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Abstract

A signed magic rectangle SMR(m,n; k, s) is an m × n array with
entries from X, where X = {0,±1,±2, . . . , ±(mk − 1)/2} if mk is
odd and X = {±1,±2, . . . ,±mk/2} if mk is even, such that precisely
k cells in every row and s cells in every column are filled, every integer
from set X appears exactly once in the array and the sum of each
row and of each column is zero. In this paper, we prove that a signed
magic rectangle SMR(m,n; k, 3) exists if and only if 3 ≤ m, k ≤ n
and mk = 3n.

1 Introduction

A magic rectangle of order m × n (see [8]) with precisely r filled cells in
each row and precisely s filled cells in each column, MR(m,n; r, s), is an
arrangement of the numbers from 0 to mr− 1 in an m× n array such that
each number occurs exactly once in the array and the sum of the entries
of each row is the same and the sum of entries of each column is also the
same. If r = n or s = m, then the array has no empty cells and we denote
it by MR(m,n).
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The following theorem (see [5, 6, 10]) settles the existence of an MR(m,n).

Theorem 1. An m×n magic rectangle exists if and only if m ≡ n (mod 2),
m+ n > 5, and m,n > 1.

An integer Heffter array H(m,n; s, t) is an m × n array with entries from
X = {±1,±2, . . . ,±ms} such that each row contains s filled cells and each
column contains t filled cells, the elements in every row and column sum to
0 in Z, and for every x ∈ A, either x or −x appears in the array. The notion
of an integer Heffter array H(m,n; s, t) was first defined by Archdeacon in
[1]. Heffter arrays can be used for construction of orthogonal cycle systems
or embeddings of pairs of cycle systems on surfaces.

Integer Heffter arrays H(m,n; s, t) with m = n represent a type of magic
square where each number from the set {1, 2, . . . , ms} is used once up to
sign. A Heffter array is tight if it has no empty cell; that is, n = s (and
necessarily m = t). We denote a signed magic rectangle SMR(m;n;n;m)
by SMR(m;n).

Theorem 2. [2] Let m,n be integers at least 3. There is a tight integer
Heffter array H(m,n) if and only if mn ≡ 0, 3 (mod 4).

A square integer Heffter arrayH(n; k) is an integer Heffter array withm = n
and s = t = k. In [3, 4] it is proved that

Theorem 3. There is an integer H(n; k) if and only if 3 ≤ k ≤ n and
nk ≡ 0, 3 (mod 4).

We now define signed magic rectangles which are similar to Heffter arrays.
A signed magic rectangle SMR(m,n; r, s) is an m × n array with entries
from X, where X = {0,±1,±2, . . . , ±(mr − 1)/2} if mr is odd and X =
{±1,±2, . . . ,±mr/2} if mr is even, such that precisely r cells in every row
and s cells in every column are filled, every integer from set X appears
exactly once in the array and the sum of each row and of each column is
zero. By the definition, mr = ns, r ≤ n and s ≤ m. If r = n or s = m,
then the rectangle has no empty cells. We denote by SMR(m,n) a signed
magic rectangle SMR(m,n;n,m). In the case where m = n, we call the
array a signed magic square. Signed magic squares represent a type of
magic square where each number from the set X is used once. If A is a
Heffter array H(m,n; s, t), then the array [A −A] is a signed magic array

SMA(m, 2n; 2s, t), as noticed in [9], and the array

[
A
−A

]
is a signed

magic array SMG(2m, 2n; s, t).
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The following two theorems can be found in [9].

Theorem 4. An SMR(m,n) exists precisely when m = n = 1, or when
m = 2 and n ≡ 0, 3 (mod 4), or when n = 2 and m ≡ 0, 3 (mod 4), or
when m,n > 2.

In [9] the notation SMS(n; k) is used for a signed magic square with k filled
cells in each row and k filled cells in each column.

Theorem 5. There exists an SMS(n; k) precisely when n = k = 1 or
3 ≤ k ≤ n.

The existence of an SMR(m,n; r, s) is an open problem. In [7] the authors
study the signed magic rectangles with precisely two filled cells in each
column. Below is the main theorem in [7].

Theorem 6. There exists an SMR(m,n; r, 2) if and only if either m = 2
and n = r ≡ 0, 3 (mod 4) or m, r ≥ 3 and mr = 2n.

In this paper, we prove that a signed magic rectangle SMR(m,n; k, 3)
exists if and only if 3 ≤ m, k ≤ n and mk = 3n.

Consider an SMR(m,n; k, 3). By definition, we have mk = 3n. So if n
is odd, then m and k must be odd. In addition, the condition mk = 3n
implies that either 3|k or 3|m. In Section 2 we study the existence of an
SMR(m,n; k, 3) when n is odd and 3|k. In Section 3 we study the existence
of an SMR(m,n; k, 3) when n is odd and 3|m. In Section 4 we study the
existence of an SMR(m,n; k, 3) when n, k are even. In Section 5 we study
the existence of an SMR(m,n; k, 3) when n is even and k is odd.

2 The existence of an SMR(m,n; k, 3) when
n is odd and 3|k

The following result shows a relationship between an MR(m,n; r, s) and
an SMR(m,n; r, s) when mr is odd.

Lemma 7. If there exists an MR(m,n; r, s) with mr odd, then there exists
an SMR(m,n; r, s).
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Proof. Let m, r be odd and greater than 3. By assumption, there exists an
MR(m,n; r, s), say A. Since mr = ns, it follows that n and s are also odd.
We will construct an m× n array B as follows. The cell (r, c) of B is filled
with a − (mr − 1)/2 if and only if the cell (r, c) of A contains a. As the
entries in A are precisely the integers 0 through mr− 1, it follows that the
entries in B are precisely the integers −mr−1

2 through mr−1
2 , the required

set of integers for an SMR(m,n; r, s). It remains to be shown that B has
rows and columns summing to zero.

