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Abstract: In 1978, Robert Kibler at the National Security Agency in
Fort Meade, Maryland published a description of all noncyclic difference
sets with k < 20. Kibler’s decision to stop his extensive computer search
for difference sets at block size 19 was motivated partly by the difficult
barrier at k = 20, the difference sets with parameters (96, 20, 4). In this
paper, we announce the completion of the search for all (96, 20, 4) differ-
ence sets, relying on the computer software GAP and the work of numerous
authors over the last few decades. The difference sets and the symmetric
designs they create are summarized and links are provided to webpages
which explicitly list the difference sets. In addition, we use these (96, 20, 4)
difference sets to construct all (96, 20, 4, 4) and (96, 19, 2, 4) partial differ-
ence sets and briefly look at the corresponding strongly regular graphs.
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1 Introduction

A (v, k, λ) difference set is a subset D of size k in a group G of order v with
the property that for every nonidentity g ∈ G, there are exactly λ ordered
pairs (x, y) ∈ D×D such that xy−1 = g. One may identify the set D with
an element D̂ in the group ring Z[G]. In this case write:

D̂ =
∑

g∈D
g, D̂(−1) =

∑

g∈D
g−1, Ĝ =

∑

g∈G
g

and then D is a difference set if the group ring element D̂ satisfies the
equation

D̂D̂(−1) = (k − λ)1G + λĜ. (1)

Two difference sets D1, D2 ⊆ G are equivalent if there is an element g ∈ G
and an automorphism ϕ of G such that D1 = {gϕ(d) : d ∈ D2}. Difference
sets are inequivalent if either they are subsets of nonisomorphic groups or if
they are subsets in a common group G but are not equivalent in G. When
we refer to finding all difference sets in a group G we typically mean finding
a collection of difference sets in G that contains exactly one representative
from each equivalence class in the complete collection of all difference sets
in G.

If a group G has a difference set D then {gD : g ∈ G} is the set of blocks of
a symmetric (v, k, λ) design with point set G. On this design G acts by left
multiplication as a sharply transitive automorphism group. Conversely, any
symmetric design with a sharply transitive automorphism group on points
is isomorphic to a design constructed from the set of left translates of a
difference set. While equivalent difference sets always give rise to isomor-
phic designs, inequivalent difference sets may also give rise to isomorphic
designs, even if the difference sets belong to nonisomorphic groups. A sym-
metric design is said to be genuinely non-abelian if it has no abelian group
acting sharply transitively on the points of the design. For more details on
symmetric designs and difference sets, the reader may consult [9, 20, 21, 24].

Difference sets with parameters (qd+1( qd+1−1
q−1 +1), qd qd+1−1

q−1 , qd qd−1
q−1 ), where

q = pm is a prime power, are known as McFarland difference sets. For
further discussion on McFarland difference sets, see [12, 27]. For q = 4 and
d = 1 we obtain the (96, 20, 4) parameters.

There are 231 groups of order 96. It is known that exactly 94 of these groups
admit (96, 20, 4) difference sets [18]. Previously, all (96, 20, 4) difference sets
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were constructed in the 75 groups which have normal subgroups of both
order 3 and order 4 [4]. In this paper we complete the construction of
all (96, 20, 4) difference sets in the remaining 19 groups. So, all (96, 20, 4)
difference sets are known. The 637 difference sets in these 19 groups provide
197 nonisomorphic symmetric (96, 20, 4) designs, which brings the total
number of inequivalent (96, 20, 4) difference sets to 2627 and nonisomorphic
symmetric (96, 20, 4) designs from these difference sets to 583. Twenty of
the 583 designs can be constructed from an abelian group. The remaining
563 designs are genuinely non-abelian. We also use the complete collection
of (96, 20, 4) difference sets to construct all (96, 20, 4, 4) and (96, 19, 2, 4)
partial difference sets and briefly look at the corresponding strongly regular
graphs with parameters (96, 20, 4, 4) and (96, 19, 2, 4), of which there are 58
and 12, respectively, up to isomorphism. All of the strongly regular graphs
arise from non-abelian groups.

2 Summary of the literature
on (96, 20, 4) difference sets

In this paper we will refer to groups as they appear in the SmallGroups

library of the software package GAP [14]. For instance, when we work in
groups of order 96 and write [96, 14] we mean group number 14 of order
96 in the GAP library.

A large number of authors have contributed to the search for (96, 20, 4)
difference sets over the last few decades. Here we give a summary of the
results known before this paper by restating and updating the summary
from [4].

