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Abstract: In this paper we will analyze the expected value, variance and
distribution of the number of contacts as well as returns in 2-watermelons
without wall (i.e. two nonintersecting lattice paths with Dyck-steps). This
can be achieved via a bijection with weighted Motzkin paths and standard
techniques for generating functions.

We will also analyze the asymptotic behaviour of these distributions and
show that they behave like shifted negative binomial distributions with the
help of singularity analysis.

1 Introduction

The concept of vicious walkers, i.e. tuples of lattice paths where no two
paths touch each other, has been introduced by Fisher [4] to study wetting
and melting processes. These combinatorial objects have been of much in-
terest because they can also be used to model other phenomena, for example
DNA denaturation, as can be seen in [10, 11]. A similar notion are friendly
walkers, where the paths are allowed to touch but not to cross each other.
Watermelons are a special case of vicious (respectively friendly) walkers
where the underlying step set is the Dyck step set (i.e. (1,1) and (1,-1))
and there are certain conditions on the start- and endpoints of the paths.
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Several parameters of watermelons have already been studied. Exact and
asymptotic results for the number of p-watermelons, p denoting the number
of paths, have been studied by Guttmann, Owczarek and Viennot in [7].
These results were later extended to the number of p-watermelons in a half
plane (often also called wall constraint) in [8] and in a horizontal strip in [9]
by Krattenthaler, Guttmann and Viennot. The average height and range
of watermelons have been described by Fulmek and Feierl in [6, 2, 3].

The number of contacts between one Dyck path and a wall is also well
known. In [1] Deutsch showed that the average number of contacts of a Dyck
path of length n is 3n

n+2 and thus tends to a constant asymptotically. We
will see that the number of contacts between two paths behaves similarly.

In this paper we want to compute the average number of contacts and
returns occurring in a 2-watermelon and also the distributions of these
numbers. We impose no conditions on the region where the paths are
allowed to be. In Section 2 we will deal with expected value and variance
for the number of contacts, in Section 3 we will do the same for returns. In
Section 4 we will analyze the distribution of these two parameters and in
Section 5 we will study their asymptotic behaviour.

Definition 1.1. A lattice path is a polygonal line in Z×Z. Typically from
each point there is only a finite set of allowed moves.

In the following we will assume that all steps are of the form (1, b) with
b ∈ Z. Hence, our paths are essentially one-dimensional objects.

In some settings there are also constraints imposed on the region the path
is not allowed to leave. A common example is that the path is not allowed
to go below the x-axis, which is called a wall condition. In this paper we
will impose no such conditions on the paths.

Definition 1.2. A p-watermelon of length n is a family of Dyck paths
(lattice paths with step set S = {(1, 1), (1,−1)}) such that all paths start at
(0, 0) and end at (n, h) (where n ≡ h mod 2), where these paths may touch
but not cross each other. In other words, if (m, yi) denotes the coordinates
of the i-th path after m steps, we have that y1 ≤ y2 ≤ · · · ≤ yp for all m.

Definition 1.3. The y-coordinate of the endpoint (n, h) is called the devi-
ation of the watermelon.
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Many authors also use the following definition of watermelons (see for ex-
ample [7, 8, 9, 6, 2, 3]).

Definition 1.4. A p-watermelon of length n is a family of p nonintersecting
Dyck paths P1, . . . , Pp in Z2 with

1. Pi starts at (0, 2i− 2) and ends at (n, h+ 2i− 2) where n ≡ h mod 2.

2. no two paths have points in common.

By a simple shift argument (moving the i-th path 2i− 2 units up) we can
see that Definition 1.2 and 1.4 are equivalent. In this paper we will use
Definition 1.2, because with this definition it becomes more visible what a
contact is.

For the rest of this paper, we will only consider 2-watermelons with no wall
and arbitrary deviation.

2 The average number and variance of con-
tacts

Definition 2.1. A contact in a 2-watermelon is a point (not counting the
starting point) where both paths occupy the same lattice point, i.e. all points
(m, y) such that (m, y) lies both on the lower path P1 and the upper path
P2.