We know that the column sum of A is (mr − 1)mr/(2n). So the column
sum of B is

(mr − 1)mr

2n
− (mr − 1)s

2
=

(mr − 1)

2
(
mr

n
− s) = 0.

Similarly, the row sum of B is also zero.

Theorem 8. [8] Let k,m, s be positive integers. Then there exists a magic
rectangle MR(m, km; ks, s) if and only if m = s = k = 1 or 2 ≤ s ≤ m and
either s is even or km is odd.

By Lemma 7 and Theorem 8 we obtain the following:

Proposition 9. Let k,m, s be positive odd integers. Then there exists an
SMR(m, km; ks, s) if m = s = k = 1 or 3 ≤ s ≤ m. In particular, there
exists an SMR(m, km; 3k, 3).

3 The existence of an SMR(m,n; k, 3) when
n is odd and 3|m

Theorem 10. [8] Let a, b, c be positive integers with 2 ≤ a ≤ b. Let a, b, c
be all odd, or let a and b both be even, c arbitrary, and (a, b) 6= (2, 2). Then
there exists an MR(ac, bc; b, a).

Proposition 11. If n is odd and 3|m, then there exists an SMR(m,n; k, 3).

Proof. If an SMR(m,n; k, 3) exists, then mk = 3n. So by assumption m
and k are odd. Let m = 3c. Then mk = 3n implies that n = kc. Now
apply Theorem 10, with a = 3, b = k and c to obtain an MR(m,n; k, 3).
Now by Lemma 7 there exists an SMR(m,n; k, 3).
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4 The existence of an SMR(m,n; k, 3) when
n, k are even

In this section and the next section we make use of the following result.
Since the structure of the SMR(3, 2) given below is crucial in our construc-
tions of an SMR(m,n; k, 3) we include the proof of this lemma here which
can also be found in [9].

Lemma 12. An SMR(3, n) exists if n is even.

Proof. An SMR(3, 2) and an SMR(3, 4) are given in Figure 1.

1 −1
2 −2
−3 3

1 −1 2 −2
5 4 −5 −4
−6 −3 3 6

Figure 1: An SMR(3, 2) and an SMR(3, 4)

Now let n = 2k ≥ 6 and pj = d j2e for 1 ≤ j ≤ 2k . Define a 3 × n array
A = [ai,j ] as follows: For 1 ≤ j ≤ 2k,

a1,j =





−
(

3pj−2
2

)
j ≡ 0 (mod 4)

3pj−1
2 j ≡ 1 (mod 4)

−
(

3pj−1
2

)
j ≡ 2 (mod 4)

3pj−2
2 j ≡ 3 (mod 4).

For the third row we define a3,1 = −3k, a3,2k = 3k and when 2 ≤ j ≤ 2k−1

a3,j =





−3(k − pj) j ≡ 0 (mod 4)

3(k − pj + 1) j ≡ 1 (mod 4)

−3(k − pj) j ≡ 2 (mod 4)

3(k − pj + 1) j ≡ 3 (mod 4).

Finally, a2,j = −(a1,j + a3,j) for 1 ≤ j ≤ 2k (see Figure 2). It is straight-
forward to see that array A is an SMR(3, n).
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1 −1 2 −2 4 −4 5 −5 7 −7
14 13 −14 11 −13 10 −11 8 −10 −8
−15 −12 12 −9 9 −6 6 −3 3 15

Figure 2: An SMR(3, 10) using the method given in Lemma 12

Let A = {A1, A2, . . . , Ar} and B = {B1, B2, . . . , Bs} be two partitions of a
set S. We say the partitions A and B are near orthogonal if |Ai ∩ Bj | ≤ 1
for all 1 ≤ i ≤ r and 1 ≤ j ≤ s.

Theorem 13. Let A be an SMR(m,n) with entries from the set X. Let
P1 = {C1, C2, . . . , Cn}, where Ci’s are the columns of A. Let k ≥ m
and k|mn. If there exists a partition P2 = {D1, D2, . . . , D`} of X, where
` = mn/k, such that |Di| = k, the sum of members in each Di is zero
for 1 ≤ i ≤ `, and P1 and P2 are near orthogonal, then there exists an
SMR(mn/k, n; k,m).

Proof. Let B be an mn/k by n empty array. We use the members of Di to
fill ` cells of row i of B. Let d ∈ Di. Then there is a unique column Cj of
A which contains d. We place d in row i and column j of B. Note that the
members used in B are precisely the members in X because P2 is a partition
of X. Since P1 and P2 are near orthogonal, each cell of B has at most one
member. By construction, row i of B and Di have the same members and
column j of B and Cj have the same members. So the sum of each row
and each column of B is zero. Hence, B is an SMR(mn/k, n; k,m).

Proposition 14. Let k and n be even integers, k ≥ 4 and k|3n. Then
there exists an SMR(3n/k, n; k, 3).

Proof. Let A be the SMR(3, n) constructed in the proof of Lemma 12 with
elements in X = {±1,±2, . . . ,±3n/2}. Let P1 = {C1, C2, . . . , Cn}, where
Ci’s are the columns of A. Obviously, P1 is a partition of X. By the proof
of Lemma 12, we see that if x appears in row i of A, then −x also appears
in row i.

We construct a partition P2 = {D1, D2, . . . , D`} of X, where ` = 3n/k,
such that |Di| = k, the sum of members in each Di is zero for 1 ≤ i ≤ `,
and P1 and P2 are near orthogonal. Then by Theorem 13, there exists
an SMR(3n/k, n; k, 3), as desired. Let n = kq + r with 0 ≤ r < k. By
assumption, it is easy to see that r = 0, r = k/3 or r = 2k/3. So we
consider 3 cases.
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Case 1: r = 0. Since k and n are even and for x ∈ X both x and
−x appear in the same row of A, we can partition each row of A into
n/k k-subsets such that if x is in a k-subset, then −x is also in that k-
subset. Hence the sum of members in each k-subset is zero. Let P2 =
{D1, D2, . . . , D`}, ` = 3n/k, be the collection of all these k-subsets. Since
Di is a subset of a row of A for 1 ≤ i ≤ `, it follows that the partitions P1

and P2 are near orthogonal. So the result follows by Theorem 13.

