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Abstract: A k-magic labeling of a finite, simple graph with |V(G)| =p
and |E(G)| = g, is a bijection from the set of edges into the set of integers
{1,2,3,---,q} such that the vertex set V' can be partitioned into k sets
Vi, Vo, Vg, -+, Vi, 1 < k < p, and each vertex in the set V; has the same
vertex sum and any two vertices in different sets have different vertex sum,
where a vertex sum is the sum of the labels of all edges incident with that
vertex. A graph is called k-magic if it has a k-magic labeling. The study of
k-magic labeling is very interesting, since all magic graphs are 1-magic and
all antimagic graphs are p-magic. The Splendour Spectrum of a graph G, de-
noted by SSP(G), is defined by SSP(G) = {k |G has a k-magic labeling} .

In this paper, we determine SSP(K,, ), m and n are even and SSP(T,),
where T, is the friendship graph and n > 1.

1 Introduction

Let G be a finite, undirected simple connected graph with p vertices and
q edges. A magic labeling is a bijection from the set of edges into the
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set of integers {1,2,3,--- , ¢} such that all vertex sums are same, where a
vertex sum is the sum of labels of all edges incident with that vertex. A
graph is called magic if it has a magic labeling. Magic labeling concept
was introduced in 1963 by Sedlacek [8]. An antimagic labeling of a graph
is a bijection from the set of edges into the set of integers {1,2,3,-- ,q}
such that all p vertex sum are pairwise distinct. The concept of antimagic
graph was introduced by Hartsfield and Ringel[3] in 1990. The concept of
bimagic labeling of graphs was introduced by Babujee [1] in 2004.

Motivated by the concept of magic and antimagic labeling, we define a k-
magic labeling,1 < k < p. A k-magic labeling of a graph is a bijection from
the set of edges into the set of integers {1,2,3,--- ,q} such that the vertex
set V can be partitioned into k sets Vi, Vo, Vs, -+ Vi, 1 < k < p, and
each vertex in the set V; has the same vertex sum and any two vertices in
different sets have the different vertex sum. A graph is called k-magic if it
has a k-magic labeling. We observe that a magic labeling is 1- magic and an
antimagic labeling is p - magic so that k-magic labeling is a generalization
of both magic and antimagic labeling of a graph.

We have the following problems:

1. Does there exists a graph which is k-magic for all k, 1 < k < p?

2. Given a graph G, determine the values of k for which G is k-magic.

In this paper, we attempt to solve the above problems.

2 Construction of k-magic rectangles

A magic rectangle is an arrangement of the set of integers {1,2,3,...,mn}
in an array of m rows and n columns so that each row adds to the same
total R and each column to the same total C. The totals R and C are
termed as the row magic constant and column magic constant respectively.
Since the average value of set of integers {1,2,3,...,mn} is A = %ﬂ, we
must have R = nA and C = mA. The total of all the integers in the array
is mnA = mR = nC. These two constants are the same just in the case
m = n. A magic rectangle may be one of the two kinds - even by even or
odd by odd. If mn is even, then mn + 1 is odd and so for R = M

and C = W to be integers m and n must both be even. On the other
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hand, since either m or n being even would result in the product mn being
even, and so if mn is odd then m and n must both be odd. In this case
also R and C are integers since mn + 1 is even. Therefore, an odd by even
magic rectangle is not possible. Also, 2 X 2 magic rectangle is impossible.

For an update on available literature on magic rectangles we refer to Hege-
dorn [4] and Bier et al.[2]. In 2009, Reyes et al. [7] have provided complete
solutions for constructing an even by even magic rectangle.

Motivated by the concept of magic rectangle, we define k-magic rectangle,
1<k<m-+n.

A k-magic rectangle, 1 < k < m + n, is a m X n arrangement of the set of
integers {1,2,3,...,mn} so that the sums of the entries in each row and
each column form a k-element set.

We observe that a magic rectangle is a 2-magic rectangle.

Now, we construct a 3,4,5,...,(m + n)-magic rectangle from the given
2-magic rectangle.

