors have
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used all possible colors. This same property is true for any vertices which
are nonadjacent and have the same list of possible colors in a list labeled
corner graph. So, this reduction process can be used to reduce any of the
list labeled corner graphs.

3 Counting essentially different
rokudoku-pair squares

There are various ways one can modify a rokudoku-pair square to obtain
a new rokudoku-pair square. These modifications include relabelings, to-
gether with combinations of the following physical symmetries: 90◦ rota-
tions, transpose, reflections across either the horizontal or vertical midline,
swapping the leftmost two columns, swapping the rightmost two columns,
swapping the top two rows, and swapping the bottom two rows. Two
rokudoku-pair squares are essentially different if one cannot be obtained
from the other by some combination of these modifications. We seek to
know the number of essentially different rokudoku-pair squares.

This problem is naturally cast in terms of groups. Let G = S6 ×H be the
group of modifications, with S6 denoting the symmetric group of relabel-
ings and H denoting the group of physical symmetries generated by those
mentioned above. We call G the rokudoku-pair group. We observe that

H ∼= (D4 ×D4) o Z2

where D4 is the dihedral group of order 8: The left-most D4 represents the
allowable permutations of rows (combinations of a swap of the top-most two
rows, a swap of the bottom-most two rows, and reflection across horizontal
midline) and the other D4 represents the analogous allowable permutations
of columns (combinations of a swap of the left-most two columns, a swap
of the right-most two columns, and reflection across vertical midline). The
nontrivial element of Z2 represents transpose, and the semi-direct product
reflects the fact that tr = ct, where t is transpose, r is a row permutation,
and c is the corresponding column permutation. For example, applying a
swap of the top two rows followed by transpose is the same as applying
transpose first, followed by a swap of the left-most two columns. Rotations
are achieved by transpose and row/column permutations. Altogether we
have

G ∼= S6 × [(D4 ×D4) o Z2],

a group of order 6! · 128 = 92160 acting on the set R of rokudoku-pair
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squares. Determining the number of essentially different rokudoku-pair
squares translates to counting the orbits in R under the action of G.

We proceed to count these orbits. For x ∈ R let Gx = {g ∈ G | g.x = x}.
Observe that if x, y ∈ R and g ∈ G with g.x = y, then the mapping γ 7→
gγg−1 is an isomorphism Gx → Gy. In particular, |Gx| = |Gy| if x, y ∈ R
lie in the same G-orbit. Now suppose there are N orbits R1, · · · ,RN in R
under the action of G, with base-points x1, · · · , xN . Then |Ri| = |G|/|Gxi

|
for 1 ≤ i ≤ N , and

N · |G| =
N∑

i=1

|G|
|Gxi
| |Gxi | =

N∑

i=1

|Ri||Gxi | =
N∑

i=1

∑

x∈Ri

|Gx| =
∑

x∈R
|Gx|. (6)

The series of equations (6) falls one equation short of being a proof Burn-
side’s classical orbit counting theorem (e.g., see [10], p. 205). However, we
take (6) in another direction: For x ∈ R, let

Ĥx = {h ∈ H | h.x = σ.x for some σ ∈ S6}.

Because G = S6 ×H, we have Gx = {σh ∈ G | σh.x = x with σ ∈ S6, h ∈
H}. Further, if σ1h, σ2h ∈ Gx, then σ1 = σ2. These facts together imply
that |Gx| = |Ĥx|, and we have

∑

x∈R
|Gx| =

∑

x∈R̂

6!|Gx| =
∑

x∈R̂

6!|Ĥx|, (7)

where R̂ denotes the set of rokudoku-pair squares possessing a left-central
2× 3 subrectangle1 of the form

0 1 2
3 4 5

.

Combining (6) and (7) tells us that

N =
1

128

∑

x∈R̂

|Ĥx|. (8)

Equation (8) is effective for counting orbits because both H and R̂ are
relatively small. A MATLAB program [11] employing (8) gives:

1The location of the fixed subrectangle is irrelevant. It could just as easily be in the
upper-left.

Carrigan, Hammer, Lorch, Lorch and Owens

72



Theorem 3.1 There are 26 G-orbits in R.

Representatives x1, . . . , x26 of these G-orbits are given in Figure 11. Hence-
forth the G-orbits in R will be listed in this particular order, with these
particular representatives.

The size of each orbit can be computed via

|Ri| = |G|/|Gxi
| = |G|/|Ĥxi

| 1 ≤ i ≤ 26.