Case 2: r = k/3. Then ` = 3n/k = 3q + 1. We partition each row of
A into q k-subsets and one k/3-subset. Note that k/3 is an even number
because k is even. First we form a k/3-subset Ei of row i for i = 1, 2, 3,
such that if x is in Ei, then −x is also in Ei. In addition, no two members
of D` = E1∪E2∪E3 are in the same column of A. Now consider the set Fi

which consists of the elements in row i that are not in Ei for i = 1, 2, 3. The
size of Fi is even and the members of Fi can be paired as x,−x for some
x ∈ Fi. Hence we can partition each Fi into k-subsets Di

1, D
i
2, . . . , D

i
q such

that if a ∈ Di
j , then −a ∈ Di

j , where 1 ≤ i ≤ 3 and 1 ≤ j ≤ q. Consider

the partition P2 = {Di
1, D

i
2, . . . , D

i
q, D` | 1 ≤ i ≤ 3}. By construction, no

two members of a k-subset Y ∈ P2 belong to the same column of A, so
the partitions P1 and P2 are near orthogonal. In addition, the sum of the
members of Y is zero. Now the result follows by Theorem 13.

Case 3: r = 2k/3. Then ` = 3n/k = 3q + 2. We partition each
row of A into q k-subsets and two k/3-subsets. Note that k/3 is an even
number because k is even. First we form two k/3-subsets E1

i , E
2
i of row i

for i = 1, 2, 3, such that if x is in E1
i or E2

i , then −x is also in E1
i or E2

i ,
respectively. In addition, no two members of D`−1 = E1

1 ∪ E1
2 ∪ E1

3 or of
D` = E2

1 ∪ E2
2 ∪ E2

3 are in the same column of A. Now consider the set Fi

which consists of the elements in row i that are not in E1
i ∪E2

i for i = 1, 2, 3.
The size of Fi is even and the members of Fi can be paired as x,−x for
some x. Hence, we can partition each Fi into k-subsets Di

1, D
i
2, . . . , D

i
q such

that if a ∈ Di
j , then −a ∈ Di

j , where 1 ≤ i ≤ 3 and 1 ≤ j ≤ q. Consider the

partition P2 = {Di
1, D

i
2, . . . , D

i
q, D`−1, D` | 1 ≤ i ≤ 3}. By construction,

no two members of a k-subset Y ∈ P2 belong to the same column of A, so
the partitions P1 and P2 are near orthogonal. In addition, the sum of the
members of Y is zero. Now the result follows by Theorem 13.
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5 The existence of an SMR(m,n; k, 3) when
n is even and k is odd

Let n be a positive integer. Let A be the SMR(3, n) constructed in the
proof of Lemma 12 with elements in X = {±1,±2, . . . , ±3n/2}. For i =
1, 2, 3, let Ri consist of the entries in row i of A. By the proof of Lemma
12, if n ≡ 0 (mod 4), then

R1 = {±(3i+ 1),±(3i+ 2) | 0 ≤ i ≤ (n− 4)/4},
R2 = {±(3i+ 1),±(3i+ 2) | n/4 ≤ i ≤ (n− 2)/2}. (1)

If n ≡ 2 (mod 4), then

R1 = {±(3i+ 1) | 0 ≤ i ≤ (n− 2)/4}
∪ {±(3i+ 2) | 0 ≤ i ≤ (n− 6)/4},

R2 = {±(3i+ 1) | (n+ 2)/4 ≤ i ≤ (n− 2)/2}
∪ {±(3i+ 2) | (n− 2)/4 ≤ i ≤ (n− 2)/2}.

(2)

And
R3 = {±3i | 1 ≤ i ≤ n/2}. (3)

For a set of numbers L we define L′ = {−a | a ∈ L}.

Remark 15. Let n > k, k odd and n even. If k|3n and n = kq + r, where
0 ≤ r < k, then r = 0, k/3 or 2k/3.

Lemma 16. Let n > k ≥ 5 with k odd and n even such that k|3n. Let
n = kq + r, where 0 ≤ r < k. Then there exist two sets of 3-subsets of
X = {±1,±2, . . . ,±3n/2}, say S1 and S2, such that

1. the member sum of each 3-subset is zero;

2. each 3-subset of S1 has one member in R1 and two members in R2

and each 3-subset of S2 has one member in R2 and two members in
R1;

3. if {a, b, c} is a member of S1 or of S2, then {−a,−b,−c} is also a
member of S1 or S2, respectively;

4. |S1| = |S2| ≥ q, q + 1, q + 2 if r = 0, k/3, 2k/3, respectively;

5. the 3-subsets of S1 ∪ S2 are all disjoint.
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Table 1: Small cases for Lemma 16

(n, k) 3-subsets ofR1 ∪R2

(10, 5) M1 = {1, 13,−14}, M ′1 = {−1,−13, 14}
N1 = {4, 7,−11}, N ′1 = {−4,−7, 11}

(12, 9) M1 = {1, 16,−17}, M ′1 = {−1,−16, 17}
N1 = {4, 7,−11}, N ′1 = {−4,−7, 11}

(14, 7) M1 = {1, 19,−20}, M ′1 = {−1,−19, 20}
N1 = {4, 10,−14}, N ′1 = {−4,−10, 14}

(18, 9) M1 = {1, 25,−26}, M ′1 = {−1,−25, 26}
N1 = {4, 13,−17}, N ′1 = {−4,−13, 17}

(20, 5) M1 = {1, 28,−29}, M ′1 = {−1,−28, 29}
M2 = {2, 23,−25}, M ′2 = {−2,−23, 25}
N1 = {4, 13,−17}, N ′1 = {−4,−13, 17}
N2 = {5, 11,−16}, N ′2 = {−5,−11, 16}