Let R; and C,1 <i <m,1 < j < n be the sum of all the entries in the ith
row and j*" column respectively. Let Aan =(a;;),1 <i<m,1<j<n,
be the k-magic rectangle of order m x n.

Construction of Afn)Xn

both odd, from Agn)Xn

of order m = 2s,n = 2t,s and t

First we consider A®)  be the 2-magic rectangle in [7].

m >< n

In the first ”7_2 columns a1, — a1 j+1 =2m —1 and am—1,j4+1 — Gm—1,; =
2m —3,1 < j < 52 2 j is odd. Now, we interchange the entries ay,; and
a1,j+1 and also interchange the entries ay,—1,j41 and ap,—1,;,1 < j < 2525

is odd.

In (%)™ and (%£2)" columns, we have Gm—2 g — Gm=2 ngs = 3mtd and
’2 4 ’ 2
Gmiz ng2 — Amyz n = 37’” Now, we mterchange the entries am— n and
i) 4 ’2

am 2 'n+2 and also interchange the entries @ mi2

and Gm+2 nt2.
4 0 2

n
’2
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In the last "T_2 columns, a1 j—ai j+1 = land @m—1,j4+1—Cm-1,; = 3, "7"’4 <

j < n,jis odd. Now, we interchange the entries a1 ; and ay ;4 and also
interchange the entries a,,—1 j4+1 and a,;,—1 ;.

Then we get a new magic rectangle in which

1
Rj:% if 1 <j<m,
1 2 4
%+2 iflgjg%,jeven,””L <j<n, jodd,
C; =
1 2 4
%—2 iflgjg%,jodd7n+ <j<n,jeven.

(3)

This implies that it is a 3-magic rectangle A, ,, of order m = 2s,n = 2t, s

and t both odd.

Construction of AS;)Xn

at least one of s and t is even, from Ag)xn

of order m = 2s,n = 2t, where

First we take the parameter s to be even without loss of generality.

We consider Ai)xnbe the 2-magic rectangle in [7].

— _ m—+2
a1,j4+1 —a1; = 2m — 1 and Umis j — Qmis 51 = 2m — = 1 <

(2)
In A 5

mxXn’

j <mn,jis odd.

Now, we interchange the entries a;; and a; j4; and also interchange the
entries am+a ;4 and @m+a ;» creating a new magic rectangle in which
) 1

1
Rj:% if1<j<m
1
M—i—m if 1 <j<mn,jisodd,
. = 2 2
=
1
%—% if 1 <j<n,jiseven.
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This implies that it is a 3-magic rectangle AB)

mxn Of order m = 2s,n = 2t,

(2)

where at least one of s and ¢ is even, from the given A, %,

Algorithm 2.1. Algorithm for obtaining a 2i-magic rectangle for 2 < i <
mTM where m = 2s,n = 2t,s and t both odd, from A®

mXxn-*

Input: Let Agn)Xn = (aij),1 <i<m,1 <j<mn, where m =2s,n =2t,s
and t both odd be the 2-magic rectangle in [7].

Then
m 2 1
Z%:MJSJ»S,%
and

n 2 1
S ey =D o

In AfinU a;1, 1 <1 < mis of the form:

mn—i+1 if1<jg g%
a1 =

9
m—it1 it

<i<m.

Step 1: Take k-magic rectangle Aan and interchange the entries ak )
and a,, &, , to get a new magic rectangle in which the sum of the

entries of all rows and columns are as same as in Ain)m
n(mn+1)
2

—(mn+1)+kand R, _k41
W + (mn + 1) — k It iS a (k’ —+ 2)_magic reCtangle A(k‘"rQ) Th

mXn
step is repeated whenever k varies from 2 to m — 2 and k is even.

and R, &y, where Ry =

Step 2: In Ag;nx)mamj,l < j < nis of the form:

mn ifj=1
. . . _n—2 no_ . ‘
Qmj = m(]_1)+1 lf?)S]STaJOddv §§]§n>]evena
-2
mj iflgjgnT,jeven,ggjgnjodd
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In AS,TX)“, interchange the entries a,,1 and a,,,, to get a new magic

rectangle in which C; = W —m+1and C, = W—i—m— 1.
It is a (m + 2)-magic rectangle A%nxtf).

