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Abstract: In this note we provide an improved upper bound on the
biplanar crossing number of the 8-dimensional hypercube. The k-planar
crossing number of a graph crk(G) is the number of crossings required
when every edge of G must be drawn in one of k distinct planes. It was
shown in [1] that cr2(Q8) ≤ 256 which we improve to cr2(Q8) ≤ 128.
Our approach highlights the relationship between symmetric drawings and
the study of k-planar crossing numbers. We conclude with several open
questions concerning this relationship.
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1 Introduction

The traditional crossing number of a graph G = (V,E), denoted by cr(G),
is the minimum number of edge crossings required to draw G in the 2-
dimensional Euclidean plane. To study printed circuit boards, Owens [3]
generalized the question: what is the minimum number of edge crossings re-
quired by a drawing that is allowed to carefully divide the edges of G among
two different 2-dimensional Euclidean planes? Since then the definition has
been extended to k ≥ 2 planes [1].

Suppose that E is partitioned into k disjoint subsets, E1, E2, ..., Ek, and let
Gi = (V,Ei). Each Gi has some crossing number cr(Gi). Suppose further
that Gi will be drawn in the ith plane from a set of k distinct planes. The
k − planar crossing number of G, denoted crk(G) is then the minimum of

cr(G1) + cr(G2) + ...+ cr(Gk)

over all partitions of the edge set E.

Trivially, letting E1 = E shows that crk(G) ≤ cr(G). The question remains:
given the freedom to consider any partition of G’s edges among k disjoint
planes, how low can we drive the number of required crossings?

A significant challenge in designing a crossing-minimizing k-planar drawing
of G is that, even for quite simple Gi, cr(Gi) could be unknown. In this
paper we consider the n-dimensional hypercube: the graph whose vertices
are binary strings of length n and two vertices are adjacent if they differ
in exactly one bit. For example: for Q4, the 4-dimensional hypercube, it is
known that cr(Q4) = 8; however, the exact value of cr(Qd) is unknown for
d > 4 [2].

The previous upper bound cr2(Q8) ≤ 256 was given by a construction of
Czabarka, Sýkora, Székely, and Vrt́o in [1]. Czabarka et al. give a general
construction for an upper bound on cr2(Qd) that achieves 256 crossings
when d = 8. Their approach specifies a bi-planar partition of the edges of
Q8 based on a set of lower-dimensional hypercube subgraphs. Their upper
bound is minimized when these hypercube subgraphs are as-uniform-as-
possible in size. In particular, for Q8 their construction specifies sixteen
disjoint Q4 subgraphs in Plane 1 and a further sixteen disjoint Q4 subgraphs
in Plane 2. Recall that cr(Q4) = 8, so drawing each disjoint copy of Q4

optimally yields
cr2(Q8) ≤ 16× 2× 8 = 256.
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We now present our main result which improves on the the best known
upper bound of cr(Q8) by a factor of 2.

Theorem 1 There exists a 2-planar drawing of the 8-dimensional hyper-
cube with 128 crossings so that cr2(Q8) ≤ 128.

2 A biplanar drawing of Q8 with 128 crossings

To prove Theorem 1, we provide a biplanar drawing of Q8 with 128 cross-
ings. We improve the previous construction by plane-swapping edges to give
a net reduction in total edge crossings. Our drawing consists of graphs G1

and G2 in Plane 1 and 2 respectively such that G1
∼= G2 where cr(Gi) ≤ 64.

We found several distinct bi-planar drawings of Q8 with exactly 128 cross-
ings which satisfy these conditions. For ease of exposition, we present a
highly symmetric drawing.

We define a depleted n-dimensional hypercube to be a graph whose vertex
set is V (Qn) and will refer to such graphs as depleted n-cubes. We will make
use of depleted 5-cubes. To this end we introduce the following partition
V (Q4) := C1 ∪ C2 where

C1 := {0000, 1000, 0010, 1010, 0011, 1011, 0001, 1001}
C2 := {0111, 1111, 0101, 1101, 0100, 1100, 0110, 1110}.

Note that C1 and C2 are disjoint.

For ease of notation, we denote ĉ ∈ C1 and č ∈ C2. Moreover, we let
b ∈ {0, 1} represent the usual binary-bit. Maintaining the notation of [1]
we refer to each node of Q8 by a length-8 binary string from {0, 1}8. Given
two binary strings s1 and s2 we write s1s2, or s1 − s2 for readability, to be
the usual string concatenation.