Note that for more than two paths there are several possible ways to define
contacts – either as points lying on all of the paths or as a point lying on
two (or more) of the paths, but not necessarily on all of them. The first
version is much more restrictive than the second one, each point that is a
contact in the first sense is also a contact in the second sense. One could
also count weighted contacts, i.e. if two paths meet it is counted as a simple
contact with weight c, if three paths meet it is counted as double contact
with weight d and so on.
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2.1 Average number of contacts

Theorem 2.2. Let Xn be the random variable counting the number of
contacts in a 2-watermelon without wall, where the watermelon is chosen
uniformly at random among all possible 2-watermelons of length n and ar-
bitrary deviation. Then

EXn =
(7n+ 13)n

(n+ 4)(n+ 3)
= 7− 36

n
+

168

n2
+O

(
1

n3

)
.

Before giving the proof of Theorem 2.2 let us observe the following bijection,
which turns out to be very helpful for this proof, but also for other proofs
in this paper. We can construct a bijection between 2-watermelons with
arbitrary deviation and weighted Motzkin paths that start and end on the
x-axis, but never cross the x-axis in the following way:

step of the upper path ↗ ↗ ↘ ↘
step of the lower path ↘ ↗ ↘ ↗

step of the Motzkin path ↗ u→ d→ ↘

These are weighted Motzkin paths where there are two different kinds of
level steps. The height of the Motzkin path corresponds to (half of) the
distance of the paths in the watermelon. Because the paths may not cross,
this distance may not be negative, i.e. the Motzkin path may never cross the
x-axis. The condition that both paths end on the same height corresponds
to the condition that the Motzkin path has to end on the x-axis. A contact
between the two paths occurs each time the Motzkin path touches the x-
axis. Thus we want to count the number of returns of the Motzkin path to
the x-axis.

Now, let F denote the generating function. A Motzkin path can be con-
structed as a sequence of the following objects: a level step with weight u,
a level step with weight d, an up-step and a down step and a Motzkin path
in-between.

Figure 1 illustrates the bijection between 2-watermelons with arbitrary de-
viation and Motzkin paths with wall. Contacts are marked with black dots.
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Figure 1: The bijection between 2-watermelons and weighted Motzkin paths

Using this bijection and the decomposition “a Motzkin path is a sequence
of arches (i.e., lattice paths of size > 0 that touch the x-axis only at the
beginning and the end and stay above the x-axis otherwise) and level steps”
we get a functional equation:

F (z) =
1

1− z2F (z)− 2z
.

Multiplying with the denominator and solving the quadratic equation we
get

F (z) =
1− 2z −

√
1− 4z

2z2
(1)

Technically we would get two solutions, but the solution with +
√

1− 4z
does not make sense from a combinatorial point of view.

Proof of Theorem 2.2: Using the above bijection and introducing a new
variable u, counting the number of contacts of the Motzkin-path with the
x-axis, we get

F (z, u) =
1

1− u(z2F (z, 1) + 2z)
.

Using F (z, 1) = F (z) and (1) we obtain

F (z, u) =
2

2− u− 2uz + u
√

1− 4z
(2)

Differentiating with respect to u and evaluating at 1 we get

∂uF (z, u)|u=1 =
2(1 + 2z −

√
1− 4z

(1− 2z −
√

1− 4z)2
. (3)

By rationalizing the fration we can rewrite this as

∂uF (z, u)|u=1 =
P (z) + (2z2 + 4z − 2)

√
1− 4z

4z4
,

where P (z) = 2− 8z + 2z2 + 4z3.
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The average number of contacts of a watermelon of length n (with deviation,
without wall) is given by

EXn =
[zn]∂uF (z, u)|u=1

[zn]F (z, 1)
.

By expanding
√

1− 4z with the binomial series we can read off coefficients
from (1) and obtain

[zn]F (z, 1) = Cn+1 =
1

n+ 2

(
2n+ 2

n+ 1

)
, (4)

where Cn := 1
n+1

(
2n
n

)
is the n-th Catalan number.

To obtain [zn]∂uF (z, u)|u=1 we use that

[zn]
√

1− 4z = −2Cn−1.

We have

[zn]∂uF (z, u)|u=1 = [zn]
2− 8z + 2z2 + 4z3

4z4
+ [zn]

(2z2 + 4z − 2)
√

1− 4z

4z4

=
1

2
[zn+2]

√
1− 4z + [zn+3]

√
1− 4z − [zn+4]

1

2

√
1− 4z

= −Cn+1 − 2Cn+2 + Cn+3.