Step 3: Take k-magic rectangle and interchange the entries a,, komt2 and

Oy b=tz 4, to get a new magic rectangle in which C’;cfng =
%—!—m(m—i—n— 1—k)and €, _xomiz ) = M —m(m+

: . k+2 . :
n—1—k). It is a (k+2)-magic rectangle Ainxn). This step is repeated

whenever k varies from m + 2 to m +n — 4 and k is even.

Step 4: In AﬁTXtL”‘Q), interchange the entries az , and ami2 and also
interchange the entries ay,, 2 and a,,, ni2, to get a new magic rectangle
in which Cm = W—i—m(n—l)—l,Cmu = W—m(n—l)—i—

2
1,Cx = W +1land Cuzz = W —1. It is a (m + n)-magic
(m+n)

mxXn

rectangle A

Output: We obtain a 4,6,8,...,(m + n)-magic rectangle where m =
2s,n = 2t,s and t both odd, from A®

mXxXn*

Algorithm 2.2. Algorithm for obtaining a 2i + 1-magic rectangle for 2 <
i < mTJr” where m = 2s,n = 2t,s and t both odd, from A®)

mXxXn-*

Input: Let A(B) = (aij) ,1 <1 <m,1 <5 <n, be the 3-magic rectangle

mXxXn

where m = 2s,n = 2t, s and ¢ both odd.

In Ag)xm a;1,1 <i<mis of the form:
mn—2)+1 ifi=1,
mn—i+1 if2<i< %

a1 =

m—+ 2

m—1i+1 if <i<m,i#*m-—1,

2m —1 ifi=m—1.

Step 1: In As)xm interchange the entries a1 and a.,1, to get a new magic

rectangle in which Ry = W —m(n—2) and R, = M +
(5)

m(n — 2). It is a 5-magic rectangle A4,/ ...
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Step 2: Take k-magic rectangle Amxn and interchange the entries ax+1 1
and a, ESSEHTER to get a new magic rectangle in which Rk+1 =
M mnt+kand R, _wn = m—&—mn k. Itisa (k+2)—
magic rectangle Aan .This step is repeated whenever k varies from
5tom —1 and k is odd.

Step 3: In Ag;”le), amj, 1 < j < nis of the form:

m(n—2)+1 ifj=1,

-2
nT,jis odd, or
m(j—1)+1 if

Amj = §S]§TL7JIS €VeIl;

n—
1§j§T,jiseven,or
mj if

<j<mn,jisodd

|3

In Af:lxtl , interchange the entries a,,1 and a,,,, to get a new magic

rectangle in which C; = m(mfnﬂ) +m—2and C, = % —m+2.

. . m—+3
It is a (m + 3)-magic rectangle Aann ).

Step 4: Step 4.1 is repeated whenever k varies from m 4+ 3 to m +n — 3
and k = 1(mod 4) and Step 4.2 is repeated whenever k varies from
m+3tom+n—3and k= 3(mod 4).

Step 4.1: Take k-magic rectangle A® and interchange the entries

mXxXn
Oy fmmet1 and Ay b=mtd 4, to get a new magic rectangle in

which Croma = M—Fm(m—kn—kﬂ—? and €, _pomi1 ) =

W —m(m+n—k)—2. Tt is a (k+2)-magic rectangle A2

mXxXn °*
Step 4.2: Take k-magic rectangle Amxn and interchange the entries
Oy, i and Ay et |5 to get a new magic rectangle in
which Cr—mi1 = Mqtm(ernfk)f? and C

2

n7%+1 =
m(mn+1)

35— —m(m+n—k)+2. It is a (k+2)-magic rectangle AT

mXxn °

Output: We obtain a 5,7,9,...,(m +n — 1)- magic rectangle where m =
2s,n = 2t,s and t both odd from the given Aan

33



Algorithm 2.3. Algorithm for obtaining a 4,6,8, ..., (m +n)-magic rect-
angle where m = 2s,n = 2t, where at least one of s and t is even, from

A(Q)

mxn*

Input: Without loss of generality, we assume that s must be even.

