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Abstract: It is well known that the multinomial theorem can be used
to enumerate the number of shortest paths in an n-dimensional grid. We
explore a property related to shortest paths known as edge betweenness
centrality. This property measures the frequency at which an edge appears
on a shortest path between two vertices. In this paper we calculate the
edge betweenness for all edges in the Cartesian product of paths and cycles.
This requires determination of the frequency at which an edge appears in
rectangular and torodial prisms.

1 Introduction

In biological, transportation, and social networks, certain vertices and edges
play a vital role in the connection of a network. This value can be quantified
by betweenness centrality, which is the frequency at which a vertex or an
edge appears on a shortest path between two distinct vertices.
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In 1977, Freeman defined the betweenness centrality of a vertex v as follows.

Definition 1 (Freeman). The betweenness centrality of a vertex v is de-
noted bc(v) and is the frequency at which v appears on a shortest path
between two other distinct vertices x and y . Let σxy be the number of
shortest paths between distinct vertices x and y, and let σxy(v) be the num-

ber of shortest paths between x and y that contain v. Then bc(v) =
∑

x,y

σxy(v)
σxy

(for all distinct vertices v, x, and y).

In 2002, Girvan and Newman introduced an edge version of betweenness
centrality.

Definition 2 (Girvan-Newman). The betweenness centrality of an edge e
is denoted bc′(e) measures the frequency at which e appears on a shortest
path between two other distinct vertices x and y. Let σxy be the number of
shortest paths between distinct vertices x and y, and let σxy(e) be the number

of shortest paths between x and y that contain e. Then bc′(e) =
∑

x,y

σxy(e)
σxy

(for all distinct vertices x, and y).

Edges with a high edge betweenness centrality act as bridges between dif-
ferent subgraphs in a graph. Thus severing these edges gives an effective
strategy for partitioning the vertex set of a graph into different parts. This
idea was used by Girvan and Newman for graph partitioning and detect-
ing communities in social networks. In addition, this concept appears in
studies of social networks and neuroscience [3], [4], and [1].

In this paper we use tools from combinatorics to investigate the edge be-
tweenness for Cartesian products of paths and cycles. For a given graph G,
we will use V (G) to denote the vertex set of G and E(G) to denote the edge
set of G. Given two graphs H and K, with vertex sets V (H) and V (K) the
Cartesian product G = H × K is a graph where V (G) = {(ui, vj) where
ui ∈ V (H) and vj ∈ V (K)}, and E(G) = {(ui, vj), (uk, vl)} if and only if
i = k and vj and vl are adjacent in K or j = l and ui and uk are adjacent
in H. For any undefined notation see the textbook by D. B. West [6].

2 Edge betweenness centrality

We begin with an elementary lemma involving cut-edges.
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Lemma 3. Let e be a cut-edge of a graph G where G − e has two vertex
disjoint subgraphs H and K. Then bc′(e) = |V (H)| · |V (K)|.

Proof. The proof is straightforward. Every shortest path between any ver-
tex in H and any vertex in K will contain e. It easy to see that that no
shortest path entirely within either H or K will use e.

vr vi vi+1 vs

e

Figure 1: Betweenness edge centrality of a path.

Proposition 4. Let Pn be a path on vertices v1, v2, ..., vn and edges
v1v2, v2v3, ..., vn−1vn. Then bc′(vivi+1) = 2(i)(n− i).

Proof. We apply Lemma 3 noting that every edge is a cut-edge. We observe
that all shortest paths between vr and vs will contain vivi+1 if and only
r ≤ i and i + 1 ≤ s. Hence to determine bc′ (vivi+1) we count the pairs of
vertices (vr, vs) where r ≤ i and s ≥ n− i. Finally, doubling to account for
both directions gives bc(vivi+1) = (i)(n− i).

We next recall the multinomial theorem from introductory combinatorics.

Lemma 5. The number of different permutations of n objects, where there

are ki indistinguishable objects of type i, where

m∑

i=1

ki = n is

(
n

k1, k2, ..., kn

)
=

n!

k1!k2! · · · km!
.

Lemma 6. Let G = Pk1 × Pk2 . If (a1, a2) and (b1, b2) are vertices where
0 ≤ a1 ≤ b1 ≤ k1, 0 ≤ a2 ≤ b2 ≤ k2 then number of shortest paths between
(a1, a2) and (b1, b2) is

(
b1 − a1 + b2 − a2

b1 − a1

)
=

(b1 − a1 + b2 − a2)!