Now we can compute

EXn =
Cn+3 − 2Cn+2 − Cn+1

Cn+1

Using the definition of the Catalan numbers and pulling out the common
factor 1

n+2

(
2n+2
n+1

)
this becomes after some simplifications

EXn =
(7n+ 13)n

(n+ 4)(n+ 3)
. (5)

Expanding (5) as a series we get the assertion of Theorem 2.2. �

Corollary 2.3. Let X := limn→∞Xn. Then

EX = 7,

i.e. the average number of contacts in a 2-watermelon is asymptotically
constant.
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2.2 Variance of the number of contacts

Theorem 2.4. Let Xn be defined as in Theorem 2.2. Then the variance
of the number of contacts in a 2-watermelon is given by

VXn =
12n(2n5 + 13n4 + 17n3 − 7n2 − 19n− 6)

(n+ 3)2(n+ 4)2(n+ 5)(n+ 6)

= 24− 444

n
+

5136

n2
+O

(
1

n3

)
.

Proof: The variance of the number of contacts in a watermelon of length n
is given by

VXn =
[zn]∂2uuF

[zn]F
+

[zn]∂uF

[zn]F
−
(

[zn]∂uF

[zn]F

)2
∣∣∣∣∣
u=1

,

where F is shorthand for F (z, u).

Since the last two terms can be computed via (5) it remains to compute

G(z) := ∂2uuF (z, u)|u=1 =
P1(z)

√
1− 4z − P2(z)

z6
.

where

P1(z) = −z4 − 4z3 − z2 + 4z − 1

and

P2(z) = 2z5 − 3z4 + 6z3 + 7z2 − 6z + 1.

Reading off coefficients we get

[zn]G(z) = 2Cn+1 + 8Cn+2 + 2Cn+3 − 8Cn+4 + 2Cn+5.

Hence
[zn]∂2uuF (z, 1)

[zn]F (z, 1)
=

66n4 + 276n3 + 54n2 + 396n

(n+ 3)(n+ 4)(n+ 5)(n+ 6)
. (6)

Combining (5) and (6) we get

VXn =
12n(2n5 + 13n4 + 17n3 − 7n2 − 19n− 6)

(n+ 3)2(n+ 4)2(n+ 5)(n+ 6)

= 24− 444

n
+

5136

n2
+O

(
1

n3

)

which completes the proof. �
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3 Returns and common steps

Definition 3.1. A return is a point where the two paths of a watermelon
meet, but have been apart one step before. In the Motzkin path setting this
corresponds to a step that ends on the x-axis but does not start on the x-
axis. In our case, the only possible return is being at height 1 and then
making a down step. Level steps at height 0 do not count as return.

Definition 3.2. A common step occurs if both paths of a watermelon are
at the same height and then take either an up-step or a down-step together.
In the Motzkin path setting this corresponds to a level step at height 0.

Obviously we have that the number of returns plus the number of common
steps is the number of contacts. Thus it is sufficient to analyze only one
of these numbers. We will consider returns. Their average number and
variance can be computed in a similar manner as in the previous section.

Figure 2: Returns and common steps in a 2-watermelon (with deviation
-1). Returns are marked in black, common steps are marked in green.

3.1 Average number of returns

Theorem 3.3. Let Yn be the random variable counting the number of re-
turns in a 2-watermelon without wall, where the watermelon is chosen uni-
formly at random among all possible 2-watermelons of length n and arbi-
trary deviation. Then

EYn =
3n(n− 1)

(n+ 4)(n+ 3)
= 3− 24

n
+

132

n2
+O

(
1

n3

)
.
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Proof: The generating function that counts returns is given by

F (z, x) =
1

1− (xz2F (z, 1) + 2z)

where x encodes the number of returns to the x-axis. Here we only have
to mark contacts occurring from a down step, thus the +2z-part remains
unmarked. Plugging in the expression of F (z, 1) we computed in (1) we
obtain

F (z, x) =
2

2− x(1− 2z −
√

1− 4z)− 4z
. (7)

Derivating with respect to x and plugging in x = 1 this becomes

∂xF (z, x)|x=1 =
2(1− 2z −

√
1− 4z)

(1− 2z +
√

1− 4z)2
. (8)

This looks very similar to what we had in formula (3) when computing
contacts. The only difference is that we now have (1 − 2z −

√
1− 4z)

instead of (1 + 2z −
√

1− 4z) in the numerator.
Multiplying out and then rationalizing the fraction, we get

∂xF (z, x)|x=1 =
(−3z2 + 4z − 1)

√
1− 4z + P3(z)

2z4
,

where P3(z) = 1− 6z + 9z2 − 2z3. Now we can read off coefficients:

[zn]∂xF (z, x)|x=1 = [zn]
(−3z2 + 4z − 1)

√
1− 4z

2z4

= 3Cn+1 − 4Cn+2 + Cn+3

Now we can compute the average number of returns in a watermelon of
length n via

Er =
[zn]∂xF (z, x)|x=1

[zn]F (z, 1)
=

3
n+2

(
2n+2
n+1

)
− 4

n+3

(
2n+4
n+2

)
+ 1

n+4

(
2n+6
n+3

)

1
n+2

(
2n+2
n+1

) .