Of the 231 groups of order 96, only 7 are abelian. A result of Turyn [33] rules
out the existence of difference sets in the abelian groups [96, 2] ∼= Z96

and [96, 59] ∼= Z2 ⊕ Z48. Arasu, Davis, Jedwab, Ma, and McFarland
[6] ruled out the existence of difference sets in the two additional abelian
groups [96, 46] ∼= Z4 ⊕ Z24 and [96, 176] ∼= Z2 ⊕ Z2 ⊕ Z24.

For q a prime power and d a positive integer, McFarland [27] constructed dif-

ference sets with parameters (qd+1( qd+1−1
q−1 +1), qd qd+1−1

q−1 , qd qd−1
q−1 ) in abelian

groups G with an elementary abelian subgroup H of order qd+1. McFar-
land’s construction used hyperplanes in the projective space of dimension

d over GF (q) to construct a special set (spread) of qd+1−1
q−1 subsets, each of
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size qd, sitting in H. These subsets were then distributed across cosets of
H in G. McFarland’s construction with q = 4 and d = 1 takes five subsets
H1, H2, . . . ,H5 of the elementary abelian group H ∼= Z4

2 and spreads them
across five of six cosets of H in G. This construction gives (96, 20, 4) differ-
ence sets in the two abelian groups [96, 231] ∼= Z4

2 ⊕ Z6 and [96, 220]
∼= Z3

2 ⊕ Z12. Arasu and Sehgal [7] then finished the existence question for
abelian groups of order 96 by constructing a (96, 20, 4) difference set in the
last abelian group, [96, 161] ∼= Z2 ⊕ Z4 ⊕ Z12.

Dillon [12] generalized McFarland’s construction to work for a larger set of
groups, including non-abelian groups. He constructed McFarland difference
sets in groups that have an elementary abelian normal subgroup of order
qd+1 in their center. Dillon’s construction gives (96, 20, 4) difference sets in
the non-abelian groups [96, 218] and [96, 230].

Undergraduate students Nichols [28] (under the supervision of Harriet Pol-
latsek, Mt. Holyoke College) and Axon and Gotman [8] (under the super-
vision of Emily Moore, Grinnell College) used (16, 6, 2) difference sets to
construct images of (96, 20, 4) difference sets in groups of order 32 and then
used those images to construct (96, 20, 4) difference sets in [96, 221] and
[96, 231].

In his doctoral dissertation, AbuGhneim [3] concentrated on generalizing
previous work to non-abelian groups. AbuGhneim and Smith [2, 3] con-
structed (96, 20, 4) difference sets in groups that have Z4

2 as a normal sub-
group. There are 19 such groups, which are [96, i] where i is in the
set

{70, 159, 160, 162, 167, 194, 195, 196, 197, 218, 219, 220, 221, 226, 227,
228, 229, 230, 231}.

In addition, AbuGhneim and Smith ruled out any group G which has Z2⊕
Z24, Z2 ⊕ D24, (Z3 o Z8)⊕ Z2, or D48 as a factor group. This result rules
out difference sets in [96, i] where i is in the set

{6, 7, 8, 9, 11, 18, 19, 25, 28, 37, 46, 48, 55, 59, 60, 76, 80, 81, 82, 89, 93,
102, 104, 109, 110, 111, 112, 115, 116, 127, 132, 134, 137, 176, 207}.

In a later paper, AbuGhneim and Smith [4] enumerated all (96, 20, 4) differ-
ence sets in groups that have normal subgroups of both order 3 and order
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4 by using the software GAP to build images of hypothetical (96, 20, 4) dif-
ference sets in groups of order 32 and 24 and exhaustively searching their
preimages. There are 195 groups of order 96 that have normal subgroups of
both order 3 and order 4. Among these 195 groups, 75 admit (96, 20, 4) dif-
ference sets and the other 120 groups do not admit any (96, 20, 4) difference
sets.

Golemac, Mandić, and Vučičić [18, 17] constructed (96, 20, 4) difference sets
in 27 non-abelian groups. These groups are [96, i] where i is in the set

{13, 41, 64, 70, 71, 72, 78, 87, 144, 147, 159, 160, 167, 174, 185, 186,
188, 190, 194, 195, 196, 197, 209, 226, 227, 228, 229}.