(b1 − a1)!(b2 − a2)!
.
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Proof. A shortest path between (a1, a2) and (b1, b2) can be expressed as a
sequence of (b1 − a1) + (b2 − a2) moves where b1 − a1 are moves that are
in the ‘east’ direction and b2 − a2 moves are in the ‘north’ direction. The
total number of shortest paths between (a1, a2) and (b1, b2) is equivalent to
the number of ‘words’ with (b1− a1) + (b2− a2) letters where b1− a1 is the
number of Es and b2 − a2 is the number of Ns (E and N correspond to
an east step and a north step, respectively). Then by the definition of the
binomial coefficient,

(
(b1 − a1) + (b2 − a2)

b1 − a1

)
=

((b1 − a1) + (b2 − a2))!

(b1 − a1)!(b2 − a2)!
.

This completes the proof.

Lemma 7. Let G = Pk1�Pk2 . Let (a1, a2),(b1, b2), and (x1, x2) be vertices
of G where 0 ≤ a1 ≤ x1 ≤ b1 ≤ k1, 0 ≤ a2 ≤ x2 ≤ b2 ≤ k2. Then the
number of shortest paths between (a1, a2) and (b1, b2) that contain (x1, x2)
is

(
x1 − a1 + x2 − a2

x1 − a1

)
·
(
b1 − x1 + b2 − x2

b1 − x1

)
=

(x1 − a1 + x2 − a2)!

(x1 − a1)!(x2 − a2)!
· (b1 − x1 + b2 − x2)!

(b1 − x1)!(b2 − x2)!
. (1)

Proof. We can use the method from the previous proof to calculate the
number of shortest paths from (a1, a2) to (x1, x2), and then multiplying this
number by the number of shortest paths between (x1, x2) and (b1, b2).

Let ui = (i1, i2) and uj = (j1, j2) be vertices of G = Pk1�Pk2 . We define
R(ui, uj) ⊆ G to be the rectangle determined by the corner points ui =
(i1, i2) and uj = (j1, j2). For example, if ui = (i1, i2) and uj = (j1, j2) sat-
isfy that i1 ≤ j1 and i2 ≤ j2, thenR(ui, uj) = {(k1, k2) |ir ≤ kr ≤ jr, r = 1, 2}.
Suppose that e is an edge of G with vertices (v1, v2) and (v1 + 1, v2). We
define

C2(ui, uj , e) =
(|i1 − v1|+ |i2 − v2|)!
|i1 − v1|! |i2 − v2|!

· (|v1 + 1− j1|+ |i2 − v2|)!
|v1 + 1− j1|! (|i2 − v2|)!

· |i1 − j1|! |i2 − j2|!
(|i1 − j1|+ |i2 − j2|)!

. (2)

and F2(ui, uj , e) =

{
C2(ui, uj , e) if e ∈ R(ui, uj);

0 otherwise.

32



The two dimensional case is shown in Figure 2.

wi

wj

e

R(wi, wj)

Figure 2: The two dimensional case

Proposition 8. Let G = Pk1�Pk2 . If e is an edge of G with vertices
(v1, v2) and (v1 + 1, v2), then

bc′(e) =
∑

wi,wj∈V (G)

F (wi, wj , e).

Proof. We suppose that the graph G = Pk1�Pk2 is represented by the grid

G = {(x, y)| 0 ≤ x ≤ k1 and 0 ≤ y ≤ k2 with x, y ∈ Z}.
Let wi = (i1, i2) and wj = (j1, j2) be vertices of G. We prove the propo-
sition for i1 ≤ j1 and i2 ≤ j2 and note the other cases are similar. Let
e be an edge with vertices v = (v1, v2) and v′ = (v1 + 1, v2). To find the
betweenness edge centrality for e, we count the total number of shortest
paths from wi to wj passing through the edge e. By Lemma 7, the number
of shortest paths from wi to v is

(|i1 − v1|+ |i2 − v2|)!
|i1 − v1|! |i2 − v2|!

.

By Lemma 7, the number of shortest paths from v′ to wj is

(|v1 + 1− j1|+ |i2 − v2|)!
|v1 + 1− j1|! (|i2 − v2|)!

.
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The number of shortest paths from wi to wj passing through e is

(|i1 − v1|+ |i2 − v2|)!
|i1 − v1|! |i2 − v2|!

· (|v1 + 1− j1|+ |i2 − v2|)!
|v1 + 1− j1|! · (|i2 − v2|)!

.

By Lemma 7 the total number of shortest paths between wi and wj is
(|i1−j1|+|i2−j2|)!
|i1−j1|!|i2−j2|! .

