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Abstract

An explicit formula for a weight enumerator of linear-congruence
codes is provided. This extends the work of Bibak and Milenkovic
[IEEE ISIT (2018) 431–435] addressing the binary case to the non-
binary case. Furthermore, the extension simplifies their proof and
provides a complete solution to a problem posed by them.

1 Introduction

Throughout this article, n and m denote positive integers, b denotes an
integer and Zq := {0, 1, . . . , q− 1} ⊂ Z for a positive integer q. We will use
n for a code length, m for a modulus, b for a defining parameter of a code
and Zq for a code alphabet.

Definition. Let a = (a1, . . . , an) ∈ Zn and b ∈ Z. The set C of all the
solutions x = (x1, . . . , xn) ∈ Znq for a linear congruence equation

a · x ≡ b (mod m) (1)

is said to be a linear-congruence code where a · x := a1x1 + · · ·+ anxn. A
linear-congruence code C is called binary when q = 2.
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Several deletion-correcting codes which have been studied are linear-congru-
ence codes; the Varshamov-Tenengol’ts codes [8], the Levenshtein codes [7],
the Helberg codes [4], the Le-Nguyen codes [5], the construction C ′ of
Hagiwara [3] (for some parameters), the consecutively systematic encodable
codes and the ternary integer codes in [2, Examples II.1 and II.5] fall into
this category (Table).

Table: Examples of linear-congruence codes

Linear-congruence code1 q (a1, . . . , an) m Constraints

Varshamov-Tenengol’ts
code

2 (1, . . . , n) n + 1

Levenshtein code 2 (1, . . . , n) m m ≥ n + 1
Helberg code2 2 (v1, . . . , vn) vn+1 s > 0
Le-Nguyen code3 q (w1, . . . , wn) m m ≥ wn+1,

s > 0
Construction C′4 2 (c1, . . . , cn) n b 6≡ 0, n(n + 1)/2

(mod n)
Consecutively systematic
encodable codes5

2 (b1, . . . , bn) 2s+1 b = 0, s > 0,
0 < n− s < 2s−1

Ternary integer code6 3 (t1, . . . , tn) 2n+1 − 1

The following problem concerning the size of a linear-congruence code—the
number of solutions for a linear congruence equation (1)—is posed by Bibak
and Milenkovic.

Problem (Bibak-Milenkovic [1]). Give an explicit formula for the size of
a linear-congruence code.

1The defining parameter b for the codes in the table takes an arbitrary value unless
otherwise stated.

2The sequence (vi) = (vi(s)) is defined by vi = 0 (i ≤ 0) and vi = 1 +
∑s

j=1 vi−j

(i ≥ 1).
3The sequence (wi) = (wi(q, s)) is defined by wi = 0 (i ≤ 0) and wi = 1 + (q −

1)
∑s

j=1 wi−j (i ≥ 1).
4The sequence (ci) = (ci(n)) is defined by c2i−1 = i (1 ≤ i ≤ bn+1

2
c) and c2i =

n− i + 1 (1 ≤ i ≤ bn
2
c).

5The sequence (bi) = (bi(s)) is defined by bi = 2i−1 (1 ≤ i ≤ s) and bi = 2s−1 + i− s
(i > s).

6The sequence (ti) is defined by ti = 2i − 1 (i ≥ 1).

Weight enumerator of linear-congruence codes

35



Finding an explicit formula would be a first step toward understanding
the asymptotic behavior of the size of a linear-congruence code. Bibak
and Milenkovic provide a solution to the problem for the binary case. In
this article, we provide a complete solution to the problem with a simple
proof, which improves the argument of Bibak and Milenkovic. Actually,
what we will show is how the Hamming weights of the solutions for a linear
congruence equation distribute. This immediately gives an expression of the
size of a linear-congruence code involving exponential sums—Weyl sums of
degree one.

To state the main theorem we need notation which will be standard.

Definition. For a code C ⊆ Znq , we define a polynomial WC(z) by

WC(z) :=
∑

x∈C
zwt(x) =

n∑

i=0

Ai(C)zi,

where wt(x) denotes the Hamming weight and

Ai(C) := |{x ∈ C : wt(x) = i }| (0 ≤ i ≤ n).

The polynomial WC(z) is said to be the (non-homogeneous) weight enu-
merator of the code C.

Following custom due to Vinogradov in additive number theory, e(α) de-

notes e2πα
√−1 for α ∈ R. Now we are in position to state our main theorem.

Theorem 1.1. Let a = (a1, . . . , an) ∈ Zn and b ∈ Z. Then the weight
enumerator WC(z) of the linear-congruence code

C := {x ∈ Znq : a · x ≡ b (mod m) }

is given by

WC(z) =
1

m

m∑

j=1

e

(
−jb
m

) n∏

i=1

(
1 + ze

(
jai
m

)
+ · · ·+ ze

(
jai(q − 1)

m

))
.

Corollary 1.2. With the same notation as above, the size of the code C is
given by

|C| = 1

m

m∑

j=1

e

(
−jb
m

) n∏

i=1

(
1 + e

(
jai
m

)
+ · · ·+ e

(
jai(q − 1)

m

))
.
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2 Proof of the main theorem

The only lemma we need to prove Theorem 1.1 is the following trivial one.

Lemma 2.1.

1

m

m∑

j=1

e

(
jb

m

)
=

{
1 if b ≡ 0 (mod m)

0 if b 6≡ 0 (mod m).

Proof of Theorem 1.1. The proof is straightforward:

1

m

m∑

j=1

e

(
−jb
m

) n∏

i=1

(
1 + ze

(
jai
m

)
+ · · ·+ ze

(
jai(q − 1)

m

))

=
1

m

m∑

j=1

e

(
−jb
m

) n∏

i=1

∑

xi∈Zq

zwt(xi)e

(
jaixi
m

)

=
1

m

m∑

j=1

e

(
−jb
m

) ∑

(x1,...,xn)∈Zn
q

n∏

i=1

zwt(xi)e

(
jaixi
m

)

=
1

m

m∑

j=1

e

(
−jb
m

) ∑

x∈Zn
q

zwt(x)e

(
ja · x
m

)

=
∑

x∈Zn
q


 1

m

m∑

j=1

e

(
j(a · x− b)

m

)
 zwt(x)

=
∑

x∈C
zwt(x) (By Lemma 2.1.)

= WC(z).

Remark. The original proof by Bibak and Milenkovic [1] for the binary
case uses a theorem of Lehmer [6], which states a linear congruence equation

a · x ≡ b (mod m)

defined by a = (a1, . . . , an) ∈ Zn and b ∈ Z has a solution x ∈ Znm if and
only if gcd(a1, . . . , an,m) divides b. Consequently, their result is stated
depending on whether gcd(a1, . . . , an,m) divides b or not. By contrast, our
result does not refer to gcd(a1, . . . , an,m) because our proof does not rely
on the Lehmer theorem.
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