Let Ag)xn = (a;;),1 < i <m,1 < j < n, be the 2-magic rectangle
where m = 2s,n = 2t, s even. Then
i m (m? 41
Sy =2 e,
‘ 2
i=1
and
n m (m? +1
Zaij =¥,1§j§m.
i=1
In Ag)m, [7] a;1,1 < i <mis of the form:

3m+4

<i<

m
: if 1<
o i if1<i, or — ,
i1 =

4 3
mn—1+1 ifmz— Siﬁﬁ-

Step 1: Take k-magic rectangle Agf)xn and interchange the entries a k1 and
Uk 11,1, tO get a new magic rectangle in which Rg = W +

m+1—kand R, _x., :%—m—l—l—k. It is a (k 4 2)-magic

rectangle Aﬁfjf}. This step is repeated whenever k varies from 2 to
m

s and k is even.

Step 2: Take k-magic rectangle Ag,’f)xn and interchange the entries ax ; and

Uk 11,1, 1O get a new magic rectangle in which Ry = % —
m—1l+kand R, _« = M—&—m—&-l—k. It is a (k 4 2)-magic
(k+2) m+4

rectangle A, 7", This step is repeated whenever k varies from 5=
to m — 2 and k is even.
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Step 3: In Agnx)mamj,l < j < nis of the form:
1 ifj =1,

Qmj = § MJ if2<j<mn,jisodd,

m(G—1)+1 if1<j<n,jiseven.

In Af;nx)n, interchange the entries a,,1 and a5, to get a new magic
m(mn+1) m(mn41)

rectangle in which Cy = 3 +m(n—1) and C,, = ( 5
m(n —1). It is a (m + 2)-magic rectangle Alm+2)

mxXn

Step 4: The Step 4.1 is repeated whenever k varies from m+2 tom+n—4
and k = 2(mod 4) and the Step 4.2 is repeated whenever k varies from
m+2tom+n—4and k= 0(mod 4).

Step 4.1: Take k-magic rectangle Ai,’f)m and interchange the entries

a, k-m+z and a k-mtz 1, 10 get a new magic rectangle in
’ 2 2

m m,n—

which Cr-mi2 = m(#nﬂ)—i—m(m—kn—kj)—l and € _k-mya | =
2 2
W —m(m+n—k)+1. It is a (k+2)-magic rectangle Agj:i).

Step 4.2: Take k-magic rectangle qu]i)xn and interchange the en-

tries Uy met2 and a Bomt2 g, to get a new magic rectan-

m,n—

gle in which Cromiz = % +m(m+mn—2-k)+1 and
Cponmmia g = %—m(m—i—n—Q—k)—l. It is a (k + 2)-

(k+2)

magic rectangle A, 7.’ .

(m+n—2)
mxn

Step 5: In A
interchange the entries a,, = and a,, ni2, to get a new magic rectangle

in which Cp = 224 1 0y = 20t 4 0y = mOmntd) g
2

, Interchange the entries az , and am+2 ,, and also
oo

and Cnzz = m(mf"“) + 1. It is a (m + n)-magic rectangle AgTth”).
Output: We obtain a 4,6,8, ..., m+n-magic rectangle where m = 2s,n =

2t, where at least one of s and ¢ is even, from A,(i)xn

Algorithm 2.4. Algorithm for obtaining a 5,7,9,...,(m + n — 1)-magic
(3

rectangle, m = 2s,n = 2t, where at least one of s and t is even, from A, .-

Input: Let AES)X,L = (a;;),1 <i<m,1 < j <n,bethe 3-magic rectangle,

m = 2s,n = 2t, where at least one of s and ¢ is even.
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m A®)

sy @i1, 1 <4 < m is of the form:

om ifi=1,
4
i if2§i§%,and3m+ <i<m,
ap = ] 3
4 mn—i+1 ifm+ gigm,andi#jm,
m+4

m(n—2)+ 3 +1 ifi:T.