This work was extended in [19], where difference sets were constructed
assuming that the group G has an automorphism group isomorphic to a
direct product of an abelian group of order 16 and Z3. Finally, Braić,
Golemac, Mandić, and Vučičić [10] finished resolving the existence problem
of (96, 20, 4) difference sets in all groups of order 96 by constructing a
(96, 20, 4) difference set in the last group, [96, 68].

Hence, a group G of order 96 admits (96, 20, 4) difference sets if and only
if G is one of the groups [96, i] where i is a member of the set

{10, 13, 14, 20, 41, 51, 52, 54, 64, 68, 70, 71, 72, 75, 77, 78, 79, 83, 84,
85, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 105, 129,
130, 131, 133, 135, 136, 141, 142, 143, 144, 145, 146, 147, 151, 152,
159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
174, 175, 177, 185, 186, 188, 190, 191, 194, 195, 196, 197, 202, 205,
206, 209, 210, 212, 218, 219, 220, 221, 223, 225, 226, 227, 228, 229,
230, 231}.

The number of groups of order 96 that admit (96, 20, 4) difference sets is
94. In [4] all (96, 20, 4) difference sets up to equivalence were constructed
in 75 of these groups (the groups with normal subgroups of both order 3
and order 4). In this paper, we find all (96, 20, 4) difference sets in the
remaining 19 groups, which are [96, i] for i in

{64, 68, 70, 71, 72, 185, 186, 188, 190, 191, 194, 195, 196, 197, 202, 226,
227, 228, 229}.

Our techniques and programs can be used to verify all previous results as
well.
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3 All (96, 20, 4) difference sets

Let D be a difference set in G. A homomorphism f from G onto G′ induces,
by linearity, a homomorphism from Z[G] onto Z[G′]. If the kernel of f is
the subgroup U , let T be a complete set of distinct representatives of cosets
of U and, for g ∈ T , set tg = |gU ∩ D|. The multiset {tg : g ∈ T} is the

collection of intersection numbers of D with respect to U . The image of D̂
under the function f is

f(D̂) =
∑

g∈T
tgf(g).

By applying f to both sides of Equation 1 from Section 1 we can show that
f(D̂) satisfies the equation

f(D̂)f(D̂)(−1) = (k − λ)1G′ + λ|U |Ĝ′ (2)

in the group ring Z[G′].

This contraction of D̂ to a smaller homomorphic image often provides use-
ful information on the existence of a difference set in the original group.
In particular, since any difference set D in G will have images satisfying
Equation 2 in any homomorphic image, we can first enumerate possible
images of difference sets in homomorphic images of G and then only search
subsets of G that are preimages. The collection of homomorphic images to
check using Equation 2 and the resulting collection of possible preimages
to check using Equation 1 is much smaller than the total number of subsets
of G, which makes the search feasible.

Recall from Section 2 that 94 groups of order 96 admit (96, 20, 4) difference
sets and in 75 of these groups all (96, 20, 4) difference sets have been con-
structed by enumerating homomorphic images in groups of order 32 and
24. The other 19 groups that admit (96, 20, 4) difference sets do not have
normal subgroups of order 3. However, any one of these 19 groups has
either a normal subgroup of order 2 or a normal subgroup of order 4, which
means these groups have homomorphic images of order 48 or 24. To find all
(96, 20, 4) difference sets in these 19 groups, we first construct all possible
images in groups of order 48 and 24 that satisfy Equation 2, and then we
search all preimages.

The computer algebra system GAP was used to perform all of these com-
putations. This approach proves to be very efficient in finding (96, 20, 4)
difference sets, and enables us to construct all (96, 20, 4) difference sets up
to equivalence in every group of order 96. A complete list of the 2627 in-
equivalent (96, 20, 4) difference sets and details on which of them provide
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nonisomorphic symmetric (96, 20, 4) designs is provided in [1], and a sum-
mary is included in the appendix to this paper. The DESIGN [31] package
for GAP was used to determine the 583 nonisomorphic symmetric (96, 20, 4)
designs that arise from these (96, 20, 4) difference sets.

In addition, a general application of this homomorphic image strategy is
implemented in the DifSets [29] package for GAP. Given a group G, the
package’s main algorithm first produces a chief series

G = N1 . N2 . · · · . Nr = {1}

of G and a list of possible values of k for a difference set in G. For each
k the only possible image in G/N1 = {1} of any size k difference set in G
is k · 1G/N1

. From this starting point, the algorithm generates and checks
preimages in G/N2, then preimages in G/N3, and so on until generating
and checking preimage difference sets in G. By repeatedly applying the
homomorphic image idea, the search space is decreased in each step and
difference sets can be efficiently enumerated for many groups, including
all groups of order 96. The DifSets package was used to produce the
final enumerations for [96, 230] and [96, 231] in this paper, provides a
simple interface for loading these and many other difference sets into GAP,
and can be used to recompute and verify all given results.