Pulling out common factors we get that the above is

Er =
3n(n− 1)

(n+ 4)(n+ 3)
= 3− 24

n
+

132

n2
+O

(
1

n3

)
, (9)

which completes the proof. �
Corollary 3.4. A 2-watermelon has asymptotically on average 7 contacts
and 3 returns. Thus it has on average asymptotically 7 − 3 = 4 common
steps.
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3.2 Variance of the number of returns

Theorem 3.5. Let Yn be defined as in Theorem 3.3. Then the variance of
the number of returns in a 2-watermelon is given by

VYn =
4n(n− 1)(n4 − 4n3 + 4n2 + 279n+ 450)

(n+ 3)2(n+ 4)2(n+ 5)(n+ 6)

= 4− 120

n
+

2004

n2
+O

(
1

n3

)
.

Proof: The variance of the number of returns is given by

VYn =
[zn]∂2xxF (z, 1)

[zn]F (z, 1)
+

[zn]∂xF (z, 1)

[zn]F (z, 1)
−
(

[zn]∂xF (z, 1)

[zn]F (z, 1)

)2

.

Since the last two terms in this expression can be obtained with the help
of (9) it remains to compute

∂2xxF (z, x)|x=1 =
P4(z) + P5(z)

√
1− 4z

z6
,

where

P4(z) = 1− 10z + 35z2 − 50z3 + 25z4 − 2z5

and

P5(z) = −5z4 + 20z3 − 21z2 + 8z − 1.

Thus we get that

[zn]∂2xxF (z, 1)

[zn]F (z, 1)
=

10n4 − 60n3 + 110n2 − 60n

(n+ 3)(n+ 4)(n+ 5)(n+ 6)
. (10)

Combining (9) and (10) we get that the variance of the number of returns
in a watermelon of size n is given by

VYn =
4n(n− 1)(n4 − 4n3 + 4n2 + 279n+ 450)

(n+ 3)2(n+ 4)2(n+ 5)(n+ 6)
.

Asymptotic expansion of this expression finishes the proof of this theorem.
�
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4 Distributions

4.1 The number of contacts

Theorem 4.1. Let Xn be the random variable counting the number of
contacts in a 2-watermelon without wall, where the watermelon is chosen
uniformly at random among all possible 2-watermelons of length n and ar-
bitrary deviation. Then the probability that such a watermelon has exactly
k contacts is given by

P(Xn = k) =
1
2k

∑n
`=0

∑k
m=0 S(k, l,m)

1
n+2

(
2n+2
n+1

) ,

where

S(k, l,m) =

(
k

m

)(
m

n− `

)
2n+`(−1)k−m+`

(k−m
2

`

)
.

Proof: In order to figure out the distribution of the number of contacts we
need to consider

P(Xn = k) =
[znuk]F (z, u)

[zn]F (z, 1)

where Xn is the random variable counting the number of contacts in a 2-
watermelon of length n (without wall). We rationalize (2) to get rid of the
square root in the denominator

F (z, u) =
2

2− u− 2uz + u
√

1− 4z

=
1

2
· 2− u− 2uz − u

√
1− 4z

u2z2 + 2u2z − 2uz − u+ 1
.

The idea is to decompose

R(z, u) :=
1

u2z2 + 2u2z − 2uz − u+ 1

=
a(z)

1− α(z)u
+

b(z)

1− β(z)u

by partial fraction decomposition. From this expression we then can read
off the coefficient of uk.
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The zeroes of the denominator (as a quadratic polynomial in u) are:

u1(z) =
1 + 2z +

√
1− 4z

2z(z + 2)
and u2(z) =

1 + 2z −
√

1− 4z

2z(z + 2)
.

Thus we have

R(z, u) =
1√

1− 4z

(
1

u2(z)− u −
1

u1(z)− u

)

=
1√

1− 4z

(
1

u2(z)(1− 1
u2(z)

u)
− 1

u1(z)(1− 1
u1(z)

u)

)
.