Step 1: In A®) interchange the entries a1; and a,,1, to get a new magic

mXmn?
rectangle in which Ry = w —mand R, = W +m. It is

a b-magic rectangle Aﬁi)m

(k)

mXxn

Step 2: Take k-magic rectangle A and interchange the entries ax-1

2
and a,_ -1 g 1 to get a new magic rectangle in which Rk;l

n(mn+1) o _ n(mn+1) o
——— t+m+2 kanan_%H ———-—m-2+k It

is a (k + 2)-magic rectangle Agii:).

k varies from 5 to mT"’Q and k is odd.

This step is repeated whenever

(k)

mxn

Step 3: Take k-magic rectangle A and interchange the entries a SEI

and S SSURED to get a new magic rectangle in which R% =
meJrk and Rnf%ﬂ = Werfk. Itisa (k+2)-
magic rectangle Ag,lfii). This step is repeated whenever k varies from

mT%tom—landkisodd.

Step 4: In Alm+l) 1 < j < nis of the form:

mxn ’amj7

2m if j =1,
Qmj = § MJ if 2<j <n,and jis odd,
m(j—1)+1 if 1 <j<n,andjiseven.

In A+ interchange the entries a,,1 and @, to get a new magic

mXxn
rectangle in which C; = M + 22 4+ m(n—-3)+1and C, =
W — 2 —m(n—3)—1.It is a (m+ 3)-magic rectangle AlmEs)

Step 5: The Step 5.1 is repeated whenever k varies from m+3 to m+n—3
and k = 3(mod 4) and the Step:5.2 is repeated whenever k varies from
m+3tom+n—3and k= 1(mod 4).
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Step 5.1: Take k-magic rectangle Agf)xn and interchange the entries

a, k-m+1 and a k—m+1 g, t0 get a new magic rectangle in
s 5 2

m m,n—

which Cromer = ™™D L onim 4 n 41— k) — 2 — 1 and

_ m(mn+1) . m .
C_k—72n+1+1—72 mm+n+1-k)+ 3 +1Itisa

n
(k+2)
mxn

(k 4+ 2)-magic rectangle A

5,’f)xn and interchange the entries

kE—m+41 ‘O e‘ a new ma, iC rectan le in
+1°
2

Step 5.2: Take k-magic rectangle A

Oy, b and a

which Cromur = %—I—m(m—l—n—l—k)—i—%—l—land

C_k—7271+1+1:%_m(m‘i‘n_l_k)_%_l. It is a

n
(k+2)

mXn *

m,n—

(k 4+ 2)-magic rectangle A

Output: We obtain a 5,7,9, ..., (m+n —1)-magic rectangle, m = 2s,n =
(3)

2t, where at least one of s and ¢ is even, from A, 7 ..

3 Splendour spectrum of two classes of graphs

In this section, we associate a set of positive integers to each graph G using
the existence or non-existence of a k-magic labeling of G.

The Splendour Spectrum of a graph G, denoted by SSP(G), is defined
by SSP(G) = {k|G has a k — magic labeling}. An example is provied in
Figure 1.

Now, let us determine SSP(G) of two classes of graphs. In [6], we proved
that SSP(Kpn) = {1,2,...,2n}.
Theorem 3.1. A complete bipartite graph K, ,m and n are even, is

k-magic if and only if k # 1.

In other words, SSP(Km ) = {2,3,...,(m+n)}, where m and n are
even.

Proof. Let the bipartition of K, , be ri,72,...,7y and c1,¢,...,¢c,. By
labeling the edge 7;c; with the contents of cell (4, ) in a m x n k— magic
rectangle.