4 Partial difference sets and
strongly regular graphs

Many (96, 20, 4) difference sets can be used to construct partial differ-
ence sets and strongly regular graphs. In fact, with our complete col-
lection of all (96, 20, 4) difference sets we can produce all (96, 20, 4, 4) and
(96, 19, 2, 4) partial difference sets and generate the corresponding strongly
regular graphs. In this section we summarize the knowledge of these partial
difference sets.

To start, a (v, k, λ, µ) partial difference set is a subset T of size k in a
group G of order v such that the multiset {xy−1 : x, y ∈ T and x 6= y}
contains each nonidentity element of T exactly λ times and each nonidentity
element of G \ T exactly µ times. Two partial difference sets T1 and T2
in a group G are equivalent if there is an automorphism ϕ of G such that
T1 = {ϕ(t) : t ∈ T2}.
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By definition, (v, k, λ) difference sets and (v, k, λ, λ) partial difference sets
are identical. However, the equivalence of partial difference sets is slightly
stronger than the equivalence of difference sets. Still, every (96, 20, 4, 4)
partial difference set in a group G is equivalent to a translate {gd : d ∈ D}
for g ∈ G of one of our collection of difference sets D up to equivalence in G.
By enumerating all translates and removing all but one partial difference set
up to equivalence we can produce the collection of all (96, 20, 4, 4) partial
difference sets up to equivalence. The result is a total of 145300 (96, 20, 4, 4)
partial difference sets in the 94 groups of order 96 that contain difference
sets. A count of (96, 20, 4, 4) partial difference sets for each group is listed
in the appendix.

A subset T of a group G is called reversible if T = T (−1). A reversible
partial difference set is called regular if it does not contain the identity
element. The following results can be found in [26].

Proposition 1. If T is a (v, k, λ, µ) partial difference set with λ 6= µ, then
T is reversible.

Proposition 2. Suppose T ⊆ G is a reversible set containing the identity
element 1G. Then T is a (v, k, λ, µ) partial difference set if and only if
T \ {1G} is a regular (v, k − 1, λ− 2, µ) partial difference set.

Proposition 3. Suppose that D is a (v, k, λ) difference set in a group G
and g ∈ G. Then gD is a regular (v, k, λ, λ) partial difference set if and
only if g−1 /∈ D and gD is a reversible set. Also gD \ {1G} is a regular
(v, k − 1, λ− 2, λ) partial difference set if and only if g−1 ∈ D and gD is a
reversible set.

From these propositions, we see that a reversible (96, 20, 4) difference set
D either gives a (96, 20, 4, 4) regular partial difference set if 1G 6∈ D or
a (96, 19, 2, 4) regular partial difference set if 1G ∈ D. By testing each
translate of the (96, 20, 4) difference sets in our collection for reversibility we
can thus produce all (96, 20, 4, 4) and (96, 19, 2, 4) regular partial difference
sets up to equivalence. Furthermore, Proposition 1 and a simple counting
argument show that any (96, 19, 2, 4) difference set must be regular, and
so our collection of all (96, 19, 2, 4) regular partial difference sets is also a
collection of all (96, 19, 2, 4) partial difference sets. These regular partial
difference sets are much rarer in groups of order 96 than difference sets,
with a total of only 150 (96, 20, 4, 4) and 33 (96, 19, 2, 4) regular partial
difference sets appearing in 9 groups of order 96, as listed in the appendix.

Regular partial difference sets are closely related to strongly regular graphs.
A graph is a (v, k, λ, µ) strongly regular graph if it has v vertices where every

51



vertex has valency k, any pair of adjacent vertices have exactly λ common
neighbors, and any pair of nonadjacent vertices have exactly µ common
neighbors. We have the following known theorem that relates strongly
regular graphs and partial difference sets, see [9].

Definition 4. For a group G and a subset T of G with 1G /∈ T and
T = T (−1), the Cayley graph Γ = Cay(G,T ) is a graph whose vertex set is
G and two vertices x and y are adjacent if xy−1 ∈ T .

Theorem 5. A Cayley graph Cay(G,T ) is a (v, k, λ, µ) strongly regular
graph if and only if T is a (v, k, λ, µ) regular partial difference set in G.