(20, 15) M1 = {1, 28,−29}, M ′1 = {−1,−28, 29}
N1 = {4, 13,−17}, N ′1 = {−4,−13, 17}

(22, 11) M1 = {1, 31,−32}, M ′1 = {−1,−31, 32}
N1 = {4, 16,−20}, N ′1 = {−4,−16, 20}

(24, 9) M1 = {1, 34,−35}, M ′1 = {−1,−34, 35}
M2 = {2, 29,−31}, M ′2 = {−2,−29, 31}
N1 = {4, 16,−20}, N ′1 = {−4,−16, 20}
N2 = {5, 14,−19}, N ′2 = {−5,−14, 19}

(26, 13) M1 = {1, 37,−38}, M ′1 = {−1,−37, 38}
N1 = {4, 19,−23}, N ′1 = {−4,−19, 23}

(28, 7) M1 = {1, 40,−41}, M ′1 = {−1,−40, 41}
M2 = {2, 35,−37}, M ′2 = {−2,−35, 37}
N1 = {4, 19,−23}, N ′1 = {−4,−19, 23}
N2 = {5, 17,−22}, N ′2 = {−5,−17, 22}

(28, 21) M1 = {1, 40,−41}, M ′1 = {−1,−40, 41}
N1 = {4, 19,−23}, N ′1 = {−4,−19, 23}

(30, 5) M1 = {1, 43,−44}, M ′1 = {−1,−43, 44}
M2 = {2, 38,−40}, M ′2 = {−2,−38, 40}
M3 = {4, 31,−35}, M ′3 = {−4,−31, 35}
N1 = {7, 22,−29}, N ′1 = {−7,−22, 29}
N2 = {10, 16,−26}, N ′2 = {−10,−16, 26}
N3 = {8, 20,−28}, N ′3 = {−8,−20, 28}

(30, 9) M1 = {1, 43,−44}, M ′1 = {−1,−43, 44}
M2 = {2, 38,−40}, M ′2 = {−2,−38, 40}
N1 = {4, 22,−26}, N ′1 = {−4,−22, 26}
N2 = {5, 20,−25}, N ′2 = {−5,−20, 25}

(30, 15) M1 = {1, 43,−44}, M ′1 = {−1,−43, 44}
N1 = {4, 22,−26}, N ′1 = {−4,−22, 26}
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Proof. Table 1 displays the sets S1 = {Mi,M
′
i} and S2 = {Ni, N

′
i} for

(n, k) ∈ {(10, 5), (12, 9), (14, 7), (18, 9), (20, 5),
(20, 15), (22, 11), (24, 9), (26, 13), (28, 7), (28, 14), (30, 5), (30, 9),
(30, 15)}. It is easy to see that the 3-sets in S1 and S2 satisfy items 1-5. So,
we may assume from now on that n ≥ 34.

Let p = dq/4e and note that q = bn/kc ≤ n/k, hence

p = dq/4e ≤ dn/(4k)e < n/(4k) + 1. (4)

For 0 ≤ i ≤ p− 1 we define

Mi1 = {3i+ 1, 3n/2− 2− 12i,−(3n/2− 1− 9i)} and
Mi2 = {3i+ 2, 3n/2− 7− 9i,−(3n/2− 5− 6i)}. (5)

By construction, the member sums of Mi1 and of Mi2 are zero.

We also note that if n ≡ 0 (mod 4), by (4),

3i+ 1, 3i+ 2 ≤ 3(n− 4)/4 + 2

and

3n/2− 2− 12i ≥ 3n/2− 2− 12(p− 1) > 3n/2− 3n/k − 2.

So 3n/2− 2− 12i > 3(n− 4)/4 + 2. Similarly,

3n/2− 1− 9i, 3n/2− 7− 9i, 3n/2− 5− 6i > 3(n− 4)/4 + 2,

for 0 ≤ i ≤ p− 1.

If n ≡ 2 (mod 4), by (4),

3i+ 1, 3i+ 2 ≤ 3(n− 2)/4 + 1

and
3n/2− 2− 12i > 3n/2− 3n/k − 2 > 3(n− 2)/4 + 1.

Similarly,

3n/2− 1− 9i, 3n/2− 7− 9i, 3n/2− 5− 6i > 3(n− 2)/4 + 1,

for 0 ≤ i ≤ p− 1.

Hence, Mi1 and Mi2 each have one member in R1 and two members in R2.
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If 3n/2− 2− 12i = 3n/2− 5− 6j, then −4i+ 2j = −1 which is impossible.

If 3n/2− 7− 9i = 3n/2− 1− 9j, then 3(j − i) = 2 which is impossible.

Therefore the 2p 3-subsets Mi1 and Mi2 are disjoint and if a appears in this
collection of 3-subsets, −a does not appear in this collection.

We now define 2p 3-subsets each consisting of two members in R1 and one
member in R2. First let n ≡ 0 (mod 4). For 0 ≤ i ≤ p− 1 define

Ni1 = {3i+ 3p+ 1, (3n/4)− 2− 6i,−[(3n/4)− 1 + 3(p− i)]}
Ni2 = {3i+ 3p+ 2, (3n/4)− 4− 6i,−[(3n/4)− 2 + 3(p− i)]}. (6)

By construction, the member sums of Ni1 and of Ni2 are zero. We also note
that 3p+1+3i, 3n/4−2−6i, 3p+2+3i, 3n/4−4−6i ≤ 3(n−4)/4+2 and
3n/4−1+3(p− i), 3n/4−2+3(p− i) > 3(n−4)/4+2, where 0 ≤ i ≤ p−1.