Hence

C2(wi, wj , e) =
(|i1 − v1|+ |i2 − v2|)!
|i1 − v1|! |i2 − v2|!

· (|v1 + 1− j1|+ |i2 − v2|)!
|v1 + 1− j1|! · (|i2 − v2|)!

· |i1 − j1|! |i2 − j2|!
(|i1 − j1|+ |i2 − j2|)!

.

=

(|i1−v1|+|i2−v2|
|i1−v1|

)(
(|v1+1−j1|+|i2−v2|)

|v1+1−j1|
)

(
(|i1−j1|+|i2−j2|)

|i1−j1|
) .

Then F2(wi, wj , e) =

{
C2(wi, wj , e) if e ∈ R(wi, wj);

0 otherwise.

Summing over all vertices of G gives

bc′(e) =
∑

wi,wj∈V (G)

F (wi, wj , e).

This completes the proof.

We can use the same idea to determine the number of shortest paths on a
grid with n dimensions.

We next generalize Lemma 6. We note this was previously proven by Handa
and Mohanty [5].

Lemma 9 (Handa and Mohanty). Let G = Pk1�Pk2� · · ·�Pkn . Then
for all 0 ≤ ai ≤ xi ≤ bi ≤ ki the number of shortest paths between
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(a1, a2, ..., an) and (b1, b2, ..., bn) is

(
n∑

i=1

|ai − bi|
)

!

n∏

i=1

(|ai − bi|)!
.

Proof. Without loss of generality assume that ai ≤ bi for all 1 ≤ i ≤ n.

The total number of edges in a shortest path is

n∑

i=1

|ai − bi|. We then count

the number of permutations using Lemma 5.

Let G = Pk1�Pk2� · · ·�Pkn be n dimensional grid. The three dimensional
case is given in Figure 3.

wi

wj

e

Figure 3: The three dimensional case

Our next theorem gives the edge betweenness centrality of each edge in
an n -dimensional grid. Let ui = (i1, i2, ..., in) and uj = (j1, j2, ..., jn)
be vertices of G. Let e be an edge of G with vertices (v1, v2, ..., vn) and
(v1 + 1, v2, ..., vn). We define R(ui, uj) ⊆ G to be the n dimensional rect-
angular prism determined by the corner points ui and uj . For example, if
ui and uj satisfy that ir ≤ jr where r = 1, 2, ..., n, then rectangular prism
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is defined by

R(ui, uj) = {(k1, k2, ..., kn) |ir ≤ kr ≤ jr, r = 1, 2, ..., n}

Then we define

Cn(ui, uj , e) =

(
n∑

t=1

|it − vt|
)

!

n∏

t=1

(|it − vt|)!
·

(
|v1 + 1− j1|+

n∑

t=2

|it − vt|
)

!

|v1 + 1− j1|! ·
n∏

t=2

(|it − vt|)!
·

n∏

t=1

|it − jt|!
(

n∑

t=1

|it − jt|
)

!

and

Fn(ui, uj , e) =

{
Cn(ui, uj , e) if e ∈ R(ui, uj);
0 otherwise.

Now we are in position to prove our main result.

Theorem 10. Let G = Pk1�Pk2� · · ·�Pkn . If e is an edge in G with
vertices (v1, v2, ..., vn) and (v1 + 1, v2, ..., vn), then

bc′(e) =
∑

wi,wj∈V (G)

F (wi, wj , e).

Proof. Let G = Pk1�Pk2� · · ·�Pkn . To find the betweenness edge central-
ity for e, first of all we count the total number of shortest paths pass-
ing through the edge e : {(v1, v2, ..., vn) , (v1 + 1, v2, ..., vn)}. Let x =
(v1, v2, ..., vn) and y = (v1 + 1, v2, ..., vn) and let wi = (i1, i2, ..., in) and
wj = (j1, j2, ..., jn) be vertices of G. We prove the proposition for ir ≤ jr
where r = 1, 2, ..., n, and note that the other cases are similar. The number
of shortest paths from wi to x is

(
n∑

t=1

|it − vt|
)

!

n∏

t=1

(|it − vt|)!
.

The number of shortest paths from y to wj is
(
|vi + 1− j1|+

n∑

t=2

|it − vt|
)

!

|vi + 1− j1|! ·
n∏

t=2

(|it − vt|)!
.

36



Combining the above two quantities gives that the total number of shortest
paths from wi to wj is (

n∑

t=1

|it − jt|
)

!

n∏

t=1

|it − jt|!
.

The rest of the proof follows similarly to the proof of Proposition 8.