In [5], Ivanco et al. proved that K, ,,m,n > 1,m # n,m,n = 0(mod 2),
is not a magic graph (1-magic graph).
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® ®
X6
OL—>0

3-magic
labeling of G

® O O O
@4 — @4~

4-magic 5-magic
labeling of G labeling of G

G

Figure 1: A graph G with SSP(G) = {3,4,5}.

From the constructions of 2-magic rectangle and 3-magic rectangle of order
m = 2s,n = 2t, s and t both odd and from Algorithm 2.1 and Algorithm 2.2,
we get k-magic rectangle 2 < k < m+n and hence K, ,,, m = 2s,n = 2t, s
and ¢ both odd is k-magic, 2 < k < m+n.

From the constructions of 2-magic rectangle and 3-magic rectangle of
order m = 2s,n = 2t, at least one of s and ¢ even and from Algorithm
2.3 and Algorithm 2.4, we get k-magic rectangle 2 < k < m + n and hence
Ko, m = 2s,n = 2t, at least one of s and ¢ even is k-magic, 2 < k < m+n.

Thus, K, ,,m and n are even, is k-magic if and only if k£ # 1. O
Open Problem 3.2. Determine SSP(K,.), if either m or n is odd.

Theorem 3.3. A friendship graph T,, is neither magic nor 2-magic for all
n.

Proof. Let {v1,va,...,02,41} be the set of vertices in T,,,n > 1 such that
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Van41 1S the central vertex and let e; = v;v2,41,1 < i < 2n and let f; =
V9;_1V2;, 1 <17 < n be the edges in T;,,n > 1.

Then we can use the edge labels from the set of integers {1,2,...,3n}
and let .S; be the sum of the edge labels incident with the vertex v;,1 <1 <
2n + 1.

Now,
1+2+--+2n < Syppr < (n+1)+(n+2)+---+3n,
142 < 89,1 < (3n)+(3n—1),
and
142 < S5y < Bn)+@Bn-1),1<i<n.

This implies that
n(2n+1) < Sopq1 <n(dn+1),3 < Sz <6n —1,

and
3§521‘§6n—1,1§i§n.

Also, 6n—1 < n(2n+1),n > 3 and the vertices vg;_1 and vy; have different
vertex sum, since adjacent vertices have different magic constant, 1 < i < n.
This implies that it is at least 3-magic, n > 3.

Also, Ty, T, are not 1-magic and T3 is not 2-magic, since adjacent vertices
have different magic constant. By direct verification, 75 is not 2-magic.

Thus, a friendship graph 7,,,n > 1 is neither 1-magic nor 2-magic. O

Construction of 3-magic labeling of T;,,n > 1

Let {v1,v9,...,v9,41} be the set of vertices in T},,m > 1 such that vo,11
is the central vertex and let e;,1 < ¢ < 2n and let f;,1 < i < n such that
fi = v9;_1v9; be the edges in T;,,n > 1.

Then we can use the edge labels from the set of integers {1,2,...,3n} and
let .S; be the sum of the edge labels incident with the vertex v;,1 < ¢ <
2n + 1.

Now, we label the edges of T),,n > 1, as follows: €;,1 < i < 2n,: is odd
as 151 +1, e;,1 <i<2n,iis even as n—l—% and the edge f;,1 <i<n as

3n—i+ 1.
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Then the vertex sum of the vertices

3n+1, 1<i<2n,andqodd,
o dn+1, 1<i<2n,and i even

S2n+1 = n(2n + 1)

This implies that it is a 3-magic labeling of T;,,n > 1.

Construction of 4-magic labeling from 3-magic labeling
of T,,n>1

First we consider a 3-magic labeling of T,, n > 1.

In a 3-magic labeling, interchange the edge labels f; and e;, then we get
the new labeling. Then the vertex sum of the vertices

3n+1 if 1 <4< 2n,iodd,
n—+ 2 ifi=2

S; =
4n +1 if 4 <4 < 2n, 7 even,

2n2 +4n—1 ifi = 2n+1
This implies that it is a 4-magic labeling of T;,, n > 1.