Now we can read off coefficients using [uk] 1
1−cu = ck and obtain

[uk]R(z, u) =
1√

1− 4z

(
1

u2(z)k+1
− 1

u1(z)k+1

)
.

After plugging in u1(z) and u2(z) and some simplifciations we obtain

[uk]F (z, u) =
2

2
[uk]R(z, u)− 1 + 2z +

√
1− 4z

2
[uk−1]R(z, u)

=
(1 + 2z −

√
1− 4z)k

2k
. (11)

To read off the coefficient of [zn] of this expression, the expansion into a
binomial series turns out to be helpful:

(1 + 2z −
√

1− 4z)k

2k
=

1

2k

k∑

m=0

(
k

m

)
(1 + 2z)m(−1)k−m

√
1− 4z

k−m

=
1

2k

k∑

m=0

(−1)k−m
(
k

m

)( m∑

r=0

(
m

r

)
2rzr

)
∑

`≥0

(k−m
2

`

)
(−4z)`


 .

If we want to read off [zn], the variables r and ` have to add up to n. Thus

[znuk]F (z, u) =
1

2k

n∑

`=0

k∑

m=0

S(k, l,m). (12)

Dividing (12) by the number of all watermelons of length n as given by (4)
we obtain the statement of the theorem. �
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4.2 The number of returns

Theorem 4.2. Let Yn be the random variable counting the number of con-
tacts in a 2-watermelon without wall, where the watermelon is chosen uni-
formly at random among all possible 2-watermelons of length n and arbi-
trary deviation. Then the probability that such a watermelon has exactly k
returns is given by

P(Yn = k) =

∑n
j=0A

(k)
j B

(k)
n−j

1
n+2

(
2n+2
n+1

) .

where

A(k)
n :=

∑

0≤`≤n
0≤m≤k

(
k

m

)(
m

n− `

)(k−m
2

`

)
2n+l−k(−1)k−m+n

and

B(k)
n := [zn]

1

(1− 2z)k+1
=

(
n+ k

n

)
2n.

Proof: We want to compute

P(Xn = k) =
[znxk]F (z, x)

[zn]F (z, 1)
.

By rationalizig the fraction (7) we get

F (z, x) =
2− 4z − x(1− 2z +

√
1− 4z)

2(x2z2 − 4xz2 + 4xz + 4z2 − x− 4z + 1)
.

Again, we apply a partial fraction decomposition to

R(z, x) =
1

x2z2 − 4xz2 + 4xz + 4z2 − x− 4z + 1

and read off coefficients from that. The zeros of the denominator are

x1(z) =
(1− 2z)(1− 2z −

√
1− 4z)

2z2
]

and

x2(z) =
(1− 2z)(1− 2z +

√
1− 4z)

2z2
.
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We obtain

R(z, x) =
1

(1− 2z)
√

1− 4z

(
1

x1(z)(1− x
x1(z)

)
− 1

x(z)(1− x
x2(z)

)

)
.

Reading off coefficients we obtain

[xk]R(z, x) =
1

(1− 2z)
√

1− 4z

(
1

x1(z)k+1
− 1

x2(z)k+1

)

=
(1− 2z +

√
1− 4z)k+1 − (1− 2z −

√
1− 4z)k+1

2k+1(1− 2z)k+2
√

1− 4z
.

Rewrite (7) as

F (z, x) = (1− 2z)R(z, x)− 1− 2z +
√

1− 4z

2
xR(z, x),

reading off the coefficient [xk] and simplifying, we obtain

[xk]F (z, x) =
(1− 2z −

√
1− 4z)k

2k(1− 2z)k+1
= A(k)(z)B(k)(z),

where

A(k)(z) =
(1− 2z −

√
1− 4z)k

2k

and

B(k)(z) =
1

(1− 2z)k
.

Expanding

B(k)
n := [zn]

1

(1− 2z)k+1
=

(
n+ k

n

)
2n

in a binomial series and a similar reasoning as in the previous subsection
yields

A(k)
n := [zn]A(k)(z) =

1

2k

n∑

`=0

k∑

m=0

(
k

m

)(
m

n− `

)(k−m
2

`

)
2n+`(−1)k−m+n.

Note that A
(k)
n looks quite similar to (12), the only difference between

these expressions are the powers of −1, namely (−1)k−m+n and (−1)k−m+`

respectively.
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Using the Cauchy-Product of A and B we obtain

[znxk]F (z, x) =

n∑

j=0

A
(k)
j B

(k)
n−j

Dividing this by the number of all watermelons of length n given by (4) we
get the assertion of the theorem. �

5 Asymptotic behaviour of the distributions

In this section we are going to analyze the asymptotic behaviour of the dis-
tributions of contacts and returns. The theoretical background of this sec-
tion are the methods for coefficient asymptotics from Flajolet and Sedgewick
[5], the proof of the following theorem and more details can be found there.