2.1 Edge betweenness of the cartesian product of cy-
cles

We can then extend our results by replacing

Pk1�Pk2� · · ·�Pkn
with

Ck1�Ck2� · · ·�Ckn .
The main difference between these two families is that with cycles of cycles,
there are 2n different rectangular prisms that must be considered. To see
this note that we have a choice for each dimension. We consider each
distinct R(i, j) to be a word, where each letter corresponds to a dimension.
Then let T refer to travelling from im to jm without crossing over the
modular boundary “looping” and let L refer to travelling from im to jm
by crossing the modular boundary. Then for an n dimensional product of
cycles, there are as many R(i, j) as there are unique words of length n made
up entirely of T and L. Therefore there are 2n distinct R(i, j).

Example 11. Let G = C8�C6. The number of shortest paths between
(2, 2) and (7, 4) is 5!

3!2! .

The vertices where we seek a shortest path is shown in Figure 4 (a) and
the three rectangular prisms are shown in Figure 4 (b), (c), and (d). We
consider the shortest paths from vertex (2, 2) to vertex (7, 4). Traversing
the rectangle R1 requires 7 steps, traversing rectangle R2 requires 5 steps,
and traversing rectangle R3 requires 8 steps. Since R2 has the smallest
perimeter, we let R′((2, 2), (7, 4)) = R2((2, 2), (7, 4)).

We consider the graph G = Ck1�Ck2� · · ·�Ckn . When n = 1 we have
two prisms and we gain a new prism for each dimension. Hence in the case
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R1

(0, 0)

(8, 6)

(2, 2)

(7, 4)

R2 R2

(0, 0)

(8, 6)

(2, 2)

(7, 4)

(a) (b)

R3

R3

(0, 0)

(8, 6)

(2, 2)

(7, 4)

R4

R4

(0, 0)

(8, 6)

(2, 2)

(7, 4)

(c) (d)

Figure 4: The rectangular prisms for finding shortest paths between (2, 2)
and (7, 4) in the torus C8�C6.

with the Cartesian product of n cycles we will have 2n rectangular prisms
to consider, and we seek one of smallest perimeter.

We define the multiplicity M to be the number of dimensions m such that
for im < jm the distance jm − im = mod km(im − jm). Then we have the
following result.

Lemma 12. Let G = Ck1�Ck2� · · ·�Ckn . Then for all 0 ≤ ai ≤ xi ≤ bi ≤
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ki the number of shortest paths between (a1, a2, ..., an) and (b1, b2, ..., bn) is

2M

(
n∑

i=1

min{(ai − bi) mod ki, (bi − ai) mod ki}
)

!

n∏

i=1

(min{(ai − bi) mod ki, (bi − ai) mod ki})!
.

Proof. For each i we consider the two types of paths that go in opposite

directions. The total number of edges in a shortest path is

n∑

i=1

min{(ai −

bi) mod ki, (bi − ai) mod ki}. We then count the number of permutations
using Lemma 5.

Let G = Ck1�Ck2� · · ·�Ckn be the Cartesian product of n cycles. Our
next theorem gives the edge betweenness centrality of each edge in the
Cartesian product of n cycles. Let wi = (i1, i2, ..., in) and wj = (j1, j2, ..., jn)
be vertices of G and let e be an edge of G with vertices (v1, v2, ..., vn) and
(v1 + 1, v2, ..., vn). We define R(wi, wj) ⊆ G to be an n dimensional rect-
angular prism determined by wi and wj . For example, if ir ≤ jr for r =
1, 2, ..., n, then R(wi, wj) = {(k1, k2, ..., kn) |ir ≤ kr ≤ jr, r = 1, 2, ..., n}.

Let R′(wi, wj) be a rectangular prism with smallest perimeter. Then we
define

Cn(wi, wj , e) =

(
n∑

t=1

|it − vt|
)

!

n∏

t=1

(|it − vt|)!

·

(
|v1 + 1− j1|+

n∑

t=2

|it − vt|
)

!

|v1 + 1− j1|! ·
n∏

t=2

(|it − vt|)!
·

n∏

t=1

|it − jt|!
(

n∑

t=1

|it − jt|
)

!

(3)

and

Fn(wi, wj , e) =

{
Cn(wi, wj , e) if e ∈ R′(wi, wj);
0 otherwise.
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Now we are in position to prove our main result.

Theorem 13. Let G = Ck1�Ck2� · · ·�Ckn . If e is an edge in G with
vertices (v1, v2, ..., vn) and (v1 + 1, v2, ..., vn), then

bc′(e) =
∑

wi,wj∈V (G)

F (wi, wj , e).