In our construction, each plane contains 512 edges, and furthermore, G1

and G2 are isomorphic. For exposition, suppose that we initially have a
Plane 0 which contains all the edges and vertices of Q8. Further suppose
that there exist Planes 1 and 2 which each initially contain the vertices of
Q8 and no edges. We move every edge from Plane 0 to either Plane 1 or
Plane 2 to create our biplanar partition. In Table 1, we describe explicitly
the 512 edges we add to Plane 1.
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Consider the set of pairs

P1 := {(0000, 1000), (0010, 1010), (0011, 1011), (0001, 1001)} ⊂
(
C1

2

)
.

For (ĉ1, ĉ2) ∈ P1 define the depleted 5-cube of Type 1, denoted D1(ĉ1, ĉ2),
according to the Table 1.

E(D1(ĉ1, ĉ2)) for (ĉ1, ĉ2) ∈ P1 with ĉ ∈ {ĉ1, ĉ2} and b ∈ {0, 1}.
(ĉ− b000, ĉ− b001) (ĉ− b000, ĉ− b100) (ĉ− b100, ĉ− b101)
(ĉ− b010, ĉ− b011) (ĉ− b010, ĉ− b110) (ĉ− b110, ĉ− b111)
(ĉ− b000, ĉ− b010) (ĉ− b001, ĉ− b011) (ĉ− b100, ĉ− b110)
(ĉ− b001, ĉ− b101) (ĉ− b011, ĉ− b111) (ĉ− b101, ĉ− b111)

(ĉ− 0101, ĉ− 1101) (ĉ− 0111, ĉ− 1111) (ĉ− 0110, ĉ− 1110)
(ĉ− 0100, ĉ− 1100)

(ĉ1 − 0000, ĉ2 − 0000) (ĉ1 − 0100, ĉ2 − 0100) (ĉ1 − 1100, ĉ2 − 1100)
(ĉ1 − 1001, ĉ2 − 1001) (ĉ1 − 1101, ĉ2 − 1101) (ĉ1 − 0101, ĉ2 − 0101)
(ĉ1 − 1000, ĉ2 − 1000) (ĉ1 − 0001, ĉ2 − 0001)

Table 1: Table of the 64 edges of depleted 5-cubes of Type 1.

The four depleted 5-cubes of Type 1 are vertex disjoint (from the form of
pairs in P1). We present an eight-crossing drawing of a depleted 5-cube of
Type 1 in Figure 1, which proves the following claim.

Claim 1 cr(D1(ĉ1, ĉ2)) ≤ 8.

We similarly define D2(č1, č2), the depleted 5-cube of Type 2, according to
Table 2 given

P2 := {(0111, 1111), (0101, 1101), (0100, 1100), (0110, 1110)} ⊂
(
C2

2

)
.

Again, the four depleted 5-cubes of Type 2 are vertex disjoint. An eight-
crossing drawing of a depleted 5-cube of Type 2 is given in Figure 2, which
proves the following claim.

Claim 2 cr(D2(č1, č2)) ≤ 8.
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j − 0111

j − 0110

j − 0011

j − 0010

j − 0001

j − 0101

j − 0100

j − 0000 j − 1000

j − 1100

j − 1101

j − 1111

j − 1110

j − 1010

j − 1011

j − 1001

k − 0000

k − 0100

k − 1100

k − 1000

k − 1010

k − 1110

k − 1111

k − 1011

k − 1001

k − 1101

k − 0101

k − 0010

k − 0110

k − 0111

k − 0011

k − 0001

Figure 1: A drawing of D1(j, k) for (j, k) ∈ P1 with eight crossings.

Each depleted 5-cube has 64 edges, so Plane 1 contains 512 edges. Further,
no depleted 5-cube of Type 1 shares a vertex with a depleted 5-cube of Type
2. This follows from the form of the pairs in P1 and P2 and the form of the
edge sets described in Tables 1 and 2. Thus, these 512 edges can be drawn
in Plane 1 with at most 64 crossings.

Remark 1 Plane 2 contains all the edges of Q8 which are not in Plane 1.
Moreover, G1

∼= G2.