Hence, Ni1 and Ni2 each have two members in R1 and one member in R2.

If 3p+ 1 + 3i = 3n/4−2−6j, then n/4 = p+ i+ 2j+ 1 ≤ 4p−2 < n/k+ 2,
by (4). If k ≥ 7, then n/4 < n/7 + 2 which is false because n ≥ 34. If
k = 5, then n/4 < n/5 + 2 is false for n ≥ 40.

If 3p+2+3i = 3n/4−4−6j, then n/4 = p+i+2j+2 ≤ 4p−1 < n/k+3, by
(4). If k ≥ 7, then 3p+2+3i = 3n/4−4−6i, then n/4 ≤ 4p−1 < n/4+3.
If k ≥ 7, then n/4 < n/7 + 3 is false because n ≥ 34. If k = 5, then
n/4 < n/5 + 3 is false for n ≥ 60. The remaining case is (n, k) = (40, 5) in
which case p = 2, giving the contradiction 10 < 4p− 1 = 7.

Therefore the 2p 3-subsets Ni1 and Ni2 are disjoint, and if a appears in this
collection of 3-subsets, −a does not appear in this collection.

Second, let n ≡ 2 (mod 4). For 0 ≤ i ≤ p− 1, define

Ni1 = {3i + 3p + 1, (3n− 2)/4− 6i,−[(3n− 2)/4 + 1 + 3(p− i)]}
Ni2 = {3i + 3p + 2, (3n− 2)/4− 2− 6i,−[(3n− 2)/4 + 3(p− i)]}. (7)

By construction, the member sums of Ni1 and of Ni2 are zero.

We also note that 3p+1+3i, (3n−2)/4−6i, 3p+2+3i, (3n−2)/4−2−6i ≤
3(n−2)/4+1 and (3n−2)/4+1+3(p−i), (3n−2)/4+3(p−i) > 3(n−2)/4+1,
where 0 ≤ i ≤ p− 1.

Hence, Ni1 and Ni2 each have two members in R1 and one member in R2.
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If 3p+1+3i = (3n−2)/4−6j, then (n+2)/4 = p+1+i+2j ≤ 4p−2 < n/k+2,
by (4), which is impossible because n ≥ 34.

If 3p + 2 + 3i = (3n − 2)/4 − 2 − 6j, then (n + 2)/4 = p + 2 + i + 2j ≤
4p−1 < n/k+ 3, by (4). If k ≥ 7, then (n+ 2)/4 < n/7 + 3 is false because
n ≥ 34, If k = 5, then (n + 2)/4 < n/5 + 3 is false for n ≥ 50. (There are
no exceptional cases, since n ≥ 34, n ≡ 2 (mod 4) and 5|n imply n ≥ 50.)

Therefore the 2p 3-subsets Ni1 and Ni2 are disjoint and if a appears in this
collection of 3-subsets, −a does not appear in this collection.

We now prove that no member of X appears more than once in the 4p 3-
subsets constructed above. First we prove this claim when n ≡ 0 (mod 4).
Consider the 3-subsets given in (5) and (6).

Obviously, 3i+ 1 6= 3p+ 1 + 3j and 3i+ 2 6= 3p+ 2 + 3j because p ≥ 1.

If 3i + 1 = (3n/4) − 2 − 6j, then n/4 = i + 2j + 1 ≤ 3p − 2 < 3n/4k + 1,
by (4), which is impossible because n ≥ 34.

If 3i+ 2 = 3n/4− 4− 6j, then n/4 = i+ 2j + 2 ≤ 3p− 1 < 3n/4k + 2, by
(4), which is also impossible because n ≥ 34.
If 3n/2− 2− 12i = 3n/4− 2 + 3p− 3j, then n/4 = p+ 4i− j ≤ 5p− 4 <
5n/4k + 1, which is impossible because n ≥ 34.

If 3n/2− 7− 9i = 3n/4− 1 + 3p− 3j, then n/4 = p+ 3i− j + 2 ≤ 4p− 1 <
n/k + 3, which is impossible because n ≥ 34.

If 3n/2−1−9i = 3n/4−1+3p−3j, then n/4 = p+3i−j ≤ 4p−3 < n/k+1,
by (4), which is impossible because n ≥ 34.

If 3n/2− 5− 6i = 3n/4− 2 + 3p− 3j, then n/4 = 2i− j + p+ 1 ≤ 3p− 1 <
3n/4k + 2, by (4), which is not possible if n ≥ 34.

Second, we prove the claim above when n ≡ 2 (mod 4).

Consider the 3-subsets given in (5) and (7).

If 3i+1 = (3n−2)/4−6j, then (n+2)/4 = i+2j+1 ≤ 3p−2 < 3n/4k+1,
which is impossible because n ≥ 34.

If 3i+2 = (3n−2)/4−2−6j, then (n+2)/4 = i+2j+2 ≤ 3p−1 < 3n/4k+2,
which is impossible because n ≥ 34.
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If 3n/2− 2− 12i = (3n− 2)/4 + 3p− 3j, then (n+ 2)/4 = p− j + 4i+ 1 ≤
5p − 3 < 5n/4k + 2, which is impossible for n 6= 10(2a + 1), where a is a
nonnegative integer. If n = 10(2a+1), then the inequality (n+2)/4 ≤ 5p−3
does not hold.

If 3n/2−1−9i = (3n−2)/4+1+3(p− j), then (n+2)/4 = 3i+p− j+1 ≤
4p− 2 < n/k + 2, which is impossible because n ≥ 34.

If 3n/2−7−9i = (3n−2)/4+1+3p−3j, then (n+2)/4 = 3i+p− j+3 ≤
4p < n/k + 4, which is impossible because n ≥ 34.