Using the GRAPE [32] package for GAP we can produce a strongly regular
graph for each of the regular partial difference sets in our collection. The
final result up to isomorphism is a total of 58 (96, 20, 4, 4) strongly regular
graphs and 12 (96, 19, 2, 4) strongly regular graphs. A summary is included
in the appendix, with more details at [1].

The study of (96, 20, 4, 4) and (96, 19, 2, 4) partial difference sets has a long
history. In 1969, Ahrens and Szekeres [5] constructed a generalized quad-
rangle, GQ(5, 3), with point graph (96, 20, 4). The line graph of the gen-
eralized quadrangle GQ(5, 3) is a strongly regular graph with parameters
(96, 20, 4, 4). That graph has an automorphism group of order 138240 and
includes several subgroups of order 96 acting sharply transitively on points.
However, at the time this result was not viewed in terms of strongly regular
Cayley graphs or partial difference sets.

A summary of the Eighth International Conference on Geometry, University
of Haifa, March 7-14, 1999 references a talk by Klin, “Strongly regular
Cayley graphs on 96 vertices”. That article is the first report (that we know
of) on a Cayley graph or partial difference set with parameters (96, 20, 4, 4).
The graph was constructed using the software package COCO [13].

In [11], Brouwer, Koolen, and Klin reported on another (96, 20, 4, 4) strongly
regular graph constructed by examining a rooted graph on 192 vertices, us-
ing it to construct a distance regular graph of diameter three on 96 vertices
and then merging the classes of distance 1 and 3 to create the strongly regu-
lar graph. This graph also has a large automorphism group (of order 11520)
and several subgroups of order 96 acting sharply transitively on the points.
The authors then use the same root graph to find a second nonisomorphic
(96, 20, 4, 4) strongly regular graph with the same automorphism group.
This paper says, “No doubt there are lots of graphs and designs with these
parameters.” Yes! In [23], Klin and Reichard follow up on [11] by using the
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concept of partial linear space to generalize generalized quadrangles and
explain the two earlier strongly regular graphs in terms of partial linear
spaces.

More recently, Golemac, Mandić and Vučičić [18] found that 9 groups of
order 96 admit regular (96, 19, 2, 4) and (96, 20, 4, 4) partial difference sets.
These groups are [96, i] where i is in

{64, 70, 71, 186, 190, 195, 197, 226, 227}.

These are exactly the 9 groups in which such partial difference sets exist,
as verified by our exhaustive search. They found 29 inequivalent regular
(96, 19, 2, 4) and 115 inequivalent regular (96, 20, 4, 4) partial difference sets,
and provide more details on these partial difference sets on the webpage [15].

Furthermore, in [16] Golemac, Mandić, and Vučičić use lists of symmetric
designs generated earlier along with GAP and GRAPE to search for reversible
difference sets, finding them in the same nine groups as above. This creates
six (96, 20, 4, 4) graphs and two (96, 19, 2, 4) graphs. Two of the graphs
on 96 vertices have full automorphism group of order 96 (specifically, [96,
195]). The graph with largest automorphism group (of order 138240) is
the collinearity group of the generalized quadrangle GQ(5, 3). The graph
they call Γ2 with the next largest automorphism group (of order 11520), is
the one found by Brouwer, Koolen, and Klin [11].

Law, Praeger, and Reichard [25] give four symmetric 2− (96, 20, 4)-designs
with flag transitive automorphism groups, the three occurring in [11] and
one more. Each of these gives a strongly regular graph. There are four flag
transitive symmetric designs [30, 25].

Our complete enumeration of all (96, 20, 4) difference sets thus provides an
additional 4 inequivalent regular (96, 19, 2, 4) and another 35 inequivalent
regular (96, 20, 4, 4) partial difference sets, finally giving a definitive an-
swer to the collections of these structures and their corresponding strongly
regular graphs.
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Appendix

The following tables list the counts of difference sets and related structures
found in each group of order 96. Each line is a group listed by its index
[96, i] in the SmallGroups library. Groups that do not appear in the
tables contain no difference sets or related structures. A list of the actual
difference sets and details on the structures they generate can be found in
[1], and some tools to recompute these results can be found in [29].

The first table contains counts of difference sets, designs, and partial dif-
ference sets for the 94 groups that contain difference sets. All counts are
up to equivalence or isomorphism, but note that some symmetric designs
from nonisomorphic groups are isomorphic. The total number of symmetric
(96, 20, 4) designs up to isomorphism found from these groups is 583.