Proof. Let G = Ck1 �Ck2 � · · ·�Ckn . To find the betweenness edge cen-
trality for e, we count the total number of shortest paths passing through
the edge e : {(v1, v2, ..., vn) , (v1 + 1, v2, ..., vn)}. Let x = (v1, v2, ..., vn) and
y = (v1 + 1, v2, ..., vn) and let wi = (i1, i2, ..., in) and wj = (j1, j2, ..., jn) be
vertices of G. The number of shortest paths from wi to x is

(
n∑

t=1

min{(it − vt)ki,(vt − it) mod ki

)
!

n∏

t=1

(min{(it − vt)ki,(vt − it) mod ki)!

.

The number of shortest paths from y to wj is

(
min{(v1 + 1− j1) mod k1,(j1 − (v1 + 1)) mod k1}

+

n∑

t=2

min{(it − vt) mod kt,(vt − it) mod kt}
)

!

min{(v1 + 1− j1) mod k1,(j1 − (vi + 1)) mod k1}!

·
n∏

t=2

(
min{(it − vt) mod kt,(vt − it) mod kt}

)
!

.

The total number of shortest paths from wi to wj is

(
n∑

t=1

min{(it − jt) mod kt, (jt − it) mod kt}
)

!

n∏

t=1

min{(it − jt) mod kt, (jt − it) mod kt}!
.

This completes the proof.
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Recall that the graph G = Pk1�Pk2 may be represented by the grid

G = {(x, y)| 0 ≤ x ≤ k1 and 0 ≤ y ≤ k2 with x, y ∈ Z}.

We define the graph WG be the graph that results from G adding ”diagonal”
edges of the form (x, y)–(x + 1, y + 1) where 0 ≤ x < k1 and 0 ≤ y < k2.
We note that in a shortest path the number of these diagonal edges should
be maximized.

Lemma 14. Let w1 = (i1, i2) and w2 = (j1, j2) be vertices in WG with i1 ≤
j1 and i2 ≤ j2. Let n = min{|i1−j1|, |i2−j2|} and m = ||i1−j1|−|i2−j2||.
The number of shortest paths from w1 to w2 is

(
m+n
n

)
.

Proof. Let P be a shortest path from w1 = (i1, i2) and w2 = (j1, j2).
Note that when a path includes diagonal edges of the form NE := (x, y)–
(x+1, y+1) the path becomes shorter than if it only contains edges of either
forms E := (x, y)–(x, y + 1) or N := (x, y)–(x + 1, y). So, the maximum
number of edges of the form NE that P may have is n = min{|i1−j1|, |i2−
j2|}. When P reaches the maximum number of edges of the form NE, then
P will have only edges of either forms (but not both) E or N . The number
of edges of the form E or N that P may have after reaching the maximum
number of edges of the form NE is m = ||i1 − j1| − |i2 − j2||. Then the
number of shortest paths from w1 to w2 is

(
m+n
n

)
.

Lemma 15. Let w1 = (i1, i2) and w2 = (j1, j2) be vertices in WG and let e
be an edge in WG with vertices (v1, v2) and (v1 + 1, v2) where i1 ≤ v1 < j1
and i2 ≤ v2 ≤ j2. If n = min{|i1 − v1|, |i2 − v2|}, n′ = min{|j1 − v1 −
1|, |j2− v2|}, m = ||i1− v1| − |i2− v2||, m′ = ||j1− v1− 1| − |j2− v2||, then

the number of shortest paths from w1 to w2 containing e is
(
m+n
n

)(
m′+n′

n′
)
.

Proof. This follows from Lemma 14.

The proof of the following lemma is similar to the proof of Lemma 7.

Lemma 16. Let w1 = (i1, i2) and w2 = (j1, j2) be vertices in WG and let e
be an edge in WG with vertices (v1, v2) and (v1 + 1, v2) where i1 ≤ v1 < j1
and i2 > v2 > j2. If n1 = i1 − v1, n2 = i2 − v2, n3 = v1 + 1 − j1 and
n4 = v2 − j2, then the number of shortest paths from w1 to w2 containing
e is

(
n1+n2

n1

)(
n3+n4

n3

)
.