If 3n/2− 5− 6i = (3n− 2)/4 + 3(p− j), then (n+ 2)/4 = p− j + 2i+ 2 <
3p < 3n/4k + 3, which is impossible because n ≥ 34.

We are now ready to construct the sets S1 and S2. Recall that for a set of
numbers L we defined L′ = {−a | a ∈ L}. When n = kq, n = kq + k/3 or
n = kq + 2k/3 and q ≡ 2 (mod 4) the desired S1 and S2 are given by:

S1 = {Mi1 ,Mi2 ,M
′
i1
,M ′i2 | 0 ≤ i ≤ p− 1}

S2 = {Ni1 , Ni2 , N
′
i1
, N ′i2 | 0 ≤ i ≤ p− 1}. (8)

Then |S1| + |S2| = 4p. Now if n = kq, then 4p ≥ q, if n = kq + k/3,
then 4p ≥ q+ 1 because q is odd, if n = kq+ 2k/3 and q ≡ 2 (mod 4) then
4p = q+2 and if n = kq+2k/3 and q ≡ 0 (mod 4) then 4p = q. We now add
two 3-subsets to S1 and two 3-subsets to S2 to obtain |S1| = |S2| = q + 2.
Define

M̄i1 = Mi1 ∪ {{6p+ 1,
3n− 2

4
+ 3p+ 3,−(

3n− 2

4
+ 9p+ 4)}},

N̄i1 = Ni1 ∪ {{9p+ 1,
3n− 2

4
− 6p+ 3,−(

3n− 2

4
+ 3p+ 4)}}

and

S1 = {M̄i1 ,Mi2 , M̄
′
i1
,M ′i2 | 0 ≤ i ≤ p− 1}

S2 = {N̄i1 , Ni1 , N̄
′
i1
, N ′i2 | 0 ≤ i ≤ p− 1}. (9)

It is straightforward to see that S1 and S2 satisfy the required conditions.

Lemma 17. Let n > k ≥ 5 with k odd and n even such that k|3n. Let
n = kq + r, where 0 ≤ r < k, and

R3 = {±3i | 1 ≤ i ≤ n/2}.

Then there is a set S3 of disjoint 3-subsets of R3 such that
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1. the member sum of each 3-subset is zero;

2. if {a, b, c} ∈ S3, then {−a,−b,−c} ∈ S3;

3. |S3| ≥ q, q + 1, q + 2 if r = 0, k/3, 2k/3, respectively.

Proof. If n = 2k or (n, k) ∈
{

(12, 9), (20, 15), (28, 21)
}

define

S3 =
{
{3, 6,−9}, {−3,−6, 9}

}
.

For (n, k) ∈
{

(20, 5), (24, 9), (28, 7), (30, 9)
}

define

S3 =
{
{3, 27,−30}, {−3,−27, 30}, {6, 12,−18}, {−6,−12, 18}

}
.

For (n, k) = (30, 5) define

S3 =

{
{3,42,-45}, {6,33,-39}, {9,21,-30},
{-3,-42,45},{-6,-33,39},{-9,-21,30}

}
.

Hence, the statement is true for n ≤ 30. For n > 30 we proceed as follows:
Let α = b(n− 8)/12c. Define

Ti1 = {3 + 6i, 6α+ 9 + 6i,−(6α+ 12 + 12i)},

for 0 ≤ i ≤ α. Since

12 + 6α+ 12i ≤ 12 + 18α ≤ 12 + 18(n− 8)/12 = 3n/2,

it follows that Ti1 , T
′
i1
⊆ R3.

Now define

Ti2 = {12α+ 15 + 6i, 6α− 6− 12i,−(18α+ 9− 6i)},

for 0 ≤ i ≤ b(α − 2)/2c. See Figure 3 for illustration. Note that 6α − 6 −
12b(α− 2)/2c ≥ 6 and 18α+ 9 ≤ 3n/2. Hence, Ti2 , T

′
i2
⊆ R3. In addition,

the absolute value of the odd numbers used in Ti1 are {3, 9, . . . , 12α + 9}
and used in Ti2 are {12α+ 15, 12α+ 21, . . . , 18α+ 9}. The absolute value
of the even numbers used in Ti1 are {6α + 12 + 12i | 0 ≤ i ≤ α} and used
in Ti2 are {6α − 6 − 12i | 0 ≤ i ≤ b(α − 2)/2c}. Hence, the numbers used
in Ti1 and Ti2 are all different. Define

S3 = {Ti1 , T ′i1 | 0 ≤ i ≤ α} ∪ {Ti2 , T ′i2 | 0 ≤ i ≤ b(α− 2)/2c}.

It is straightforward to confirm that |S3| ≥ q, q+1, q+2 if r = 0, k/3, 2k/3,
respectively.
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{3, 45,−48} {−3,−45, 48}
{9, 51,−60} {−9,−51, 60}
{15, 57,−72} {−15,−57, 72}
{21, 63,−84} {−21,−63, 84}
{27, 69,−96} {−27,−69, 96}
{33, 75,−108} {−33,−75, 108}
{39, 81,−120} {−39,−81, 120}

{87, 30,−117}
{93, 18,−111}
{99, 6,−105}
{−87,−30, 117}
{−93,−18, 111}
{−99,−6, 105}

Li1 and L′i1 Li2 and L′i2

Figure 3: 20 disjoint 3-subsets in R3 when (n, k) = (90, 5)

Proposition 18. Let k be odd and n be even integers, k ≥ 3 and k|3n.
Then there exists an SMR(3n/k, n; k, 3).