We now provide a more illuminating description of the edges of Plane 2.
The edges in Plane 2 have a symmetric representation in terms of the edges
in Plane 1. Let ρ : E(Q8)→ E(Q8) such that

ρ((vpvs, upus)) = (vsvp, usup)
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E(D2(č1, č2)) for (č1, č2) ∈ P2 with č ∈ {č1, č2} and b ∈ {0, 1}.
(č− b000, č− b001) (č− b000, č− b100) (č− b100, č− b101)
(č− b010, č− b011) (č− b010, č− b110) (č− b110, č− b111)
(č− b000, č− b010) (č− b001, č− b011) (č− b100, č− b110)
(č− b001, č− b101) (č− b011, č− b111) (č− b101, č− b111)

(č− 0011, č− 1011) (č− 0001, č− 1001) (č− 0000, č− 1000)
(č− 0010, č− 1010)

(č1 − 0110, č2 − 0110) (č1 − 0111, č2 − 0111) (č1 − 0011, č2 − 0011)
(č1 − 1111, č2 − 1111) (č1 − 1110, č2 − 1110) (č1 − 1010, č2 − 1010)
(č1 − 1011, č2 − 1011) (č1 − 0010, č2 − 0010)

Table 2: Table of 64 edges of depleted 5-cubes of Type 2.

where vp is a prefix string of length four, v1v2v3v4, and vs is a suffix string
of length four, v5v6v7v8 that together define vertex v = v1v2 . . . v8. Indeed
ρ captures the symmetric relationship between edges in Plane 1 and the
edges in Plane 2. Assuming an ordering on the vertices of Q8 one can check
that ρ is indeed a bijection. As an example, in Table 1 we assign edge
(ĉb-000, ĉb-001) to Plane 1. So we send

ρ((ĉb− 000, ĉb− 001)) = (b000− ĉ, b001− ĉ)

to Plane 2. If we let Pi be the set of edges partitioned into Plane i then
P2 = ρ(P1). Moreover, the drawings provided in Figures 1 and 2 for depleted
5-cubes of Type 1 (or Type 2, resp.) are also drawings of their images under
ρ. It follows that, for the edge partition we describe, each plane can be
drawn with at most 64 crossings implying that cr2(Q8) ≤ 128 as desired.

A natural next step in this research is to determine whether or not this
bound is sharp. The authors believe this to be the case; however, such a
proof remains elusive. Alas, we leave the reader with the following conjec-
ture.

Conjecture 1 cr2(Q8) = 128.
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j − 0001

j − 0000

j − 0101

j − 0100

j − 0111

j − 0011

j − 0010

j − 0110

j − 1010

j − 1110

j − 1100

j − 1000
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j − 1101

j − 1111

j − 1011

k − 0110
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k − 1111
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k − 0001

k − 0101

k − 0111

Figure 2: A drawing of D2(j, k) for (j, k) ∈ P2 with eight crossings.

3 Lower bounds on structurally-symmetric
k-planar crossing numbers for hypercubes

Notably, our bi-planar drawing of Q8 satisfies G1
∼= G2. This is a rather

special property and is termed self-complementary in [1]. It could be the
case that there exists a non-isomorphic partition of E(Q8) which admits
strictly fewer crossings. Yet, we wonder whether demanding that the Gi

be isomorphic truly forces a suboptimal number of crossings for k-planar
drawings. In particular, such symmetry would be expected when consider-
ing highly symmetric graphs like hyper-cubes.

To formalize this question, we introduce the following generalization of self-
complementary edge partitions.
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Definition 1 For a finite graph G = (V,E), let P denote an edge-partition
E = (E1, E2, ..., Ek) and define Gi = (V,Ei) for all i. If for all pairs
(r, s) ∈ [k] × [k] we have Gr

∼= Gs, then P is a k-structurally-symmetric
partition of G.

Trivially, when |E| is not a multiple of k, no k-structurally-symmetric par-
tition of E exists.

Definition 2 If there exists a k-structurally-symmetric partition for G that
can be drawn with crk(G) crossings then we say that the graph G is k-
structurally-symmetric.

It is unclear whether graphs exist for which any k-structurally-symmetric
partition of E forces a sub-optimal k-planar drawing (which requires strictly
more than crk(G) crossings).

In particular, we leave the reader with the following question.

Question 1 Is the d-dimensional hypercube 2-structurally-symmetric?

This question motivates the following definition.

Definition 3 Let crkss(G) denote the minimum number of crossings re-
quired among all k-structurally symmetric partitions of G. We call crkss
the k-structurally-symmetric crossing number of G.

Trivially, crkss(G) ≥ crk(G). So, k-structurally symmetric graphs are pre-
cisely those graphs G that have crk(G) = crkss(G). We conclude by pre-
senting the reader questions concerning k-structurally-symmetric crossing
numbers.

Question 2 Characterize the set of all k-structurally-symmetric graphs.
To this end, what structural properties ensure that a graph is k-structurally-
symmteric or otherwise?

Question 3 Provide a graph for which the difference between crkss(G) and
crk(G) is large (or even > 0). Further, is there an infinite family (Gn)n≥1

such that Gn ⊆ Gn+1 and (crkss(Gn)− crk(Gn))n≥1 ↑ ∞?
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