Let wi = (i1, i2) and wj = (j1, j2) be vertices in WG. Let e = (v1, v2) −
(v1 + 1, v1) be an edge in WG. If i1 ≤ v1 < j1 and i2 ≤ v2 ≤ j2, we
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define Cd(wi, wj , e) =
(
m+n
n

)(
m′+n′

n′
)

where n = min{|i1 − v1|, |i2 − v2|},
n′ = min{|j1 − v1 − 1|, |j2 − v2|}, m = ||i1 − v1| − |i2 − v2||, m′ = ||j1 −
v1 − 1| − |j2 − v2||. If i1 ≤ v1 < j1 and i2 > v2 > j2, then we define

Cu(wi, wj , e) =
(
m+n
n

)(
m′+n′

n′
)

where n1 = i1 − v1, n2 = i2 − v2, n3 =
v1 + 1− j1 and n4 = v2 − j2.

We define RW (wi, wj) ⊆WG to be the rectangle determined by the corner
points wi and wj . Hence we have:

FR(wi, wj , e) =





Cd(wi, wj , e) if e ∈ RW (wi, wj), i1 < j1 and i2 ≤ j2;
Cu(wi, wj , e) if e ∈ RW (wi, wj), i1 < j1 and i2 > j2;

0 otherwise.

Theorem 17. Let G = Pk1�Pk2 . If e is an edge in WG with vertices
(v1, v2) and (v1 + 1, v2), then

bc′(e) =
∑

wi,wj∈V (WG)

FR(wi, wj , e).

Proof. Let wi = (i1, i2) and wj = (j1, j2) be vertices of WG. For this prove
we consider three cases.

Case 1. It easy to see that every shortest path connecting wi to wj is
in the rectangle RW (wi, wj) (defined by wi and wj). Therefore, if e =
(v1, v2)− (v1 + 1, v1) does not belong to RW (wi, wj), then every path from
wi to wj passing through e is not a shortest path. Thus, FR(wi, wj , e) = 0.

Case 2. Suppose that e ∈ RW (wi, wj) with i1 ≤ v1 ≤ j1 and i2 < v1 + 1 ≤
j2. From Lemma 15 the total number of shortest paths from wi to wj

passing through e is
(
m+n
n

)(
m′+n′

n′
)
, where n = min{|i1 − v1|, |i2 − v2|},

n′ = min{|j1− v1− 1|, |j2− v2|}, m = ||i1− v1| − |i2− v2||, m′ = ||j1− v1−
1| − |j2 − v2||.

Case 3. Suppose that e ∈ RW (wi, wj) with i1 ≤ v1 < j1 and i2 > v2 > j2.
From Lemma 16 the total number of shortest paths from wi to wj passing
e is

(
n1+n2

n1

)(
n3+n4

n3

)
where n1 = i1 − v1, n2 = i2 − v2, n3 = v1 + 1− j1 and

n4 = v2 − j2.

Summing over all vertices of WG yields bc′(e) =
∑

wi,wj∈V (WG)

FR(wi, wj , e).

This completes the proof.
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3 Asymptotics

In this section we investigate the asymptotic behavior of two types of edges:
edges that are incident to a corner and edges that are incident to a center
vertex. These appear to be the two types of edges with the smallest and
largest edge betweenness centrality values. See Figures 5,6, and 7.

(a) (b)

Figure 5: Edge betweenness centrality of edges in a 11× 11 grid.

We next explore the asymptotic behavior of corner and central edges in a
two dimensional lattice (or grid graph). In the following proposition we
extract the two-dimensional case from Theorem 10.
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(a) (b)

Figure 6: Edge betweenness centrality of edges in a 12× 12 grid.

Proposition 18. Let H = Pn×Pn. Suppose that the edge ecr with vertices
{1, 2} is incident to a corner vertex of H and that the edge ecn with vertices
{a, b} is incident to a center vertex of H, where

1. a = (n− 1)2/2 and b =
(
n2 + 1

)
/2, if n is even and

2. a = b(n− 2) /2c (n+ 1) + 1 and b = a+ n, if n is odd, then

(a) bc′(ecr) = 2

n−1∑

j=1

(
n−1∑

i=1

1(
i+j
i

)
)

+ n2 − 1.

(b) If n is odd then,

bc′(ecn) = 4

n−1
2 −1∑

t=0

n−1
2∑

r=0

n−1
2∑

j=0

n−1
2∑

i=0

(
i+t
i

)(
j+r
j

)
(
i+j+r+t+1

i+j

) − 4
(bn+1

2 c
2

)
.

(c) If n is even then

bc′(ecn) = 4

n−2
2∑

t=0

n−2
2∑

r=0

n
2∑

j=0

n−2
2∑

i=0

(
i+t
i

)(
j+r
j

)
(
i+j+r+t+1

i+j

) − n2

2
.