The second table contains counts of regular partial difference sets and
strongly regular graphs for the 9 groups that contain regular partial dif-
ference sets. Note that all (96, 19, 2, 4) partial difference sets are regular,
so this is a complete count of the (96, 19, 2, 4) partial difference sets. As
with designs, some strongly regular graphs from nonisomorphic groups are
isomorphic. The total number of (96, 20, 4, 4) strongly regular graphs and
(96, 19, 2, 4) strongly regular graphs up to isomorphism found using these
groups is 58 and 12, respectively.

Group
(96, 20, 4)
Difference

Sets

(96, 20, 4)
Symmetric

Designs

(96, 20, 4, 4)
Partial

Difference
Sets

[96, 10] 4 3 216
[96, 13] 16 15 832
[96, 14] 4 4 384
[96, 20] 8 8 768
[96, 41] 16 15 832
[96, 51] 8 4 254
[96, 52] 4 4 384
[96, 54] 12 8 816
[96, 64] 14 10 620
[96, 68] 2 2 132
[96, 70] 28 22 1012
[96, 71] 8 4 416
[96, 72] 2 2 132
[96, 75] 88 84 4576
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[96, 77] 40 32 2080
[96, 78] 10 10 488
[96, 79] 24 24 1248
[96, 83] 18 14 904
[96, 84] 72 72 3744
[96, 85] 136 96 7072
[96, 86] 48 40 2496
[96, 87] 16 10 832
[96, 88] 48 36 2496
[96, 90] 24 16 1248
[96, 91] 8 4 416
[96, 92] 40 24 2080
[96, 94] 84 64 4368
[96, 95] 96 72 4992
[96, 96] 120 60 6240
[96, 97] 16 16 832
[96, 98] 24 20 1248
[96, 99] 12 12 624
[96,101] 8 4 416
[96,103] 40 32 2080
[96,105] 8 8 416
[96,129] 36 36 2224
[96,130] 88 74 5984
[96,131] 40 36 2080
[96,133] 16 16 832
[96,135] 12 8 624
[96,136] 8 8 416
[96,141] 60 44 3120
[96,142] 64 52 3328
[96,143] 12 12 624
[96,144] 8 6 416
[96,145] 4 4 208
[96,146] 32 20 1664
[96,147] 4 2 208
[96,151] 36 36 1872
[96,152] 12 8 624
[96,159] 20 18 1392
[96,160] 30 25 1580
[96,161] 6 6 280
[96,162] 28 28 2512
[96,164] 20 20 1040
[96,165] 16 16 832
[96,166] 16 16 832
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[96,167] 56 55 4140
[96,168] 24 24 1600
[96,169] 8 8 416
[96,170] 44 44 2288
[96,171] 16 16 1008
[96,172] 16 16 832
[96,173] 16 16 832
[96,174] 6 6 456
[96,175] 8 8 416
[96,177] 16 16 1536
[96,185] 20 15 896
[96,186] 16 11 512
[96,188] 52 29 3712
[96,190] 40 24 2560
[96,191] 8 8 768
[96,194] 72 31 3264
[96,195] 84 29 4720
[96,196] 82 53 4456
[96,197] 72 39 4288
[96,202] 25 25 2400
[96,205] 48 48 2848
[96,206] 8 8 416
[96,209] 4 2 208
[96,210] 20 20 1040
[96,212] 16 16 832
[96,218] 14 14 760
[96,219] 4 4 272
[96,220] 12 12 976
[96,221] 12 12 976
[96,223] 12 12 624
[96,225] 6 6 314
[96,226] 28 17 836
[96,227] 42 30 1672
[96,228] 34 32 1528
[96,229] 8 8 408
[96,230] 2 2 32
[96,231] 2 2 72
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Group

(96, 20, 4, 4)
Regular
Partial

Difference
Sets

(96, 19, 2, 4)
Regular
Partial

Difference
Sets

(96, 20, 4, 4)
Strongly
Regular
Graphs

(96, 19, 2, 4)
Strongly
Regular
Graphs

[96, 64] 7 2 6 2
[96, 70] 10 2 10 2
[96, 71] 7 1 3 1
[96,186] 14 2 13 2
[96,190] 8 2 8 2
[96,195] 48 12 41 8
[96,197] 14 2 13 2
[96,226] 23 5 22 5
[96,227] 19 5 19 4
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http://www.pmfst.hr/ vucicic/DifSets96 on Difsets96, Webpage
accessed: 2018-06-16.
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