The size of Ĥxi
is crucial for this computation. Again using MATLAB in

[11], we have:

Theorem 3.2 (a) |Ĥxi
| = 1 for i ∈ {3, 4, 6, 9, 11, 13, 14, 17, 19}

(b) |Ĥxi
| = 2 for i ∈ {1, 5, 7, 10, 12, 15, 18, 20, 23}

(c) |Ĥxi | = 4 for i ∈ {2, 8, 16, 21, 25}

(d) |Ĥxi
| = 8 for i ∈ {22, 24, 26}.

We finish this subsection with a discussion of the minimality of G. We
say that G is minimal for R if there is no proper subgroup of G that
acts on R with the same orbits. It is known [2] that the obvious group
of symmetries/relabelings for ordinary order-9 sudoku squares is minimal,
while the similar groups for shidoku (2×2 regions) and certain magic sudoku
variants are not minimal (see [1] and [2]). In our present situation, Theorem
3.2 tells us that |Ĥxi

| = 1 for at least one value of i, so there are G-orbits
in R that are of size |G|. This forces G to be minimal.

Corollary 3.3 G is minimal for R.

4 An application to group-based squares

Here we discuss the existence of group-based rokudoku-pair squares. Let
K = {k1, . . . , kn} be a finite group. The Cayley table LK for K is the
body of the multiplication table for K with row/column headers k1, . . . , kn
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X1