Next, we analyze the asymptotics of an edge incident to a corner vertex
and an edge incident to a center vertex. We first investigate a lower bound
of bc′(ecr).
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(a) (b)

Figure 7: Edge betweenness centrality of edges in a 11× 21 grid.

Claim 19. When i is sufficiently large,
(
i+j
i

)
≤ ei+j.

Proof.
(
i+j
i

)
≤
(
i+j
i

)i
ei =

(
1 + t

i

)i
ei where j is fixed and i → ∞ we have

that lim
i→∞

(
i+j
i

)
≤ lim

i→∞

(
1 + j

i

)i
ei = eiej = ei+j .

Now using Claim 19, when i→∞ and j is fixed, we have that:

(
i+ j

i

)
≤ ei+j ⇒ 1

ei+j
<

1(
i+j
i

) .

Then
m∑
j=1

k∑
j=1

1
eiej <

m∑
j=1

k∑
j=1

1

(i+j
i )

⇒ 1
e2

m∑
j=1

(
1
e

)j−1 k∑
j=1

(
1
e

)i−1
<

m∑
j=1

k∑
i=1

1

(i+j
i )

As m → ∞ and k → ∞ we have the geometric series lim
m→∞

m∑
j=1

(
1
e

)j−1
and

lim
k→∞

k∑
i=1

(
1
e

)i−1
. Summing these series gives 1

1− 1
e

in each case.
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As m→∞ and k →∞ we have 1
e2

(
1

1− 1
e

)(
1

1− 1
e

)
≤

m∑
j=1

k∑
i=1

1

(i+j
i )

⇒
(

1
e−1

)2
≤

m∑
j=1

k∑
i=1

1

(i+j
i )

.

We consider the lower bound of bc′(ecr) when m → ∞ and k → ∞. The
case of m = n− 1 and k = n− 1 is given by

2
(

1
e−1

)2
+ n2 − 1 ≤ 2

m∑
j=1

k∑
i=1

1

(i+j
i )

+ n2 − 1 = bc′(ecr).

Next we consider the lower bound of bc′(ecn).

Claim 20. If i→∞ and t is fixed,
(
i+t
i

)
≤
(
i+t
i

)
which implies et ≤

(
i+t
i

)

and er ≤
(
j+r
j

)
.

It is easy to see that

1

ei+j+1
≤
(
i+t
i

)(
j+r
j

)
(
i+j+t+r+1

i+j

)

⇒
n−2
2∑
t=0

n−2
2∑

r=0
e−(i+j+1) ≤

n−2
2∑
t=0

n−2
2∑

r=0

(
i+t
i

)(
j+r
j

)
(
i+j+t+r+1

i+j

)

⇒ (n/2)
2

ei+j+1
≤

n−2
2∑
t=0

n−2
2∑

r=0

(
i+t
i

)(
j+r
j

)
(
i+j+t+r+1

i+j

)

⇒
(n

2

)2 n−2
2∑
t=0

n−2
2∑

r=0

1

eieje
≤

n−2
2∑
t=0

n−2
2∑

r=0

(
i+t
i

)(
j+r
j

)
(
i+j+t+r+1

i+j

) .

Let n = m. Then it is easy to see that

1

e

(n
2

)2
m−2

2∑

i=0

1

ei

m−2
2∑

j=0

1

ej
≤

n−2
2∑

t=0

n−2
2∑

r=0

(
i+t
i

)(
j+r
j

)
(
i+j+t+r+1

i+j

) .

When m→∞ we have:
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m−2
2∑
i=0

1

ei
= 1 +

e−1

1− 1
e

= 1 +
e−1e
e− 1

and

m−2
2∑
j=0

1

ei
= 1 +

e−1

1− 1
e

= 1 +
e−1e
e− 1

lim
m→∞

1

e

(n
2

)2 m−2
2∑
i=0

1

ei

m−2
2∑
j=0

1

ej
≤ lim
m→∞

4

n−2
2∑
t=0

n−2
2∑

r=0

(
i+t
i

)(
j+r
j

)
(
i+j+t+r+1

i+j

)

⇒ 4

e

(n
2

)2(
1 +

1

e− 1

)2

− n2

2
≤ 4

n−2
2∑
t=0

n−2
2∑

r=0

(
i+t
i

)(
j+r
j

)
(
i+j+t+r+1

i+j

) − n2

2
(as m→∞).

Next we investigate an upper bound for a corner edge.

Using Claim 20 it is easy to see that:

k∑

j=1

m∑

i=1

1(
i+j
i

) < m

m∑

i=1

1

ej
.