Theorem 5.1. Let f(z) = (1 − z)−α with α ∈ C \ Z≤0. Then the n-th
coefficient of f is asymptotically equal to

[zn]f(z) ∼ nα−1

Γ(α)

(
1 +

∞∑

k=1

ek
nk

)

where ek is a polynomial in α of degree 2k. In particular

[zn]f(z) ∼ nα−1

Γ(α)

(
1 +O

(
1

n

))
.

5.1 Contacts

Theorem 5.2. Let the random variable Xn counting the average number of
contacts be defined as in Theorem 2.2. Then X := limn→∞Xn is distributed
as follows

P(X = 0) = 0

and
P(X = k) = P(B = k − 1) for k ≥ 1

where B is a negative binomial distributed random variable with parameters
r = 2 and p = 3

4 , i.e.

P(B = k) =

(
r + k − 1

k

)
pk(1− p)r.
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Proof: We want to compute [znuk]F (z, u) for n → ∞ and k fixed. The
function

[uk]F (z, u) =
(1 + 2z −

√
1− 4z)k

2k

has its dominant singularity at z = 1
4 . Using Theorem 5.1, we obtain

[znuk]F (z, u) ∼ − k

2k

(
3

2

)k−1
n−3/24n

Γ(− 1
2 )

=
k3k−14n

4k
√
πn3

for n→∞. Using Cn ∼ 4n√
πn3

(
1 +O

(
1
n

))
we obtain

P(Xn = k) =
[znuk]F (z, u)

Cn+1
∼ k3k−1

4k+1

(
1 +O

(
1

n

))

for n → ∞. Observing that P(X = 0) = 0 and introducing a new random
variable B with P(X = k) = P(B = k − 1) we see that B is a negative
binomial distributed random variable with parameters r = 2 and p = 3

4 ,
which finishes the proof. �

5.2 Returns

Theorem 5.3. Let the random variable Yn counting the number of returns
be defined as in Theorem 3.3. Then Y := limn→∞ Yn is distributed as
follows

P(Y = 0) = 0

and
P(Y = k) = P(B̃ = k − 1) for k ≥ 1

where B̃ is a negative binomial distributed random variable with parameters
r = 2 and p = 1

2 .

Proof: The proof of this theorem is similar to the proof of Theorem 5.2.
Now we look at [znxk]F (z, x) for n→∞ and k fixed. The function

F (z, x) =
(1− 2z −

√
1− 4z)k

2k(1− 2z)k

has singularities at z = 1
4 and z = 1

2 . The singularity at z = 1
4 is the

dominant one, the other singularity at z = 1
2 lies outside of every ∆-region
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around z = 1
4 . By expanding the denominator with the binomial series and

by using Theorem 5.1 we obtain

[znxk]F (z, x) ∼ − k

2k
· ( 1

2 )k

( 1
2 )k+1

· n
−3/24n

Γ(− 1
2 )

=
k4n

2k−1
√
n3π

for n→∞. We obtain

P(Xn = k) =
[znxk]F (z, x)

Cn+1
∼ k

2k+1

(
1 +O

(
1

n

))

for n → ∞. Introducing the random variable B̃ as in the theorem and
observing that it indeed is negative binomial distributed with parameters
r = 2 and p = 1

2 concludes the proof. �

6 Conclusion

We have studied the distribution of contacts and returns in 2-watermelons
without wall and arbitrary deviation via a bijection with weighted Motzkin
paths and derived both exact and asymptotic results. We discovered that
the expected value of these parameters tends to a finite limit and that the
asymptotic distribution behaves like a shifted negative binomial distribu-
tion.

The deviation, i.e. the height of the endpoints of our watermelons was ar-
bitrary. A natural question would be to ask what happens for watermelons
with a fixed deviation. This can be encoded in the following way: let z
mark the length of the watermelon (or Motzkin path) and y the deviation.
The deviation is then given by the number of level steps marked with u
minus the number of level steps marked with d. Taking this into account
when constructing the functional equation we obtain

F (z, y) =
1

1− (z2F + (y + y−1)z)
.

This then could be used to derive similar results for watermelons with a
given deviation.
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