Algorithm 3.4. Algorithm for obtaining 5,7, ..., (2n + 1)-magic labeling
from a 3-magic labeling of T,,, n > 1.

Input: Consider the 3-magic labeling of T,,,n > 1.
Case(i): n is odd

Step 1: Take k-magic labeling and interchange the edge labels ej_o
and eg,_k+3, to get a new labeling in which Si_o =5n — k + 3
and So,—pt+3 = 2n+ k — 1. Tt is a (k 4 2)-magic labeling. This
step is repeated whenever k varies from 3 to n and k is odd.

Step 2: Take k-magic labeling and interchange the edge labels e;_,
and es,—k+1, to get a new labeling in which Si_,, =5n —k 42
and Ssp_r+1 = 2n + k. It is a (k 4 2)-magic labeling. This step
is repeated whenever k varies from n+ 2 to 2n — 1 and k is odd.
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Case(ii): n is even

Step 1: Take k-magic labeling and interchange the edge labels ej_o
and eg,_k+3, to get a new labeling in which Si_2 =5n — k + 3
and So,_p+3 = 2n+ k — 1. It is a (k 4 2)-magic labeling. This
step is repeated whenever k varies from 3 to n+ 1 and & is odd.

Step 2: Take k-magic labeling and interchange the edge labels eg_,, 11
and es, k42, to get a new labeling in which Sx_,—1 =5n—k+3
and S3,_pt+o = 2n+ k — 1. It is a (k + 2)-magic labeling. This
step is repeated whenever k varies from n+ 3 to 2n — 1 and k is
odd.

Output: We obtain a 5,7,...,(2n+ 1)-magic labeling from 3-magic label-
ing of T,,, n > 1.

Algorithm 3.5. Algorithm for obtaining 6,8, ..., 2n-magic labeling from
4-magic labeling of T,,,n > 1.

Input: Consider the 4-magic labeling of T,,, n > 1.

Step 1: In a 4-magic labeling interchange the edge labels e; and es,, to
get a new labeling in which S; = 2n+ 1 and Sy, = 5n+ 1. It is a
6-magic labeling.

Case(i): n is odd.

Step 2: Take a k-magic labeling and interchange the edge labels e;_3
and eg,_k+4, to get a new labeling in which Si_3 =5n -k 44
and So,_g+a = 2n+k —2. This implies that it is a (k 4 2)-magic
labeling. This step is repeated whenever k varies from 6 to n+ 1
and k is even.

Step 3: Take a k-magic labeling and interchange the edge labels
€k—nt1 and es,_ki2, to get a new labeling in which Sx_,11 =
5n — k + 2 and Ss,_k12 = 2n + k. This implies that it is a
(k + 2)-magic labeling. This step is repeated whenever k varies
from n + 3 to 2n — 2 and k is even.

Case(ii): n is even.

Step 2: Take k-magic labeling and interchange the edge labels e;_3
and eg, k14, to get a new labeling in which Sx_3 =5n —k +4
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and So,—g+a = 2n+k—2. This implies that it is a (k + 2)-magic
labeling. This step is repeated whenever k varies from 6 to n+ 2
and k is even.

Step 3: Take k-magic labeling and interchange the edge labels e;_,
and es,—r+3, to get a new labeling in which Si_,, =5n —k 42
and Ssp_k+3 = 2n + k. It is a (k 4 2)-magic labeling. This step
is repeated whenever k varies from n+4 to 2n — 2 and k is even.

Output: We obtain a 6,8, ..., 2n-magic labeling from 4-magic labeling of
Tn,n>1.

Theorem 3.6. The friendship graph T,, n > 1 is k-magic if and only if
k+#1,2.

In other words SSP(T,) = {3,4,...,2n + 1}.

Proof. From Theorem 3.3, T;, is neither magic nor 2-magic.

From the constructions of 3-magic labeling and 4-magic labeling and from
Algorithm 3.4 and Algorithm 3.5, we get k-magic labeling of T);,n > 1,2 <
k <2n+1 and hence T,,, n > 1, is k-magic if and only if k£ # 1, 2.
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