2 3 0 4 1 5
4 5 1 3 0 2
0 1 2 5 4 3
3 4 5 0 2 1
1 0 3 2 5 4
5 2 4 1 3 0

X2

2 3 0 4 1 5
4 5 1 3 0 2
0 1 2 5 4 3
3 4 5 1 2 0
1 0 3 2 5 4
5 2 4 0 3 1

X3

2 3 0 4 1 5
4 5 1 3 2 0
0 1 2 5 4 3
3 4 5 1 0 2
1 0 3 2 5 4
5 2 4 0 3 1

X4

2 3 0 5 1 4
4 5 1 3 0 2
0 1 2 4 5 3
3 4 5 0 2 1
1 0 3 2 4 5
5 2 4 1 3 0

X5

2 3 0 5 1 4
4 5 1 3 0 2
0 1 2 4 5 3
3 4 5 1 2 0
1 0 3 2 4 5
5 2 4 0 3 1

X6

2 3 0 5 1 4
4 5 1 3 2 0
0 1 2 4 5 3
3 4 5 1 0 2
1 0 3 2 4 5
5 2 4 0 3 1

X7

2 3 0 4 1 5
4 5 1 3 0 2
0 1 2 5 3 4
3 4 5 0 2 1
1 0 4 2 5 3
5 2 3 1 4 0

X8

2 3 0 4 1 5
4 5 1 3 0 2
0 1 2 5 3 4
3 4 5 1 2 0
1 0 4 2 5 3
5 2 3 0 4 1

X9

2 3 0 4 1 5
4 5 1 3 2 0
0 1 2 5 3 4
3 4 5 1 0 2
1 0 4 2 5 3
5 2 3 0 4 1

X10

2 3 0 5 1 4
4 5 1 3 0 2
0 1 2 4 3 5
3 4 5 0 2 1
1 0 4 2 5 3
5 2 3 1 4 0

X11

2 3 0 5 1 4
4 5 1 3 0 2
0 1 2 4 5 3
3 4 5 0 2 1
1 0 4 2 3 5
5 2 3 1 4 0

X12

2 3 0 5 1 4
4 5 1 3 0 2
0 1 2 4 3 5
3 4 5 1 2 0
1 0 4 2 5 3
5 2 3 0 4 1

X13

2 3 0 5 1 4
4 5 1 3 0 2
0 1 2 4 5 3
3 4 5 1 2 0
1 0 4 2 3 5
5 2 3 0 4 1

X14

2 3 0 5 1 4
4 5 1 3 2 0
0 1 2 4 5 3
3 4 5 1 0 2
1 0 4 2 3 5
5 2 3 0 4 1

X15

2 3 1 4 0 5
4 5 0 3 2 1
0 1 2 5 4 3
3 4 5 0 1 2
1 0 3 2 5 4
5 2 4 1 3 0

X16

2 3 1 5 0 4
4 5 0 3 2 1
0 1 2 4 5 3
3 4 5 0 1 2
1 0 3 2 4 5
5 2 4 1 3 0

X17

2 3 1 5 0 4
4 5 0 3 1 2
0 1 2 4 5 3
3 4 5 1 2 0
1 0 3 2 4 5
5 2 4 0 3 1

X18

2 3 1 4 0 5
4 5 0 3 2 1
0 1 2 5 3 4
3 4 5 0 1 2
1 0 4 2 5 3
5 2 3 1 4 0

X19

2 3 1 5 0 4
4 5 0 3 1 2
0 1 2 4 3 5
3 4 5 0 2 1
1 0 4 2 5 3
5 2 3 1 4 0

X20

2 3 1 5 0 4
4 5 0 3 1 2
0 1 2 4 5 3
3 4 5 1 2 0
1 0 4 2 3 5
5 2 3 0 4 1

X21

2 3 0 4 1 5
4 5 1 3 2 0
0 1 2 5 4 3
3 4 5 2 0 1
1 2 3 0 5 4
5 0 4 1 3 2

X22

2 3 0 4 1 5
4 5 1 3 2 0
0 1 2 5 3 4
3 4 5 2 0 1
1 2 4 0 5 3
5 0 3 1 4 2

X23

2 3 0 5 1 4
4 5 1 3 0 2
0 1 2 4 5 3
3 4 5 1 2 0
1 2 4 0 3 5
5 0 3 2 4 1

X24

2 3 1 4 0 5
4 5 0 3 2 1
0 1 2 5 4 3
3 4 5 2 1 0
1 2 3 0 5 4
5 0 4 1 3 2

X25

2 3 1 5 0 4
4 5 0 3 1 2
0 1 2 4 5 3
3 4 5 1 2 0
1 2 3 0 4 5
5 0 4 2 3 1

X26

2 5 0 3 1 4
4 3 1 5 0 2
0 1 2 4 5 3
3 4 5 1 2 0
1 0 4 2 3 5
5 2 3 0 4 1

Figure 11: Representatives of the 26 G-orbits in R
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in some fixed order. Observe that LK is a latin square.2 Note also that
if we form a new square L from LK by some combination of permuting
rows, permuting columns, and relabeling, then L is again a Latin square.
We say that L is isotopic to LK and we say that L is based on K.
The combination of permutations and relabeling used to form L from LK

is called an isotopism. Group-based Latin squares have been used to
construct large collections of pairwise mutually orthogonal Latin squares
(see [8]). Regarding sudoku, in [3] it is shown, using basic group theory,
that given any group K of order k possessing a subgroup J of order j, one
can produce a K-based sudoku square of order k with k/j × k regions.

If we’re presented with a Latin square, how do we know whether it is based
on a group? From [6], for example, we have:

Proposition 4.1 (Quadrangle Criterion) A Latin square A = (ai,j) is
based on a group if and only if whenever aj,k = aj1,k1 , ai,k = ai1,k1 , and
ai,` = ai1,`1 , we also have aj,` = aj1,`1 .

Upon inspection, each representative x1, x2, . . . , x26 from Figure 11 fails the
Quadrangle Criterion except for x26. So x26 is based on a group, either the
symmetric group S3 or the cyclic group Z6. We may reconstruct a group
table whose body is x26 by selecting an arbitrary row and column to be the
column headers and row headers, respectively. Selecting the top row and
leftmost column yields the operation table

∗ 2 5 0 3 1 4
2 2 5 0 3 1 4
4 4 3 1 5 0 2
0 0 1 2 4 5 3
3 3 4 5 1 2 0
1 1 0 4 2 3 5
5 5 2 3 0 4 1

.

Since no element in this table is of order six, we conclude that x26 is based
on S3. Further, if K ∈ {S3,Z6}, then the property of being a K-based
square is invariant under the action of the rokudoku-pair group G: This is
because elements G are isotopisms, modulo transpose, and transpose carries
a K-based square to a K-based square. Therefore:

Theorem 4.2 The only group-based rokudoku-pair squares are the mem-
bers of R26; all of these squares are based on the symmetric group S3.

2Every Latin square is the body of a quasigroup operation table. A quasigroup is a
set with a binary operation that satisfies left and right cancellation.
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Recall our mention of the theorem from [3] asserting that given any group
K of order k possessing a subgroup J of order j, one can produce a K-
based sudoku square of order k with k/j × j regions. Because there are
no Z6-based rokudoku-pair squares, this theorem does not extend to the
setting of sudoku-pair Latin squares. More on group-based sudoku-pair
Latin squares is forthcoming in [5]. Also, from Theorem 3.2 we know that
R26 is among the smallest G-orbits in R, with size 11520. Combining this
with Theorem 2.1 we find that only about 0.8% of rokudoku-pair squares
are based on groups.
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