Proof. In [9] it is proved that there is an SMR(n, n; 3, 3) for n ≥ 3. Hence,
the statement is true for k = 3. Now let k ≥ 5. LetA be the SMR(3, n) con-
structed in the proof of Lemma 12 with entries X = {±1,±2, . . . ,±3n/2}.
Let P1 = {C1, C2, . . . , Cn}, where Ci’s are the columns of A. Obviously,
P1 is a partition of X. As in the proof of Proposition 14, we construct a
partition P2 = {D1, D2, . . . , D`} of X, where ` = 3n/k, such that |Di| = k,
the sum of members in each Di is zero for 1 ≤ i ≤ `, and P1 and P2 are
near orthogonal. Then by Theorem 13, the result follows.

Since n = kq + r, where 0 ≤ r < k, it follows that r = 0, r = k/3 or
r = 2k/3 by Remark 15. We consider 3 cases.

Case 1: r = 0. So n = kq. Since k is odd and n is even, it follows
that q is even. By Lemma 16, there are sets S1 and S2 each consisting of q
3-subsets of R1 ∪ R2 having the properties given in this lemma. Consider
the set L1 = {x ∈ R1 | x is not in any 3-subset of S1 ∪ S2}. Then |L1| =
n − 3q = (k − 3)q. Note that k − 3 is even and the members of L1 are
of the form ±x for some x ∈ R1. Now we assign each 3-subset of S2 to
a (k − 3)-subset of L1 as follows: Let {ai, bi, ci} ∈ S2 with ai ∈ R2 and
bi, ci ∈ R1, where 1 ≤ i ≤ q. Let di be the member of R1 which is in the
same column as of ai. We partition the set L1 into q (k − 3)-subsets of
L1 such that if x is in a (k − 3)-subset, then −x is also in this subset. In
addition, the ith (k − 3)-subset misses di. It is obvious that a di can be
in at most one of the q (k − 3)-subsets. Let Di be the union of the ith
(k− 3)-subset and {ai, bi, ci}, where 1 ≤ i ≤ q. Note that, by construction,
the k-subsets Di are disjoint, the member sums of Di are zero and intersect
each column of A in at most one member for 1 ≤ i ≤ q.
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Now consider L2 = {x ∈ R2 | x is not in any 3-subset of S1 ∪ S2} and the
3-subsets in S1. By a similar method described above, we find k-subsets
Dq+1, Dq+2, . . . , D2q which are disjoint, the member sums of Di are zero
and intersect each column of A in at most one member for q + 1 ≤ i ≤ 2q.
In addition, the set {D1, D2, . . . , D2q} partitions R1 ∪R2.

Finally, consider the 3-subsets in S3 given in Lemma 17 and the subset L3

of R3 which consists of members of R3 which are not in any member of
S3. Then L3 can be partitioned into q subsets of size k − 3, say Qi, where
1 ≤ i ≤ q, such that if x ∈ Qi, then −x ∈ Qi. Pair q members of S3 with
Qi’s to obtain k-subset Di for 2q + 1 ≤ i ≤ 3q. Then the sum of members
of each Di is zero. In addition, {Di | 2q + 1 ≤ i ≤ 3q} is a partition of R3.
Hence, it has at most one member in common with each column of A.

Define P2 = {D1, D2, . . . , D`}, where ` = 3n/k = 3q. Then P2 is a partition
of X and is near orthogonal to the partition P1 = {C1, C2, . . . , Cn}. So by
Theorem 13, there exists an SMR(3n/k, n; k, 3).

Case 2: r = k/3. So n = kq+k/3. Since n is even and k is odd, it follows
that q is odd. Figure 4 displays an SMR(4, 12; 9, 3). In what follows, we
assume (n, k) 6= (12, 9). This case does not follow the construction given
below. By Lemma 16, there are sets S1 and S2, each containing q + 1
3-subsets of R1 ∪ R2 having the properties given in this lemma. In what
follows, we partition R1 ∪ R2 into 2q k-subsets and two k/3-subset such
that the member sum of each subset is zero.

Consider the set

L1 = {x ∈ R1 | x is not in any 3-subsets of S1 ∪ S2}

and
L2 = {x ∈ R2 | x is not in any 3-subset of S1 ∪ S2}.

Also consider the 3-subsets in S3 given in Lemma 17 and the subset L3 of
R3 which consists of members of R3 which are not in any member of S3.
Then

|L1| = |L2| = |L3| = n− 3(q + 1) = (k − 3)q + (k/3− 3).

It is easy to see that there exist 3-subsets Ei in Si, 1 ≤ i ≤ 3, such that
the subset E1∪E2∪E3 intersect each column of A in at most one member.
Using the method described in Case 1 for construction of (k − 3)-subsets
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of L1 we construct (k/3 − 3)-subsets E′i of Li for i = 1, 2, 3 such that if
x ∈ E′i, then −x ∈ E′i. In addition, no two members of

D` =

3⋃

i=1

(E′i ∪ Ei), where ` = 3q + 1

are in the same column of A. By construction the member sum of D` is
zero. Note that (k/3− 3) ≥ 0 because k - n and k is odd.

Consider the set Fi = Li \E′i, i = 1, 2, 3. Note that |Fi| = (k−3)q which is
even and the members of Fi can be paired as x,−x for some x ∈ Fi. Now
we pair the q (k − 3)-subsets of F1 with members of S2 \ {E2} to obtain
k-subsets, say D1

i , 1 ≤ i ≤ q as described in Case 1. We also pair the q
(k − 3)-subsets of F2 with members of S1 \ {E1} to obtain k-subsets, say
D2

i , 1 ≤ i ≤ q.

Finally, we pair the q (k − 3)-subsets of L3 with members of S3 \ {E3}, to
obtain k-subsets, say D3

i , 1 ≤ i ≤ q. Note that the member sum of each of
k-subset is zero. By construction,

P2 = {Di
1, D

i
2, . . . , D

i
q, D` | 1 ≤ i ≤ 3}

is a partition of X and is near orthogonal to the partition

P1 = {C1, C2, . . . , Cn}.