Then fixing m large and letting k →∞, we have that

lim
k→∞

k∑

j=1

m∑

i=1

1(
i+j
i

) < m lim
k→∞

k∑

j=1

1

ej

=
m

e

∞∑

j=1

1

ej−1
=
m

e

(
1

1− 1
e

)
=
m

e

(
e

e− 1

)
.

Thus for k and m large enough we have that:

k∑

j=1

m∑

i=1

1(
i+j
i

) < m

(
1

e− 1

)
.

Replacing k and m with n− 1 we have:

n2 − 1 + 2

n−1∑

j=1

n−1∑

i=1

1(
i+j
i

) < n2 − 1 + (n− 1)

(
1

e− 1

)
.
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Next we investigate an upper bound for a central edge.

As proved in the upper bound case we have that:

et+r+1 <

(
i+ j + t+ r + 1

i+ j

)

if i and j are large.

By Claim 19 we have

(
i+ t

i

)
≤ etei = ei+tand

(
j + r

r

)
≤ ej+r.

⇒
(
i+j
i

)(
j+r
r

)
(
i+j+t+r+1

i+j

) ≤ ei+tej+r

et+r+1
= ei+j−1.

Then

n−2
2∑
t=0

n−2
2∑

r=0

(
i+j
i

)(
j+r
r

)
(
i+j+t+r+1

i+j

) ≤
n−2
2∑
t=0

n−2
2∑

r=0
ei+j−1 =

(n
2

+ 1
)(n

2
+ 1
)
ei+j−1

⇒
n−2
2∑
i=0

n
2∑
j=0

n−2
2∑
t=0

n−2
2∑

r=0

(
i+t
i

)(
j+r
j

)
(
i+j+r+t+1

i+j

)

≤
n−2
2∑
i=0

n
2∑
j=0

(n
2

)2
ei+j−1

=
(n

2

)2 n−2
2∑
i=0

ei
n
2∑
j=0

ei−1

=
(n

2

)2
(

1− en−2
2 +1

)

1− e

(
1− en

2 +1
)

1− e e−1

and hence

n−2
2∑
t=0

n−2
2∑

r=0

(
i+j
i

)(
j+r
r

)
(
i+j+t+r+1

i+j

) ≤
(n

2

)2
(

1− en−2
2 +1

) (
1− en

2 +1
)

e(1− e)2 .

Then if n is even then we have that:
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4

(
n−2
2∑
t=0

n−2
2∑

r=0

(
i+j
i

)(
j+r
r

)
(
i+j+t+r+1

i+j

)
)
− n2

2
< 4

(n
2

)2
(

1− en−2
2 +1

) (
1− en

2 +1
)

e(1− e)2 − n2

2

=
n2

2

(
2

(
1− en

2

) (
1− en

2 +1
)
− e(1− e)2

e(1− e)2

)
.

We have proved the following upper and lower bounds for corner and central
edges.

Theorem 21.

2

(
1

e− 1

)2

+ n2 − 1 ≤ bc′(ecr) < n2 − 1 + (n− 1)

(
e

2 (e− 1)

)
.

This shows that bc′(ecr) is Θ(n2).

Theorem 22.

1

e

(n
2

)2(
1 +

1

e− 1

)2

≤ bc′(ecn) ≤ 4
(n

2

)2 (1− en
2

) (
1− en

2 +1
)

e(1− e)2 − n2

2
.

4 Open problems

In Section 3 we noticed that in an a two-dimensional lattice central edges
seem to have highest edge betweenness centrality and the corner edges
seem to have the lowest edge betweenness centrality. We pose the following
conjecture.

Conjecture 23. In an n-dimensional lattice, the central edges have the
highest edge betweenness centrality and the corner edges have the lowest
edge betweenness centrality.

In Example 11 and Lemma 12 we investigated the edge betweenness cen-
trality for graphs on a torus. It would be interesting to consider edge
betweenness centrality on other surfaces such as Möbius band. Connecting
the left and right boundaries identifies vertices close to the top of the left
side with vertices close to the bottom of the right side. As a result new
challenges arise, including the need different cases where the number of
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v1

(a) (b)

Figure 8:

vertices in the horizontal direction is even or odd. We show two cases in
Figures 8 (a) and (b).

We pose the general case as a problem for continued study.

Problem 24. Determine the edge betweenness centrality for Möbius band
graphs.

A further challenge would be to explore the variants involving the Klein
bottle.

Problem 25. Determine the edge betweenness centrality for Klein bottle
graphs.

Another area for continued research is to refine the asymptotic bounds given
in the paper.
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