So by Theorem 13, there exists an SMR(3n/k, n; k, 3). See Example 19 for
illustration.

Case 3: r = 2k/3. So n = kq + 2k/3. Since n and 2k/3 are even and
k is odd, it follows that q is even. By Lemma 16, there are sets S1 and S2

each containing q + 2 3-subsets of R1 ∪ R2 having the properties given in
this lemma. We partition R1 ∪R2 into 2q k-subsets and four k/3-subset as
follows: Let L1, L2 and L3 be as defined in Case 2. Then

|L1| = |L2| = |L3| = n− 3(q + 2) = (k − 3)q + 2(k/3− 3).

It is easy to find two disjoint sets of 3-subsets E1
i and E2

i in Si, 1 ≤ i ≤ 3,
such that the subset E1

1 ∪E1
2 ∪E1

3 and E2
1 ∪E2

2 ∪E2
3 intersect each column

of A in at most one member.

Now we construct two disjoint sets of (k/3 − 3)-subset E′1i and E′2i of Li

for i = 1, 2, 3 such that if x ∈ E′1i or x ∈ E′2i , then −x ∈ E′1i or −x ∈ E′2i ,
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respectively. In addition, no two members of

D`−1 =

3⋃

i=1

(E′
1
i ∪ E1

i ) and D` =

3⋃

i=1

(E′
2
i ∪ E2

i ), where ` = 3q + 2,

are in the same column of A. By construction, the member sums of D`−1
and of D` are both zero.

Now we construct two (k/3−3)-subsets E1
i and E2

i of Li for i = 1, 2, 3 such
that if x ∈ E1

i or x ∈ E2
i , then −x ∈ E1

i or −x ∈ E2
i , respectively. In

addition, no two members of E1
1 ∪ E1

2 ∪ E1
3 or of E2

1 ∪ E2
2 ∪ E2

3 are in the
same column of A.

Consider the set Fi = Li \ (E′1i ∪E′2i ), i = 1, 2, 3. Note that |Fi| = (k−3)q,
which is even and the members of Fi can be paired as x,−x for some x ∈ Fi.

Now we pair the q (k − 3)-subsets of F1 with members of S2 \ {E1
2 , E

2
2}

to obtain k-subsets, say D1
i , 1 ≤ i ≤ q as described in Case 1. We also

pair the q (k − 3)-subsets of F2 with members of S1 \ {E1
1 , E

2
1} to obtain

k-subsets, say D2
i , 1 ≤ i ≤ q.

Finally, we pair the q (k− 3)-subsets of L3 with members of S3 \ {E1
3 , E

2
3},

to obtain k-subsets, say D3
i , 1 ≤ i ≤ q. Note that the member sum of each

of k-subset is zero.

By construction,

P2 = {Di
1, D

i
2, . . . , D

i
q, D`−1, D` | 1 ≤ i ≤ 3}

is a partition of X and is near orthogonal to the partition

P1 = {C1, C2, . . . , Cn}.
So by Theorem 13, there exists an SMR(3n/k, n; k, 3).

Example 19. In order to illustrate the construction given in Proposition
18, Case 2 let consider the case n = 30 and k = 9. Then

S1 = {{1, 43,−44}, {−1,−43, 44}, {2, 38,−40}, {−2,−38, 40}};
S2 = {{4, 22,−26}, {−4,−22, 26}, {5, 20,−25}, {−5,−20, 25}};
S3 = {{3, 15,−18}, {−3,−15, 18}, {9, 21,−30}, {−9,−21, 30}}.

So the unused members of R1, R2 and R3, respectively, are

L1 = {±7,±8,±10,±11,±13,±14,±16,±17,±19};
L2 = {±23,±28,±29,±31,±32,±34,±35,±37,±41};
L3 = {±6,±12,±24,±27,±33,±36,±39,±42,±45}.
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Note that since k = 9, then k/3− 3 = 0. So E1 = E2 = E3 = ∅. Define

D1
1 = {7,−7, 8,−8, 10,−10} ∪ {−5,−20, 25}

D2
1 = {11,−11, 13,−13, 14,−14} ∪ {−4,−22, 26}

D3
1 = {16,−16, 17,−17, 19,−19} ∪ {5, 20,−25}

D1
2 = {23,−23, 28,−28, 29,−29} ∪ {−1,−43, 44}

D2
2 = {31,−31, 32,−32, 34,−34} ∪ {−2,−38, 40}

D3
2 = {35,−35, 37,−37, 41,−41} ∪ {2, 38,−40}

D3
1 = {6,−6, 12,−12, 24,−24} ∪ {3, 15,−18}

D3
2 = {27,−27, 33,−33, 36,−36} ∪ {9, 21,−30}

D3
3 = {39,−39, 42,−42, 45,−45} ∪ {−9,−21, 30}

D10 = {1, 43,−44, 4, 22,−26,−3,−15, 18}.

It is straightforward to see that

P2 = {Di
1, D

i
2, D

i
3, D10 | 1 ≤ i ≤ 3}

is a partition of X = {±1. ± 2, . . . ,±45} and is near orthogonal to the
partition P1 = {C1, C2, . . . , C30}. So by Theorem 13, there exists an
SMR(10, 30; 9, 3).

1 16 −17 −12 12 −6 6 −3 3
17 −1 −16 13 5 −5 −13 8 −8

2 −2 4 −9 9 7 10 −11 −10
−18 −15 15 14 −4 −14 11 −7 18

Figure 4: An SMR(4, 12; 9, 3)

By Propositions 9, 11, 14 and 18 we achieve the main theorem of this paper.

Main Theorem 20. Let m,n, k be positive integers and 3 ≤ m, k ≤ n.
Then there exists an SMR(m,n; k, 3) if and only if mk = 3n.
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